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ABSTRACT
Industries can improve their business efficiency by analyzing and
extracting relevant knowledge from large numbers of documents.
Knowledge extraction manually from large volume of documents
is labor intensive, unscalable and challenging. Consequently, there
have been a number of attempts to develop intelligent systems to au-
tomatically extract relevant knowledge fromOCR documents. More-
over, the automatic system can improve the capability of search
engine by providing application-specific domain knowledge. How-
ever, extracting the efficient information from OCR documents is
challenging due to highly unstructured format [1, 11, 18, 26]. In this
paper, we propose an efficient framework for a knowledge extrac-
tion system that takes keywords based queries and automatically
extracts their most relevant knowledge from OCR documents by us-
ing text mining techniques. The framework can provide relevance
ranking of knowledge to a given query. We tested the proposed
framework on corpus of documents at GE Power where document
consists of more than hundred pages in PDF.
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1 INTRODUCTION
Automatic knowledge extraction from Optical Character Recogni-
tion (OCR) of documents is important for efficient and effective
analysis of business-related documents [2]. With businesses adopt-
ing data digitization, documents in OCR have an advantage of
archiving digital and non-editable copies of documents. The abil-
ity to analyze such documents in an automated manner improves
business efficiency by enabling the information retrieval analysis
and insights based on operational and domain specific key phrases,
terms and items of interest. Automatic knowledge extraction can
lessen human dependencies in understanding the information and
add values to business by reducing costs. IBM Watson [8] is a rep-
resentative example of the successful cases where an automatic
knowledge extraction system is effectively utilized.

A typical approach ranks relevant texts based on a short query
leading to term mismatch information retrieval. A short query may
lack quantity of sufficient words to represent enough information
for accurate information retrieval. Query Expansion (QE) technique
have been used to address this problem. QE technique adds new
tokens (words) to the existing keyword-based search terms to gen-
erate expanded queries. Local analysis [27] is one of the existing
QE techniques that utilizes top ranked retrieved documents by a
query. In this technique, the top ranked documents assume to be
relevant to the query, and the query can be expanded based on this
information. Relevance feedback [5], is the QE technique that ex-
tracts term expansion from relevant documents provided by users.
However, there are limitations if users fail to provide appropriate
relevant information to the given query [19].

Knowledge of interest can be extracted from text documents
based on text mining techniques [9]. Bag Of Words (BOW) is a
method used in text mining for computing similarity between sen-
tences by splitting the sentence into words. However, the consid-
eration of individual words of sentences often fails in computing
similarity. For instance, the sentences, "United States Of America
has Animal Kingdom" and "Animals rare in America are plentiful
in United Kingdom" are not related to each other. The former de-
scribes a place called Animal Kingdom in USA, whereas the latter

https://doi.org/10.1145/3264746.3264793
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is a comparative statement about animals in UK. In-spite of this,
the BOW approach shows a good relevance score because there are
multiple words in common. N -grams [15] was proposed to tackle
the problem. N -grams considers N consecutive words instead of a
single word separately. For instance, 2-grams of the phrase, "United
States of America", consider the following consecutive two words
for BOW: "United States", "States of", and "of America". N -grams
captures the context of text in a document. Lewis showed that
the addition of bi-grams and tri-grams (i.e N <= 3) to the BOW
representation improves the performance for similarity score [15].
Grobelnik et al. also showed that the performance of relevance
ranking can be improved by using N -grams technique with value
of N is up to three rather than using onlyuni-grams [17]. Moreover,
they reported no significant improvement in the performance of
using longer sequence of words than three (N > 3).

The similarity of sentences are measured by Vector Space Model
(VSM), where bag-of-words of sentences transferred into vector
spaces by Term Frequency-Inverse Document Frequency (TF-IDF)
factor of the word [25]. Term Frequency is defined as a number
of times a word is shown repeatedly in a document, normalized
by the total number of words in a document. Inverse Document
Frequency (IDF) is value that reflect how important a word is to a
document in collection of corpus.

2 RELATEDWORKS
An effective knowledge extraction system can help accelerate busi-
ness decisions if implemented correctly. Existing state of the art
methods for knowledge extraction can be categorized into three: (1)
keyword matching, (2) grammar analysis, and (3) rule based regular
expression matching methods.

For keyword matching systems, knowledge can be extracted by
matching a user-defined keyword to texts in documents [4, 6, 16, 28].
Texts in a document can be tokenized by a single space or a new line
to match with the user-defined keywords. It considers that all words
in the document are independent to each other. The performance
of this approach depends on the provided keywords.

Detecting relationship between words, that have a higher proba-
bility of occurring together or have a close relationship, often plays
an important role in extraction performance. Knowledge extraction
via grammar analysis [7, 13, 22, 23, 29] is an approach where the
relationship between the words is extracted by grammar rules. This
approach is limited to finding the relation between verb-adjective or
a noun-verb which follows grammar rules, but two closely related
nouns or verbs cannot be related, For example, "price" and "pay-
ment" are nouns, which are closely related in a business domain,
but their relationship cannot be defined by grammar analysis.

To obtain the relationship between two closely related words,
rule-based regular expression matching systems have been pro-
posed [14], where a set of rules is pre-defined by matching regular
expression or searching with multiple keywords. However, this ap-
proach confines only a set of documents which follow the designed
rules and involves domain experts to define rules, which can be
expensive and hard to generalize the solutions.

In this paper, we propose a framework where the relationship
between the words is achieved by using Query expansion (QE)
technique and knowledge extraction with the user defined query
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Figure 1: Process of knowledge extraction

is achieved by a vector space model and hierarchical document
analysis.

3 METHODS
We proposed framework for knowledge extraction to extract the
most relevant texts of interest from a corpus of OCR documents.
The framework includes two phases. In the first phase, an unstruc-
tured OCR document is reconstructed to hierarchical structural
format by analyzing the document layout features (e.g., font size
and font boldness). In the second phase, the hierarchical structured
documents are then preprocessed (e.g., removing stop words and
special characters, and case folding) and extended by appending
tokens using N -grams. Concurrently, when a user provides a query,
the query is updated by using the query expansion method. The
hierarchically structured data and the expanded query are then
converted to a vector space model (VSM) and compared for rank-
ing relevant paragraph to the query. Figure 1 illustrates the flow
diagram of the framework

3.1 Document reconstruction
We convert OCR content into structural formatted data, by extract-
ing document layout features and then analyzing the changes in the
layout features. The document layout features include font height,
font size, and boldness. Table 1 shows document text and their cor-
responding features of font height, boldness, font size in columns
respectively. We assume block headings such as section/subsection
headings follow a regular expression pattern (e.g. [a-z,A-Z]+ [0-9]+
[a-z,A-Z]+) and vary in the layout features. The section/subsection
headings are then extracted by analyzing the changes of layout
features and the regular expression pattern. Table 2 illustrates the
headings in an OCR document with their locations in document.
For example, the first row represents that the title "ARTICLE 1 DEF-
INITIONS" is in the seventh page and 42nd line of the document.

After extracting section/subsection headings, we can extract text
present in between two headings as sections. For example, text
data in between line 43 to line 284 in the document is extracted as
a section with heading, "ARTICLE 1 DEFINITIONS". Algorithm 1
explains the process.

The same technique recursively can extract, subsections using
the document layout feature analysis. Table 3 shows subheadings
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Table 1: Feature Extraction

DATA HEIGHT BOLD FONTSIZE

GECS 70 FALSE 14
GENERAL ELECTRIC INTERNATIONAL INC 14 TRUE 14

MASTER PRINTED COPY 24 TRUE 24
This copy is not be removed from its secure location... 16 TRUE 16
permission of the GECS Quality Programs Manager. 16 TRUE 16

A CONTROLLED electronic version can be viewed on the ... 13 FALSE
Do not photocopy any pages from this 68 TRUE 22

printed copy be required an uncontrolled version may be... 13 FALSE 13
Programs Manager or printed from the electronic version... 14 FALSE 13

Table 2: Section Headings of OCR

INDEX LOCATION PAGE NUMBER DATA

1 42 7 ARTICLE 1 DEFINITIONS
2 284 13 ARTICLE 2 CONTRACTOR RESPONSIBILITIES
3 490 18 ARTICLE 3 OWNER RESPONSIBILITIES
4 520 18 ARTICLE 4 TERM AND TERMINATION
5 596 20 ARTICLE 5 PRICE AND PAYMENT TERMS
6 1211 35 ARTICLE 6 DELIVERY TITLE
7 1382 39 ARTICLE 7 INSURANCE COVERAGE
8 1435 41 ARTICLE 8 WARRANTY

Algorithm 1 Section Extraction
Step 1: Extraction of layout features such as font-size and bold-
ness
Step 2: Detecting the font-sizes and bold differentiation
Step 3: Filtering the text where their is a difference in font-size
or boldness
Step 4: Assuming that titles have different layout features(e.g.,
font-sizes,boldness) and follow regular expression pattern of
[a-z,A-Z]+ [0-9]+ [a-z,A-Z]+
Step 5: Filtering the text obtained in step 3 with regular expres-
sion pattern
Step 6: Text remained after the step 5 will be the headings of
the section
Step 7: Text present between two concurrent headings is consid-
ering as a section

in its parent section. "6.1 Mobilization payment" in the first row is a
subheading, and "2" represents the location of the subheading, "6.1
Mobilization payment". The feature analysis is repeated till all inner
subsections are extracted. This process can generate hierarchically
structured document from OCR documents.

The hierarchically structured data from OCR documents are
stored as a dictionary format with the headings as keys and text
below as values for the keys. Figure 2 illustrates the hierarchal
structured headings, where "name" and "contents" represent the
headings of the sections and text in the section respectively. The
dictionary formatted data can take advantage of easy transition to
NoSQL and TF-IDF representation for further analysis.

Table 3: Subtitles

INDEX LOCATION DATA

1 2 6.1 Mobilization Payment
2 4 6.2 Quarterly Payment
3 78 6.3 Parts
4 85 6.4 In addition to the price

"Name": "Section 8 INSURANCE REQUIREMENTS",
"contents": [ [ "INSURANCE REQUIREMENTS" ] ],
"sections": [

[{            "Name": "8.1",
"contents": [ "8.1", "Seller's Insurance", "During this term unless otherwise self insured Seller will maintain the", 

"following insurance coverage", "(a)", "During ”,…..],
"sections": ""

},
{

"Name": "8.3",
"contents": [ "8.3", "Failure To Maintain Insurance", "Failure of any Party to maintain the insurance required under this 

Section 8 shall",………],
"sections": ""

},
{

"Name": "8.2",
"contents": [ "8.2", "Buyer's  Insurance" ],
"sections": [

[ {
"Name": "8.2.1  During the Term of this documnet Buyer shall maintain the following insurance",
"contents": [ "8.2.1  During the Term of this document Buyer shall maintain the following insurance", "coverage", 

"(a)  Workers' Compensation and any other statutory insurance required by law", …… ],
}

Figure 2: Reconstructed document

3.2 Knowledge extraction
we aims at reformulating the query to extract the most relevant
knowledge from OCR documents with the help of query expansion
(QE) technique. Tokens are collected by using N -grams technique
(sequence of words in length N ) [21] from documents and stored
in bag of words (BoW) representation (Recall and subsequently
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that N<=3). Then, TF-IDF [10, 12] is computed for the tokens. Each
section/subsection of the documents is transformed into a vector
space, where the entries of vector are TF-IDF values. Finally, cosine
similarity [20], is used to investigate hierarchical relevance between
the reformulated query (expanded query) and sections/subsections
in a Vector Space Model (VSM) model.

N -grams (N <= 3) is used to create new tokens from the prepro-
cessed sections, new tokens are included withuni-grams in a Bag of
words [24]. Initially, most relevant sections to a given query were
provided fromM documents manually. Preprocessing is performed
on the sections. The expanded query is then generated from the
BoW by selecting T most frequent of tokens where T is defined
by the user. Figure 3 illustrates the flow diagram of developing
expanded query.

The hierarchal structured documents after the document recon-
struction process is used for further analysis. Every token in the
hierarchal structured document is preprocessed and then assigned
values using TF-IDF technique. In the process, each section of a doc-
ument and the given query are transformed into vectors. Similarity
score between the query and all sections is calculated in a pairwise
manner using VSM. All of the sections are ranked by the similarity
scores and the section that contains the highest similarity score
is considered as the most relevant knowledge to the query. If the
obtained section does not contain any subsection, the relevant sec-
tion is retrieved as an output (the most relevant knowledge) for the
query. If it contains subsections, the algorithm iterates over the sec-
tion and determined the most relevant subsection. If the retrieved
subsection contains hierarchical sub-subsection, the method re-
peats the process and investigates the most relevant subsubsection
and so-on.

4 EXPERIMENTS AND RESULTS
In this section, we demonstrate experimental results of our proposed
method.

4.1 Data
We applied our framework to a corpus of OCR documents provided
by GE Power (GEP). These documents contain multiple sections
such as Appendix, Sections and Exhibits. These, in turn could com-
prise of multiple layer of subsections. GEP provided 16 keywords
(queries) for knowledge extraction. For each of the queries, they
also provided five (M) relevant paragraphs (accepted answers to the

section described described_section January year amount shall price 
january_year_thereafter upward_annual_basis upward_annual 
shall_adjusted_upward adjusted_upward_annual accordance 
payments shall_adjusted upward escalation basis_beginning 

beginning annual adjusted thereafter fees basis 
basis_beginning_january price_escalation year_thereafter 

annual_basis adjusted_upward january_year payment 
beginning_january annual_basis_beginning descnbedin_swtion 

determined_accordance hours_adder_fees including 
escalated_accordance section_shall ease_yeu 

year_thereafter_greater yeu thereafter_greater_two 
shall_escalated_accordance fees_termination monthly_fees ease 

escalated_accordance_section payments_described_section 
change_tie_conq cun index_descnbedin_swtion section_paid 

formulas_described definitions_formulas_described ........

Figure 4: Expanded query

Table 4: Relevance Ranking of Sections

Sections Similarity Score

PART 6 0.0321
PART 5 0.0195
PART 9 0.0090
PART 7 0.0032

PREAMBLE 0.0020

Table 5: Relevance Ranking of Sub Sections

Subsections Similarity Score

6.2 Periodic Payments 0.03
6.12 Initial Spare Parts 0.0

6.4 Extra Work 0.0
6.3 Unplanned Extra Work 0.0

6.26 0.0

query) from five most relevant documents. These given answers
were used to develop an expanded query.

We performed data preprocessing since stopwords contain less
importance and these are common in all documents, these words
are filtered out using stopwords list of python toolkit, NLTK [3].
Each of the remaining words (uni-gram) are considered as a token
for further analysis.

Our method aims at extracting the most relevant information
regarding a query term that a user defines. Specifically, we demon-
strate the process with the query term "Liquidated Damages" from
the set of queries provided by GEP. ("Liquidated Damages" query
provides information related to liabilities of industries in case of
damages). First, we expanded "Liquidated Damages" query, by using
query expansion technique. Figure 4 shows the expanded query
of "Liquidated Damages". The expanded query is compared with
sections in document by VSM. Table 4 shows the top five relevant
sections in the document along with relevance scores for the given
query "Liquidated damages". "PART 6" shows the highest similarity
score of 0.0321, which is the most relevant section to the query.
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Table 6: Relevance Ranking of Sections

Sub-subsections Similarity Score

6.2.4 Liquidated Damages or Bonus 0.2776
6.2.1 Fixed Lump Sum Annual Payments 0.0

6.2.2 Periodic Price Escalation 0.0
6.2.3 Option for Second Major 0.0

“Liquidated Damages or Bonus
If the Maintenance Contraction owes …
Liquidated damages for late delivery of parts or
Personnel in accordance with Section 5.1 of 
Appendix A or if ….. owes the Maintenance 
Contractor a bonus for early completion of 
Planned Maintenance event in accordance with 
Section 3.2 of Appendix A such accounts will be
Settled up in the last payment in a given calendar
Year during which said condition

Figure 5: Most relevant paragraph to the query

The next step is to extract the most relevant portion with in
Section "PART 6" to query. We compared the expanded query of
"Liquidated Damages" to the subsections with in Section "PART
6". Table 5 shows the top five most relevant subsections in Section
"PART 6". "6.2 Periodic Payments" is with the highest similarity
score of 0.03, which is the most relevant subsection to the query.
If the section "6.2 Periodic Payments" does not contain any sub-
sections, "6.2 Periodic Payments" is extracted as the most relevant
section for given query "Liquidated Damages". If "6.2 Periodic Pay-
ments" contains subsections with in it, we extract the most relevant
section within Section "6.2 Periodic Payments". We compared the
expanded query of the "Liquidated Damages" with subsections with
in "6.2 Periodic Payments". Table 6 represents the most relevant sub-
sections within "6.2 Periodic Payments" along with the relevance
score for the query. "6.2.4 Liquidated Damages Bonus" with the
relevance score of "0.2776" is the most relevant section within "6.2
Periodic payments" to the query "Liquidated Damages". Figure 5
represent the most relevant section within the document for the
given query term "Liquidated Damages".

5 CONCLUSIONS
In this study, we present a knowledge extraction framework from
OCR documents for given user query with VSM. The hierarchical
structure analysis of the documents provides an effective solution
to fetch relevant knowledge. The extracted knowledge could be
used for various application such as automatic knowledge man-
agement and enrich the search systems. The advantage of using
query expansion is to establish a correlations between query terms
and document terms by analyzing provided relevant knowledge.
For any new queries, expansion terms can be selected from the
documents. However, this method has limitations based on rules

imposed during the document reconstruction step that are depen-
dent on the structure of the original PDF document layout features
(font size and boldness) and regular expression pattern. We con-
ducted experiments of the knowledge extraction framework with
16 queries to extract relevant knowledge from over 100 documents.
The series of experiments showed performance improvement with
our framework over the existing manual knowledge extraction
system.
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