
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Spring 5-10-2018

Malware Image Classification using Machine
Learning with Local Binary Pattern
Jhu-Sin Luo
Kennesaw State University

Dan Lo
Kennesaw State University

Follow this and additional works at: https://digitalcommons.kennesaw.edu/cs_etd

Part of the Information Security Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Luo, Jhu-Sin and Lo, Dan, "Malware Image Classification using Machine Learning with Local Binary Pattern" (2018). Master of Science
in Computer Science Theses. 16.
https://digitalcommons.kennesaw.edu/cs_etd/16

https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/cs_etd/16?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Malware Image Classification using Machine Learning
with Local Binary Pattern

A Thesis Presented to

The Faculty of the Computer Science Department

by

Jhu-Sin Luo

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

May 2018

Maiware Image Classification using Machine Learning with
Local Binary Pattern

Approved:

Dr. Dan Chia-Tien Lo - Advisor

Dr. Dan Chia-Tien Lo— Department Chair

In presenting this thesis as a partial fulfillment of the requirements for an advanced

degree from Kennesaw State University, I agree that the university library shall make it

available for inspection and circulation in accordance with its regulations governing

materials of this type. I agree that permission to copy from, or to publish, this thesis may

be granted by the professor under whose direction it was written, or, in his absence, by

the dean of the appropriate school when such copying or publication is solely for

scholarly purposes and does not involve potential financial gain. It is understood that

any copying from or publication of, this thesis which involves potential financial gain

will not be allowed without written permission.

 Jhu-Sin Luo

Notice To Borrowers

Unpublished theses deposited in the Library of Kennesaw State University must be used
only in accordance with the stipulations prescribed by the author in the preceding
statement.

The author of this thesis is:

Jhu-Sin
Luo

1100 S Marietta PKWY,

Marietta, GA 30060

The director of this thesis is:

Dr. Dan Chia-Tien Lo

1100 S Marietta PKWY,
Marietta, GA 30060

Users of this thesis not regularly enrolled as students at Kennesaw State University are
required to attest acceptance of the preceding stipulations by signing below. Libraries
borrowing this thesis for the use of their patrons are required to see that each user records
here the information requested.

Malware Image Classification using Machine Learning
with Local Binary Pattern

An Abstract of
A Thesis Presented to

The Faculty of the Computer Science Department

by

Jhu-Sin Luo
Bachelor of Science, National Kaohsiung First University of Science and Technology,

2014

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Kennesaw State University

May 2018

Abstract

Malware classification is a critical part of the cybersecurity. Traditional methodologies

for the malware classification typically use static analysis and dynamic analysis to

identify malware. In this paper, a malware classification methodology based on its

binary image and extracting local binary pattern (LBP) features is proposed. First,

malware images are reorganized into 3 by 3 grids which are mainly used to extract LBP

feature. Second, the LBP is implemented on the malware images to extract features in

that it is useful in pattern or texture classification. Finally, Tensorflow, a library for

machine learning, is applied to classify malware images with the LBP feature.

Performance comparison results among different classifiers with different image

descriptors such as GIST, a spatial envelope, and the LBP demonstrate that our proposed

approach outperforms others.

 7

Malware Image Classification using Machine Learning
with Local Binary Pattern

A Thesis Presented to

The Faculty of the Computer Science Department

by

Jhu-Sin Luo

In Partial Fulfillment

of Requirements for the Degree

Master of Science, Computer Science

Advisor: Dr. Dan Chia-Tien Lo

Kennesaw State University

May 2018

 8

ACKNOWLEDGEMENTS

First, I would like to thank God for giving me knowledge, strength

and support all I needs. Second, I would like to express my very

great appreciation to my advisor, Dr. Dan Lo, for his guidance,

support and encouragement throughout this entire research. Third,

I would like to express my gratitude to my parents and brother who

always encourage and support me continually. Finally, this

material is based in part upon work supported by the National

Science Foundation under Grant Numbers 1623724, 1438858,

1244697, and 1241651. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the National

Science Foundation.

 9

TABLE OF CONTENTS

I. Introduction………………………………………………………………..........14

1.1 Malware Classification and Detection Methodologies……………..................15

1.2 Proposed Approach Overview……………...15

II. Related Works……………..17

2.1 Malware Classification………………………………………………………..17

2.2 Malware Detection…………………………………………………………....20

III. Research Methodology……………..22

3.1 Dataset……………...22

3.2 Image Visualization……………...25

3.2.1 Convert to Grayscale…………………………………………………….. 25

3.2.2 Convert to RGBA Color Space………………..………………………….25

3.3 Image Reorganization……………..26

3.4 Local Binary Pattern……………..27

3.5 GIST Descriptor………………………….. 27

3.6 Convolutional Neural Network……………..28

3.6.1 Convolutional Layer…………………...28

3.6.2 Pooling Layer……………...29

3.6.3 Fully Connected Layer………………...30

 10

3.6.4 Rectified Linear Unit ……………...31

3.6.5 CNN Architecture...31

3.7 Support Vector Machine………………………………………………………32

3.7.1 One-versus-Rest………………………………………………………….33

3.7.2 One-versus-One…………………………………………………………..34

3.8 K-Nearest Neighbor…………………………………………………………...34

IV. EXPERIMENT, Result and Comparisons……….....................................36

4.1 Model Selection...36

4.2 First Dataset Experimental Results..37

4.3 Second Dataset Experiment Results…………………………………………...39

4.4 Pros and Cons..40

V. CONCLUSION AND FUTURE WORK..41

5.1 Future Work...41

5.2 Conclusion...41

REFERENCE...43

 11

LIST OF TABLES

Table 1. Comparison of relative malware classification researches....................................19

Table 2. Comparison of relative malware detection researches…………………………..21

Table 3. Samples of Malware Image...22

Table 4. Malware Family..23

Table 5. Distribution of Second Malware Dataset………………………………………..24

Table 6. Experiment Result of First Malware Dataset..37

Table 7. Confusion Matrix of CNN using LBP feature...38

Table 8. Confusion Matrix of KNN using LBP feature...38

Table 9. Confusion Matrix of SVM using LBP feature...38

Table 10. Experiment Result of Second Malware Dataset………………………………39

 12

LIST OF FIGURES

Figure 1. Statistic of total malware over past decade..14

Figure 2. Overview of Entire System..16

Figure 3. Hexadecimal Sample of Second Malware Dataset……………………………..24

Figure 4 Malware convert to Grayscale Image..25

Figure 5. Malware convert to RGBA Color Image...25

Figure 6. Reorganize Malware Image…...26

Figure 7. Local Binary Pattern Operator………………………………………………….27

Figure 8. Convolution...28

Figure 9. Padding...29

Figure 10. Pooling..30

Figure 11. Fully Connected Layer..30

Figure 12. Rectified Linear Unit (ReLU) ...31

Figure 13. CNN Architecture...32

Figure 14. Support Vector Machine..32

Figure 15. One-versus-Rest………………………………………………………………33

Figure 16. One-versus-One………………………………………………………………34

Figure 17. KNN Example/………………………………………………………………..35

Figure 18. Accuracy on Different CNN Models………………………………………….36

 13

Figure 19. Average Execution Time...40

 14

CHAPTER I

INTORDUCTION

 Over the past few years, the Internet usage had experienced an exponential growth.

It has become an important part of our daily lifes. The cybersecurity is also playing a

role in that the online financial activities such as the online payment and online money

transaction become widespread [1]. The users of the Internet face threats from the

malware which causes detriment to users of computer and the Internet. AV-TEST, an IT

security Institute, registers over 583 million the malware in 2017[2] and based on their

reports, the amount of the malware dramatically increases every year (Figure 1).

Figure 1. Statistic of total malware over past decade

 15

1.1 Malware Classification and Detection Methodologies

 Traditional methodologies for the malware [38] classification or detection mainly

use static analysis and dynamic analysis to identify type of the malware and behavior of

the malware. Both methodologies have their advantages and disadvantages.

 Static analysis examines the executable file without actually executing. It extracts

the binary code or disassemble instruction from the file to generate the patterns or

features which could be used to identify whether the file is the malware or not. The

advantages of static method are that binary code usually includes information about the

malicious behavior and less resource intensive. The static analysis is ineffective against

different code obfuscation and packing technique [3].

 On the other hand, dynamic analysis verifies the file by executing on the secure

environment or virtual environment. By executing file, the behaviors of the malware are

able to observe. Its advantages are that it can against code obfuscation and packing.

Nonetheless, dynamic analysis still exists disadvantages. The malware might have

different behaviors in two different environments or some behaviors may need to be

triggered on specific circumstances.

1.2 Proposed Approach Overview

 Recently the deep machine learning is widely used and also obtains outperformed

result in image classification [43, 46, 47]. Therefore, n this paper, a malware

classification approach based on image processing and convolutional neural network is

 16

proposed. First, as Figure 1 demonstrates, each pixel in the malware images are

reorganized. The pixels of the original malware images are constructed by line by line.

We rearrange each pixel of images by 3 by 3 grids. Second, the LBP is applied on the

malware image to extract features. Finally, malware images are classified by

TensorFlow and the result would be compared with other classifiers.

Reorganize by
3 by 3 grid

Extract
Features by
using LBP

Classify by
using

Tensorflow

Figure 2. Overview of Entire System

 17

CHAPTER II

RELATED WORK

 This chapter mainly separate into two parts: Malware Classification and Malware

Detection. We would summarize the previous works and researches regarding this two

domains, which included the methodologies, dataset and approaches of feature

extraction.

2.1 Malware Classification

 In [1], L.Nataraj, S.Karthikeyan, G. Jacob and B. S. Manjunath visualize malware

dataset which consist of 25 malware families and 9458 malware into grayscale. First they

read each malware in binary and read as a vector of 8 bit unsigned integers. Each vector

would be organized into a two-dimension array in the range between 0 and 255, which

would be one grayscale image. They applied GIST descriptor on the malware images.

The GIST descriptor is a computational model of the recognition of real world scene [9].

After obtaining the GIST images, the K-nearest neighbor is utilized to classify malware

images, got an 97.18% accuracy over 25 families.

 In [5], Aziz Makandar and Anita Patrot they mainly classify malware images, 3131

malware images over 24 malware types, based on applying Discrete Wavelet

Transformation (DWT) to extract features. Their proposed methodology consists of three

 18

phrases, pre-processing, feature extraction and classification. In pre-processing phrase,

grayscale malware images are normalized into 256x256 by applying wavelet to de-noise.

In feature extraction phrase, DWT is utilized to decompose malware images into four

level. In classification phrase. they used Support Vector Machine (SVM) to

discriminating the malware classes with static features which are extracted from level 4

decomposition of DWT and SVM gives 92.52% accuracy for 24 malware types.

 In [14], Aziz Makandar and Anita Patrot they convert malware binary into grayscale

and resize into 64x64. They also obtain the global features of the malware images by

using gabor wavelet transform and GIST. This experiment is implemented on Mahenhur

dataset which include 3131 binary sample comprising 24 malware families. Finally, feed

forward Artificial neural network (ANN) is used to train and classify malware images

with 96.35% accuracy.

 In [23], Seonhee Soek and Howon Kim, they build the convolutional neural network

with three layers to classify malware. They examine their method on two dataset. One is

Microsoft malware dataset which is consisted of 21741 samples for 9 malware families.

Second dataset is VXHeaven which is consisted of 27 malware families. Those two

dataset are feed into CNN model and get 96.2% and 82.9% respectively.

 In [28], A. Makandar and A. Patrot, they proposed the multiclass malware

classification from image processing perspective. They use Gabor wavelet, GIST and

discrete wavelet transform to build effective texture feature vector. The reason they use

 19

wavelet transform is that it reduce the dimension of feature vector and also reduce the

complexity. Their proposed approach experiment on Mailing dataset which has 12470

samples. They randomly select 1610 training data and 1710 testing data from 8 malware

families. Finally, the SVM gives 98.88% accuracy and KNN gives 98.84% accuracy.

 In [32], B. N. Narayanan, O. Djaneye-Boundjou and T. M. Kebede, they visualize

malware into image as they capture minor changes while retaining a global structure.

Second, the feature is extracted by using Principle Component Analysis. Based on the

PCA, they study the performance on different classifiers such as Artificial Neural

Network, K-Nearest Neighbor, and Support Vector Machine to identify malware image

into their corresponding classes. Finally, the KNN give the 96.6% accuracy over 10868

samples from 9 malware families.

Reference Year #Dataset #Malware
Families Features Classifiers Accuracy

[1] 2011 9458 25 GIST KNN 97.18%

[5] 2017 3131 24 DWT SVM 92.52%

[14] 2015 3131 24 GIST ANN 96.35%

[23] 2016 21741 9 N/A CNN 96.2%

[23] 2016 N/A 27 N/A CNN 86.9%

[28] 2017 12470 25
Gabor
GIST
DWT

SVM 98.88%

[28] 2017 12470 25
Gabor
GIST
DWT

KNN 98.84%

[32] 2016 10868 9 PCA KNN 96.6%

Table 1. Comparison of relative malware classification researches

 20

2.1 Malware Detection

 In [24], S. Choi, S. Jang, Y. Kim and J. Kim, they build deep learning model which

has three convolutional layers followed by a pooling layers respectively and two fully

connected layers. The dataset they used is consisted of 2000 malware and 10000 normal

files. They convert the files into grayscale and feed into the model without extracting

feature. Finally, they get 95.66% accuracy.

 In [25], K. Kancherla and S. Mukkamala, first, the executable is converted into

grayscale image which they call byteplot. Their dataset is consisted of 25000 malware

and 12000 benign. Second, they extract features using intensity, wavelet and Gabor.

Finally, in this work they use Support Vector Machine and obtain 95.95% accuracy using

combined feature set.

 In [31], X. Zhou, J. Pang and G. Liang, they visualize malware into grayscale and

extract image feature by using Gabor filer. Their dataset is consisted of 15781 samples,

which includes 8759 malware and 7022 benign. The approach they proposed is used

Extremely randomized tree with 10-fold cross validation as their classifier and they also

study the performance of various classifier such as Gradient Boost Decision Tree, K-

Nearest Random Forest. Extremely randomized tree is applied for detection and give

97.51% accuracy.

 21

Reference Year #Malware #Benign Features Classifiers Accuracy

[24] 2017 2000 10000 N/A CNN 95.66%

[25] 2013 25000 12000 Wavelet
Gabor SVM 95.95%

[31] 2017 8759 7022 Gabor ET 97.51%

Table 2. Comparison of relative malware detection researches

 22

CHAPTER III

RESEARCH METHODOLOGY

 In this chapter, we demonstrate our approach step by step. First, we illustrate malware

visualization and reorganization. Second, we introduce the LBP and how to apply the

LBP on our images. Finally, we build convolutional neural network architecture which

we utilize to train and classify. In addition, we also feed our data to different classifier

such as Support Vector Machine and K-nearest neighbor.

3.1 Dataset

 In this research, we use two malware datasets. The first dataset we use is provided by

[1, 4]. This dataset consists of 32 families and around 12000 malware images with

grayscale (table 3). The types of malwares mainly belong to trojan, password stealer and

virus. The training dataset which consists of 80% of each malware family in dataset for

training and the testing dataset consists of 20% of each malware family. Malware image

samples display in following (Table 2).

Agent.FYI Swizzor.gen Lolyda.AA1

Table 3. Samples of Malware Image

 23

Table 4. Distribution of First Malware Dataset

Malware Family Type of malware Amount of malware
Adialer.C.UPX Adialer 188

Agent.FYI Backdoor 116
Aliser.7825 Trojan 256
Allaple.A Worm 4540

Alueron_Gen_J Trojan 198
Autorun.A Worm 106

Azero.A Trojan 121
Backdoor.Agent.AsPack Backdoor 180

C2Lop Trojan 692
Dialplatform.B Dialer 177

Dontovo.A TrojanDownloader 162
Fakerean Rogue 381

Farfli.I Backdoor 94
Instantaccess Dialer 431
Lolyda.AA1 PasswordSteeler 213
Lolyda.AA2 PasswordSteeler 184
Lolyda.AA3 PasswordSteeler 123
Lolyda.AT PasswordSteeler 159
Luder.B Virus 509

Malex.gen!J Trojan 136
Nuwar.A Virus 51

Obfuscator.AD TrojanDownloader 142
Rbot.gen Backdoor 158
Sality.AM Virus 127

Skintrim.N Trojan 80
Swizzor.gen TrojanDownloader 520

VB.AT Worm 408
Virut.A Virus 133

Virut.AC Virus 269
Virut.AK Virus 571

Wintrim.BX TrojanDownloader 97
Yuner.A Worm 800

 24

 The second malware dataset we use is provide by Kaggle for Microsoft malware

Classification Challenge [37]. This dataset consists of two sets: training dataset and

testing dataset. Each raw data contains a hexadecimal representation of the file’s binary

content and a corresponding assembly file which contains information extracted from the

binary. In our research, we would only use hexadecimal file as input. The training dataset

consisted of 10868 labeled sample for 9 categories. Table 5 demonstrates the distribution

of each malware category. The testing dataset consisted of 10873 samples. Nonetheless,

the label of testing data is not publicly available. Therefore, we would use training dataset

in our research.

Malware Family Number of Malware

Ramnit 1541

Lollipop 2478

Kelihos_ver3 2942

Vundo 475

Simda 42

Tracur 751

Kelihos ver1 398

Obfuscator.ACY 1228

Gatak 1013

Table 5. Distribution of Second Malware Dataset

Figure 3. Hexadecimal Sample of Second Malware Dataset

 25

3.2 Image Visualization

3.2.1 Convert to Grayscale

 In [1], L.Nataraj, S.Karthikeyan, G. Jacob and B. S. Manjunath visualized the

malware into grayscale image in the range [0, 255]. The width of image is fixed and the

height is allowed to vary. In [14], Aziz Makandar and Anita Patrot also convert malware

into grayscale in the range [0, 255]. In [5], the malware is also visualized into grayscale

image and normalized into 256*256 dimension.

 3.2.2 Convert to RGBA Color Space

 The reason we convert malware to RGBA [40] color space is that RGBA can be

represented as hexadecimal (#00ff0080) and the x86 instructions usually are longer than

8-bit binary. Therefore, if we convert more than 8-bit binary to one pixel, it can retain the

relationship between instruction and pixel. This approach mainly focuses on second

dataset in that second dataset is presented in hexadecimal. Each 8-bit value in

hexadecimal would be as a pixel.

Malware Binary

0100101101101…

Binary to 8 bit

vector

8 bit vector

convert to grey

scales image

Figure 4. Malware convert to Grayscale Image

Figure 5. Malware convert to RGBA Image

 26

3.3 Image Reorganize

 Our methodology is that we reorganized the grayscale malware images which are

provided by [1, 4] L.Nataraj, S.Karthikeyan, G. Jacob and B. S. Manjunath. They convert

the malware into images with grayscale. The malware images with grayscale are obtained

by reading malware in binary. A Malware binary is read as a vector of 8 bit unsigned

integers and then arranged into 2D array (Figure 4). We rearrange each pixel in the

malware images into 3 by 3 grid (Figure 6). We convert malware images into 3 by 3 grid

in that it is suitable for extracting Local binary pattern descriptor.

Malware image

Read each pixel line by line

{{first pixel},{second pixel}…..}

reorganized each 9 pixels 3 by 3 grid

1st pixel 2nd pixel 3rd pixel 10th pixel 11th pixel 12th pixel

4th pixel 5th pixel 6th pixel 13th pixel 14th pixel 15th pixel

7th pixel 8th pixel 9th pixel 16th pixel 17th pixel 18th pixel

Figure 6. Reorganize Malware Image

 27

3.4 Local Binary Pattern

 Local Binary Pattern (LBP), a visual descriptor, is useful for texture analysis and

texture classification [6, 7, 8, 12]. As Figure 7 demonstrates, the value of central pixel is

threshold. The 8 neighbors around a pixel are compared with the central pixel. If a

neighbor's value is greater than central pixel, the value of the neighbor is written '1'. The

value of neighbor which less then threshold is written '0'. The threshold results are

multiplied with weights which are given by power of two. The central value is the sum of

the multiplying results. For each pixel in the image do the same process. The final LBP

descriptor can be obtained by calculating the histogram of the image.

3.5 GIST Descriptor

 We also use another image descriptor to extract feature from images. The GIST

descriptor [10, 11, 16, 17] is originally used to compute the global feature vector and

recognize real world scenes, which provide the holistic representation of an image.

Given an image is computed by convolving the image with 32 Gabor filters at 8

orientations and 4 scales, which generate 32 feature maps of the same resolution as the

given image. Each feature map is divide into 16 regions by 4x4 grid, and the average

value of each region would be calculated. In the end, we obtain a 512-dimension GIST

25 10 29

7 27 30

56 41 13

0 0 1

0 1

1 1 0

1 2 4

128 8

64 32 16

0 0 4

0 108 8

64 32 0

Threshold Multiply

LBP = 4+8+32+64 = 108
Figure 7. Local Binary Pattern Operator

 28

descriptor by concatenating the 16 averaged value for each region. Therefore, the GIST

provide a descriptor by summarizing the gradient information for each part of the image.

3.6 Convolutional Neural Network

 We build the convolutional neural network (CNN) using TensorFlow [18, 19, 20]

for training our data and classification. CNN is a mathematical model to solve

optimization problem, which is comprised of one or more layers. Each layer is consisted

of neurons. Each neuron would take an input and multiply weight and add bias on input.

In order to obtain output, the input would be put in a non-linear function, activation

function.

3.6.1 Convolutional Layer

 Convolution is a mathematical operation, which is used to find the pattern in inputs

or filter out the features. For example, we have an 5x5 input image and the filter size is

3x3. We pick the 3x3 sized chunk from the input image and do the convolution (dot

product) with the filter as shown in Figure 8. In this example, each time we move the

filter 1 pixel, this number is called stride.

Figure 8. Convolution

 29

 As Figure 8 shows, we can observe that the dimension of input image decrease after

applying convolution on it. If we keep applying convolution on the input image, the

dimension of input image would decrease faster than we want. In order to preserve as

much as information, we can add zeros on boundary of the input image after convolution

operator so that we can maintain the dimension would be as same as origin. This process

is called padding (Figure 9).

3.6.2 Pooling Layer

 Pooling layer typically would be used after convolutional layer, which is an approach

for decreasing the dimension while preserve the information. Max pooling is the most

popular form of pooling. For example, we have a pooling filter with size 2x2 and stride

is as same as width. When we apply this filter on the input image, each 2x2 sized chunk

from the image would output the maximum value of that 2x2 area. In addition, applying

Figure 9. Padding

 30

pooling not only preserver the information but also reduce the computation and avoid

overfitting [48].

3.6.3 Fully Connected Layer

 Fully connected layer would receive all the input from neurons of previous layers

and the output is value of certain predicted class. The value of output would do the matrix

multiplication with weights and bias.

Figure 10. Pooling

Figure 11. Fully Connected Layer

 31

3.6.4 Rectified Linear Unit

 The rectified linear unit (ReLU) [45] is the most common activation function in

neural network. Activation function, simply put, is used to calculate weights and bias

function.The ReLU function would return 0 if input is negative. On the other hand, this

function will return the value back if input is positive.

3.6.5 CNN Architecture

 We use TensorFlow [13, 15] to build CNN for training and testing. We build three

CNN models with different number of layers, which have 5, 8, 11 layers respectively in

that it is still an issue to determine number of layers we should build. Thereby, we

alternatively build several models to evaluate the performance. Figure 13 shows one of

our model which have 5 layers. There are five layer in our architecture. The first three

layers consist of convolutional layer, max pooling layer and ReLU activation function.

The last two layer are flatten layer and fully connected layer respectively. The second

Figure 12. Rectified Linear Unit (ReLU)

 32

CNN model possesses 6 convolutional layers, 1 flatten layer, and 2 fully connected layer.

Last our CNN model is equipped with 9 convolutional layers, 1 flatten layer, and 2 fully

connected layer.

3.7 Support Vector Machine

 Support Vector Machine (SVM) [21, 22, 29] is a supervised classifier in machine

learning, which is used for classification and regression analysis. SVM would project

the data into high-dimension space, find the most optimal Hyperplane, and to separate

two of the classes.

Figure 13. CNN Architecture

Figure 14. Support Vector Machine

 33

As Figure 14 demonstrates, SVM wishes to find the hyperplane [41] between Class 1

and Class 2 with equidistant margin as far as possible for both side so that we can identify

data into corresponding class clearly.

 Basically SVM is a binary classifier. Nonetheless, in real situation, the number of

class is larger than two. For example, there have 32 classes in our dataset. Therefore,

there are two strategies [44] which could make SVM deal with multiclass issues.

3.7.1 One-versus-Rest

 We assume that there are K classes where K is a constant and larger than two.

Thereby, we can treat one of class in K as class A, and rest classes in K as class B so

that we can classify the data to class A through K SVM classifiers.

Figure 15. One-versus-Rest

 34

3.7.2 One-versus-One

 We can use the concept of binary tree. We train separate SVM classifiers for each

pair of classes. In total, there would be K(K-1)/2 SVM classifier. We classify given data

from the bottom of the tree. The top of the tree is the classification result.

3.8 K-Nearest Neighbor

 K-Nearest Neighbor (KNN) [33, 34, 35] is the supervised learning and also a non-

parametric learning algorithm, which is used for classification and regression analysis.

The KNN algorithm calculate the distance between testing data and set of training data.

The most common class between testing data’s k nearest neighbor around it would be

assigned to testing data. In our research, we use Euclidean to measure the distance. The

Figure 16. One-versus-One

 35

Euclidean distance [36] between two points p and q is the length of the line segment

connecting them.

! ", $ = !($, ")	 (" − $)*
+

,-.

 Figure 17 demonstrates the KNN algorithm for two classes. The center white point is

testing data. The inner circle includes 3 nearest neighbors for the testing data. The

majority of inner circle is class 2. Therefore, the testing data would be assigned to class

2. The outer circle contains 5 nearest neighbor for the testing data. The majority of

neighbors in outer circle is class 1. Thereby, the testing data would be classified as class

1.

 Figure 17. KNN Example

 36

CHAPTER IV

Experiment, Results and Comparisons

4.1 Model Selection

 We feed the training images to three different CNN model with several epochs after

applying LBP, and classify the test data to evaluate which model is fit our dataset. As

Figure 18 indicates, all of our model can reach 90% accuracy after 60 epochs, and the

CNN model which is equipped 6 layers have better results than others which have 94%

accuracy. Therefore, we would use CNN model with 6 layers to compare malware

dataset with different image descriptors and different classifiers.

Figure 18. CNN Architecture

 37

4.2 First Dataset Experimental Results

 We evaluate CNN for the LBP features classification, and use LBP features for

training Support Vector Machine (SVM) classifier and k-nearest neighbor (KNN)

classifier. We also implement GIST [9, 10, 11] features with CNN, KNN and SVM.

Table 6 displays the accuracy of different methodologies over 32 malware families.

Table 7, table 8 and table 9 are the confusion matrices of CNN, KNN and SVM using

LBP feature. According to the confusion matrices, we discover that the malware belongs

to family 28, 29 and 30 which are Virut.A, Virut.AC and Virut.AT respectively are easy

to get confused. As seen in table 5, CNN can differentiate these three with higher

accuracy than others.

Classifier #Dataset #Family Feature
Descriptor AVG. Accuracy

CNN

12348 32

LBP 93.92%

SVM LBP 87.84%

KNN LBP 85.93%

CNN GIST 87.88%

SVM GIST 81.23%

KNN GIST 82.83%

Table 6. Experiment Result of First Malware Dataset

 38

Table 7. Confusion Matrix of CNN using LBP feature

Table 8. Confusion Matrix of KNN using LBP feature

Table 9. Confusion Matrix of SVM using LBP feature

 39

4.3 Second Dataset Experimental Results

 In the second experimental, we focus on analysis the performance between grayscale

image and RGBA image. We apply LBP both on gray and color image and use CNN to

training and classify the data. The result demonstrates that using grayscale image is 4%

higher than color image. The reason why using grayscale image is better than color

image is that when we covert the malware to image, the grayscale image and color image

have different structure. Converting color image might let the image lost original

features.

Classifier #Dataset #Family Color Space AVG.
Accuracy

CNN
10868 9

Grayscale 93.57%

CNN RGBA 89.18%

4.4 Pros and Cons

 As Figure 19 demonstrates, the execution time of CNN is better than other classifiers

in that our approach run with GPU, which is significantly shorter the execution time. In

[42] ,T. Ishii, R. Nakamura, H. Nakada, Y. Mochizuki and H. Ishikawa, they also obtain

the similar result of execution time. Moreover, this method doesn't have to run on a

virtual machine or virtual environment to observe the behavior of malware. Additionally,

because our approach is based on image processing, we can apply other image

descriptors to do the voting to achieve higher classification accuracy.

Table 10. Experiment Result of Second Malware Dataset

 40

 Although malware images can be analyzed with our approach based on local binary

pattern and machine learning, there still have countermeasures. Because our approach

converts the malware into binary and reorganizes. Therefore, if a rival who rewrites

whole the program in other way or uses other instructions instead of original one result

in changing whole the pattern of malware image, our approach may fail.

0.00

20.00

40.00

60.00

80.00

77.6

2.0673.717

KNN TensorFlow SVM

Min

Figure 19. Average Execution Time

 41

CHAPTER V

Conclusion and Future Work

5.1 Future Work

 While our experimental results demonstrate that the accuracy using LBP as feature

is slightly higher than other methodologies, there are ways of how the experiment could

be improved. The first priority would be to extend the malware family, which means that

increases the size and classes of dataset. At the meantime, applying other image

processing approach instead of LBP to the malware image is one possible future work.

Additionally, we plan to design a different architecture of Tensorflow and examine more

different classifier such as Decision Tree, Fandom Forest, and Naïve Bayes to increase

the accuracy and reduce time consumption. Furthermore, converting to HSV [39] color

space is one option in that we can apply LBP only one time on Hue channel in stead

applying LBP three times on RGB channels.

5.2 Conclusion

 An experimental result shows that the accuracy based on our approach is 93.92%.

The experiment is performed to classify malware images over 32 families around 12000

malware images. We reorganize malware images and utilize Local Binary Pattern as

descriptor to extract features and classify the results with TensorFlow library. The

 42

comparison over different classifiers and features demonstrates that using LBP with

TensorFlow obtains higher accuracy than others approaches.

Furthermore, extending dataset of malware, converting malware to HSV color space,

designing different architectures of TensorFlow and testing more image descriptors is

our future works, which may improves the research and obtains more comprehensive

methodology.

 43

References

[1] Nataraj L., Karthikeyan S., Jacob G., Manjunath B. S., “The malware Images:

Visualization and Automatic Classification,” International Symposium on

Visualization for Cyber Security (VizSec) , July 20, 2011, Pittsburg, PA, USA.

[2] Malware statistic ,https://www.av-test.org/en/statistics/the malware/, Accessed in

2017

[3] A. Moser, C. Kruegel and E. Kirda, “Limits of Static Analysis for Malware

Detection,” Twenty-Third Annual Computer Security Applications Conference

(ACSAC 2007), Miami Beach, FL, 2007, pp. 421-430.

[4] Malware Images, http://vision.ece.ucsb.edu/ ̃lakshman/malwareimages/album/,

Accessed in 2017

[5] Aziz Makandar and Anita Patrot, “Wavelet Statistical Feature Based Malware Class

Recognition and Classification using Supervised Learning Classifier,” Oriental

Journal of Computer Science and Technology, ISSN: 0974-6471, June 2017, Vol.

10, No. (2): Pgs. 400-406

[6] T. Ojala, M. Pietikainen, and D. Harwood, “A Comparative Study of Texture

Measures with Classification Based on Feature Distributions,” Pattern Recognition,

vol. 29, pp. 51-59, 1996.

[7] Chao Zhu, Charles-Edmond Bichot and Liming Chen, “Multiscale Color Local

Binary Patterns for Visual Object Classes Recognition,” 2010 20th International

Conference on Pattern Recognition, Istanbul, 2010, pp. 3065-3068.

 44

[8] Chao Zhu, Charles-Edmond Bichot and Liming Chen, “Image region description

using orthogonal combination of local binary patterns enhanced with color

information,” Pattern Recognition, Volume 46, Issue 7, 2013, Pages 1949-1963,

ISSN 0031-3203

[9] Aude Oliva, Antonio Torralba, “Modeling the Shape of the Scene: A

Holistic Representation of the Spatial Envelope,” International Journal of Computer

Vision, Vol. 42(3): 145-175, 2001.

[10] A. Oliva and A. Torralba, “Building the gist of a scene: the role of global image

features in recognition,” Prog. Brain Res. Vis. Percept., vol. 155, pp. 2336, 2006.

[11] A. Torralba, K. P. Murphy, W. T. Freeman and M. A. Rubin, “Context-Based

Vision System for Place and Object Recognition,” Proceedings Ninth IEEE

International Conference on Computer Vision, Nice, France, 2003, pp. 273-280

vol.1.

[12] Chao Zhu, Charles-Edmond Bichot and Liming Chen, “Color orthogonal local

binary patterns combination for image region description,” Rapport technique RR-

LIRIS-2011-012, LIRIS UMR, vol. 5205, p. 15, 2011

[13] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.

Davis, J. Dean, M. Devin, et al., “TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems,” arXiv preprint arXiv:1603.04467, 2016

 45

[14] Aziz Makandar and Anita Patrot, “Malware Analysis and Classification using

Artificial Neural Network,” 2015 International Conference on Trends in Automation,

Communications and Computing Technology (ITACT-15), Bangalore, 2015, pp. 16.

[15] R. Pilipovi and V. Risojevi, “Evaluation of convnets for large-scale scene

classification from high-resolution remote sensing images,” IEEE EUROCON 2017

-17th International Con

[16] Avishikta Lodh and Ranjan Parekh, “Flower Recognition System based on Color

and GIST Features,” 2017 Devices for Integrated Circuit (DevIC), 23-24 March,

2017, Kalyani, India

[17] Waleed Tahir, Aamir Majeed and Tauseef Rehman, “Indoor/Outdoor Image

Classification Using GIST Image Features and Neural Network Classifiers,” " 2015

12th International Conference on High-capacity Optical Networks and

Enabling/Emerging Technologies (HONET), Islamabad, 2015, pp. 1-5

[18] ANKIT SACHAN, http://cv-tricks.com/tensorflow-tutorial/training-

convolutional-neural-network-for-image-classification/, Accessed: 2016

[19] Brandon, “How do Convolutional Neural Networks

work, https://brohrer.mcknote.com/zh-

Hant/how_machine_learning_works/how_convolutional_neural_networks_work.ht

ml, Accessed in 2017

 46

[20] Adit Deshpande, https://adeshpande3.github.io/A-Beginner%27s-Guide-To-

Understanding-Convolutional-Neural-Networks/, Accessed: 2017

[21] Cortes, C. & Vapnik, V. Machine Learning (1995) 20: 273.

https://doi.org/10.1023/A:1022627411411

[22] Fang-Chieh Liu, “A Study for Automatic Coin Image Recognition Methods”

[23] Seok, Seonhee & Kim, Howon. (2016). Visualized Malware Classification Based-

on Convolutional Neural Network. Journal of the Korea Institute of Information

Security and Cryptology. 26. 197-208. 10.13089/JKIISC.2016.26.1.197.

[24] S. Choi, S. Jang, Y. Kim and J. Kim, “Malware detection using malware image

and deep learning,” 2017 International Conference on Information and

Communication Technology Convergence (ICTC), Jeju, 2017, pp. 1193-1195.

[25] K. Kancherla and S. Mukkamala, “Image visualization based malware

detection,” 2013 IEEE Symposium on Computational Intelligence in Cyber

Security (CICS), Singapore, 2013, pp. 40-44.

[26] J. H. Lee, C. J. Lin, “Automatic model selection for support vector machines,”

Technical Report, Department of Computer Science and Information Engineering,

National Taiwan University, 2000

[27] C. C. Chang, C. J. Lin, “LIBSVM: a library for support vector machines,”

Department of Computer Science and Information Engineering, National Taiwan

 47

University, 2001

[28] A. Makandar and A. Patrot, “Malware class recognition using image processing

techniques,” 2017 International Conference on Data Management, Analytics and

Innovation (ICDMAI), Pune, 2017, pp. 76-80.

[29] Savan Patel, https://medium.com/machine-learning-101/chapter-2-svm-support-

vector-machine-theory-f0812effc72, Accessed: 2017

[30] N. S. Altman (2012) An Introduction to Kernel and Nearest-Neighbor

Nonparametric Regression, The American Statistician, 46:3, 175

185, DOI: 10.1080/00031305.1992.10475879

[31] X. Zhou, J. Pang and G. Liang, “Image classification for malware detection using

extremely randomized trees,” 2017 11th IEEE International Conference on Anti-

counterfeiting, Security, and Identification (ASID), Xiamen, 2017, pp. 54-59.

[32] B. N. Narayanan, O. Djaneye-Boundjou and T. M. Kebede, “Performance analysis

of machine learning and pattern recognition algorithms for Malware

classification,” 2016 IEEE National Aerospace and Electronics Conference

(NAECON) and Ohio Innovation Summit (OIS), Dayton, OH, 2016, pp. 338-342.

[33] N. S. Altman (2012) An Introduction to Kernel and Nearest-Neighbor

 48

Nonparametric Regression, The American Statistician, 46:3, 175

185, DOI: 10.1080/00031305.1992.10475879

[34] S. Das and U. R. Jena, “Texture classification using combination of LBP and

GLRLM features along with KNN and multiclass SVM classification,” 2016 2nd

International Conference on Communication Control and Intelligent Systems

(CCIS), Mathura, 2016, pp. 115-119. doi: 10.1109/CCIntelS.2016.7878212

[35] Kevin Zakka’s, https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/,

Accessed in 2017

[36] Euclidean Distance, https://en.wikipedia.org/wiki/Euclidean_distance,

Accessed in 2017

[37] Microsoft Malware Classification Challenge (BIG 2015),

https://www.kaggle.com/c/malware-classification/data, Accessed in 2017

[38] Malware, https://en.wikipedia.org/wiki/Malware, Accessed in 2017

[39] HSV Color Space, https://en.wikipedia.org/wiki/HSL_and_HSV,

Accessed in 2017

[40] RGBA Color Space, https://en.wikipedia.org/wiki/RGBA_color_space,

Accessed: 2017

 49

[41] SVM Hyperplane, https://www.svm-tutorial.com/2015/06/svm-understanding-

math-part-3/, Accessed: 2017

[42] T. Ishii, R. Nakamura, H. Nakada, Y. Mochizuki and H. Ishikawa, “Surface object

recognition with CNN and SVM in Landsat 8 images,” 2015 14th IAPR

International Conference on Machine Vision Applications (MVA), Tokyo, 2015,

pp. 341-344.

[43] Alex Krizhevsky, Ilya Sutskever, E. Hinton Geoffrey, “ImageNet Classification

with Deep Convolutional Neural Networks”, International Conference on Neural

Information Processing Systems (NIPS), 2012.

[44] SVM One vs Rest, One vs One, http://scikit-

learn.org/stable/modules/multiclass.html, Accessed in 2017

[45] ReLU, https://medium.com/the-theory-of-everything/understanding-activation-

functions-in-neural-networks-9491262884e0, Accessed in 2017

[46] Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image

Classification: A Comprehensive Review. Neural Comput. 2017, 29, 2352–2449.

[47] Sowmya V., P., S. K., and Deepika, J., “Image Classification Using Convolutional

 50

Neural Networks”, International Journal of Scientific & Engineering Research ,

vol. 5, no. 6, p. 06/2014, 2014.

[48] M. Lin, Q. Chen, and S. Yan. Network in network. In ICLR, 2014.

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Spring 5-10-2018

	Malware Image Classification using Machine Learning with Local Binary Pattern
	Jhu-Sin Luo
	Dan Lo
	Recommended Citation

	Microsoft Word - Thesis.docx

