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Abstract 

Malware classification is a critical part of the cybersecurity. Traditional methodologies 

for the malware classification typically use static analysis and dynamic analysis to 

identify malware. In this paper, a malware classification methodology based on its 

binary image and extracting local binary pattern (LBP) features is proposed. First, 

malware images are reorganized into 3 by 3 grids which are mainly used to extract LBP 

feature. Second, the LBP is implemented on the malware images to extract features in 

that it is useful in pattern or texture classification. Finally, Tensorflow, a library for 

machine learning, is applied to classify malware images with the LBP feature. 

Performance comparison results among different classifiers with different image 

descriptors such as GIST, a spatial envelope, and the LBP demonstrate that our proposed 

approach outperforms others. 
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CHAPTER I 

 

INTORDUCTION 

 
   Over the past few years, the Internet usage had experienced an exponential growth. 

It has become an important part of our daily lifes. The cybersecurity is also playing a 

role in that the online financial activities such as the online payment and online money 

transaction become widespread [1]. The users of the Internet face threats from the 

malware which causes detriment to users of computer and the Internet. AV-TEST, an IT 

security Institute, registers over 583 million the malware in 2017[2] and based on their 

reports, the amount of the malware dramatically increases every year (Figure 1).  

Figure 1. Statistic of total malware over past decade 
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1.1 Malware Classification and Detection Methodologies 

   Traditional methodologies for the malware [38] classification or detection mainly 

use static analysis and dynamic analysis to identify type of the malware and behavior of 

the malware. Both methodologies have their advantages and disadvantages.  

 

   Static analysis examines the executable file without actually executing. It extracts 

the binary code or disassemble instruction from the file to generate the patterns or 

features which could be used to identify whether the file is the malware or not. The 

advantages of static method are that binary code usually includes information about the 

malicious behavior and less resource intensive. The static analysis is ineffective against 

different code obfuscation and packing technique [3].  

 

   On the other hand, dynamic analysis verifies the file by executing on the secure 

environment or virtual environment. By executing file, the behaviors of the malware are 

able to observe. Its advantages are that it can against code obfuscation and packing. 

Nonetheless, dynamic analysis still exists disadvantages. The malware might have 

different behaviors in two different environments or some behaviors may need to be 

triggered on specific circumstances. 

 

1.2 Proposed Approach Overview 

   Recently the deep machine learning is widely used and also obtains outperformed 

result in image classification [43, 46, 47]. Therefore, n this paper, a malware 

classification approach based on image processing and convolutional neural network is 
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proposed. First, as Figure 1 demonstrates, each pixel in the malware images are 

reorganized. The pixels of the original malware images are constructed by line by line. 

We rearrange each pixel of images by 3 by 3 grids. Second, the LBP is applied on the 

malware image to extract features. Finally, malware images are classified by 

TensorFlow and the result would be compared with other classifiers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reorganize by 
3 by 3 grid

Extract 
Features by 
using LBP

Classify by 
using 

Tensorflow

Figure 2. Overview of Entire System 
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CHAPTER II 

 

RELATED WORK 

   This chapter mainly separate into two parts: Malware Classification and Malware 

Detection. We would summarize the previous works and researches regarding this two 

domains, which included the methodologies, dataset and approaches of feature 

extraction. 

 

2.1 Malware Classification 

   In [1], L.Nataraj, S.Karthikeyan, G. Jacob and B. S. Manjunath visualize malware 

dataset which consist of 25 malware families and 9458 malware into grayscale. First they 

read each malware in binary and read as a vector of 8 bit unsigned integers. Each vector 

would be organized into a two-dimension array in the range between 0 and 255, which 

would be one grayscale image. They applied GIST descriptor on the malware images. 

The GIST descriptor is a computational model of the recognition of real world scene [9]. 

After obtaining the GIST images, the K-nearest neighbor is utilized to classify malware 

images, got an 97.18% accuracy over 25 families. 

 

   In [5], Aziz Makandar and Anita Patrot they mainly classify malware images, 3131 

malware images over 24 malware types, based on applying Discrete Wavelet 

Transformation (DWT) to extract features. Their proposed methodology consists of three 



 

 18 

phrases, pre-processing, feature extraction and classification. In pre-processing phrase, 

grayscale malware images are normalized into 256x256 by applying wavelet to de-noise. 

In feature extraction phrase, DWT is utilized to decompose malware images into four 

level. In classification phrase. they used Support Vector Machine (SVM) to  

discriminating the malware classes with static features which are extracted from level 4 

decomposition of DWT and SVM gives 92.52% accuracy for 24 malware types. 

 

   In [14], Aziz Makandar and Anita Patrot they convert malware binary into grayscale 

and resize into 64x64. They also obtain the global features of the malware images by 

using gabor wavelet transform and GIST. This experiment is implemented on Mahenhur 

dataset which include 3131 binary sample comprising 24 malware families. Finally, feed 

forward Artificial neural network (ANN) is used to train and classify malware images 

with 96.35% accuracy. 

 

   In [23], Seonhee Soek and Howon Kim, they build the convolutional neural network 

with three layers to classify malware. They examine their method on two dataset. One is 

Microsoft malware dataset which is consisted of 21741 samples for 9 malware families. 

Second dataset is VXHeaven which is consisted of 27 malware families. Those two 

dataset are feed into CNN model and get 96.2% and 82.9% respectively.  

 

   In [28], A. Makandar and A. Patrot, they proposed the multiclass malware 

classification from image processing perspective. They use Gabor wavelet, GIST and 

discrete wavelet transform to build effective texture feature vector. The reason they use 
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wavelet transform is that it reduce the dimension of feature vector and also reduce the 

complexity. Their proposed approach experiment on Mailing dataset which has 12470 

samples. They randomly select 1610 training data and 1710 testing data from 8 malware 

families. Finally, the SVM gives 98.88% accuracy and KNN gives 98.84% accuracy.  

 

   In [32], B. N. Narayanan, O. Djaneye-Boundjou and T. M. Kebede, they visualize 

malware into image as they capture minor changes while retaining a global structure. 

Second, the feature is extracted by using Principle Component Analysis. Based on the 

PCA, they study the performance on different classifiers such as Artificial Neural 

Network, K-Nearest Neighbor, and Support Vector Machine to identify malware image 

into their corresponding classes. Finally, the KNN give the 96.6% accuracy over 10868 

samples from 9 malware families. 

 

Reference Year #Dataset #Malware 
Families Features Classifiers Accuracy 

[1] 2011 9458 25 GIST KNN 97.18% 

[5] 2017 3131 24 DWT SVM 92.52% 

[14] 2015 3131 24 GIST ANN 96.35% 

[23] 2016 21741 9 N/A CNN 96.2% 

[23] 2016 N/A 27 N/A CNN 86.9% 

[28] 2017 12470 25 
Gabor 
GIST 
DWT 

SVM 98.88% 

[28] 2017 12470 25 
Gabor 
GIST 
DWT 

KNN 98.84% 

[32] 2016 10868 9 PCA KNN 96.6% 

Table 1. Comparison of relative malware classification researches 
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2.1 Malware Detection 

   In [24], S. Choi, S. Jang, Y. Kim and J. Kim, they build deep learning model which 

has three convolutional layers followed by a pooling layers respectively and two fully 

connected layers. The dataset they used is consisted of 2000 malware and 10000 normal 

files. They convert the files into grayscale and feed into the model without extracting 

feature. Finally, they get 95.66% accuracy. 

 

   In [25], K. Kancherla and S. Mukkamala, first, the executable is converted into 

grayscale image which they call byteplot. Their dataset is consisted of 25000 malware 

and 12000 benign. Second, they extract features using intensity, wavelet and Gabor. 

Finally, in this work they use Support Vector Machine and obtain 95.95% accuracy using 

combined feature set. 

 

   In [31], X. Zhou, J. Pang and G. Liang, they visualize malware into grayscale and 

extract image feature by using Gabor filer. Their dataset is consisted of 15781 samples, 

which includes 8759 malware and 7022 benign. The approach they proposed is used 

Extremely randomized tree with 10-fold cross validation as their classifier and they also 

study the performance of various classifier such as Gradient Boost Decision Tree, K-

Nearest Random Forest. Extremely randomized tree is applied for detection and give 

97.51% accuracy.  
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Reference Year #Malware #Benign Features Classifiers Accuracy 

[24] 2017 2000 10000 N/A CNN 95.66% 

[25] 2013 25000 12000 Wavelet 
Gabor SVM 95.95% 

[31] 2017 8759 7022 Gabor ET 97.51% 

Table 2. Comparison of relative malware detection researches 
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CHAPTER III 

 

RESEARCH METHODOLOGY 

   In this chapter, we demonstrate our approach step by step. First, we illustrate malware 

visualization and reorganization. Second, we introduce the LBP and how to apply the 

LBP on our images. Finally, we build convolutional neural network architecture which 

we utilize to train and classify. In addition, we also feed our data to different classifier 

such as Support Vector Machine and K-nearest neighbor. 

3.1 Dataset 

   In this research, we use two malware datasets. The first dataset we use is provided by 

[1, 4]. This dataset consists of 32 families and around 12000 malware images with 

grayscale (table 3). The types of malwares mainly belong to trojan, password stealer and 

virus. The training dataset which consists of 80% of each malware family in dataset for 

training and the testing dataset consists of 20% of each malware family. Malware image 

samples display in following (Table 2).  

   
Agent.FYI Swizzor.gen Lolyda.AA1 

Table 3. Samples of Malware Image 
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Table 4. Distribution of First Malware Dataset 

Malware Family Type of malware Amount of malware 
Adialer.C.UPX Adialer 188 

Agent.FYI Backdoor 116 
Aliser.7825 Trojan 256 
Allaple.A Worm 4540 

Alueron_Gen_J Trojan 198 
Autorun.A Worm 106 

Azero.A Trojan 121 
Backdoor.Agent.AsPack Backdoor 180 

C2Lop Trojan 692 
Dialplatform.B Dialer 177 

Dontovo.A TrojanDownloader 162 
Fakerean Rogue 381 

Farfli.I Backdoor 94 
Instantaccess Dialer 431 
Lolyda.AA1 PasswordSteeler 213 
Lolyda.AA2 PasswordSteeler 184 
Lolyda.AA3 PasswordSteeler 123 
Lolyda.AT PasswordSteeler 159 
Luder.B Virus 509 

Malex.gen!J Trojan 136 
Nuwar.A Virus 51 

Obfuscator.AD TrojanDownloader 142 
Rbot.gen Backdoor 158 
Sality.AM Virus 127 

Skintrim.N Trojan 80 
Swizzor.gen TrojanDownloader 520 

VB.AT Worm 408 
Virut.A Virus 133 

Virut.AC Virus 269 
Virut.AK Virus 571 

Wintrim.BX TrojanDownloader 97 
Yuner.A Worm 800 

 



 

 24 

   The second malware dataset we use is provide by Kaggle for Microsoft malware 

Classification Challenge [37]. This dataset consists of two sets: training dataset and 

testing dataset. Each raw data contains a hexadecimal representation of the file’s binary 

content and a corresponding assembly file which contains information extracted from the 

binary. In our research, we would only use hexadecimal file as input. The training dataset 

consisted of 10868 labeled sample for 9 categories. Table 5 demonstrates the distribution 

of each malware category. The testing dataset consisted of 10873 samples. Nonetheless, 

the label of testing data is not publicly available. Therefore, we would use training dataset 

in our research. 

Malware Family Number of Malware 

Ramnit 1541 

Lollipop 2478 

Kelihos_ver3 2942 

Vundo 475 

Simda 42 

Tracur 751 

Kelihos ver1 398 

Obfuscator.ACY 1228 

Gatak 1013 

 

 

Table 5. Distribution of Second Malware Dataset 

Figure 3. Hexadecimal Sample of Second Malware Dataset 
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3.2 Image Visualization 

3.2.1 Convert to Grayscale 

   In [1], L.Nataraj, S.Karthikeyan, G. Jacob and B. S. Manjunath visualized the 

malware into grayscale image in the range [0, 255]. The width of image is fixed and the 

height is allowed to vary. In [14], Aziz Makandar and Anita Patrot also convert malware 

into grayscale in the range [0, 255]. In [5], the malware is also visualized into grayscale 

image and normalized into 256*256 dimension. 

 3.2.2 Convert to RGBA Color Space 

   The reason we convert malware to RGBA [40] color space is that RGBA can be 

represented as hexadecimal (#00ff0080) and the x86 instructions usually are longer than 

8-bit binary. Therefore, if we convert more than 8-bit binary to one pixel, it can retain the 

relationship between instruction and pixel. This approach mainly focuses on second 

dataset in that second dataset is presented in hexadecimal. Each 8-bit value in 

hexadecimal would be as a pixel.  

 

 

Malware Binary 

0100101101101… 

Binary to 8 bit 

vector 

8 bit vector 

convert to grey 

scales image 

Figure 4. Malware convert to Grayscale Image 

Figure 5. Malware convert to RGBA Image 
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3.3 Image Reorganize 

   Our methodology is that we reorganized the grayscale malware images which are 

provided by [1, 4] L.Nataraj, S.Karthikeyan, G. Jacob and B. S. Manjunath. They convert 

the malware into images with grayscale. The malware images with grayscale are obtained 

by reading malware in binary. A Malware binary is read as a vector of 8 bit unsigned 

integers and then arranged into 2D array (Figure 4). We rearrange each pixel in the 

malware images into 3 by 3 grid (Figure 6). We convert malware images into 3 by 3 grid 

in that it is suitable for extracting Local binary pattern descriptor. 

 

 

 

 

 

Malware image 

Read each pixel line by line 

{{first pixel},{second pixel}…..} 

reorganized each 9 pixels 3 by 3 grid 

1st pixel 2nd pixel 3rd pixel 10th pixel 11th pixel 12th pixel 

4th pixel 5th pixel 6th pixel 13th pixel 14th pixel 15th pixel 

7th pixel 8th pixel 9th pixel 16th pixel 17th pixel 18th pixel 
 

Figure 6. Reorganize Malware Image 
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3.4 Local Binary Pattern 

   Local Binary Pattern (LBP), a visual descriptor, is useful for texture analysis and 

texture classification [6, 7, 8, 12]. As Figure 7 demonstrates, the value of central pixel is 

threshold. The 8 neighbors around a pixel are compared with the central pixel. If a 

neighbor's value is greater than central pixel, the value of the neighbor is written '1'. The 

value of neighbor which less then threshold is written '0'. The threshold results are 

multiplied with weights which are given by power of two. The central value is the sum of 

the multiplying results. For each pixel in the image do the same process. The final LBP 

descriptor can be obtained by calculating the histogram of the image. 

 

3.5 GIST Descriptor 

   We also use another image descriptor to extract feature from images. The GIST 

descriptor [10, 11, 16, 17] is originally used to compute the global feature vector and 

recognize real world scenes, which provide the holistic representation of an image. 

Given an image is computed by convolving the image with 32 Gabor filters at 8 

orientations and 4 scales, which generate 32 feature maps of the same resolution as the 

given image. Each feature map is divide into 16 regions by 4x4 grid, and the average 

value of each region would be calculated. In the end, we obtain a 512-dimension GIST 

 
 
 
 
 
 
 
 
 

25 10 29 

7 27 30 

56 41 13 

0 0 1 

0  1 

1 1 0 

1 2 4 

128  8 

64 32 16 

0 0 4 

0 108 8 

64 32 0 

Threshold Multiply 

LBP = 4+8+32+64 = 108 
Figure 7. Local Binary Pattern Operator 
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descriptor by concatenating the 16 averaged value for each region. Therefore, the GIST 

provide a descriptor by summarizing the gradient information for each part of the image. 

 

3.6 Convolutional Neural Network 

   We build the convolutional neural network (CNN) using TensorFlow [18, 19, 20] 

for training our data and classification. CNN is a mathematical model to solve 

optimization problem, which is comprised of one or more layers. Each layer is consisted 

of neurons. Each neuron would take an input and multiply weight and add bias on input. 

In order to obtain output, the input would be put in a non-linear function, activation 

function. 

 

3.6.1 Convolutional Layer 

   Convolution is a mathematical operation, which is used to find the pattern in inputs 

or filter out the features. For example, we have an 5x5 input image and the filter size is 

3x3. We pick the 3x3 sized chunk from the input image and do the convolution (dot 

product) with the filter as shown in Figure 8. In this example, each time we move the 

filter 1 pixel, this number is called stride. 

    
Figure 8. Convolution 
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   As Figure 8 shows, we can observe that the dimension of input image decrease after 

applying convolution on it. If we keep applying convolution on the input image, the 

dimension of input image would decrease faster than we want. In order to preserve as 

much as information, we can add zeros on boundary of the input image after convolution 

operator so that we can maintain the dimension would be as same as origin. This process 

is called padding (Figure 9). 

 

 

 

 

 

 

 

 

 

 

3.6.2 Pooling Layer 

   Pooling layer typically would be used after convolutional layer, which is an approach 

for decreasing the dimension while preserve the information. Max pooling is the most 

popular form of pooling. For example, we have a pooling filter with size 2x2 and stride 

is as same as width. When we apply this filter on the input image, each 2x2 sized chunk 

from the image would output the maximum value of that 2x2 area. In addition, applying 

Figure 9. Padding 
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pooling not only preserver the information but also reduce the computation and avoid 

overfitting [48]. 

 

3.6.3 Fully Connected Layer 

   Fully connected layer would receive all the input from neurons of previous layers 

and the output is value of certain predicted class. The value of output would do the matrix 

multiplication with weights and bias. 

 

 

 

 

 

 

 

 

 

Figure 10. Pooling 

Figure 11. Fully Connected Layer 
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3.6.4 Rectified Linear Unit 

   The rectified linear unit (ReLU) [45] is the most common activation function in 

neural network. Activation function, simply put, is used to calculate weights and bias 

function.The ReLU function would return 0 if input is negative. On the other hand, this 

function will return the value back if input is positive. 

 

 

 

 

 

 

 

 

 

3.6.5 CNN Architecture 

   We use TensorFlow [13, 15] to build CNN for training and testing. We build three 

CNN models with different number of layers, which have 5, 8, 11 layers respectively in 

that it is still an issue to determine number of layers we should build. Thereby, we 

alternatively build several models to evaluate the performance. Figure 13 shows one of 

our model which have 5 layers. There are five layer in our architecture. The first three 

layers consist of convolutional layer, max pooling layer and ReLU activation function. 

The last two layer are flatten layer and fully connected layer respectively. The second 

Figure 12. Rectified Linear Unit (ReLU) 



 

 32 

CNN model possesses 6 convolutional layers, 1 flatten layer, and 2 fully connected layer. 

Last our CNN model is equipped with 9 convolutional layers, 1 flatten layer, and 2 fully 

connected layer. 

3.7 Support Vector Machine 

   Support Vector Machine (SVM) [21, 22, 29] is a supervised classifier in machine 

learning, which is used for classification and regression analysis. SVM would project 

the data into high-dimension space, find the most optimal Hyperplane, and to separate 

two of the classes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. CNN Architecture 

Figure 14. Support Vector Machine 
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As Figure 14 demonstrates, SVM wishes to find the hyperplane [41] between Class 1 

and Class 2 with equidistant margin as far as possible for both side so that we can identify 

data into corresponding class clearly. 

 

    Basically SVM is a binary classifier. Nonetheless, in real situation, the number of 

class is larger than two. For example, there have 32 classes in our dataset. Therefore, 

there are two strategies [44] which could make SVM deal with multiclass issues. 

3.7.1 One-versus-Rest 

   We assume that there are K classes where K is a constant and larger than two. 

Thereby, we can treat one of class in K as class A, and rest classes in K as class B so 

that we can classify the data to class A through K SVM classifiers. 

 

 
Figure 15. One-versus-Rest 
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3.7.2 One-versus-One 

   We can use the concept of binary tree. We train separate SVM classifiers for each 

pair of classes. In total, there would be K(K-1)/2 SVM classifier. We classify given data 

from the bottom of the tree. The top of the tree is the classification result. 

 

 

 

 

 

 

 

 

 

 

 

 

3.8 K-Nearest Neighbor 

   K-Nearest Neighbor (KNN) [33, 34, 35] is the supervised learning and also a non-

parametric learning algorithm, which is used for classification and regression analysis. 

The KNN algorithm calculate the distance between testing data and set of training data. 

The most common class between testing data’s k nearest neighbor around it would be 

assigned to testing data. In our research, we use Euclidean to measure the distance. The 

Figure 16. One-versus-One 
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Euclidean distance [36] between two points p and q is the length of the line segment 

connecting them. 

 

! ", $ = !($, ")	 (" − $)*
+

,-.
 

 

   Figure 17 demonstrates the KNN algorithm for two classes. The center white point is 

testing data. The inner circle includes 3 nearest neighbors for the testing data. The 

majority of inner circle is class 2. Therefore, the testing data would be assigned to class 

2. The outer circle contains 5 nearest neighbor for the testing data. The majority of 

neighbors in outer circle is class 1. Thereby, the testing data would be classified as class 

1. 

 

 

 

 

 

 

 

 

 

 

 Figure 17. KNN Example 
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CHAPTER IV 

 

Experiment, Results and Comparisons 

4.1 Model Selection 

   We feed the training images to three different CNN model with several epochs after 

applying LBP, and classify the test data to evaluate which model is fit our dataset. As 

Figure 18 indicates, all of our model can reach 90% accuracy after 60 epochs, and the 

CNN model which is equipped 6 layers have better results than others which have 94% 

accuracy. Therefore, we would use CNN model with 6 layers to compare malware 

dataset with different image descriptors and different classifiers. 

 

Figure 18. CNN Architecture 
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4.2 First Dataset Experimental Results 

   We evaluate CNN for the LBP features classification, and use LBP features for 

training Support Vector Machine (SVM) classifier and k-nearest neighbor (KNN) 

classifier. We also implement GIST [9, 10, 11] features with CNN, KNN and SVM. 

Table 6 displays the accuracy of different methodologies over 32 malware families. 

Table 7, table 8 and table 9 are the confusion matrices of CNN, KNN and SVM using 

LBP feature. According to the confusion matrices, we discover that the malware belongs 

to family 28, 29 and 30 which are Virut.A, Virut.AC and Virut.AT respectively are easy 

to get confused. As seen in table 5, CNN can differentiate these three with higher 

accuracy than others.  

Classifier #Dataset #Family Feature 
Descriptor AVG. Accuracy 

CNN 

12348 32 

LBP 93.92% 

SVM LBP 87.84% 

KNN LBP 85.93% 

CNN GIST 87.88% 

SVM GIST 81.23% 

KNN GIST 82.83% 

 

 

 

Table 6. Experiment Result of First Malware Dataset 
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Table 7. Confusion Matrix of CNN using LBP feature 

Table 8. Confusion Matrix of KNN using LBP feature 

Table 9. Confusion Matrix of SVM using LBP feature 
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4.3 Second Dataset Experimental Results 

   In the second experimental, we focus on analysis the performance between grayscale 

image and RGBA image. We apply LBP both on gray and color image and use CNN to 

training and classify the data. The result demonstrates that using grayscale image is 4% 

higher than color image. The reason why using grayscale image is better than color 

image is that when we covert the malware to image, the grayscale image and color image 

have different structure. Converting color image might let the image lost original 

features. 

Classifier #Dataset #Family Color Space AVG. 
Accuracy 

CNN 
10868 9 

Grayscale 93.57% 

CNN RGBA 89.18% 

 

 

4.4 Pros and Cons 

   As Figure 19 demonstrates, the execution time of CNN is better than other classifiers 

in that our approach run with GPU, which is significantly shorter the execution time. In 

[42] ,T. Ishii, R. Nakamura, H. Nakada, Y. Mochizuki and H. Ishikawa, they also obtain 

the similar result of execution time. Moreover, this method doesn't have to run on a 

virtual machine or virtual environment to observe the behavior of malware. Additionally, 

because our approach is based on image processing, we can apply other image 

descriptors to do the voting to achieve higher classification accuracy. 

Table 10. Experiment Result of Second Malware Dataset 
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   Although malware images can be analyzed with our approach based on local binary 

pattern and machine learning, there still have countermeasures. Because our approach 

converts the malware into binary and reorganizes. Therefore, if a rival who rewrites 

whole the program in other way or uses other instructions instead of original one result 

in changing whole the pattern of malware image, our approach may fail. 
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Figure 19. Average Execution Time 
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CHAPTER V 

 

Conclusion and Future Work  

5.1 Future Work 

   While our experimental results demonstrate that the accuracy using LBP as feature 

is slightly higher than other methodologies, there are ways of how the experiment could 

be improved. The first priority would be to extend the malware family, which means that 

increases the size and classes of dataset. At the meantime, applying other image 

processing approach instead of LBP to the malware image is one possible future work. 

Additionally, we plan to design a different architecture of Tensorflow and examine more 

different classifier such as Decision Tree, Fandom Forest, and Naïve Bayes to increase 

the accuracy and reduce time consumption. Furthermore, converting to HSV [39] color 

space is one option in that we can apply LBP only one time on Hue channel in stead 

applying LBP three times on RGB channels.  

 

5.2 Conclusion 

   An experimental result shows that the accuracy based on our approach is 93.92%. 

The experiment is performed to classify malware images over 32 families around 12000 

malware images. We reorganize malware images and utilize Local Binary Pattern as 

descriptor to extract features and classify the results with TensorFlow library. The 
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comparison over different classifiers and features demonstrates that using LBP with 

TensorFlow obtains higher accuracy than others approaches. 

Furthermore, extending dataset of malware, converting malware to HSV color space, 

designing different architectures of TensorFlow and testing more image descriptors is 

our future works, which may improves the research and obtains more comprehensive 

methodology. 
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