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Abstract 

Anthropogenic nitrogen (N) loading and eutrophication can affect valuable ecosystem services 

and seagrass habitats by modifying structural and functional aspects of estuarine communities 

including increasing and prolonging macroalgae blooms. In some contexts, macroalgae may play 

a key role in N cycling pathways because they can alter sediment chemistry. Previous research 

has associated drift macroalgae blooms with elevated dissolved inorganic N concentrations in 

sediments as a result of increased remineralization of organic matter, but drift macroalgae effects 

on microbial N transformation pathways are not well understood. This study quantified the 

effects of macroalgae on estuarine N cycling in Thalassia testudinum seagrass beds of St. Joseph 

Bay, FL, on June 4, 18, and 26, 2017. Sediment physical characteristics, seagrass and 

macroalgae biomass measurements, and porewater chemistry were analyzed to compare 

sediments in areas with and without macroalgae cover. Seagrass aboveground and belowground 

biomass was significantly greater in areas with no macroalgae on June 18, and 26.  Sediments at 

incubation sites with macroalgae had higher porewater sulfide and % organic matter, though this 

was not significant across all sites and incubation dates. Porewater sulfide concentrations were 

positively correlated to seagrass shoot density in areas with and without drift macroalgae. A 

continuous-flow incubation system for intact sediment cores amended with stable isotope 

additions (15NH4
+ and 15NO3

- ) was used to measure N transformation rates across the sediment-

water interface. Results shows that DNRA (dissimilatory nitrate reduction to ammonium) rates 

were similar in magnitude to denitrification rates in areas with and without macroalgae, showing 



similar rates of N removal and recycling within sediments. Anammox rates were a minor source 

of N2 flux from sediments in macroalgae and no macroalgae areas, though anammox was 

stimulated under drift macroalgae blooms. N fixation was observed during all incubations, even 

in sediments with porewater NH4
+ above 300 µM. Previous research in St. Joseph Bay during 

summer and fall had higher denitrification rates, and lower N fixation rates than this study. 

Presence of drift macroalgae appears to possibly alter organic matter supply during blooms that 

may affect seasonal sediment N cycling rates in seagrass beds. Though there were not many 

significant differences in N cycling rates between areas with and without drift macroalgae, data 

presented in this study provides baseline N transformation rates in a relatively unimpacted bay, 

St. Joseph Bay, FL, and is an important step in understanding how nutrient loading may alter N 

cycling rates in other similar systems. 

 

Introduction 

 In coastal marine ecosystems, understanding nitrogen (N) cycling is increasingly 

important due to the growing problem of excessive nutrient loading (Joye and Anderson 2008), 

primarily in the form of fertilizer runoff, atmospheric deposition (natural and anthropogenic 

sources), and wastewater inputs (e.g., Galloway et al. 2003). Increased nutrient (N and 

phosphorus (P)) concentrations have been associated with eutrophication in aquatic systems 

(McCarthy et al. 2016) often increasing primary production (Beman et al. 2005) and harmful 

algal blooms (Heisler et al. 2008), decreasing water column oxygen concentrations (Beman et al. 

2005; Boesch et al. 2009), and changing food web dynamics (Vitousek et al. 1997). N cycling 

pathways govern the fate of N within ecosystems, so to understand the effects of eutrophication, 

we must understand N cycling in natural and modified systems.  

Different pathways of the N cycle occur under oxic and suboxic conditions (Figure 1), a 

transition that usually occurs near the sediment-water interface, within a few millimeters of the 

sediment surface (Santschi et al. 1990). N cycling rates are also affected by other environmental 

and temporal factors including salinity, temperature, availability of carbon, and sulfide 

concentrations (e.g. An and Gardner 2002; Gardner et al. 2006) These factors, among others, 

influence what pathways are favored in different ecosystems (Gardner et al. 2006; Burgin and 

Hamilton 2007; Joye and Anderson 2008). Anaerobic N transformations include denitrification, 

dissimilatory nitrate reduction to NH4
+ (DNRA), remineralization of organic matter (OM), and 



anammox (anaerobic NH4
+ oxidation). Denitrification reduces nitrate (NO3

-) to nitrite (NO2
-), 

then to nitric oxide (NO), nitrous oxide (N2O), and N2 gas (Payne 1973). DNRA transforms NO3
- 

to NH4
+ via NO2

- (Tiedje 1988), anammox uses NO2
- to oxidize NH4

+ to N2 gas (Mulder et al. 

1995), and remineralization breaks down OM to simpler compounds, such as organic carbon and 

NH4
+. Denitrification and anammox export N from ecosystems as N2 gas, while DNRA and 

remineralization promote recycling of bioavailable N in the form of NH4
+ (Capone and 

Carpenter 1982; Burgin and Hamilton 2007). Aerobic pathways that occur in the top few 

millimeters of sediments are nitrification and OM remineralization (occurs in both aerobic and 

anaerobic). N fixation is the process of transforming N2 gas into more readily useable NH4
+, 

which can be assimilated into biomass (Capone and Carpenter 1982), while nitrification oxidizes 

NH4
+ to NO2

- then NO3
- (Ward 2008). The rates of these transformations can determine the net 

balance of available N forms in an ecosystem, which can ultimately influence the productivity of 

the system and possibly exacerbate effects of eutrophication (e.g., McCarthy et al. 2016).  

Rates of N pathways have been measured in many coastal environments (e.g., Eyre et al. 

2013; Smyth et al. 2013), including seagrass ecosystems (e.g., McGlathery et al. 1998; Eyre et al. 

2013; Salk et al. 2017), but no known studies have determined sediment-water interface N 

transformation rates in seagrass systems under drift macroalgae blooms. N transformation rates, 

and what drives these processes, are still not well understood in seagrasses because there are so 

few estimates, and these rates can vary regionally and seasonally (e.g. Eyre et al. 2011; Eyre et al 

2013; Salk et al. 2017).   

Seagrasses, marine angiosperms, are important ecosystem engineers that can modify 

water flow and sediment grain size and provide habitat for many different species of vertebrates 

and invertebrates, including commercially and recreationally important species (Hemminga and 

Duarte 2000; Beck et al. 2001). Seagrass communities also sequester, or fix, a significant amount 

of dissolved carbon dioxide through photosynthesis (Duarte et al. 2005), stabilize coastal 

sediments against erosion (Orth et al. 2006), and play important roles in biogeochemical cycling 

in coastal systems (Hemminga and Duarte 2000; McGlathery et al. 2007). Seagrasses are also 

vulnerable to anthropogenic stressors, and are sensitive to changes in light availability, due to 

their high photosynthetic needs (Orth et al. 2006). Decreases in light availability are often 

associated with algae growth, including drift macroalgae, and can therefore influence 

eutrophication effects in indirect ways (Orth et al. 2006). 



Drift macroalgae have garnered more interest in N cycling research due to the increase of 

anthropogenic N loading to coastal regions causing more persistent and prolonged blooms (Pihl 

et al. 1995; Osterling and Pihl 2001; Arroyo and Bonsdorff 2016). Drift macroalgae thrives in 

areas with increased nutrients (e.g., Pedersen et al. 2010), especially NH4
+ from anthropogenic 

sources (e.g., Wang et al. 2012) and N flux from sediments (Arroyo and Bonsdorff 2016). Most 

research, however, has not focused on direct N cycling rate measurements under macroalgae 

blooms; instead, these studies have only hypothesized how N transformations may be altered due 

to how macroalgae may affect environmental conditions such as sulfide concentrations, or how 

the macroalgae assimilates or exudes nutrients into the surrounding water column and sediments 

(Garcia-Robledo and Corzo 2011; McGlathery et al. 2013).  

Drift macroalgae are ephemeral, bloom-forming algae that grow in mats or clumps in the 

water column, attached to marine vegetation, or on the sediment surface (Arroyo and Bonsdorff 

2016). Macroalgae can increase biodiversity in marine systems by providing habitat for a variety 

of marine organisms (Coastal and Estuarine Studies 2005), but their presence can also be 

harmful by shading seagrasses and microphytobenthic communities, inhibiting photosynthesis 

(Hauxwell et al. 2003; Coastal and Estuarine Studies 2005; Garcia-Robledo and Corzo 2011). 

The effects that drift macroalgae have on seagrasses mostly depends on the residence time of 

macroalgae in the seagrass beds, if the macroalgae species grows attached to seagrass blades or 

benthic substrate, and the species of macroalgae and seagrass (Arroyo and Bonsdorff 2016). 

Water flow velocity and hydrologic conditions often determine how long drift macroalgae 

remain in an area, while spatial distribution of macroalgae is closely related to seagrass bed 

morphology (Bell and Hall 1997; Arroyo and Bonsdorff 2016). Distribution of drift macroalgae 

within seagrass beds is often patchy with a high amount of variability, though drift macroalgae 

tend to accumulate in small bare patches within the seagrass beds (Arroyo and Bondsdorff 2016).  

Drift macroalgae mats can move up to 0.5 km per day, but if water velocity is not sufficient to 

flush-out large macroalgae mats out of the system, then these accumulations will remain in the 

same areas until they eventually degrade (Holmquist 1997; Arroyo and Bonsdorff 2016). 

Both seagrasses and drift macroalgae can impact sediment N transformation rates through 

a variety of complex, direct and indirect, physical and chemical interactions with their 

environment. The physical presence of seagrasses reduces water flow velocities (Koch, 1999), 

that not only promote drift algal accumulation (e.g., Holmquist 1997), but also promotes the 



retention of fine sediments (Fonseca and Fisher 1986). Silt-clay percentage of underlying 

sediments is also positively correlated with the presence of drift macroalgae (Bell and Hall 

1997). Sediment size is important because it affects diffusion and advection of nutrients, such as 

dissolved inorganic N (DIN) and oxygen, across the sediment-water interface, since coarse 

sediments are more permeable than fine sediments (Asmus et al. 2000; Joye and Anderson 

2008). Sediment type can also be important since siliciclastic sediments, which are relatively rich 

in P and common in northern Florida, can promote N limitation, while carbonate rich sediments 

promote more P limited environments (Lapointe et al. 1997). 

Seagrasses can modify sediment chemistry by oxygenating the rhizosphere during 

photosynthesis (Frederiksen and Glud 2006), increasing organic matter (OM) content in 

sediments via detrital inputs, and assimilating and exuding dissolved nutrients, all of which vary 

seasonally (Eyre et al. 2013). Seagrasses are adapted to live in reduced, anoxic sediments, due to 

aerenchyma tissue that can protect roots and rhizomes from compounds like sulfide (Homer and 

Hasler-Sheetal 2014).  

The overall effect of macroalgae on sediment chemistry depends on the residence time 

and bloom stage (i.e., age of drift macroalgae bloom), though there are some common effects 

(Figure 2). Newly established macroalgae can form mats that assimilate nutrients from the 

surrounding sediments and water column (Coastal and Estuarine Studies 2005). These mats can 

act as a barrier between the overlying water column and sediment surface, uncoupling the 

sediment-water interface and disturbing the flow of dissolved nutrients and gases between the 

sediment and water column (Coastal and Estuarine Studies 2005). Drift macroalgae cover can 

also shift the oxic/anoxic boundary from a few millimeters below the sediment surface to the top 

of the sediments or to the overlying water, primarily due to macroalgae using dissolved oxygen 

through respiration, and in late stages of blooms, decomposition (Coastal and Estuarine Studies 

2005). As macroalgae biomass decomposes, nutrients can be released into the water column and 

sediment porewaters. This flux of nutrients can then be utilized by opportunistic macro- or 

microalgae, which can possibly further compound the effects of eutrophication (Garcia-Robledo 

et al. 2008; Corzo et al. 2009). 

Though seagrasses and drift macroalgae are biologically different, they similarly 

influence, or combine, to alter N transformation pathways and rates by affecting NH4+ pools. 

NH4
+ exuded from seagrasses, drift macroalgae, or the remineralization of OM can promote 



coupled nitrification-denitrification by supplying substrate for nitrification (McGlathery et al. 

2001). Elevated NH4
+ concentrations accumulated by macroalgae or from detrital seagrass can 

also be flushed out, which can keep the water column oxygenated through physically removing 

macroalgae or detritus and bringing in new, oxygenated water (Cebrian et al. 2014).  

Remineralization of OM, whether from seagrasses or macroalgae, supplies organic 

carbon to microbial communities, often shifting them from net autotrophy to heterotrophy, 

increasing sediment oxygen demand (SOD), and promoting sulfate reduction to sulfide, which 

can increase H2S concentrations in sediments (e.g., Hemminga and Duarte, 2000; Corzo et al. 

2009; Garcia-Robledo and Corzo 2011). OM remineralization naturally occurs in seagrass 

sediments, but OM from drift macroalgae can lead to H2S accumulation in sediment porewaters 

at concentrations that are toxic to seagrasses (Koch and Erskine 2001) and can inhibit 

denitrifying bacteria (Burgin and Hamilton 2007).  

The last step of denitrification (transforming N2O to N2), as well as nitrification, is 

inhibited by sulfide, which may favor NO3
- reduction via DNRA (Burgin and Hamilton 2007; 

Joye and Anderson 2008) or N2 production via anammox (Eyre et al. 2013). If denitrification is 

incomplete, NO2
- may be released, promoting anammox (Eyre et al. 2013). But, NO2

- release 

cannot be solely attributed to incomplete denitrification, since incomplete nitrification and 

DNRA can both release NO2
-, as well. Both denitrification and DNRA are anaerobic pathways 

performed by heterotrophic bacteria that rely on organic carbon sources, as well as NO3
- as their 

terminal electron acceptor. However, DNRA has been linked to sulfur oxidation and may be 

promoted in NO3
--limited sediments with ample labile carbon (Burgin and Hamilton 2007). 

Relative lability of organic matter is associated with the ratio of carbon (C) to N content in plant 

tissues. Higher C:N ratios denote that there is more carbon than nitrogen, meaning the tissues are 

more refractory than low C:N ratios with high N content. Mean C:N (carbon: nitrogen) ratios for 

Thalassia testudinum, on average, is 24.6:1 (Fourqurean and Zieman 2002) while  Laurentia 

poitei, a similar species of drift macroalgae from this study, is reported being 10.2:1 (NOAA 

1986).  Drift macroalgae is more labile than seagrass, and as both degrade, areas with drift 

macroalgae cover could promote DNRA over denitrification (Eyre et al. 2013; Burgin and 

Hamilton 2007).  

Denitrification has long been thought to be the primary pathway for NO3
- removal in 

many coastal ecosystems (Giblin et al. 2013), including seagrasses (Gardner and McCarthy 



2009; Eyre et al. 2013), but there is evidence that DNRA rates can be equal to or higher than 

denitrification in seagrasses (An and Gardner 2002; Aoki et al. 2017; Salk et al. 2017). 

Additionally, anammox may be an important pathway for N removal as well (e.g., Salk et al. 

2017). Previous research studying N cycling under macroalgae blooms has not estimated DNRA, 

which can have a significant impact on the fate of whether N is removed or recycled in 

ecosystems (Burgin and Hamilton 2007). Few studies have used stable isotope techniques and 

direct measurements of nutrient fluxes to determine differences in N transformation rates in 

seagrass beds with and without drift macroalgae accumulations. 

To examine how drift macroalgae mats affect N cycling in coastal marine sediments, this 

experiment was conducted in June 2017 in St. Joseph Bay, FL, located in the northeastern Gulf 

of Mexico. Previous research in St. Joseph Bay measured summer N transformation rates in both 

seagrass beds and adjacent, unvegetated sediments, providing baseline N cycling information in 

the bay (Hoffman et al., unpublished). In the present study, a continuous-flow incubation system 

using stable isotope additions (15N) was used to determine N transformation rates and pathways, 

while various sediment chemistry and biological samples were collected to address the 

hypotheses that: (1) denitrification rates would be higher than DNRA regardless of macroalgae 

presence, due to denitrification being more energetically favorable than DNRA; (2) areas with 

drift macroalgae beds would have higher rates of DNRA than areas without macroalgae due to 

increased sediment % OM and sulfide concentrations; and (3) N cycling rates will change over 

the duration of the drift macroalgae bloom; i.e., when the drift macroalgae is in large mats, 

chemical interactions will be different than during decomposition, possibly altering N 

transformation rates according to bloom stage. 

 

Methods 

Site descriptions 

 St. Joseph Bay, FL (Figure 3), is located in the northeastern Gulf of Mexico, bounded by 

Cape San Blas to the west and south and mainland Florida to the east. The bay is 295.4 km2 in 

size with no major freshwater inputs (Heck et al. 2000). Salinity ranges from 23-40 (mean = 35), 

and rainfall averages 1.5 m per year (FDEP 2008). The average water depth is approximately 6.4 

m, with maximum depths of 10.7 m towards the northern part of the bay and an average of 0.9 m 

towards the south (Figure 4-A; FDEP 2008). St. Joseph Bay has diurnal tides with a tidal range 



of 0.5 m and temperate climate that is occasionally influenced by subtropical storms and 

hurricanes during late summer and fall (Stewart, 1962;National Ocean Service, 1988).    

 The area around St. Joseph Bay is not heavily developed, though increases in nutrient 

concentrations have been observed since the early 2000’s (FDEP 2008). The dominant species of 

seagrass are Thalassia testudinum Banks & Sol. Ex K.D. Koenig, Halodule wrightii Ascherson, 

and Syringodium filiforme Kütz, which together comprise about 13% of the bay’s total area (Fig. 

4-B; FDEP 2008). The bay experiences seasonal macroalgae blooms dominated by rhodophytes, 

including species from the genera Laurentia and Gracilaria, Blooms typically start in late spring, 

but distribution and abundance of these blooms is not well understood. (FDEP 2008).  

This study was conducted at six sites (each sampling location was approximately 20 m x 

20 m in size) within continuous T. testudinum beds on 4, 18, and 27 June, 2017. Three sites were 

chosen based on the presence (+M) of macroalgal accumulations that completely covered (100% 

cover) the seagrass canopy over an area of at least one m2. Three sites were also selected in 

continuous seagrass beds with no macroalgal cover (-M). One site of each type (+M and –M) 

was designated for measurement of sediment-water interface N cycling rates. These sites were 

located within 40 m of one another at the south end of St. Joseph Bay and were chosen because 

they had similar % cover of seagrasses, water depth, and tidal influence (Table 10). The 

remaining sites, two with macroalgae blooms (M1, M2), and two without macroalgae blooms 

(NM1, NM2) were sampled at representative locations to quantify similarities and differences in 

sediment characteristics and seagrass biomass throughout the bay (Fig. 3). 

 

Sample Collection and analysis 

Chemical and Physical Characteristics 

 Water samples for ambient nutrient concentration analyses (NH4
+, NO3

-, NO2, urea, and 

ortho-phosphate; OP) were collected at all sites. Water samples were collected using 60 mL, 

Luer-Lock syringes with pre-rinsed 0.2 µm Nylon syringe filters. At least 10 mL of site water 

was used to pre-rinse each filter, and 12.5 mL of filtered water was collected into Falcon tubes 

and stored on ice until they could be frozen at -18° C. Samples were analyzed using standard 

procedures on a Lachat Quikchem 8500 flow injection analysis system at Wright State 

University (WSU). 



 Triplicate bulk sediment samples were randomly collected to measure sediment grain 

size, % OM, porewater NH4
+ and sulfide concentrations, exchangeable NH4

+, and carbon to 

nitrogen (C:N) content of sediments. Sediment samples for porewater and exchangeable NH4
+, 

sediment grain size, % OM, and C:N analysis were collected using 60 mL syringe corers, 

extruded into plastic Whirl-Pak bags (Nasco), and chilled on ice until they could be frozen at 

approximately -18° C until analysis. Porewater was extracted from sediments via centrifugation. 

For exchangeable NH4
+, 30 mL of 0.2 M acidified potassium chloride (pH = 2.5) was added to 

five grams of sediment. The mixture was rotated using a hematology mixer for 20 minutes to 

extract any NH4
+ bound to the cation exchange complex (Hatton and Pickering 1990), and NH4

+ 

was measured using the phenol hypochlorite method (Solarzano1969).  

 For grain size analysis, sediment samples were manually homogenized, dried at 60 °C 

until achieving a constant weight, and sieved to determine percent mass of grain size fractions 

(ASTM D6913-04). Percent OM was determined by loss on ignition after combustion in a muffle 

furnace at 500 °C for four hours (Heiri et al. 2001). C:N content was measured on acid-rinsed 

(10% HCl) subsamples of sediment from Whirl-Pak bags using a PDZ Europa ANCA-GSL 

elemental analyzer at the UC Davis Stable Isotope Facility. 

  Porewater for sulfide analysis was collected using Rhizon CSS samplers (Rhizosphere 

Research Products) in the field to extract porewater by capillary action. 60 mL syringe cores 

were used to collect intact sediment cores from each site, leaving a few centimeters of overlying 

water to minimize oxygen exposure to sediments. The Rhizon was inserted into the top of each 

60 mL syringe core until about 8 mL of porewater was extracted into vacuum sealed test tubes. 

10 µL of potassium hydroxide and 10 µL of zinc acetate were added immediately in the field to 

prevent sulfide oxidation. In the lab, sulfide samples were measured spectrophotometrically 

using the methylene blue method, with standards prepared by bubbling with Argon (Standard 

Methods 4500-S2-D).   

 Percent cover of macroalgae and seagrass was estimated at each of the sampling sites 

using a 0.25 m2 quadrat subdivided into 10 cm by 10 cm squares. Visual estimates were made at 

three haphazardly determined locations within each sampling site. In addition, three cores 

(182.65 cm2, PVC corer) were collected to measure biomass of drift macroalgae and seagrass. 

Samples were sorted into macroalgae, above and belowground biomass of seagrass, and detritus. 

Sorted samples were dried at 60 °C until achieving a constant weight to obtain dry biomass. 



Subsamples of dried biomass were rinsed in 10% HCl to remove carbonates, and pulverized 

samples were shipped to the UC Davis Stable Isotope Facility. Samples were analyzed using a 

PDZ Europa ANCA-GSL elemental analyzer to determine natural abundance of 15N and C and N 

content of the tissues. 

Continuous Flow Incubation System 

Intact sediment cores (7.6 cm diameter, ~15-20 cm height) were collected in seagrass 

beds with (+M) and without (-M) macroalgae cover (6 cores per site). Aboveground seagrass 

biomass was excluded from intact cores by gently parting the blades and manually inserting the 

core into the sediment. Cores with macroalgae were taken in areas of seagrass beds with 100% 

cover of macroalgae at least 10 cm thick. Seagrass and macroalgae were gently parted, and the 

core was inserted into the sediment. Immediately after extracting the core, macroalgae was 

placed on top of the sediment in the core (about 2-3 g wet mass). Cores were sealed and 

maintained in the dark at ambient temperatures during transport to the lab. 120 L of site water 

was collected and used to incubate the cores using a continuous-flow incubation system for three 

days (Lavrentyev et al. 2000;Gardner and McCarthy 2009). 

  Cores were wrapped in aluminum foil to prevent photosynthetic production of oxygen 

and fitted with a plunger containing inflow and outflow lines of gas impermeable PEEK tubing 

(0.040 IDx1/16OD, Western Analytical Products). The plunger was positioned with the inlet 

tubing approximately 1-2 cm above the sediment surface. Site water was held in aerated 

reservoirs and pumped over the sediment surface of intact cores at approximately 1.25 mL min-1 

by peristaltic pumps (Fig. 5).  

Two inflow reservoirs were enriched with Na15NO3 and two with 15NH4Cl to a final 

concentration of 50 µM and 10 µM, respectively. Each inflow reservoir flowed into two 

sediment cores; thus, two sediment cores from each site received unamended inflow water with 

no tracer additions, two cores received inflow water amended with 10 µM 15NH4
+, and two cores 

received inflow water amended with 50 µM 15NO3
-. Cores were allowed to equilibrate for 12-14 

h before duplicate samples from inflow and outflow reservoirs were collected for nutrients (OP, 

NH4
+, NO2

-, NO3
-, and urea), isotopically labeled 15NH4

+, and dissolved gases (28,29,30N2, O2, and 

Ar) once daily, for three days. Nutrient samples were filtered immediately to 0.2 µm into 15 mL 

plastic tubes and frozen. 15NH4
+ samples were filtered using 0.2 µm syringe filters into 12 mL 

Exetainers (Labco Exetainers), leaving no head space. Dissolved gas samples were collected in 



Exetainers, allowing the tubes to overflow for at least two volumes before collection, preserved 

with 200 µL of 50 % (w/w) zinc chloride, and stored at a temperature below ambient to prevent 

degassing prior to analysis. Nutrient samples were analyzed using the Lachat Quickchem 8500, 

while dissolved gases (Kana et al. 1994) and 15NH4
+ (OXMIMS, Yin et al. 2014) were measured 

using membrane inlet mass spectrometry (MIMS). All nutrient and gas fluxes were calculated 

based on the flow rate, cross-sectional core area, and concentration differences between inflow 

and outflow (Lavrentyev et al. 2000).   

Flux =  
(𝐶𝑜 − 𝐶𝑖) x 𝑓 

𝑎
 

Where Co is the outflow concentration (µM), Ci is the inflow/reservoir concentration, f is the 

flow rate (1.25mL min-1), and a is the cross-sectional area of the core (0.0045 m2). Flux 

calculations can be negative, indicating solute movement from the overlying water into the 

sediment core, or positive, indicating production and release from the sediments to overlying 

water (Lavrentyey et al. 2000; McCarthy et al. 2015).  

 28N2 was used to assess the relative balance between N fixation and 

denitrification/anammox occurring in unamended cores, while potential denitrification and 

calculated N fixation were determined from the 28, 29, and 30N2 fluxes in 15NO3
- cores (An et al. 

2001). Possible anammox was estimated from production of 29N2 in 15NH4
+ addition cores 

(Rysgaard et al. 2004). Nitrification was not prevented from occurring in these cores, so 29N2 

production cannot be excluded as an end-product of denitrification occurring with 14NO3
- already 

present within the incubation system combined with 15NO3
- produced via nitrification of added 

15NH4
+ (McCarthy et al. 2015). Potential DNRA was measured from 15NH4

+ produced from 

added 15NO3
- (An and Gardner 2002). Since cation exchange mechanisms in sediments may 

interfere with 15NH4
+ versus 14NH4

+ measurements in 15NO3
- additions cores (Gardner et al. 

1991), nitrate-induced ammonium flux (NIAF) was calculated as an additional proxy for DNRA. 

NIAF was calculated by subtracting total NH4
+ flux in unamended cores from the total NH4

+ flux 

in 15NO3
- cores (McCarthy et al. 2016).  

 

Statistical Analysis 

 Statistical analysis was completed using SPSS (IBM) software. Data was tested for 

normality and was not normally distributed, so all correlations were conducted using Spearman’s 



Rho correlation coefficients (r2). Biomass and sediment chemistry data was analyzed using the 

Kruskal-Wallis test to determine if data from sites +M and -M were significantly different from 

each other. For analysis all nutrient and dissolved gas fluxes, a Kruskal-Wallis univariate 

analysis of variance on ranked data was used to determine the main and interactive effects of 

macroalgae, treatment, and incubation. For all statistically significant main effects, a Post Hoc 

Test, Tukey HSD, was used to determine significance. Main effects indicate whether there was a 

significant effect of treatment, incubation date, or presence of algae independent of other factors. 

For interactive effects, where the effect of one variable depends on one or more other variables, 

95% confidence intervals around estimated marginal means were used to determine significant 

differences among combinations of factors. It is important to note that if there were interactive 

effects, main effects of the individual variables in the interaction were not reported, because the 

effect was not consistent across levels of the other factors (incubation date, treatment, or 

presence of macroalgae).  

 

Results 

Water Column and Site Characteristics 

 Salinity varied across all sites and dates, and no clear seasonal trends were found for 

ambient nutrient concentrations across St. Joseph Bay (Table 1). Ambient NO3
- concentrations 

were below detection limit on all dates and sites except on June 4 at +M and -M. Ambient NH4
+ 

concentrations ranged from 0.93 ± 0.04 to 4.16 ± 0.02 µM, while OP and NO2
- concentrations all 

remained under 1 µM. Urea concentrations were also all under 1 µM, except on June 18 at site 

NM1.  

 Biomass data (Table 2) and sediment chemistry (Table 3) varied across sites and dates. 

Notable correlations for macroalgae sites were that sulfide concentrations were positively 

correlated to seagrass shoot density (r2= 0.639, p = 0.01). For no macroalgae sites, sulfide 

concentrations were also correlated to shoot density (r2=0.825, p =0.01), as well as porewater 

NH4
+ (r2=-0.586, p =0.01). Also, % OM was correlated to seagrass aboveground biomass 

(r2=0.741, p =0.01) and shoot density (r2=0.530, p =0.05) in no macroalgae areas.   

 Site characteristics were compared between the three sites with macroalgae blooms (+M, 

M1, M2) and three sites with no macroalgae blooms (-M, NM1, NM2) to establish possible 

chemical and physical differences. On June 4, the only differences detected between macroalgae 



and no macroalgae sites were higher porewater sulfide concentrations (p =0.011) and % cover of 

macroalgae (p =0.002) at macroalgae sites. On June 18, aboveground seagrass biomass (p 

=0.019), belowground seagrass biomass (p =0.007), and % cover of seagrass (p =0.035) was 

significantly greater in areas with no macroalgae. On June 18 areas with macroalgae had 

significantly greater macroalgae biomass (p <0.001), and % cover of macroalgae (p <0.01) than 

no macroalgae areas. On June 26, aboveground seagrass biomass (p =0.038) and belowground 

seagrass biomass (p =0.015) were greater in areas with no macroalgae, while areas with 

macroalgae had higher macroalgae biomass (p <0.001), sulfide concentrations (p =0.004) and % 

cover of macroalgae (p =0.008).  

 

Sediment oxygen and nutrient fluxes 

Sediment Oxygen Demand (SOD) 

 Cores with drift macroalgae had significantly greater SOD than no macroalgae cores (p 

<0.001), with no effect of treatment and no interactive effects. Across all incubations and 

treatments (unamended, 15NH4
+, and 15NO3

- additions), average SOD in macroalgae cores was 

2587.87 ± 96.33 µmol O2 m
-2 hr-1 compared to 1566.06 ± 80.18 µmol O2 m

-2 hr-1 in no 

macroalgae cores (Table 4, Fig. 6). SOD was also significantly greater on June 18 than June 26 

(p =0.001); however, other comparisons of SOD across incubations and treatments were not 

significant. In 15NH4
+ addition cores with no macroalgae, SOD was positively correlated to 

possible anammox and 29N2 flux (r2=0.571, p =0.05), and in 15NO3
- addition cores with no 

macroalgae, SOD was positively correlated to potential DNRA (r2=0.727, p =0.01). 

Nutrient Fluxes 

 Mean NH4
+ flux in all macroalgae cores (24.76 ± 12.29; all nutrient fluxes measured in 

µmol N m-2 hr-1 or µmol P m-2 hr-1 for OP ± standard error) was significantly lower than the 

mean for all no macroalgae cores (77.41 ± 11.13) (p <0.001) (Fig. 7). Sampling date influenced 

NH4
+ flux with June 4 being significantly higher than June 18 (p <0.001) and June 26 (p =0.019). 

For treatment, average NH4
+ flux for 15NO3

- enriched cores was 109.30 ± 15.98 compared to 

31.34 ± 9.91 in unamended cores (p <0.001) and 12.62 ± 13.43 in 15NH4
+ enriched cores (p 

<0.001). For the effects of the 15NO3
- addition in unamended cores with macroalgae, there was a 

positive correlation between NH4
+ and NO3

- fluxes (r2=0.571, p =0.05).  



 NO2
- fluxes were only significantly affected by treatment (p <0.001), but not incubation 

or presence of macroalgae. Average NO2
- fluxes for +M and -M in 15NO3

- enriched cores across 

the three incubations were 47.62 ± 6.40 compared to -1.60 ± 0.97 in unamended cores (p <0.001) 

and 0.02 ± 0.36 in 15NH4
+ enriched cores (p <0.001). (Table 4; Fig. 8).      

 Treatment and incubation significantly influenced NO3
- fluxes (both p <0.001; Fig. 9). 

Including all treatments, June 26 had lower NO3
- fluxes than June 4 (p <0.001) and June 18 (p 

=0.001). 15NO3
- addition cores stimulated NO3

- uptake by sediments with an average NO3
- flux 

of -245.49 ± 18.88, which was significantly different from 0.86 ± 0.89 in 15NH4
+ enriched cores 

(p <0.001) and 0.52 ± 0.78 in unamended cores (Table 4; Fig. 9).  

 There were significant interactive effects between macroalgae and incubation (p =0.014) 

for OP fluxes. All average OP fluxes were negative, but no other significant differences or trends 

occurred over the three incubations, or between treatments for +M and -M cores (Table 4; Fig. 

10).  

 Urea fluxes were influenced by interactive effects between macroalgae and incubation (p 

=0.011), with no effect of treatment. On June 4, urea flux was significantly greater in -M cores 

than +M cores (3.62 ± 1.84, -3.90 ± 2.27, respectively) but this difference was not observed in 

the other incubations (Table 4; Fig. 11). 

 

N transformations  

Net 28N2 Flux 

 There were significant interactive effects between incubation and treatment (p <0.001) as 

well as macroalgae and incubation (p =0.026) on net 28N2 fluxes. The effect of macroalgae 

changed over different incubations. In all +M cores, June 26 (-10.27 ± 7.43) was significantly 

different than June 4 (-82.95 ± 17.14) and June 18 (-51.432 ± 12.91) (Table 4).The effect of 

treatment changed over the course of three incubations. For unamended +M and -M cores, June 

26 and June 18 were significantly different from each other (p =0.007). In 15NH4
+ addition +M 

and -M cores, June 26 had lower 28N2 fluxes than both June 4th and June 18th. In 15NO3
- cores, 

there were no significant differences between incubations. 

 Averages for 28N2 flux were predominantly negative across all incubations (Fig. 12). The 

changing effect of macroalgae, depending on incubation shows that there was a change from 



being a net 28N2 sink on June 4 and June 18 to being neither a sink nor source of 28N2 during the 

last incubation on June 26.  

Other N pathways  

 Potential denitrification rates, measured by total 28+29+30N2 production in 15NO3
- cores, 

averaged 12.02 ± 4.52 in +M cores and 17.19 ± 4.22 in -M cores across all three incubations 

(Fig. 14, A). Potential DNRA rates, measured as 15NH4
+

 production from 15NO3
-, averaged 12.36 

± 5.21 in +M cores and 19.55 ± 3.90 in -M cores across all three incubations (Fig. 14, B). In 

15NO3
- addition, +M cores, NO2

- flux was correlated to potential DNRA (r2=0.595, p =0.01) and 

calculated N fixation (r2=0.558, p =0.05). Potential DNRA and potential denitrification were also 

negatively correlated (r2=-0.666, p =0.01). NIAF, calculated as the difference between NH4
+ flux 

in 15NO3
- and unamended cores, averaged 63.45 ± 16.59 in +M cores and 97.44 ± 13.98 in -M 

cores (Fig. 14, D). In 15NO3
- addition, -M cores, potential DNRA was correlated positively to 

NO2
- flux (r2=0.527, p =0.05) and potential DNF (r2=0.477, p =0.05). Calculated N fixation, 

based on production of heavy isotope and balance with oxygen ratio (An et al. 2001), averaged 

21.78 ± 10.46 in macroalgae cores and 5.12 ± 7.66 in no macroalgae cores (Fig. 14, C). There 

were no statistically significant trends found between +M and -M cores, or across sampling dates 

for potential DNF, potential DNRA, N fixation, and NIAF. 

 

Discussion 

 St. Joseph Bay is a relatively unimpacted coastal system with continuous T. testudinum 

beds along the margin of the bay and seasonal drift macroalgae blooms, providing a study site to 

determine how drift macroalgae may affect the fate of N in seagrass ecosystems. Previous 

research led to the hypothesis that seagrass beds with or without drift macroalgae cover would 

have greater rates of denitrification than DNRA because denitrification is more energetically 

favorable than DNRA. Previous research also led to the hypothesis that areas with drift 

macroalgae cover would have greater DNRA rates than seagrass beds with no drift macroalgae, 

likely due to higher % OM and sulfide concentrations associated with macroalgae cover and 

lastly, literature also supported the idea that N cycling rates would change over the duration of 

the drift macroalgae bloom due to chemical differences imposed by newly established 

macroalgae blooms versus decomposing macroalgae on sediments. The results show that drift 

macroalgae blooms within St. Joseph Bay did not significantly affect the majority of N 



transformation pathways, but the rates measured in this study may be important in the context of 

larger seasonal trends, as compared to N rates measured within St Joseph Bay and other seagrass 

beds.   

 DNRA represents recycling of bioavailable NH4
+ within sediments (Burgin and Hamilton 

2007). DNRA was stimulated in 15NO3
- addition cores, but there were no significant differences 

in potential DNRA between +M and -M cores. N removal pathways from sediments include 

anammox (Mulder et al. 1995) and denitrification (Seitzinger 1988). Average potential 

denitrification rates in -M cores was not significantly different than +M cores. But, potential 

denitrification rates were an order of magnitude greater than possible anammox in +M and -M 

cores (Fig. 14, A; Fig. 13). Possible anammox, 29N2 production in 15NH4
+ addition cores, was 

significantly higher in +M than -M cores, but anammox rates represented less than 2% of total N 

removal. The primary N removal pathway was through denitrification, rather than anammox, in 

seagrass sediments of St. Joseph Bay during June 2017, regardless of the presence of drift 

macroalgae. Low NO3
- ambient concentrations at all sites (most below detection limit) suggests 

at first that denitrifying bacteria were possibly NO3
- limited at all sites, however, there was a lack 

of 29N2 and 30N2 production in 15NO3
- addition cores, supporting that coupled nitrification-

denitrification was occurring more than direct denitrification.   

 Sulfide levels are thought to inhibit denitrification and promote DNRA (Burgin and 

Hamilton 2007). Even though sulfide levels at macroalgae sites were significantly higher than no 

macroalgae sites during June 4 and June 26, there were no significant differences in potential 

denitrification or potential DNRA between macroalgae and no macroalgae cores. Also, % OM 

was not different between areas with and without drift macroalgae across the bay, though +M 

sites did have significantly greater % OM than -M sites across all incubations (p <0.001). 

Previous research has shown that there may not be a significant amount of OM from degrading 

macroalgae blooms that gets incorporated into sediments (Sundbäck et al. 1990), though other 

studies have shown that OM from macroalgae may contribute up to half of the annual OM 

deposited in coastal sediments (Kautsky 1995). This altogether suggests that instead of just % 

OM or sulfide levels, possibly the lability of OM, has more control on the preference of 

denitrification versus DNRA rates (Burgin and Hamilton 2007). SOD was also greater in +M 

than -M, supporting indirectly that sediment metabolism was increased in areas with macroalgae, 

and may be why denitrification was favored (Cornwell et al.1999).  Other research has shown 



that macroalgae mats can shift the microbenthic community from diatom dominated to 

cyanobacterial dominated, shifting sediments to net heterotrophy and increasing SOD (Garcia-

Robledo and Crozo 2011). 

 Denitrification rates in this study were lower than previously measured rates using the 

continuous-flow incubation method in St. Joseph bay by Hoffman et al. (unpublished) during 

August 2012 and July 2014, which ranged from 89–221 µmol N m-2 h-1 and 127–284 µmol N m-2 

h-1, respectively. However, data showing that anammox was not a significant source of NO2
- 

removal in St. Joseph seagrass beds was similar to Hoffman et al. (unpublished) findings. 

Denitrification rates from this study were higher than seagrass sediments in Australia measured 

using sediment slurries by Salk et al. 2017 (0.16 µmol N m-2 h-1), while anammox rates from this 

study were similar to their bare sediments (0.18 µmol N m-2 h-1) but not seagrass sediments (0.60 

µmol N m-2 h-1). Denitrification rates in this study were also lower than rates measured in other 

seagrass beds in Australia (29.2–445.2 µmol N m-2 hr-1; Eyre et al. 2013) and T. testudinum beds 

in Texas (16 µmol N m-2 h-1; An and Gardner 2002), but, were similar to average denitrification 

rates in Zostera marina beds (17.5 µmol N m-2 h-1; Aoki and McGlathery 2017). 

 Potential DNRA rates were greater than Australian seagrass beds from Salk et al. 2017 

(<1 µmol N m-2 hr-1) but less than rates measured in T. testudinum beds in Laguna Madre, Texas 

(69 µmol N m-2 hr-1; An and Gardner 2002), and in previous incubations in St. Joseph Bay 

(average ~30-40 µmol N m-2 hr-1; Hoffman et al. unpublished). If potential DNRA rates are an 

underestimate due to cation exchange mechanisms in sediments (e.g., Gardner and Seitzinger 

1991), NIAF averages in +M and -M cores (Fig. 14, D) would need to be used in place of DNRA 

rates. The concept of NIAF has been applied in other seagrass sediments within St. Joseph Bay 

(~300 µmol N m2-1 hr-1; Hoffman et al. unpublished) as well as in Texas (262 µmol N m2-1 hr-1; 

Gardner et al. 2006). NIAF rates were not significantly different between +M and -M and rates 

of DNRA were still lower than previously measured rates, but, the overall magnitude of recycled 

N would then be greater than removed N (via denitrification and anammox) in sediments. There 

are no known studies measuring N transformation pathways under drift macroalgae blooms in 

seagrass beds, making it unclear whether the lack of difference between macroalgae and no 

macroalgae areas is consistent with other studies. 

  Besides the importance of removal and recycling of N in sediments, the transformation of 

N2 into NH4
+ via N fixation, is an important source of N for many bacteria and phytoplankton 



(Knapp 2012). Seagrass bed sediments contribute about 10% of total sediment marine N fixation, 

even though they comprise about 0.1% of total marine area (Capone 1983). Average N fixation 

calculations from macroalgae and no macroalgae cores were not significantly different but 

suggest that N fixation is occurring simultaneously with denitrification in these sediments. 28N2 

fluxes were negative in our unamended cores (Figure 12), showing that N fixation was occurring 

at higher rates than denitrification. There were mixed effects of macroalgae on 28N2 fluxes, but 

overall, from June 4 to June 26, N fixation rates and 28N2 fluxes decreased, showing a switch 

from sediments being a net N sink to neutral. This decrease in N fixation, and previous research 

showing no heterotrophic N fixation in St. Joseph Bay during July and August (Hoffman et al. 

unpublished), possibly showing that higher N fixation rates from this study may be a part of 

larger seasonal trends. Research in sediments of Narragansett Bay, RI showed that when there is 

less organic matter reaching sediments, there is a switch from net denitrification to N fixation, 

typical of seasonal trends from increased nutrients after remineralization of algae blooms during 

the winter-spring (Fulweiler et al. 2007). In St. Joseph Bay, there is potentially less OM during 

spring when drift macroalgae blooms have not degraded and seagrasses are not as productive, 

leading to higher N fixation rates than in the summer when OM to sediments is greater, leading 

to greater denitrification rates.  

 N fixation in marine and other ecosystems is often inhibited by inorganic N, though many 

coastal sediments often have high concentrations (100-200 µM) of NH4
+ present with high rates 

of N fixation (Welsh et al. 2000). N fixation may be able to proceed in NH4
+ rich sediments 

because there are other controlling environmental factors, such as organic carbon source and 

oxygen concentrations (McGlathery et al. 1998), or that N fixation can help bacteria balance 

their redox potential with excess electrons provided from N fixation (Tichi and Tabita, 2000). 

There are few studies examining N fixation rates in seagrass sediments, and further interpretation 

of how NH4
+ concentrations, or other environmental factors, could affect N fixation rates in these 

sediments are even fewer (Knapp 2012, Welsh et al. 2000). Porewater NH4
+ in seagrass beds in 

St. Joseph Bay ranged from 312.90 ± 57.16 to over 716.01 ± 81.13 µM, and sediment % OM 

ranged from 0.49% to 6.08%. It is also important to note that sediment heterogeneity can occur 

at small scales, and measurements for in situ porewater NH4
+ are often influenced by sampling 

procedures, e.g. leakage of NH4
+ from damage to the rhizosphere (Hansen and Lomstein 1999). 



  Rates of N fixation have ranged from 0.09 to 416.67 µmol N m-2 hr-1 in seagrass beds 

(Welsh et al. 2000) and are seasonally dependent for temperate seagrass beds (e.g., McGlathery 

et al. 1998), showing that N fixation rates from this study fall within the ranges reported by 

others, even in the presence of high porewater NH4
+ concentrations in St. Joseph Bay. 

 It is also important to consider methodologies when comparing N transformation rates. 

Sediment slurry techniques disrupt natural redox gradients in sediments and may overestimate N 

rates in vegetated sediments due to disturbing in situ plant tissues, which may release DIN and 

organic carbon that would usually not be as readily available to microbes (e.g., Hansen and 

Lomstein 1999). The acetylene block technique for denitrification measurements specifically 

inhibits N fixation, has been shown to inhibit denitrifiers, nitrifiers, and other reducing bacteria 

(Taylor 1983), while producing ethylene, a compound that can affect a variety of 

microorganisms (Capone 1988).  

 The main weakness of this study is the lack of temporal resolution, with only three 

incubations (June 4, 18, and 26, 2017) and that our sediment chemistry samples are not paired 

directly with our incubation cores. In this study, sampling and porewater measurements were 

from bulk sediment samples, so direct interpretation and connection of our sediment chemistry to 

N transformation rates, or extrapolation of N rates across the bay, is inherently complicated. This 

study represents the first time that living macroalgae was added to intact sediment cores for the 

continuous-flow incubation method. Though the cores were wrapped in foil to prevent 

photosynthetic activity, and no oxygen bubbles were detected to influence N transformation 

rates, there are possible methodological issues that may have been undetected due to dark 

respiration of drift macroalgae.  

 Based on our data from the continuous-flow incubation method, the magnitude of N 

recycling (DNRA) and formation of bioavailable N (N fixation) was equal or greater than our N 

removal pathways (anammox and denitrification) in June 2017 in seagrass beds with and without 

drift macroalgae blooms. The rates presented in this study differ from N transformation rates 

measured by Hoffman et al. (unpublished) in St. Joseph Bay during August 2012 and July 2014. 

Though the original hypotheses in this study were not consistently supported, baseline data for N 

cycling in seagrass beds, as well as understanding chemically what happens under drift 

macroalgae blooms, remains important. With the increasing amount of anthropogenic N reaching 

coastal ecosystems, understanding how N loading may affect seagrasses and other coastal 



habitats, which are ecologically important for many fish and invertebrates, is imperative. Drift 

macroalgae blooms negatively affect seagrasses, and macroalgae blooms are increasing world-

wide as a result of nutrient loading, but no known studies have evaluated how drift macroalgae 

may alter N cycling in these systems. To mitigate the possible effects of these increasing loads, 

providing baseline data on sediment N transformations is an important first step in understanding 

these effects.     

 

Integration of the Thesis Research 

Nutrient loading often has cascading affects in ecosystems, altering biological and 

chemical interactions of microbes to macro-flora and -fauna, often having negative ecological 

implications such as increasing drift macroalgae blooms. Though N cycling is microbial 

mediated, many temporal and environmental factors can influence N transformation rates and 

pathways. The project described is integrative in nature and broadly determined how macroalgae 

can affect not only N cycling rates and pathways, but also general sediment chemistry, water 

column nutrients, microbial community activity, and effects on seagrass community in the 

context of N cycling in St. Joseph Bay, FL.              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

An S, Joye SB. 2001. Enhancement of coupled nitrification-denitrification by benthic  

 photosynthesis in shallow estuarine sediments. Limnol Oceanogr. 46(1): 62-74. 

An S, Gardner WS. 2002. Dissimilatory nitrate reduction to ammonium (DNRA) as a  

 nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin  

 Bay, Texas). Marine Ecology Progress Series 237:41-50. 

Aoki LR, McGlathery KJ. 2017. Push-pull incubation method reveals the importance of 

  denitrification and dissimilatory nitrate reduction to ammonium in seagrass root zone.  

 Limnol Oceanogr Methods. 15:766-781. 

Arroyo NL, Bonsdorff E. 2016. The role of drifting algae for marine biodiversity. -in E. 

  Olafsson (ed.): Marine macrophytes as foundations species. CRC Press, Taylor and 

  Francis Group pp. 285. 

Asmus RM, Sprung M, Asmus H. 2000. Nutrient fluxes in intertidal communities of a South 

 European lagoon (Ria Formosa) – similarities and differences with a northern 

 Wadden Sea bay (Sylt-Rømø Bay). Hydrobiologia. 2000. 436: 217.  

ASTM D6913 - 04e1.2009. Standard Test Methods for Particle-Size Distribution (Gradation)  

 of Soils Using Sieve Analysis. 

Beck MW, Heck Jr. KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, 

  Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein 

  MP. 2001. The identification, conservation, and management of estuarine and marine  

 nurseries for fish and invertebrates. BioScience. 51(8): 633-641.  

Bell SS, Hall MO. 1997. Drift macroalgal abundance in seagrass beds: investigating large- 

 scale associations with physical and biotic attributes. Marine Ecology Progress Series 

  147: 277-283. 

Beman M, Arrigo R, Kevin A, Matson P.2005. Agricultural runoff fuels 

  large phytoplankton blooms in vulnerable areas of the ocean. Nature. 434: 211-214.  

Boesch DF, Boynton WR, Crowder LB, Diaz RJ, Howarth RW, Mee LD,  

  Nixon SW, Rabalais NN, Rosenberg R, Sanders JG, Scavia D, Turner RE. 2009. 

  Nutrient enrichment drives Gulf of Mexico hypoxia. EOS 90: 117–119. 

Burgin AJ, Hamilton SK. 2007. Have we overemphasized the role of denitrification in 

  aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the 



  Environment 5:89-96. 

Capone DG, Carpenter EJ.1982. Nitrogen fixation in the marine environment. Science. 217  

             (4565):1140-2. 

Cebrian J, Corcoran D, Lartigue J. 2014. Eutrophication-Driven Shifts in Primary 

  Producers in Shallow Coastal Systems: Implications for System Functional Change.  

 Estuaries and Coasts. 37: S180-S187. 

Coastal and Estuarine Studies Interactions between Macro-and Microorganisms in Marine 

 Sediments. Ed. Erik Kristensen, Ralf R. Haese, and Joel E. Kostka. New York: American 

 Geophysical Union, 2005. 7-30.  

Cornwell JC, Kemp WM, Kana TM. 1999.Denitrification in Coastal Ecosystems: Methods, 

 Environmental Controls, and Ecosystem Level Controls, a Review, Aquatic Ecology. 33: 

 41-54. 

Corzo A, Van Bergeijk SA, García-Robledo E. 2009. Effects of green macroalgal blooms  

on intertidal sediments: net metabolism and carbon and nitrogen contents. Marine 

Ecology Progress Series. 380: 81–93.  

Duarte CM, Middleburg JJ, Caraco N. 2005. Major role of marine vegetation on the oceanic  

 carbon cycle. Biogeosciences. 2:1-8.  

Eyre BD, Maher D, Oakes JM, Erler DV, Glasby TM. 2011. Differences in benthic  

 metabolism, nutrient fluxes, and denitrification in Caulerpa taxifolia communities  

 compared to uninvaded bare sediment and seagrass (Zostera capricorni) habitats.  

 Limnology and Oceanography. 56(5):1737-1750.  

Eyre BD, Maher DT, Squire P. 2013. Quantity and quality of organic matter (detritus)  

 drives N2effluxes (net denitrification) across seasons, benthic habitats, and estuaries.  

 Global Biogeochemical Cycles. 27(4):1083-1095. 

Florida Department of Environmental Protection. 2001a. Seagrass and the economy. Retrieved  

 February 13, 2006, from Office of Coastal and Aquatic Managed Areas Website:  

 http://www.dep.state.fl.us/coastal/habitats/seagrass/awareness/economy.htm. 

Fonseca MS, Fisher JS. 1986. A comparison of canopy friction and sediment movement  

 between four species of seagrass with reference to their ecology and restoration. Marine  

 Ecology Progress Series. 29:15-22. 

Fourqurean JW, Zieman JC. 2002. Nutrient content of the seagrass Thalassia testudinum  



 reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida  

 Keys USA. Biogeochemistry. 61:229-245. 

Francis CA, Beman JM, Kuypers MM. 2007. New processes and players in the nitrogen  

 cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 

 1(1):19-27.  

Frederiksen MS, Glud RN. 2006. Oxygen dynamics in the rhizosphere of Zostera marina:  

 a two-dimensional planar optode study. Limnology and Oceanography. 51(2):1072-1083. 

Fulweiler RW, Nixon SW, Buckley BA, Granger SL. 2007. Reversal of the net dinitrogen gas 

 flux in coastal marine sediments. Nature. 448: 180–182. 

Fulweiler RW, Brown SM, Nixon SW, Jenkins BD. 2013. Evidence and a  

 conceptual model for the co-occurrence of nitrogen fixation and denitrification in  

 heterotrophic marine sediments. Marine Ecology Progress Series. 482: 57–68. 

Galloway J, Aber J, Erisman J, Seitzinger S, Howarth R, Cowling E, Cosby B. 2003.  

 The nitrogen cascade. BioScience 53: 341–356. 

García-Robledo E, Corzo A, de Lomas JG, Van Bergeijk SA. 2008. Biogeochemical effects 

 of macroalgal decomposition on intertidal microbenthos: a microcosm experiment. 

Marine Ecology Progress Series. 356: 139-151. 

García-Robledo E, Corzo A. 2011. Effects of macroalgal blooms on carbon and nitrogen   

biogeochemical cycling in photoautotrophic sediments: an experimental mesocosm. 

Marine Pollution Bulletin. 62: 1550–1556.  

Gardner WS, McCarthy MJ, S. An, D. Sobolev, K.S. Sell, and D.Brock. 2006. Nitrogen 

 fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen 

 dynamics in Texas estuaries. Limnology and Oceanography. 51: 558–568. 

Gardner WS, McCarthy MJ. 2009. Nitrogen dynamics at the sediment-water interface in  

 shallow, subtropical Florida Bay: Why denitrification efficiency may decrease with 

  increased eutrophication. Biogeochemistry. 95: 185–198. 

Gardner WS, Seitzinger S, Malczyk JM. 1991. The effects of sea salts on the forms of  

 nitrogen released from estuarine and freshwater sediments: Does ion pairing affect  

 ammonium flux? Estuaries. 14(2):157-166.  

Giblin AE, Tobias CR, Song B, Weston N, Banta GT, Rivera-Monroy VH. 2013. The  

 importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle  



 of coastal ecosystems. Oceanography. 26(3):124–131. 

Hansen JW, Lomstein BA. 1999. Leakage of ammonium, urea, and dissolved organic nitrogen 

  and carbon from eelgrass Zostera marina roots and rhizomes during sediment handling. 

  Aquat Microb Ecol. 16:303-307. 

Hatton D, Pickering WF. 1990. Modified procedure for the determination of exchangeable 

  ammonium ions in lake sediments. Chemical Speciation and Bioavailability. 2(4):139- 

 147. 

Hauxwell J, Cebrian J, Valiela I. 2003. Eelgrass Zostera marina loss in temperate 

  estuaries: Relationship to land-derived nitrogen loads and effect of light limitation  

 imposed by algae. Marine Ecology Progress Series. 247: 59–73. 

Heck Jr. KL, Pennock JR, Valentine JF, Coen LD, Sklenar SA. 2000. Effects of nutrient 

  enrichment and small predator density on seagrass ecosystems: An experimental  

 assessment. Limnology and Oceanography. 5.  

Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC,  

 Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A, Magnien R, Marshall HG,  

 Sellner K, Stockwell DA, Stoecker DK, Suddleson M. 2008. Eutrophication and 

  harmful algal blooms: a scientific consensus. Harmful Algae. 8: 3–13. 

Heiri, O, Lotter, A, Lemcke, G. 2001. Loss on Ignition as a Method for Estimating Organic and  

 Carbonate Content in Sediments: Reproducibility and Comparability of Results. Journal  

 of Paleolimnology. 25.  

Hemminga MA, Duarte CM. 2000. Seagrass Ecology Cambridge University Press.  

Hoffman D, Mutchler T, McCarthy MJ, Newell SE, Gardner WS. 2015. Comparing nitrogen  

 transformation rates in vegetated and unvegetated marine sediments of St. Joseph Bay, 

  FL. Assoc for the Sci of Limnol and Oceanogr. Aquatic Sciences Meeting, Granada,  

 Spain. 22-27 February 2015. 

Holmquist JG. 1997. Disturbance and gap formation in a marine benthic mosaic; influence of  

 shifting macroalgal patches on seagrass structure and mobile invertebrates. Mar. Ecol.  

 Prog. Ser. 158: 121–130. 

Holmer M, Hasler-Sheetal H. 2014. Sulfide intrusion in seagrasses assessed by stable sulfur 

  isotopes—a synthesis of current results. Front. In Mar. Sci. 1:64.  

Joye SB, Anderson IC. 2008. Nitrogen cycling in coastal sediments. Nitrogen in the 



  marine environment, 2nd edn. Academic Press, Amsterdam, pp.868-915. 

Kana TM, Darkangelo C, Hunt MD, Oldham JB, Bennett GE, Cornwell JC. 1994. 

 Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2,  

 and Ar in environmental water samples. Analytical Chemistry. 66:4166-4170.  

Kautsky U. 1995. Ecosystem processes in coastal areas of the Baltic Sea. PhD Thesis, 

  Stockholm University. 

Koch MS, Erskine JM. 2001. Sulfide as a phytotoxin to the tropical seagrass Thalassia 

  testudinum: interactions with light, salinity, and temperature. J. Exp. Mar. Biol. Ecol.  

 266: 81—95.  

Knapp A. 2012. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front. 

  Microbiol. 3.  

Koch EW. 1999. Sediment resuspension in a shallow Thalassia testudinum bed. Aquat. Bot. 

  65: 269–280. 

Lapointe EB. 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral  

 reefs in Jamaica and southeast Florida. Limnol Oceanogr. 45 (5, part 2): 1119-1131. 

Lavrentyev P, Gardner WS, Yang L. 2000. Effects of the Zebra mussel on microbial composition 

  and nitrogen dynamics at the sediment-water interface in Saginaw Bay, Lake Huron.  

 Aquat. Microb. Ecol. 21:187-194.  

McCarthy MJ, Newell SE, Carini SA, Gardner WS. 2015. Denitrification dominates  

 sediment nitrogen removal and is enhanced by bottom-water hypoxia in the northern Gulf  

 of Mexico. Estuaries & Coasts. 38: 2279–2294. 

McCarthy MJ, Gardner WS, Lehmann MF, Guindon A, Bird DF. 2016. Benthic nitrogen 

  regeneration, fixation, and denitrification in a temperate, eutrophic lake: Effects on the 

  nitrogen budget and cyanobacteria blooms. Limnol. Oceanogr. 61:1406-1423.  

McGlalathery KJ, Risgaard-Petersen N, Christensen PB. 1998. Temporal and spatial  

 variation in nitrogen fixation activity in the eelgrass Zostera marina rhizosphere. Mar.  

 Ecol. Prog Ser. 168:245-258. 

McGlathery KJ, Anderson IC, Tyler AC. 2001. Magnitude and variability of benthic and  

 pelagic metabolism in temperate coastal lagoon. Marine Ecology Progress Series. 216:1–

 15. 

McGlathery KJ, Sundback K, Anderson IC. 2007. Eutrophication, patterns in shallow coastal  



 bays and lagoons. Mar Ecol Prog Ser. 348:1–18. 

McCarthy MJ, Gardner WS, Lehmann MF, Bird DF. 2013. Implications of water 

  column ammonium uptake and regeneration for the nitrogen budget in temperate,  

 eutrophic Missisquoi Bay, Lake Champlain (Canada/USA). Hydrobiologia. 718: 173–

 188.  

Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. 1995. Anaerobic ammonium  

 oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol.16:  

 177–184. 

Littler, M.M, Littler, D.S., and Lapointe, B.E. 1986. Baseline studies of herbivory and  

 eutrophication on dominant reef communities of Looe Key National Marine Sanctuary. 

  NOAA Technical Memorandum. U.S. Government Printing Office. NOS MEMD 1. 

National Ocean Service. 1988. Tidal benchmark sheets (ASC II format). Retrieved from National 

  Oceanic Atmospheric Administration Website: http: www.nmfs.noaa.gov/fishwatch. 

Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, 

 Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL. 2006.  

 A Global Crisis for Seagrass Ecosystems. BioScience. 56 (12):987–996. 

Osterling, M. Pihl, L. 2001. Effects of filamentous green algal mats on benthic macrofaunal  

 functional feeding groups. Journal of Experimental Marine Biology and Ecology 263: 

  159-183.  

Payne WJ. 1973. Reduction of nitrogenous oxides by microorganisms. Bacteriol. Rev. 17: 409- 

 452. 

Pedersen MF, Borum J, Fotel FL. 2010. Phosphorus dynamics and limitation of fast- and  

 slow-growing temperate seaweeds in Oslofjord, Norway. Marine Ecology Progress 

 Series. 399: 103–115. 

Pihl L, Svenson A, Moksnes PO, Wennhage H. 1999. Distribution of green algal mats  

 throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to 

  nutrient sources and wave exposure. Journal Sea Res. 41: 281–294. 

Robledo G, Corzo A. 2011. Effects of macroalgal blooms on carbon and nitrogen  

 biogeochemical cycling in photoautotrophic sediments: an experimental mesocosm. Mar. 

  Pollut. Bull. July:62-7. 

Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T. 2004. Denitrification and 



  anammox activity in Arctic marine sediments. Limnol. Oceanogr. 49: 1493–1502. 

Salk KR, Erler DV, Eyre BD, Carlson-Perrett N, Ostrom NE. 2017. Unexpectedly high  

 degree of anammox and DNRA in seagrass sediments: Description and application of a 

  revised isotope pairing technique. Geochimica et Cosmochimica. 211:64-78.  

Santschi P, Hohener P, Benoit G, Buchholtzten BM.1990. Chemical processes 

  at the sediment-water interface. Mar. Chem. 30(269):3--5.  

Seitzinger SP.1988. Denitrification in fresh-water and coastal marine ecosystems– 

 Ecological and geo- chemical significance. Limnol. Oceanogr. 33: 702–724. 

Smyth AR, Thomspon SP, Siporin KN, Gardner WS, McCarthy MJ, Piehler MF. 2013. 

  Assessing nitrogen dynamics throughout the estuarine landscape. Estuaries and Coasts. 

  36:44-55. 

Solórzano L. 1969. Determination of ammonia in natural waters by the phenol hypochlorite  

 method. Limnology and Oceanography. 14(5):798-801. 

Standard Methods Online -- Standard Methods for the Examination of Water and Wastewater. 

  http://standardmethods.org/ 

Stewart RA, Gorsline DS. 1962. Recent sedimentary history of St. Joseph Bay, Florida.  

 Sedimentology. 1:256-286. 

Sundbäck K, Jönsson B, Nilsson P, Lindström I. 1990. Impact of accumulating drifting 

  macroalgae on a shallow-water sediment system: an experimental study. Mar. Ecol.  

 Prog. Ser. 58: 261–274. 

Taylor BF. 1983. Assays of microbial nitrogen transformation. In Nitrogen in the Marine  

 Environment. Ed. E.J. Carpenter and D.G. Capone. Academic Press, New York, pp.  

 809—837.  

Tichi MA, Tabita FR. 2000. Maintenance and control of redox poise in Rhodobacter  

 capsulatus strains deficient in the Calvin- Benson-Bassham pathway. Arch. Microbiol. 

  174: 322–333. 

Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. 1982. Denitrification: ecological  

 niches, competition and survival. Antonie Van Leeuwenhoek 48: 569–583. 

Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW,  

 Schlesinger WH, Tilman DG. 1997. Human alteration of the global nitrogen cycle:  

 sources and consequences. Ecological Applications. 7: 737–750. 



Wang Y, Wang Y, Zhu L, Zhou B, Tang X. 2012. Comparative studies on the  

 ecophysiological differences of two green tide macroalgae under controlled laboratory 

  conditions. Plos One. 7(8): 1–16. 

Ward BB. 2008. Nitrification. In: Encyclopedia of Ecology. Eds. S. E. Jorgensen and B. D. 

  Faith, Ecological Processes. Vol 3 of Encyclopedia of Ecology, 5 vols. Elsevier, Oxford. 

  pp. 2511-2518. 

Welsh D. 2000. Nitrogen fixation in seagrass meadows: Regulation , plant ± bacteria 

  interactions and significance to primary productivity. Ecol. Lett. 3:58–71. 

Yin G, Hou L, Liu M, Liu Z, Gardner WS. 2014. A novel membrane inlet mass 

  spectrometer method to measure 15NH4+ for isotope-enrichment experiments in aquatic 

 ecosystems. Environ. Sci. Technol. 48. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Tables and Figures 

 

Table 1. Ambient nutrients ± SE (µM) and site conditions for sediment core incubation sites with (+M) and without (-M) macroalgae and non-

incubation sites with (M1, M2) and without (NM1, NM2) macroalgae across St. Joseph Bay during June 2017. Depth (cm) is the distance from top of 

water column to sediment surface. BDL=below detection limit. 

 Depth (cm) Salinity OP NO2
- NO3

- NH4
+ Urea 

June 4th        

+M 75 35 0.35 ±0.00 
 

0.39±0.03 
 

0.67±0.07 
 

0.93±0.04 
 

0.47±0.10 
 

-M 87 34 0.33 ±0.00  
 

0.63±0.02 
 

0.08±0.01 
 

1.07±0.08  
 

0.36±0.06  
 

M1 52.5 34.5 0.21 ± 0.03  
 

0.74±0.01 
 

BDL 1.45±0.02 
 0.53±0.03 

 

NM1 60.5 34.5 0.31 ±0.01 
 

0.97±0.02 
 

BDL 1.29±0.02 
 

0.56±0.03 
 

        

June 18th        

+M 78 31 0.28±0.02 
 

0.47±0.02 
 

BDL 1.73±0.12 
 

0.60±0.01 
 

-M 76 32 0.26±0.01 
 

0.41±0.01 
 

BDL 1.21±0.00 
 

0.77±0.03 
 

M1 68 32 0.27±0.01 
 

0.66±0.02 
 

BDL 1.26±0.04 
 

0.56±0.01 
 

M2 75 31 0.26±0.01 
 

0.46±0.04 
 

BDL 1.32±0.04 
 

0.73±0.02 
 

NM1 66 29 0.21±0.02 
 

0.60±0.01 
 

BDL 1.34±0.04 
 

1.07±0.02 
 

NM2 96 35 0.26±0.05 
 

0.59±0.01 
 

BDL 1.04±0.03 
 

0.49±0.02 
 

        

June 26th        

+M 109 32 0.25±0.00 
 

0.70±0.03 
 

BDL 1.20±0.00 
 

0.74±0.04 
 

-M 113 32 0.31±0.00 
 

0.43±0.04 
 

BDL 4.16±0.02 
 

0.28±0.03 
 

M1 83 29 0.24±0.01 
 

0.44±0.01 
 

BDL 1.02±0.03 
 

0.18±0.01 
 

M2 89 21 0.17±0.01 
 

0.63±0.04 
 

BDL 0.99±0.02 
 

0.84±0.02 
 

NM1 99 29 0.28±0.02 
 

0.46±0.01 
 

BDL 1.51±0.10 
 

0.34±0.04 
 

NM2 90 30 0.27±0.03 
 

0.56±0.02 
 

BDL 1.66±0.43 
 

0.93±0.06 
 

 

 

 

 

 



 

Table 2. Biomass measurements for T.testudinum (aboveground, belowground, shoot density) and macroalgae (g m-2)  ± SE, for sediment core 

incubation sites with (+M) and without (-M) macroalgae and non-incubation sites with (M1, M2) and without (NM1, NM2) macroalgae across St. 

Joseph Bay during June 2017. ND= no data 

 

 

 

 

 

 

 
Aboveground 

Biomass 

Belowground 

Biomass 

Macroalgae 

Biomass 
Shoot Density 

%Cover 

(T.testudinum) 

%Cover 

(macroalgae) 

June 4th       

+M 54.20 381.60 30.84 711.73 100 50.00±15.28 
 

-M 193.81 730.34 ND 1642.45 98.33±1.67 
 

ND 

M1 139.06 851.34 10.95 930.72 100 40.00±14.43 
 

NM1 319.18 1155.74 ND 1368.71 100 ND 

       

June 18th       

+M 55.48±13.60 
 

292.72±82.20 
 

4.74±3.70 
 

729.98±255.49 
 

100 
 

56.67±14.53 
 

-M 146.36±21.30 
 

745.85±46.11 
 

ND 1970.94±109.50 
 

90±5.77 
 

ND 

M1 78.84±8.28 
 

374.11±75.13 
 

29.38±12.13 
 

656.98±83.63 
 

100 36.67±17.64 
 

M2 24.09±9.95 
 

200.74±58.97 
 

179.76±57.62 
 

456.24±182.49 
 

96.67±3.33 
 

21.67±7.26 
 

NM1 205.85±51.42 
 

1168.15±297.97 
 

ND 1715.45±203.22 
 

100 20.00±15.28 
 

NM2 52.74±12.49 
 

401.31±105.15  
 

ND 310.24±65.80 
 

6.67±1.67 
 

ND 

       

June 26th       

+M 59.13±10.94 
 

448.57±25.77 
 

17.15±7.94 
 

948.97±65.80 
 

43.33±3.33 
 

86.67±3.33 
 

-M 190.52±38.16 
 

735.82±37.78 
 

ND 1770.20±363.62 
 

70±15.28 
 

ND 

M1 121.72±33.37 
 

404.77±41.66 
 

4.93±1.92 
 

656.98±54.75 
 

100 13.33±6.01 
 

M2 143.26±20.14 
 

635.26±204.31 
 

84.31±36.22 
 

1478.20±383.24 
 

86.67±6.67 
 

20.00±11.55 
 

NM1 230.31±11.11 
 

1067.23±96.67 
 

ND 2043.94±329.00 
 

100 ND 

NM2 107.49±30.65 
 

901.52±320.52 
 

ND 638.73±127.75 
 

43.33±8.33 
 

ND 



Table 3. Sediment chemistry ± SE, for sediment core incubation sites with (+M) and without (-M) macroalgae and non-incubation sites with (M1, 

M2) and without (NM1, NM2) macroalgae across St. Joseph Bay during June 2017. 

 

 

 

 

 

 

 Exchangeable 

NH4
+ (µM) 

Porewater 

NH4
+ (µM) 

Sulfide 

(µM) 
% OM 

June 4th     

+M 825.13 ± 128.42 
 

491.67 ± 117.34 
 

366.33 ± 1.99 
 

3.60% ± 0.63% 
 

-M 531.31 ± 29.66 
 

369.09 ± 37.59 
 

150.43 ± 53.78 
 

1.60% ± 0.07% 
 

M1 558.26 ± 40.95 
 

400.77 ± 21.27 
 

315.97 ± 26.99 
 

3.69% ± 0.38% 
 

NM1 581.13 ± 47.92 
 

618.15 ± 119.05 
 

63.40 
 

5.39% ± 0.53% 
 

     

June 18th     

+M 915.93 ± 102.82 
 

506.45 ± 115.07 
 

410.68 ± 2.93 
 

3.47% ± 0.87% 
 

-M 555.32 ± 72.59 
 

312.90 ± 57.16 
 

305.03 ± 51.07 
 

2.02% ± 0.10% 
 

M1 609.52 ± 65.49 
 

432.29 ± 52.95 
 

155.43 ± 72.09 
 

4.10% ± 0.56% 
 

M2 844.54 ± 243.89 
 

874.73 ± 314.87 
 

99.42 ± 81.04 
 

1.72% ± 0.25% 
 

NM1 613.27 ± 24.11 
 

455.87 ± 68.95 
 

96.63 ± 92.99 
 

6.08% ± 1.05% 
 

NM2 716.84 ± 62.04 
 

789.75 ± 22.22 
 

1.62 ± 1.62 
 

1.02% ± 0.05% 
 

     

June 26th     

+M 788.16 ± 39.48 
 

342.20 ± 57.80 
 

344.49 ± 71.20 
 

4.14% ± 0.58% 
 

-M 1161.36 ± 374.05 
 

1006.72 ± 590.45 
 

32.68 ± 17.14 
 

2.31% ± 0.23% 
 

M1 670.70 ± 129.88 
 

464.91 ± 64.99 
 

220.06 ± 53.77 
 

3.18% ± 0.13% 
 

M2 679.55 ± 61.92 
 

605.26 ± 69.28 
 

378.27 ± 27.78 
 

2.63% ± 0.53% 
 

NM1 496.70 ± 79.88 
 

447.92 ± 102.67 
 

213.55 ± 97.41 
 

4.99% ± 0.12% 
 

NM2 540.05 ± 123.42 
 

716.01 ± 81.13 
 

12.46 ± 2.71 
 

0.49% ± 0.06% 
 



Table 4. Sediment-water interface nutrient fluxes (µmole N or P m-2 hr-1) ± standard error (SE) of duplicate cores from sites +M and -M. Samples collected for 3 

days (n=6). Date refers to sediment core collection date. ND = no data.  

 

 

 OP NO2
- NO3

- NH4
+ Urea 28N2 SOD 

+M        

Control        

June 4th -0.03 ± 0.47 -0.11 ± 1.27 -1.52 ± 0.02 -3.13 ± 5.23 -3.16±1.70 
 

-18.76±28.16 
 

2269.28±293.75 
 

June 18th -0.06 ± 0.57 -0.76 ± 1.79 -0.46 ± 0.24 31.90 ± 16.14 -3.00±1.99 
 

-79.90±12.08 
 

2856.87±288.52 
 

June 26th 0.01 ± 0.12 -4.24 ± 3.78 4.21 ± 4.00 30.20 ± 18.09 0.75±2.03 
 

-8.43±7.76 
 

2128.06±313.98 
 

        
15NH4

+        

June 4th 0.93±1.25 
 

1.28±1.85 
 

0.33±0.59 
 

-104.69±21.55 
 

-10.07±9.27 
 

-147.49±26.63 
 

2918.34±226.08 
 

June 18th 1.15±0.59 
 

-0.72±0.58 
 

-0.29±0.71 
 

25.73±24.61 
 

1.02±2.13 
 

-94.41±22.37 
 

3097.93±259.94 
 

June 26th -0.35±0.30 
 

0.41±1.35 
 

0.50±0.70 
 

8.45±22.76 
 

3.41±2.79 
 

-3.65±7.35 
 

2307.09±214.97 
 

        
15NO3

-        

June 4th -0.09±1.23 
 

49.50±3.819 
 

-291.35±41.37 
 

51.04±13.41 
 

1.54±0.96 
 

-30.52±14.73 
 

2747.53±221.42 
 

June 18th -1.01±0.91 
 

44.01±7.58 
 

-288.19±100.68 
 

50.33±12.02 
 

-1.21±1.92 
 

-1.34±13.65 
 

2560.64±115.54 
 

June 26th -0.14±0.14 
 

67.75±5.14 
 

-218.28±68.45 
 

147.95±22.50 
 

1.66±0.57 
 

1.97±20.64 
 

2405.04±459.66 
 

        

-M        

Control        

June 4th -0.16 ± 0.16 1.74 ± 1.40 -0.92 ± 0.30 8.71 ± 1.73 3.16±4.73 
 

-47.64±12.71 
 

1539.88±405.84 
 

June 18th -5.57 ± 5.07 -0.76 ± 0.68 -0.84 ± 0.89 48.48 ± 24.12 5.17±0.16 
 

-76.56±23.93 
 

2314.18±300.73 
 

June 26th 0.08 ± 0.11 0.82 ± 1.30 1.08 ± 0.49 71.89 ± 53.43 -0.81±1.79 
 

-16.79±4.71 
 

1188.98±130.75 
 

        
15NH4

+        

June 4th 0.00±0.24 
 

-0.26±1.114 
 

-0.24±0.90 
 

36.53±26.18 
 

1.61±2.58 
 

-34.59±13.56 
 

1644.53±108.51 
 

June 18th -4.26±2.94 
 

-0.61±1.61 
 

-0.82±1.60 
 

89.12±7.10 
 

0.18±1.70 
 

-17.53±4.17 
 

1813.61±156.13 
 

June 26th 0.10±0.45 
 

-0.23±0.94 
 

5.67±4.77 
 

20.56±5.95 
 

0.49±1.93 
 

20.04±10.22 
 

1444.78±175.72 
 

        
15NO3

-        

June 4th -0.15±0.13 
 

23.64±9.456 
 

-215.02±34.47 
 

123.05±38.03 
 

6.08±4.50 
 

9.49±14.61 
 

1385.95±246.72 
 

June 18th -0.14±0.16 
 

32.12±5.97 
 

-228.96±61.82 
 

155.15±23.10 
 

1.03±1.69 
 

-6.08±13.76 
 

1411.62±76.50 
 

June 26th 0.29±0.32 
 

68.71±23.09 
 

-231.13±18.79 
 

143.21±65.80 
 

1.17±0.51 
 -21.07±6.54 

 

1401.18±145.57 
 



 

Table 5. Spearman correlation coefficients for biogeochemical data from all dates and sites. Number in parenthesis is n for comparisons.  

 

 

* indicates significance at α = 0.05. 

** indicates significance at α= 0.01. 

 

 

 

 

Factor EX  NH4
+ 

% Cover 

(macro.) 

% Cover 

(seagrass) 
Shoot density % OM PW NH4

+ Sulfide 
Algae 

Biomass 

Below. 

Biomass 

Above 

Biomass 

Above 

Biomass 
-0.401*(40) -0.439** (40) 0.227 (40) 0.762** (40) 0.327* (39) -0.148 (40) 0.034 (38) -0.486**(40) 0.797** (40) - 

Below 

Biomass 
-0.366* (40) -0.408** (40) 0.099 (40) 0.736** (40) 0.228 (39) -0.065 (40) 0.055 (38) -0.531** (40) -  

Algae 

Biomass 
0.234 (48) 0.573** (48) 0.102 (48) -0.347* (40) 0.069 (47) -0.40 (48) 0.289 (45) -   

Sulfide 0.205 (45) 0.511** (45) 0.364* (45) 0.385* (38) 0.418** (44) -0.267 (45) -    

PW NH4
+ 0.441** (48) -0.171 (48) -0.207 (48) -0.264 (40) -0.274 (47) -     

% OM -0.059 (47) 0.317* (47) 0.523** (47) 0.310 (39) -      

Shoot 

density 
-0.15 1(40) -0.267 (40) -0.201 (40) -       

% Cover 

(seagrass) 
-0.182 (48) 0.190 (48) -        

% Cover 

(macro) 
0.257 (48) -         

EX  NH4
+ -          



 

Table 6. Spearman correlation coefficients for unamended cores with no macroalgae, all comparisons were made with n=18.  

 

 

 

 

 

 

 

 

 

 

** indicates significance at α= 0.01.  

 

 

 

 

 

 

 

 

 

 

Table 7. Spearman correlation coefficients for unamended cores with macroalgae, all comparisons were made with n=18.  

 

 

 

 

 

 

* indicates significance at α = 0.05. 

 

 

 

 

Factor SOD 28N2 NH4
+ OP NO2

- NO3
- Urea 

Urea 0.649** -0.228 0.1189 -0.212 0.015 -0.428 - 

NO3
- -0.325 0.009 0.172 -0.001 -0.366 -  

NO2
- 0.069 0.046 -0.053 0.024 -   

OP -0.026 0.366 -0.321 -    

NH4
+ 0.007 -0.238 -     

28N2 -0.624** -      

SOD -       

Factor SOD 28N2 NH4
+ OP NO2

- NO3
- Urea 

Urea -0.331 0.313 0.238 0.218 -0.119 0.214 - 

NO3
- 0.057 0.300 0.571* -0.325 -0.247 -  

NO2
- -0.049 -0.257 -0.168 -0.261 -   

OP -0.216 0.366 0.057 -    

NH4
+ 0.463 0.587 -     

28N2 -0.554* -      

SOD -       



 

Table 8. Spearman correlation coefficients for 15NH4
+ addition cores with no macroalgae, all comparisons were made with n=18.  

 

 

 

 

 

 

 

* indicates significance at α = 0.05. 

** indicates significance at α= 0.01.  

 

 

 

 

 

 

 

Table 9. Spearman correlation coefficients for 15NH4
+ addition cores with macroalgae, all comparisons were made with n=18.  

 

 

 

 

 

 

 

* indicates significance at α = 0.05. 

** indicates significance at α= 0.01.  

 

Factor SOD 28N2 29N2 NH4
+ OP NO2

- NO3
- Urea 

Urea 0.069 -0.337 -0.267 -0.053 0.544* -0.240 -0.203 - 

NO3
- -0.102 0.139 0.127 -0.527* -0.046 -0.459 -  

NO2
- 0.005 -0.112 -0.061 0.214 0.152 -   

OP -0.280 0.240 -0.713** -0.377 -    

NH4
+ 0.214 -0.379 0.430 -     

29N2 0.571* -0.476 -      
28N2 -0.278 -       

SOD -        

Factor SOD 28N2 29N2 NH4
+ OP NO2

- NO3
- Urea 

Urea -0.370 0.424 0.317 0.560* 0.170 0.158 -0.410 - 

NO3
- -0.226 0.026 -0.189 -0.112 -0.410 -0.467 -  

NO2
- -0.160 -0.003 -0.032 -0.022 0.441 -   

OP 0.333 -0.385 0.556* 0.079 -    

NH4
+ -0.311 0.610** -0.110 -     

29N2 0.311 -0.550* -      
28N2 -0.707** -       

SOD -        



Table 10. Spearman correlations for 15NO3
- addition cores with no macroalgae, n=18 for all comparisons 

 

 

 

 

 

 

 

 

 

 

 

 

* indicates significance at α = 0.05. 

** indicates significance at α= 0.01.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor SOD 28N2 29N2 30N2 
Pot. 

DNF 

Pot. 

DNRA 
N-fix NH4

+ OP NO2
- NO3

- Urea 

Urea 0.164 -0.030 -0.034 0.079 0.042 0.007 0.030 0.049 0.015 0.034 -0.082 - 

NO3
- -0.036 0.044 -0.028 -0.092 0.129 -0.109 -0.044 -0.513* -0.335 -0.358 -  

NO2
- 0.628** -0.317 0.061 0.348 -0.141 0.527* 0.317 0.814** 0.476* -   

OP 0.399 -0.335 0.009 0.480* 0.141 0.691* 0.335 0.531* -    

NH4
+ 0.612** -0.197 0.228 0.484* -0.022 0.512* 0.197 -     

N-Fix 0.383 -1.000** 0.245 0.412 -0.416 0.239 -      

Pot. 

DNRA 
0.727** -0.239 0.454 0.668** 0.477* -       

Pot. 

DNF 
0.346 0.416 0.439 0.401 -        

30N2 0.754** -0.412 0.591** -         

29N2 0.598** -0.245 -          

28N2 -0.383 -           

SOD -            



Table 11. Spearman correlations for all 15NO3
- addition cores with macroalgae, n=18 for all comparisons 

 

 

 

 

 

 

 

 

 

 

 

 

* indicates significance at α = 0.05. 

** indicates significance at α= 0.01.  

 

 

 

 

 

 

 

 

 

Factor SOD 28N2 29N2 30N2 
Pot. 

DNF 

Pot. 

DNRA 
N-fix NH4

+ OP NO2
- NO3

- Urea 

Urea 0.125 -0.253 0.344 -0.032 0.065 0.337 0.253 0.193 0.038 0.011 -0.059 - 

NO3
- -0.616** -0.125 -0.414 -0.548* -0.203 -0.126 0.125 -0.273 -0.496* -0.259 -  

NO2
- 0.482* -0.558* 0.356 0.263 -0.286 0.595** 0.558* 0.430 0.172 -   

OP 0.133 0.096 0.313 0.222 0.106 -0.135 -0.096 
-0.094 

 
-    

NH4
+ 0.560* -0.298 0.094 0.123 0.013 0.234 0.298 -     

N-Fix 0.253 -1.000** 0.562* -0.135 -0.666** 0.438 -      

Pot. 

DNRA 
0.194 -0.438 0.243 0.421 -0.090 -       

Pot. 

DNF 
-0.063 -0.666** -0.073 0.366 -        

30N2 0.230 0.135 0.185 -         

29N2 0.364 -0.562* -          

28N2 -0.253 -           

SOD -            



 

 

 

 

 

 

 

 

 

 

Figure 1. Sediment nitrogen cycling diagram, adapted from Francis et al. 2007.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Common effects of drift macroalgae on soft benthic sediments (Arroyo and Bonsdorff 2016). 
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Figure 3. Map of St. Joseph Bay, FL, in the northern Gulf of Mexico (Google Earth). GPS site locations: NM1: N29°42.317' 

W085°198.432', NM2: N29°51.335' W085°23.885',  M1: N29°43.078' W085°20.237', M2: N29°46.661' W085°23.913', +M: 
N29°43.078' W085°20.237',  -M: N29°41.611' W085°21.709' 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 4. Panel A is a bathymetry map, while panel B is a map of seagrass cover in St. Joseph Bay, FL (FDEP 2008). 
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             Figure 5. Diagram of continuous-flow incubation system. SWI is the sediment water interface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6. Sediment oxygen demand (SOD) averages (n=6) for all cores.  
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Figure 7. NH4
+ fluxes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. NO2
- fluxes.  

 

 

 

 

 



 

Figure 9. NO3
- fluxes. 

 

 

Figure 10. OP fluxes.  
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Figure 11. Urea fluxes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Net 28N2 Fluxes. 
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Figure 13. Possible anammox, 29N2 production in 15NH4
+ cores. 
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Figure 14. Panel A is potential DNF, panel B is potential DNRA, panel C is calculated N-fixation, and panel D is NIAF, 

all measured in µmole N m-2 hr-1. All green bars represent measurements from 15NO3
- addition cores, while NIAF bars are 

in blue because they are the difference in 15NH4
+ concentration between unamended and 15NO3

- addition cores. 
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