
Kennesaw State University
DigitalCommons@Kennesaw State University

Faculty Publications

2-2018

Measurement of Branching Fractions of Hadronic
Decays of the Ω 0 c Baryon
J. Yelton et al.
Belle Collaboration

D. Joffe
Kennesaw State University, djoffe@kennesaw.edu

Ratnappuli L. Kulasiri
Kennesaw State University, rkulasir@kennesaw.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/facpubs

Part of the Physics Commons

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

Recommended Citation
et al., J. Yelton; Joffe, D.; and Kulasiri, Ratnappuli L., "Measurement of Branching Fractions of Hadronic Decays of the Ω 0 c Baryon"
(2018). Faculty Publications. 4187.
https://digitalcommons.kennesaw.edu/facpubs/4187

https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F4187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F4187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F4187&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F4187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs/4187?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F4187&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu


Measurement of branching fractions of hadronic decays of the Ω0
c baryon

J. Yelton,7 I. Adachi,15,11 H. Aihara,79 S. Al Said,73,35 D. M. Asner,62 H. Atmacan,69 V. Aulchenko,3,60 T. Aushev,51

R. Ayad,73 T. Aziz,74 V. Babu,74 A. M. Bakich,72 V. Bansal,62 P. Behera,22 M. Berger,70 V. Bhardwaj,18 J. Biswal,31

A. Bobrov,3,60 A. Bondar,3,60 A. Bozek,58 M. Bračko,46,31 T. E. Browder,14 D. Červenkov,4 M.-C. Chang,8

P. Chang,57 V. Chekelian,47 A. Chen,55 B. G. Cheon,13 K. Chilikin,41,50 K. Cho,36 S.-K. Choi,12 Y. Choi,71

S. Choudhury,21 D. Cinabro,84 T. Czank,77 N. Dash,19 S. Di Carlo,84 Z. Doležal,4 S. Eidelman,3,60 J. E. Fast,62

T. Ferber,6 B. G. Fulsom,62 R. Garg,63 V. Gaur,83 N. Gabyshev,3,60 A. Garmash,3,60 M. Gelb,33 A. Giri,21

P. Goldenzweig,33 D. Greenwald,75 Y. Guan,23,15 E. Guido,29 J. Haba,15,11 T. Hara,15,11 K. Hayasaka,59 H. Hayashii,54

W.-S. Hou,57 T. Iijima,53,52 K. Inami,52 G. Inguglia,6 A. Ishikawa,77 R. Itoh,15,11 M. Iwasaki,61 Y. Iwasaki,15

W. W. Jacobs,23 H. B. Jeon,39 Y. Jin,79 D. Joffe,34 T. Julius,48 G. Karyan,6 T. Kawasaki,59 H. Kichimi,15

C. Kiesling,47 D. Y. Kim,68 H. J. Kim,39 J. B. Kim,37 S. H. Kim,13 Y. J. Kim,36 K. Kinoshita,5 P. Kodyš,4

S. Korpar,46,31 D. Kotchetkov,14 P. Križan,42,31 R. Kroeger,27 P. Krokovny,3,60 T. Kuhr,43 R. Kulasiri,34 T. Kumita,81

A. Kuzmin,3,60 Y.-J. Kwon,85 K. Lalwani,45 J. S. Lange,9 I. S. Lee,13 S. C. Lee,39 L. K. Li,24 Y. Li,83 L. Li Gioi,47

J. Libby,22 D. Liventsev,83,15 M. Lubej,31 T. Luo,64 M. Masuda,78 T. Matsuda,49 D. Matvienko,3,60 M. Merola,28

K. Miyabayashi,54 H. Miyata,59 R. Mizuk,41,50,51 G. B. Mohanty,74 H. K. Moon,37 T. Mori,52 R. Mussa,29

E. Nakano,61 M. Nakao,15,11 T. Nanut,31 K. J. Nath,20 M. Nayak,84,15 M. Niiyama,38 N. K. Nisar,64 S. Nishida,15,11

S. Ogawa,76 S. Okuno,32 P. Pakhlov,41,50 G. Pakhlova,41,51 B. Pal,5 S. Pardi,28 C. W. Park,71 H. Park,39 S. Paul,75

I. Pavelkin,51 T. K. Pedlar,44 R. Pestotnik,31 L. E. Piilonen,83 V. Popov,51 M. Ritter,43 G. Russo,28 Y. Sakai,15,11

S. Sandilya,5 T. Sanuki,77 V. Savinov,64 O. Schneider,40 G. Schnell,1,17 C. Schwanda,25 A. J. Schwartz,5 Y. Seino,59

M. E. Sevior,48 V. Shebalin,3,60 C. P. Shen,2 T.-A. Shibata,80 N. Shimizu,79 J.-G. Shiu,57 B. Shwartz,3,60 J. B. Singh,63

A. Sokolov,26 E. Solovieva,41,51 M. Starič,31 J. F. Strube,62 M. Sumihama,10 T. Sumiyoshi,81 K. Suzuki,70

M. Takizawa,67,16,65 U. Tamponi,29,82 K. Tanida,30 F. Tenchini,48 M. Uchida,80 T. Uglov,41,51 Y. Unno,13 S. Uno,15,11

Y. Usov,3,60 G. Varner,14 V. Vorobyev,3,60 A. Vossen,23 E. Waheed,48 C. H. Wang,56 M.-Z. Wang,57 P. Wang,24

X. L. Wang,62,15 Y. Watanabe,32 E. Widmann,70 E. Won,37 H. Ye,6 C. Z. Yuan,24 Y. Yusa,59 S. Zakharov,41

Z. P. Zhang,66 V. Zhilich,3,60 V. Zhukova,41,50 V. Zhulanov,3,60 and A. Zupanc42,31

(The Belle Collaboration)

1University of the Basque Country UPV/EHU, 48080 Bilbao
2Beihang University, Beijing 100191

3Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
4Faculty of Mathematics and Physics, Charles University, 121 16 Prague

5University of Cincinnati, Cincinnati, Ohio 45221
6Deutsches Elektronen–Synchrotron, 22607 Hamburg
7University of Florida, Gainesville, Florida 32611

8Department of Physics, Fu Jen Catholic University, Taipei 24205
9Justus-Liebig-Universität Gießen, 35392 Gießen

10Gifu University, Gifu 501-1193
11SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193

12Gyeongsang National University, Chinju 660-701
13Hanyang University, Seoul 133-791

14University of Hawaii, Honolulu, Hawaii 96822
15High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801

16J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK),
Tsukuba 305-0801

17IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
18Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306

19Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
20Indian Institute of Technology Guwahati, Assam 781039

21Indian Institute of Technology Hyderabad, Telangana 502285
22Indian Institute of Technology Madras, Chennai 600036

23Indiana University, Bloomington, Indiana 47408

PHYSICAL REVIEW D 97, 032001 (2018)

2470-0010=2018=97(3)=032001(8) 032001-1 Published by the American Physical Society



24Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
25Institute of High Energy Physics, Vienna 1050

26Institute for High Energy Physics, Protvino 142281
27University of Mississippi, University, Mississippi 38677

28INFN—Sezione di Napoli, 80126 Napoli
29INFN—Sezione di Torino, 10125 Torino

30Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
31J. Stefan Institute, 1000 Ljubljana

32Kanagawa University, Yokohama 221-8686
33Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe

34Kennesaw State University, Kennesaw, Georgia 30144
35Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589

36Korea Institute of Science and Technology Information, Daejeon 305-806
37Korea University, Seoul 136-713
38Kyoto University, Kyoto 606-8502

39Kyungpook National University, Daegu 702-701
40École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015

41P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
42Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana

43Ludwig Maximilians University, 80539 Munich
44Luther College, Decorah, Iowa 52101

45Malaviya National Institute of Technology Jaipur, Jaipur 302017
46University of Maribor, 2000 Maribor

47Max-Planck-Institut für Physik, 80805 München
48School of Physics, University of Melbourne, Victoria 3010

49University of Miyazaki, Miyazaki 889-2192
50Moscow Physical Engineering Institute, Moscow 115409

51Moscow Institute of Physics and Technology, Moscow Region 141700
52Graduate School of Science, Nagoya University, Nagoya 464-8602
53Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602

54Nara Women’s University, Nara 630-8506
55National Central University, Chung-li 32054
56National United University, Miao Li 36003

57Department of Physics, National Taiwan University, Taipei 10617
58H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342

59Niigata University, Niigata 950-2181
60Novosibirsk State University, Novosibirsk 630090

61Osaka City University, Osaka 558-8585
62Pacific Northwest National Laboratory, Richland, Washington 99352

63Panjab University, Chandigarh 160014
64University of Pittsburgh, Pittsburgh, Pennsylvania 15260

65Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
66University of Science and Technology of China, Hefei 230026

67Showa Pharmaceutical University, Tokyo 194-8543
68Soongsil University, Seoul 156-743

69University of South Carolina, Columbia, South Carolina 29208
70Stefan Meyer Institute for Subatomic Physics, Vienna 1090

71Sungkyunkwan University, Suwon 440-746
72School of Physics, University of Sydney, New South Wales 2006

73Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
74Tata Institute of Fundamental Research, Mumbai 400005

75Department of Physics, Technische Universität München, 85748 Garching
76Toho University, Funabashi 274-8510

77Department of Physics, Tohoku University, Sendai 980-8578
78Earthquake Research Institute, University of Tokyo, Tokyo 113-0032

79Department of Physics, University of Tokyo, Tokyo 113-0033
80Tokyo Institute of Technology, Tokyo 152-8550
81Tokyo Metropolitan University, Tokyo 192-0397

J. YELTON et al. PHYS. REV. D 97, 032001 (2018)

032001-2



 

82University of Torino, 10124 Torino
83Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

84Wayne State University, Detroit, Michigan 48202
85Yonsei University, Seoul 120-749

(Received 4 December 2017; published 1 February 2018)

Using a data sample of 980 fb−1 of eþe− annihilation data taken with the Belle detector operating at the
KEKB asymmetric-energy eþe− collider, we report the results of a study of the decays of the Ω0

c charmed
baryon into hadronic final states. We report the most precise measurements to date of the relative branching
fractions of the Ω0

c into Ω−πþπ0, Ω−πþπ−πþ, Ξ−K−πþπþ, and Ξ0K−πþ, as well as the first measurements
of the branching fractions of theΩ0

c into Ξ−K̄0πþ, Ξ0K̄0, andΛK̄0K̄0, all with respect to theΩ−πþ decay. In
addition, we investigate the resonant substructure of these modes. Finally, we present a limit on the
branching fraction for the decay Ω0

c → ΣþK−K−πþ.

DOI: 10.1103/PhysRevD.97.032001

I. INTRODUCTION

The Ω0
c comprises the combination of a charm quark and

two strange quarks [1]. The ground-state Ω0
c has the ss

diquark in a JP ¼ 1þ configuration, and decays weakly.
There are no measurements of the absolute branching
fractions of the Ω0

c, but some measurements of the
branching ratios of modes with respect to the normalizing
mode Ω−πþ have been made [2–4]. However, because the
production cross section of the Ω0

c is lower than the other
singly charmed baryons, and because it typically decays to
more complicated final states, there is less information on
its hadronic decays than there is for the other weakly
decaying charmed baryons (Λþ

c , Ξ0
c, and Ξþ

c ) or for the
charmed mesons.
In this paper, we present the most precise measurements

of the branching fractions of Ω0
c decays into the four decay

modes (Ω−πþπ0, Ω−πþπ−πþ, Ξ−K−πþπþ, Ξ−K̄0πþ).
These modes have previously been measured by the
CLEO [2] and/or BABAR [4] Collaborations. We also
present the measurement of three previously unreported
decays (Ξ−K̄0πþ, Ξ0K̄0 and ΛK̄0K̄0) and a search for one
other decay, ΣþK−K−πþ, that was reported by the E687
Collaboration [5]. All branching fractions are measured
relative to the decay Ω0

c → Ω−πþ. In addition, we inves-
tigate the resonant substructure of the decays we observe.
The choice of decay modes was guided by previous
observations, analogy with other charmed baryon decay
modes, and consideration of the detector capabilities.
The four ground-state charmed baryons all decay pre-

dominantly through the weak decay c → sWþ, but each has

its own features. Uniquely among the four, the two
spectator quarks of the Ω0

c have the same flavor, and this
leads to many decay diagrams producing the same final
states. Constructive interference among these diagrams is
thought to explain the short lifetime, despite the fact that,
unlike the Λþ

c and Ξ0
c, the Ω0

c cannot decay via a Cabibbo-
favored W-exchange diagram [6]. Measuring the branching
fractions of all the charmed hadrons helps disentangle the
various processes involved and adds to our knowledge of
the dynamics of charmed baryon decays.
This analysis uses a data sample of eþe− annihilations

recorded by the Belle detector [7] operating at the KEKB
asymmetric-energy eþe− collider [8]. It corresponds to an
integrated luminosity of 980 fb−1. The majority of these
data were taken with the accelerator energy tuned for
production of the Υð4SÞ resonance, as this is optimum for
investigation of B decays. However, the Ω0

c particles in this
analysis are produced in continuum charm production and
are of higher momentum than those that are decay products
of B mesons, so the data set used in this analysis also
includes the Belle data taken at beam energies correspond-
ing to the other Υ resonances and the nearby continuum
(eþe− → qq̄, where q ∈ fu; d; s; cg).

II. THE BELLE DETECTOR AND
PARTICLE RECONSTRUCTION

The Belle detector is a large-solid-angle spectrometer
comprising six sub-detectors: the Silicon Vertex Detector
(SVD), the 50-layer Central Drift Chamber (CDC), the
Aerogel Cherenkov Counter (ACC), the Time-of-Flight
scintillation counter (TOF), the electromagnetic calorim-
eter, and the KL and muon detector. A superconducting
solenoid produces a 1.5 T magnetic field throughout the
first five of these sub-detectors. The detector is described in
detail elsewhere [7]. Two inner detector configurations
were used. The first comprised a 2.0 cm radius beampipe
and a 3-layer silicon vertex detector, and the second a
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1.5 cm radius beampipe and a 4-layer silicon detector and a
small-cell inner drift chamber.
Final-state charged particles, π�, K−, and p, are selected

using the likelihood information from the tracking (SVD,
CDC) and charged-hadron identification (CDC, ACC,
TOF) systems, Lðh1∶h2Þ ¼ Lh1=ðLh1 þ Lh2Þ, where h1
and h2 are p,K, and π as appropriate. In general, we require
proton candidates to have Lðp∶KÞ > 0.6 and Lðp∶πÞ >
0.6 (≈96% efficient); kaon candidates to have LðK∶pÞ >
0.6 and LðK∶πÞ > 0.6 (≈94% efficient); and pions to have
the less restrictive requirements of Lðπ∶KÞ > 0.2 and
Lðπ∶pÞ > 0.2 (≈99% efficient). The π0 candidates used
in hyperon reconstruction are formed from two clusters
unassociated with a charged track, each consistent with
being due to a photon, and each of energy above 50 MeV in
the laboratory frame. The invariant mass of the photon pair
is required to be within 3 standard deviations (σ) of the π0

mass [9]. Because of the large combinatorial background,
the π0 candidates used for Ω0

c → Ω−πþπ0 reconstruction
have more restrictive requirements of at least 100 MeV
energy per photon, at least 300 MeV=c π0 momentum, and
an invariant mass within 2σ of the π0 nominal mass.
The ΛðK0

SÞ candidates are reconstructed from
pπ−ðπþπ−Þ pairs with a production vertex significantly
separated from the nominal interaction point (IP) in the
r − ϕ plane (perpendicular to the beam axis). For the case
of the proton from the Λ, the particle identification (PID) is
loosened to Lðp∶KÞ > 0.2 and Lðp∶πÞ > 0.2. The Λ
candidates used as immediate daughters of Ξc candidates
are required to have trajectories consistent with origination
at the IP, but those that are daughters of Ξ−, Ξ0 or Ω−

candidates do not have this requirement.
The Ξ− and Ω− candidates are reconstructed from the Λ

candidates detailed above, together with a π− or K−

candidate. The vertex formed from the Λ and π=K is
required to be at a smaller radial distance from the IP than
the Λ decay vertex.
The Ξ0 and Σþ reconstruction is complicated by the fact

that the parent hyperon decays with a π0 (which has
negligible vertex position information) as one of its
daughters. In the case of the Σþ → pπ0 reconstruction,
combinations of π0 candidates and protons are made using
those protons with a significantly large (>1 mm) distance
of closest approach (DOCA) to the IP. Then, taking the IP
as the point of origin of the Σþ, the point of intersection of
the Σþ trjectory and the reconstructed proton trajectory is
found. This position is taken as the decay location of the Σþ

hyperon, and the π0 is then refit using this as its point of
origin. Only those combinations with the decay location of
the Σþ indicating a positive Σþ path length are retained.
The Ξ0 is reconstructed in a similar manner, but it is not
necessary to require a large DOCA with respect to the IP.
Mass requirements are placed on all the hyperons

reconstructed, based on the nominal masses of these
particles [9]. The half-widths of the allowed ranges of

these mass requirements, all corresponding to approxi-
mately two standard deviations of the resolution, are 8.0,
5.0, 3.5, 3.5, and 3.5 MeV=c2 for Σþ, Ξ0, Ξ−, Ω−, and Λ,
respectively. The particles are then kinematically con-
strained to the expected masses for further analysis.

III. Ω0
c RECONSTRUCTION

Baryons and mesons detailed above are combined to
reconstruct Ω0

c candidates. Once the daughter particles of a
Ωc candidate are selected, the Ωc candidate itself is made
by kinematically fitting the daughters to a common decay
vertex. The IP is not included in this vertex, as the small
decay length associated with the Ωc decays, though very
short compared with the Ξ−, Ξ0, Ω−, and Σþ decay lengths,
is not negligible. The χ2 of this vertex fit is required to be
consistent with all the daughters being produced by a
common parent. To reduce combinatorial background,
we require a scaled momentum of xp > 0.6, where xp ¼
p�c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs=4 −m2c2Þ
p

, p� is the momentum of the Ωc
candidate in the eþe− center-of-mass frame, s is the total
center-of-mass energy squared, and m is the reconstructed
mass. Charmed baryons are known to have a hard frag-
mentation function, and this requirement produces a good
signal-to-noise ratio while retaining high signal efficiency.
Figure 1 shows the invariant mass distribution for the

normalizing mode Ω0
c → Ω−πþ. A double-Gaussian signal

function together with a first-order polynomial function to
represent the background are fit to this distribution. For this
and all similar distributions in this analysis, the resolution
function is obtained by studying Monte Carlo (MC) events
generated using EVTGEN [10], and having the Belle
detector response simulated using GEANT3 [11]. Taking
the measure of each width to be the weighted average of the
widths of the two Gaussian functions of the resolution
function, the ratio of the width found by fitting the data in
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FIG. 1. Invariant mass distribution for the normalizing mode
Ω0

c → Ω−πþ. The fit is described in the text.
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this channel to that found by fitting the MC is
1.035� 0.045. This confirms that the MC simulation
predicts the resolution well.
Figure 2 shows the invariant mass distributions for the

other eight Ω0
c decay modes under consideration. A fit is

made to each distribution comprising the sum of a double-
Gaussian signal function, as obtained from MC, and a
Chebyshev polynomial background function whose order
is the lowest that allows a satisfactory fit. An exception is
the case of the Ω−πþπ0 final state, for which the resolution

function is a bifurcated Gaussian to account for the
asymmetry in the mass distribution found in MC. With
the exception of the mode Ω0

c → ΣþK−K−πþ, the masses
in the fits are free parameters; nevertheless, the resultant
masses are consistent with the world-average [9], which is
dominated by the measurement in a previous Belle analysis
using a subset of the data presented here [12]. In all cases,
the resolution functions are fixed from the MC simulation,
but should their widths be allowed to float, each would
have a width within two standard deviations of the MC
values.
The yields and statistical uncertainties for each mode are

listed in Table I, together with the resolution and the order
of the polynomial background function used. The efficien-
cies, obtained from the MC simulation, include all branch-
ing fractions of the subsequent decays [9]. In the cases
where significant substructure is observed (as described in
the next section), the MC is generated with this substructure
included. This last effect does not change the efficiency of
any mode by more than 3% of its nominal value.

IV. RESONANT SUBSTRUCTURE

Many of the modes under consideration may have
resonant substructure that can help reveal their decay

10
20
30
40
50
60
70
80

0π+π-Ω

20
40
60
80

100
120
140

+π+π-K-Ξ

2
E

ve
nt

s/
2.

5 
M

eV
/c

50

100

150

200

250
+πs

0K-Ξ

)2Invariant Mass (GeV/c

2.55 2.6 2.65 2.7 2.75 2.8 2.85
10
20
30
40
50
60
70
80
90

s
0Ks

0K0Λ

10

20

30

40

50 +π-π+π-Ω

10
20
30
40
50
60
70

+π-K0Ξ

2
E

ve
nt

s/
2.

5 
M

eV
/c

5
10
15
20
25
30
35
40
45

s
0K0Ξ

)2Invariant Mass (GeV/c

2.55 2.6 2.65 2.7 2.75 2.8 2.85

10
20
30
40
50
60
70 +π-K-K+Σ

FIG. 2. Invariant mass distributions for the eight modes under consideration. The fits are described in the text.

TABLE I. The summary of the results of the fits shown in
Figs. 1 and 2.

Mode
Signal
yield

Order of
polynomial

Resolution
(MeV=c2)

Efficiency
(%)

Ω−πþ 691� 29 1 5.1 10.08
Ω−πþπ0 403� 31 2 13.3 2.95
Ω−πþπ−πþ 108� 16 1 4.4 5.23
Ξ−K−πþπþ 278� 27 2 4.3 5.98
Ξ0K−πþ 168� 21 1 7.8 2.09
Ξ−K0

Sπ
þ 349� 36 1 4.6 4.81

Ξ0K0
S 98� 15 2 7.0 1.73

ΛK0
SK

0
S 95� 18 1 3.7 3.22

ΣþK−K−πþ 17� 8 2 3.8 2.00
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mechanisms. Figure 3(a) shows the πþπ0 invariant mass for
the combinations within 22 MeV=c2 (≈90% efficient) of
the Ω0

c peak in the Ω0
c → Ω−πþπ0 mass distribution. This

distribution has been background-subtracted using events
from scaled sidebands between 32 and 76 MeV=c2 from
the peak. A fit is made to this distribution using the sum of a
ρþ signal shape and a nonresonant shape flat in phase
space. The very small efficiency difference between these
two distributions is taken into account to calculate that
ð83� 10%Þ of theΩ−πþπ0 mode proceeds via the ρþ. This
result is consistent with the saturation of the Ωπþπ0 decay
by the pseudo-two-body Ω−ρþ channel. We calculate a
lower limit for the Ω−ρþ fraction by integrating the
likelihood function obtained from the fit, and finding the
value of the fraction for which the integral contains 90% of
the total area. This 90% confidence-level lower limit value
on the Ω−ρþ fraction of Ω−πþπ0 is 71%.
For the mode Ω0

c → Ξ−K−πþπþ, we define signal
candidates as those within 7 MeV=c2 of the Ω0

c mass;
sidebands of 12–26 MeV=c2 from the Ω0

c peak value; and

present the scaled sideband-subtracted Ξ−πþ and K−πþ
invariant mass distributions in Figs. 3(b) and 3(c). Each
distribution has two entries per Ω0

c candidate. Polynomial
nonresonant functions are fit to these distributions to find
the yield of Ξ0ð1530Þ and K̄�0ð892Þ, respectively. Clear
signals of 74� 20 events and 136� 39 events are found,
where these uncertainties are statistical. These correspond
to ð33� 9Þ% and ð55� 16Þ% of the Ξ−K−π þ πþ decays
proceeding through Ξ0ð1530Þ and K̄�0ð892Þ, respectively.
There are indications that the signals include pseudo-two-
body decays of the type Ω0

c → Ξ0ð1530ÞK̄�0ð892Þ, but the
signal-to-noise ratio is not sufficient to allow for the
measurement of this process. Interference effects are
expected to be small and are not taken into consideration.
For themodeΩ0

c → Ξ0K−πþ,weselect signaleventswithin
11 MeV=c2 of theΩ0

c peak value, and use sidebands of 22 to
44 MeV=c2. We then plot the sideband-subtracted K−πþ
invariant mass distribution and observe a clear peak due to
the K̄�0ð892Þmeson.Thesumofa K̄�0ð892Þ signal shapeanda
polynomial nonresonant shape is fit to this distribution and
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FIG. 3. Background-subtracted invariant mass distributions for two particle combinations: (a) πþπ0 for Ω0
c → Ω−πþπ0 decays,

(b) Ξ−πþ and (c) K−πþ for Ω0
c → Ξ−K−πþπþ decays, and (d) K−πþ for Ω0

c → Ξ0K−πþ decays. The blue dotted lines show the signals,
the green dashed lines show the background, and the solid lines the sum of the two. Data are shown with circles.
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showninFig.3(d).Thesignalyield isdeterminedtobe95� 16

events, corresponding to ð57� 10Þ% of Ξ0K−πþ decays.

V. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties that enter this analysis of
the branching fractions are summarized in Table II. To
estimate the uncertainty due to the choice of background
shape, the order of the Chebyshev polynomial is increased
by one and the change in yield taken as the systematic
uncertainty. As this always reduces the yield, this is not
done for the Ω0

c → ΣþK−K−πþ mode, for which only an
upper limit is quoted. The sensitivity to the signal shape is
found by repeating the analysis with single, rather than
double, Gaussian signal functions both for the normalizing
mode and the signal mode. The MC simulation program is
tested using many similar reconstructed signals, and in all
cases the extracted resolution values agree with the data
within 10%. The systematic uncertainty due to uncertain-
ties in the resolution width are estimated from the change in
yield when adjusting the signal widths by 10%.
In addition, there are uncertainties in the simulation of

the reconstruction efficiency that are not specific to this

analysis. Care is taken to account for the cancelation of
uncertainties in the calculation of the branching ratios with
respect to the normalizing mode. We assign a relative
uncertainty on the track reconstruction varying from 0.35%
to 2.5% [13]. The relative uncertainties on the Λ, K0

S, and
π0 reconstruction are 4.0% [13], 2.8% [14], and 3% [15],
respectively. We use studies of Λ → pπ− and D0 → K−πþ
decays to assign uncertainties on the PID identification of
the kaons and protons of 1.3% per track [13].
Lastly, there is an uncertainty due to changes in the

efficiencies when resonant substructure is present. As visible
resonant substructure is already taken into account in the
efficiency calculations, this effect is small. In the determi-
nation of the fractions due to substructure, the statistical
uncertainties dominate over the small systematic uncertain-
ties. The small differences in the efficiencies between the
resonant and multibody decays are taken into account in
calculating the resonant contribution to these modes.

VI. FINAL RESULTS

The results for the branching fractions are summarized in
Table III. In the case of Ωc → ΣþK−K−πþ, there is no

TABLE II. The summary of the relative uncertainties (in %). The systematic uncertainties are added in quadrature to give the last
column.

Mode
Statistical
uncertainty

Bkgd
shape

Signal
shape

Signal
width

Track
finding

K0
S=Λ

finding
PID

requirements
π0

finding Resonances
Total

systematic

Ω−πþπ0 8.7 0.6 0.3 4.2 0.0 � � � � � � 3.0 1.0 5.3
Ω−πþπ−πþ 15.0 2.3 2.0 5.0 0.7 � � � � � � � � � 3.0 6.6
Ξ−K−πþπþ 10.6 0.6 0.3 4.8 0.7 � � � � � � � � � 1.0 5.0
Ξ0K−πþ 13.1 2.9 0.5 4.2 2.5 � � � � � � 3.0 2.0 6.7

Ξ−K̄0πþ 11.1 3.4 0.3 4.9 0.7 2.8 1.3 � � � 1.0 6.8

Ξ0K̄0 15.7 2.2 1.9 4.7 2.5 2.8 1.3 3.0 � � � 7.4

ΛK̄0 K̄0 19.3 1.1 0.4 4.7 3.1 5.6 1.3 � � � � � � 8.1
ΣþK−K−πþ 50.9 � � � 10.7 2.9 5.0 4.0 2.6 3.0 3.0 13.6

TABLE III. The summary of the results to the fits shown in Figs. 1, 2, and 3. The numbers in parentheses refer to
the fraction of the multibody final state that includes the listed resonance.

Mode Branching ratio with respect to Ω−πþ Substructure Previous measurement

Ω−πþ 1
Ω−πþπ0 2.00� 0.17� 0.11 1.27� 0.3� 0.11 [4]
Ω−ρþ >71%

Ω−πþπ−πþ 0.32� 0.05� 0.02 0.28� 0.09� 0.01 [4]
Ξ−K−πþπþ 0.68� 0.07� 0.03 0.46� 0.13� 0.03 [4]
Ξ0ð1530ÞK−πþ ð33� 9Þ%
Ξ−K̄�0πþ ð55� 16Þ%
Ξ0K−πþ 1.20� 0.16� 0.08 4.0� 2.5� 0.4 [2]
Ξ0K̄�0 ð57� 10Þ%
Ξ−K̄0πþ 2.12� 0.24� 0.14

Ξ0K̄0 1.64� 0.26� 0.12

ΛK̄0K̄0 1.72� 0.32� 0.14
ΣþK−K−πþ <0.32 (90% CL)
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significant signal.We calculate a 90% confidence upper limit
by first combining the statistical and systematic uncertain-
ties, and integrating the resultant likelihood function starting
atNsignal ¼ 0; the upper limit is set when the integral reaches
90% of the total area. For the cases where substructure is
measured, the fraction of the primary mode is given. The
results assume a branching fraction K̄0 → K0

S of 50%.
Four of the modes presented here have been measured

previously [2,4,5]. In all cases, these new measurements are
consistent, within two standard deviations, with the pre-
vious measurements [9] and provide substantial improve-
ments in precision. It is surprising that we find a restrictive
limit on the decay BðΩc → ΣþK−K−πþÞ=BðΩ−πþ), even
though the E687 experiment, albeit with different relative
efficiencies, finds a much larger signal in ΣþK−K−πþ
than Ω−πþ.
There is a paucity of recent predictions on the branching

fractions of charmed baryons. However, some patterns in
the data of charmed baryon decays are clear. Whereas the
other weakly decaying charmed baryons Yc have branching
ratios BðYc → Yπþπ−πþÞ=BðYc → YπþÞ ≫ 1, it is con-
firmed that, when Yc is an Ωc, this ratio is considerably less
than 1. While multibody weak decays are difficult to model
theoretically, we hope that these new results on pseudo-
two-body decays will spur further theoretical work.
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