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Measurement of the branching fraction of B → D(∗)π`ν at Belle using hadronic tagging
in fully reconstructed events
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M. Starič,30 J. F. Strube,63 M. Sumihama,11 T. Sumiyoshi,81 M. Takizawa,68, 18, 66 U. Tamponi,28 K. Tanida,29

F. Tenchini,48 K. Trabelsi,17, 13 M. Uchida,80 T. Uglov,41, 51 Y. Unno,15 S. Uno,17, 13 P. Urquijo,48

Y. Usov,4, 61 C. Van Hulse,1 G. Varner,16 K. E. Varvell,72 A. Vinokurova,4, 61 V. Vorobyev,4, 61 B. Wang,6

C. H. Wang,56 M.-Z. Wang,57 P. Wang,25 M. Watanabe,60 E. Widmann,70 E. Won,36 H. Ye,7 Y. Yusa,60

S. Zakharov,41, 51 Z. P. Zhang,67 V. Zhilich,4, 61 V. Zhukova,41, 50 V. Zhulanov,4, 61 and A. Zupanc42, 30

(The Belle Collaboration)
1University of the Basque Country UPV/EHU, 48080 Bilbao

2Beihang University, Beijing 100191
3Brookhaven National Laboratory, Upton, New York 11973

4Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
5Faculty of Mathematics and Physics, Charles University, 121 16 Prague

6University of Cincinnati, Cincinnati, Ohio 45221
7Deutsches Elektronen–Synchrotron, 22607 Hamburg
8Duke University, Durham, North Carolina 27708
9University of Florida, Gainesville, Florida 32611
10Justus-Liebig-Universität Gießen, 35392 Gießen

11Gifu University, Gifu 501-1193
12II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
13SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193

14Gyeongsang National University, Chinju 660-701
15Hanyang University, Seoul 133-791

16University of Hawaii, Honolulu, Hawaii 96822
17High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801

18J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
19IKERBASQUE, Basque Foundation for Science, 48013 Bilbao

20Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
21Indian Institute of Technology Guwahati, Assam 781039

22Indian Institute of Technology Hyderabad, Telangana 502285
23Indian Institute of Technology Madras, Chennai 600036

24Indiana University, Bloomington, Indiana 47408
25Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049

26Institute of High Energy Physics, Vienna 1050
27INFN - Sezione di Napoli, 80126 Napoli
28INFN - Sezione di Torino, 10125 Torino

29Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
30J. Stefan Institute, 1000 Ljubljana

ar
X

iv
:1

80
3.

06
44

4v
1 

 [
he

p-
ex

] 
 1

7 
M

ar
 2

01
8



2

31Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
32Kennesaw State University, Kennesaw, Georgia 30144

33King Abdulaziz City for Science and Technology, Riyadh 11442
34Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589

35Korea Institute of Science and Technology Information, Daejeon 305-806
36Korea University, Seoul 136-713

37Kyoto University, Kyoto 606-8502
38Kyungpook National University, Daegu 702-701

39LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay
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We report a measurement of the branching fraction of the decay B → D(∗)π`ν. The analysis uses
772×106 BB̄ pairs produced in e+e− → Υ(4S) data recorded by the Belle experiment at the KEKB
asymmetric-energy e+e− collider. The tagging B meson in the decay is fully reconstructed in a
hadronic decay mode. On the signal side, we reconstruct the decay B → D(∗)π`ν (` = e, µ). The
measured branching fractions are B(B+ → D−π+`+ν ) = [4.55 ± 0.27 (stat.) ± 0.39 (syst.)]×10−3,
B(B0 → D̄0π−`+ν ) = [4.05 ± 0.36 (stat.) ± 0.41 (syst.)]×10−3, B(B+ → D∗−π+`+ν ) = [6.03
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± 0.43 (stat.) ± 0.38 (syst.)]×10−3, and B(B0 → D̄∗0π−`+ν ) = [6.46 ± 0.53 (stat.) ± 0.52
(syst.)]×10−3. These are in good agreement with the current world average values.

PACS numbers: 12.15.Hh, 13.20.He, 14.40.Nd, 12.38.Gc

I. INTRODUCTION

Semileptonic decays of B mesons are an important
tool for precision measurements of CKM matrix elements
and precision tests of the electroweak sector of the stan-
dard model. An important recent development was the
observation of a more than 3σ deviation between the
standard model expectation for R(D(∗)) [1, 2] and the
combined experimental results from Babar [3, 4], Belle [5–
7] and LHCb [8, 9]. Here, R(D(∗)) is defined as the
ratio of the branching fraction (B) of B → D(∗)τν and
B → D(∗)lν, (` = e, µ). We report on a new measurement
of B → D(∗)π`ν, which is important as a background for
B → D(∗)τν decays, and in its own right, as a vehicle
to understand high-multiplicity semi-leptonic B decays.
The process B → D(∗)π`ν proceeds predominantly via
B → (D∗∗ → D(∗)π)`ν, where D∗∗ is an orbitally ex-
cited (L = 1) charmed meson. The D∗∗ mass-spectrum
is grouped into two pairs having light-quark total angu-
lar momentum jq = 1

2 and jq = 3
2 [10]. All states can

decay via D∗∗ → D∗π, while the 2+ state can also decay
via D∗∗ → Dπ. Since the D∗∗ masses are not far from
threshold, and the jq = 3

2 have a significant D-wave com-
ponent, these states are narrow and were observed with
a typical width of about 20 MeV [11–13]. On the other
hand, the states with jq = 1

2 decay mainly via S-wave
and are therefore expected to be broad resonances with
a width of several hundred MeV [10, 14]. Compared to
previous measurements of B(B → D(∗)π`ν) at Belle [11],
the analysis presented in this report benefits from the
use of the full Belle dataset, containing 772×106 BB̄
pairs, recorded at the Υ(4S) resonance and an improved
hadronic-tagging method.

II. EXPERIMENTAL APPARATUS

The Belle experiment [15] at the KEKB storage ring [16]
recorded about 1 ab−1 of e+e− annihilation data. The
data were taken mainly at the Υ(4S) resonance at

√
s =

10.58 GeV, but also at Υ(1S) to Υ(5S) resonances and at√
s = 10.52 GeV. The Belle instrumentation used in this

analysis includes the central drift chamber (CDC) and the
silicon vertex detector, which provides precision tracking
for tracks in the polar-angle range 17.0 ◦ < θlab < 150.0 ◦,
and the electromagnetic calorimeter (ECL) covering the
same range. The polar angle θlab is measured with re-
spect to the z-axis, which is anti-parallel to the e+ beam.
Charged particle identification is performed using specific
ionization measurements in the CDC, time-of-flight in-
formation from the interaction point (IP) to a barrel of
scintillators, light yield in an array of aerogel Cherenkov
counters in the barrel and the forward endcap, as well as

a muon- and K0
L-identification system in the return yoke

of the superconducting solenoid, which provides a 1.5 T
magnetic field.

III. ANALYSIS

The analysis strategy is based on fully reconstructing
one tagging B meson in a hadronic mode, then, using
the rest of the event, reconstructing the signal mode
with the exception of the ν, which escapes undetected.
Since the rest of the event has been reconstructed, it
is possible to infer the escaped neutrino mass Mν from
the kinematic constraints of the initial e+e− collision.
The distribution of M2

ν is then fitted with Belle Monte
Carlo (MC) simulation templates to derive the branch-
ing fraction of interest. Simulations in this analysis use
Pythia [17] and EvtGen [18] for the event generation, and
GEANT3 [19] for the detector response. The simulation
treats all B → D(∗)π`ν decays as proceeding through a
B → D∗∗ decay, which is modeled as described in the
introduction. By comparing known processes, we cor-
rect the simulation of the detector for the efficiency of
the particle identification of charged tracks, π0 and K0

S
mesons as well as the misidentification probabilities of
charged tracks. These corrections are dependent on the
kinematics of the respective particles. We reweight the
simulation of underlying physical processes to account for
newly measured values of branching fractions and related
parameters. In particular, we use the latest world-average
values of D and B meson branching fractions [20] as well
as D∗ [2] and D∗∗ form factors [14].

A. Btag selection

A neural-network-based multivariate classifier, as im-
plemented in the NeuroBayes package [21, 22], is used
to fully reconstruct B mesons that decay hadronically.
The algorithm considers 17 final states for charged B
candidates and 15 final states for neutral B candidates.
Incorporating the subsequent hadronic decays and J/ψ
leptonic decays, the algorithm investigates 1104 different
decay topologies. The output variable otag of the algo-
rithm takes a value between 0 and 1, with larger values
corresponding to a higher likelihood that a B meson was
correctly reconstructed.

We select events with log(otag) > −3.5. For
each Btag, we impose a requirement on the differ-
ence between the measured center-of-mass (CM) energy
and its nominal value of |∆E| = |EBtag

− ECM| <
0.18 GeV, and on the beam constrained mass of Mbc =



4√
(ECM/c2)2 − (~PBtag

/c)2 > 5.27 GeV/c2. Here, EBtag

and ~PBtag
are the energy and momentum of the tagged

B candidate.

Differences in the tagging efficiency between data and
MC have been observed [23]. These depend on the tag-side
reconstruction and the value of otag. We use a calibra-
tion derived in Ref. [23], which uses a control sample
B → Xclν decays on the signal side. Based on this cal-
ibration, we assign an event-by-event weight based on
the reconstructed Btag decay mode and value of otag to
equalize the efficiency of the tagging algorithm between
data and MC.

B. Bsig reconstruction

Having selected the Btag in this way, the signal side
Bsig is then reconstructed with the charged tracks and
photons in the event that are not part of the Btag decay
chain. Charged tracks are identified using the Belle parti-
cle identification (PID) [24]. We accept electrons in the
laboratory frame polar-angle range 17 ◦ < θe < 150 ◦, and
muons in the range 25 ◦ < θµ < 145 ◦, where the relevant
subsystems of the Belle PID have acceptance for these
particles. To recover energy lost by bremsstrahlung of
electrons, we add the 4-vector of the closest γ found within
5 ◦ of an identified electron. Charged tracks that cannot
be unambiguously identified are treated as pions. We
reconstruct π0 candidates from pairs of photons, each of
which satisfies a minimum energy requirement of 50 MeV,
75 MeV or 100 MeV in the barrel (32 ◦ < θγ < 130 ◦),
the forward endcap (17 ◦ < θγ < 32 ◦) or the backward
endcap (130 ◦ < θγ < 150 ◦), respectively. We require
the reconstructed mass to lie in the range 0.12 GeV/c2

< Mγγ < 0.15 GeV/c2, which corresponds to about five
times the measured resolution around the nominal mass.
To reduce overlap in the π0 candidate list, we sort them
according to the most energetic daughter photon (and
then, if needed, the second most energetic daughter) and
remove any pion that shares photons with one that ap-
pears earlier in this list. We reconstruct K0

S mesons from
π+π− pairs. We require the two-pion invariant mass to
lie in the range 0.482-0.514 GeV/c2 (about four times the
experimental resolution around the nominal mass [20]).
Different selections are applied, depending on the momen-
tum of the K0

S candidate in the laboratory frame [25]:
For low (p < 0.5 GeV/c), medium (0.5 ≤ p ≤ 1.5 GeV/c),
and high momentum (p > 1.5 GeV/c ) candidates, we
require the impact parameters of the pion daughters in
the transverse plane (perpendicular to the beam) to be
greater than 0.05 cm, 0.03 cm, and 0.02 cm, respectively.
The angle in the transverse plane between the vector
from the interaction point to the K0

S vertex and the K0
S

flight direction is required to be less than 0.3 rad, 0.1 rad,
and 0.03 rad for low, medium, and high momentum can-
didates, respectively; the separation distance along the
z axis of the two pion trajectories at their closest ap-

proach must be below 0.8 cm, 1.8 cm, and 2.4 cm, re-
spectively. Finally, for medium (high) momentum K0

S
candidates, we require the flight length in the trans-
verse plane to be greater than 0.08 cm (0.22 cm). Us-
ing the reconstructed pions and kaons, we reconstruct D
mesons in the channels D0 → K−π+, D0 → K−π+π0,
D0 → K−π+π+π−, D0 → K0

Sπ
+π−, D0 → K−K+,

D0 → K0
Sπ

0, D+ → K0
Sπ

+, D+ → K0
Sπ

+π+π−, D+ →
K−π+π+, and D+ → K+K−π+. Here and throughout
this report, the charge-conjugated modes are implied. We
require a maximum difference of 3σ between the recon-
structed mass and the nominal D mass. This corresponds
to 15 MeV for all modes except the D0 → K−π+π0 chan-
nel where the corresponding value is 25 MeV. Using the
D candidates, we reconstruct D∗ mesons in the channels
D∗0 → D0π0, D∗+ → D+π0, and D∗+ → D0π+. The
maximal difference allowed between the reconstructed
mass and the nominal value is 3 MeV, which again cor-
responds to 3σ. For both the D and D∗ reconstruction,
we perform a mass-vertex constrained fit and discard
candidates for which this fit fails. We require that no ad-
ditional charged track be in the event other than the decay
products of the Btag, D(∗), the lepton, and the signal’s
bachelor pion. Furthermore, we require the lepton and
bachelor pion to be positively identified. We require that
the pion, lepton and D(∗) meson form a overall charge
neutral system with Btag. We also require MD(∗)π to be
less than 3 GeV/c2 and larger than 2.05 GeV/c2. There
is the possibility of signal overlap, i.e. the non-tag final
state may be combined in different signal states. This
overlap fraction is about 5 %. In such cases, we select
at most one Bsig candidate per event using two criteria.
First, we prefer D∗ over D in the final state since, oth-
erwise, we would have an extra π0 in the event, leading
to additional missing energy. Second, we select the D(∗)

whose reconstructed mass is closer to its nominal value.
The requirements described above for Mbc, ∆E, otag, and
MD(∗)π are determined by maximizing the figure of merit
S/
√
S +B using MC simulation; here, S and B are the

signal and background yields, respectively.

C. Extraction of the branching fraction

The branching fractions are determined by fitting the

M2
ν =

(
(pe+ + pe−)− pBtag − pD(∗) − pπ − pl

)2
/c2 spec-

trum. Here, (pe+ + pe−) is the sum of the four-momenta
of the colliding beam particles and the other terms are the
four-momenta of the indicated final-state particles. We
fit the spectrum with probability density function (PDF)
templates derived from simulation to extract the yields;
then we determine B, using the ratios of the fitted yields
to those in the original MC and the branching fractions
used in MC.

The agreement of the simulations with data is checked
by comparing the sidebands [−1 (GeV/c2)2 < M2

ν <
−0.5 (GeV/c2)2 and 2 (GeV/c2)2 < M2

ν < 3.5 (GeV/c2)2]
and the signal region for events that were discarded for
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failing to form a charge-neutral system. The reduced χ2,
obtained by comparing the difference between data and
MC, for these tests is 1.02, showing that the agreement
of data and MC is good.

For the channels B+ → D(∗)−π+`+ν and B0 →
D̄(∗)0π−`+ν, we consider the following components in
the MC:

• B → Dπ`ν

• B → D∗π`ν

• B → D(∗)π`ν where the charge of the B meson is
inconsistent with the charge of Btag

• B → D(∗)ππ`ν

• B → D(∗)`ν

• other BB̄

• continuum contributions.

Since B → D∗π`ν contributes also as feed-down to
B → Dπ`ν with a known ratio, we fit simultaneously
the B → Dπ`ν and B → D∗πlν channels. Charged and
neutral B channels are fitted separately.

The simulation sample corresponds to five times the
integrated luminosity of the data. With the given statis-
tics, not all templates can be determined precisely enough
for a stable fit. We therefore float only the B → Dπ`ν,
the B → D∗π`ν and the continuum yields. The con-
tribution from “other BB̄” is not small; however, the
shape is very similar to the continuum contribution and,
given the agreement of the data and simulation in the
sidebands, it is reasonable to fix this contribution to the
MC prediction. We use a binned extended maximum
likelihood fit to extract the yields. The range of the fit is
−0.3 (GeV/c

2
)2 < M2

ν < 2.0 (GeV/c
2
)2 with 140 bins for

the B+ → D−π+`+ν and B0 → D̄0π−`+ν channels. For
the B+ → D∗−π+`+ν and B0 → D̄∗0π−`+ν channels,
we use a range of −0.3 (GeV/c

2
)2 < M2

ν < 0.6 (GeV/c
2
)2

with 54 bins. In the given M2
ν ranges, we select 1566, 438,

3750, and 87 candidates for the B+ → D−π+`+ν, B+ →
D∗−π+`+ν, B0 → D̄0π−`+ν, and B0 → D̄∗0π−`+ν chan-
nels, respectively. Figure 1 shows the result of the fit to the
combined B+ → D−π+`+ν and B+ → D∗−π+`+ν chan-
nels and Fig. 2 for the combined B0 → D̄0π−`+ν and
B0 → D̄∗0π−`+ν channels. The χ2/Ndf value for the B+

and B0 mode fits is 1.1 and 1.2, respectively. Ndf refers
to the number of degrees of freedom in the fit. Since the
counts for some entries in the fitted histograms are small,
we use the equivalent quantity for Poisson statistics (see,
e.g., Eq. (40.16) in Ref. [20]). Tables I and II summarize
the fit results.

We check that the fits are unbiased and give the ex-
pected uncertainty by fitting ensembles of simulated
events generated by sampling from the fitting templates.
We plot the resulting residuals, fit them to a normal
distribution, and check the mean and standard devia-
tion. Finally, we correct for the fact that our efficiency in

Source yield

B+ → D−π+`+ν 515± 31

B+ → D∗−π+`+ν 571± 40

Continuum 444± 136

Other BB̄ (fixed) 360

Other semi-leptonic B decays (fixed) 114

TABLE I. Results for the combined fit B+ → D−π+`+ν and
B+ → D∗−π+`+ν .

Source yield

B0 → D̄0π−`+ν 537± 48

B0 → D̄∗0π−`+ν 878± 72

Continuum 1164± 323

Other BB̄ (fixed) 856

Other semi-leptonic B decays (fixed) 401

TABLE II. Results for the combined fit B0 → D̄0π−`+ν and
B0 → D̄∗0π−`+ν .

MD(∗)π is not constant. Since the shape of MD(∗)π, deter-
mined by the poorly-known widths and relative branching
fractions of the D∗∗ mesons, might be different in data
and simulation, the non-constant efficiency may introduce
an overall efficiency difference between data and simula-
tion. We use a quadratic function to fit the efficiency for
each channel after determining that higher-order polyno-
mials do not improve the fit quality significantly. Then
we determine the shape of MD(∗)π in data by subtracting
the background components determined from simulation
using the B determined from our fit to M2

ν . Comparing
the integrated efficiency in data and simulation for the
signal, we determine overall-efficiency calibration factors
of 1.008 ± 0.007 for B+ → D−π+`+ν, 0.983 ± 0.006 for
B0 → D̄0π−`+ν, 0.997 ± 0.002 for B+ → D∗−π+`+ν,
and 0.98± 0.01 for B0 → D̄∗0π−`+ν.

D. Determination of systematics

There are three main sources of systematic uncertainties
for our measurement: uncertainties in the simulation of
our detector and underlying physics process, the statistical
uncertainties of our fitting templates and the uncertainty
of the efficiency correction based on the MD(∗)π shapes
in data and MC. For all three of these sources, our strat-
egy to determine the systematic uncertainty is to use a
MC approach that is based on running 1000 ensembles of
simulated events, where the source of the systematic un-
certainty is varied as described below for each source. We
check that the refitted branching fraction in question fol-
lows a normal distribution and use the standard deviation
of this distribution as our systematic uncertainty.

For the uncertainties of the simulation of the detector,
we consider the uncertainty in the determination of the
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FIG. 1. (Color online) Binned extended maximum likelihood of the MC templates to the data for the combined fit to
B+ → D−π+`+ν (left) and B+ → D∗−π+`+ν (right). The data is shown with error bars. The legend in the left panel indicates
each component in the fit. The dots at the bottom of each panel show the pulls between the data and the fit. For better
visibility, we doubled the bin width for this plot.
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FIG. 2. (Color online) Binned extended maximum likelihood of the MC templates to the data for the combined fit to
B0 → D̄0π−`+ν (left) and B0 → D̄∗0π−`+ν (right). The data is shown with error bars. The legend in the left panel indicates
each component in the fit. The dots at the bottom of each panel show the pulls between the data and the fit. For better
visibility, we doubled the bin width for this plot.

correction factors of the simulation of the PID discussed
earlier as well as the uncertainty on the tracking efficiency.
Similarly, for the underlying physical processes, we con-
sider the uncertainty of the D and B meson branching
fractions and the D∗ and D∗∗ form factors. Further-

more, we consider the uncertainty of the calibration of
the tagging algorithm, the uncertainty on the total num-
ber of BB̄ pairs, and the uncertainty on the branching
fractions of Υ(4S) to B+B− and B0B̄0. These sources
of uncertainty of the simulation of the detector and un-
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B+ → D−π+`+ν B0 → D̄0π−`+ν

Charged PID 4.8 6.9

π0 PID 1.2 6.0

Tracking efficiency 2.6 3.6

D∗∗ form factors 0.3 0.2

D meson BRs 1.7 1.6

B meson BRs 0.0 0.1

Number of BB̄ 1.4 1.4

Tag efficiency 4.6 3.2

Υ(4S) BR 1.2 1.2

Combined (see text) 8.3 9.7

TABLE III. Sources of uncertainty in the MC simulations
considered for systematic uncertainties for the channels B+ →
D−π+`+ν and B0 → D̄0π−`+ν . The table lists the relative
uncertainties in the branching fractions in percent for each
channel for the combined fits. The last rows gives the combined
variation of all sources.

derlying physical processes are described in more detail
in Ref. [25]. Since it is reasonable to assume that the
sources of uncertainty follow a normal distribution, we
draw for each ensemble of simulated events, source, and
kinematic bin a new weight from a normal distribution
with the corresponding width. This is then used to do
an event-by-event weighting of the ensemble of simulated
events. The advantage of this method is that correlations
among the different sources for uncertainties as well as
the dependence on the event kinematics are taken into
account. By repeating this exercise while varying only one
source at a time, we estimate the relative contributions
of each source to the systematics. This decomposition is
shown in Tables III and IV. We omit the uncertainties due
to the K0

S efficiencies and the D∗ form factors because
these are consistent with zero relative to the tabulated
uncertainties.

From Tables III and IV, the combined systematic un-
certainty on the branching fraction by varying all sources
simultaneously are 8.3 % for B+ → D−π+`+ν, 9.7 % for
B0 → D̄0π−`+ν, 5.8 % for B+ → D∗−π+`+ν, and 7.2 %
for B0 → D̄∗0π−`+ν.

We estimate the systematic uncertainty propagated
from the statistical uncertainty of the fitting templates
to be 1.9%, 2.6%, 3.2%, and 3.5% for the B+ →
D−π+`+ν , B+ → D∗−π+`+ν , B0 → D̄0π−`+ν and
B0 → D̄∗0π−`+ν channels, respectively. These values
are estimated using 1000 ensembles of simulated events
for which we vary the templates using Poisson statis-
tics. Finally, the uncertainty on the detector-efficiency
dependence on MD(∗)π is estimated by varying the MD(∗)π

spectrum for each channel within Poisson statistics and
adding the difference of the average efficiency between the
±68 % boundaries of the fit to the efficiency versus MD(∗)π.
The resulting uncertainty propagated to the branching

fraction of interest is below 1%̇ for each channel. The

B+ → D∗−π+`+ν B0 → D̄∗0π−`+ν

Charged PID 2.1 6.5

π0 PID 2.0 5.2

Tracking efficiency 2.9 3.2

D∗∗ form factors 0.2 0.1

D meson BRs 1.8 1.1

B meson BRs 0.0 0.1

Number of BB̄ 1.4 1.4

Tag efficiency 4.2 2.8

Υ(4S) BR 1.2 1.2

Combined (see text) 5.8 7.2

TABLE IV. Sources of uncertainty in the MC simulations
considered for systematic uncertainties for the channels B+ →
D∗−π+`+ν andB0 → D̄∗0π−`+ν . The table lists the relative
uncertainties in the branching fractions in percent for each
channel for the combined fits. The last row gives the combined
variation of all sources.

final systematic uncertainties on the branching fraction
from all sources discussed above correspond to 8.6 % for
B+ → D−π+`+ν, 6.4 % for B+ → D∗−π+`+ν, 10.3 % for
B0 → D̄0π−`+ν, and 8.0 % for B0 → D̄∗0π−`+ν.

IV. RESULTS AND CONCLUSION

Using the combined fits, including the correction and
systematics from the MD(∗)π efficiency, simulation uncer-
tainties and statistical uncertainty of the templates, we
obtain the following values for the branching fractions:

• B(B+ → D−π+`+ν)
= [4.55 ± 0.27 (stat.) ± 0.39 (syst.)] ×10−3,

• B(B0 → D̄0π−`+ν)
= [4.05 ± 0.36 (stat.) ± 0.41 (syst.)]×10−3,

• B(B+ → D∗−π+`+ν)
= [6.03 ± 0.43 (stat.) ± 0.38 (syst.)]×10−3,

• B(B0 → D̄∗0π−`+ν)
= [6.46 ± 0.53 (stat.) ± 0.52 (syst.)]×10−3.

These are within one standard deviation of the current
world-average values [20] with the exception of B0 →
D̄∗0π−`+ν , which deviates by 1.7σ. These supersede
the previous Belle result [11]. The total uncertainties
on our measurement are slightly better than the current
world-average for the channels B0 → D̄0π−`+ν and B0 →
D̄∗0π−`+ν , whereas they are the same for the channels
B+ → D−π+`+ν and B+ → D∗−π+`+ν. A potential
extension to this work would be to confirm the recent
observation of B → D(∗)ππ`ν by BaBar [26] as well as to
analyze the MD(∗)π distribution to extract the branching
fractions and widths of the different D∗∗ mesons. Here,
there are still some discrepancies between the Belle [11]
and BaBar [13] measurements.
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