
Kennesaw State University
DigitalCommons@Kennesaw State University

Honors College Capstones and Theses Honors College

Spring 4-27-2018

IoT Voice, Gesture & Application Control System:
Proof of Concept Implementation
Deja Jackson

Zoe Cesar

Follow this and additional works at: https://digitalcommons.kennesaw.edu/honors_etd

This Capstone is brought to you for free and open access by the Honors College at DigitalCommons@Kennesaw State University. It has been accepted
for inclusion in Honors College Capstones and Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more
information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Jackson, Deja and Cesar, Zoe, "IoT Voice, Gesture & Application Control System: Proof of Concept Implementation" (2018). Honors
College Capstones and Theses. 19.
https://digitalcommons.kennesaw.edu/honors_etd/19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231828265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fhonors_etd%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/honors_etd?utm_source=digitalcommons.kennesaw.edu%2Fhonors_etd%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/honors?utm_source=digitalcommons.kennesaw.edu%2Fhonors_etd%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/honors_etd?utm_source=digitalcommons.kennesaw.edu%2Fhonors_etd%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/honors_etd/19?utm_source=digitalcommons.kennesaw.edu%2Fhonors_etd%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

KENNESAW STATE UNIVERSITY

IoT Voice & Gesture &
Application Control System:

Proof-of-Concept
Implementation

Honors Capstone Document

Deja Tyla Jackson & Zoe Cesar

4/9/2018

Revision History

Date Version Description Author

4/9/2018 1.0 Initial Honors Document Deja Tyla Jackson, &

Zoe Cesar

Table of Contents
1. Introduction 3

1.1 Purpose 3
1.2 Scope 3
1.3 Definitions, Acronyms and Abbreviations 3
1.4 Overview 3

2. Project Overview 4
2.1 Project purpose, scope and objectives 4
2.2 Assumptions and Constraints 4
2.3 Project Deliverables 4

3. Project Organization 4-5

4. Project Schedule 5-7

5. Design Overview 6-8

6. Requirements 8-9

7. Classes 9-26

8. Honors Reflection 26

.

Honors Capstone
1. Introduction

1.1 Purpose
The purpose of this Honors Capstone document is to provide a detailed overview of the
project, design elements and classes.

1.2 Scope
This Honors Capstone Document will be used by the team to illustrate the development
of the IoT Android Application. This document highlights a timeline of when activities
were completed, includes class tables and diagrams of the application and also includes
mockups and the final prototype of the app as well. The time breakdown of our project is
described in the Project Schedule below.

1.3 Definitions, Acronyms and Abbreviations
IoT-(Internet of Things) - a term used to describe devices that are connected over the
same wireless network that communicate with each other and exchange data

Robot (Raspberry Pi 3) - a car that consists of a Raspberry Pi 3 B as the brains, a
L298N Dual h-bridge motor controller, four 18650 batteries for power and a Makerfire 4-
wheel chassis.

Microcontroller- a small computer on one integrated circuit that can contains a CPU,
memory, and has dedicated pins that allow the board to interact with different types of
sensors (motion, light, etc.).

Initial Raspberry Pi 3 - the Raspberry Pi device in this system used for Voice
Recognition and Machine Learning

App - is an abbreviation of the word Application. For the purpose of this document App
refers to an Android Application.

1.4 Overview
 This Document contains the following:

Project Overview - This section provides an overview of the project, including the
purpose, scope, assumptions and project deliverables.

Project Organization – This section outlines the roles and responsibilities of each
contributor

Project Schedule – This section outlines the schedule and timeline that was used to
ensure project completion.

Design Overview – This section illustrated the User Interface of the Application

Requirements - This section discusses the performance, functional and non-functional
requirements of the system.

Analysis Classes – This section outlines the classes involved in the project.

Honors Reflection - This section discusses the Honors Impact on each individual and the
Foundations of Learning they believe are involved in the project.

2. Project Overview

2.1 Project purpose, scope and objectives
This project is designed as a part of a larger ongoing research project at

Kennesaw State University called “Internet-of-Things based Smart Classroom
Environment” undertaken by the Wireless Mobile Computing research group of the
Department of Computer Science.

The purpose of this project is to build upon the senior project aspect of this
project for the honors component. For senior project, our group is working on a project
involving ongoing research for an “Internet-of-Things based Smart Classroom
Environment”. The project is entitled “Motion and Audio based Control System: Proof-
of-Concept Implementation on Robotics via Internet-of-Things (IoT) Technologies. This
project involves the use of a Raspberry Pi 3 and SenseHAT used to command a robot to
execute motions through means of a cloud server, and IoT technologies. More
specifically, the microcontroller will be trained to recognize a set of 5 pre-defined
gestures, and these gestures will be stored on the cloud server. The robot will retrieve
these commands from the cloud server and react according to the gesture it has
recognized. This project is but a single yet powerful tool for future applications in smart
classroom technologies.

For the honors aspect of this project, we plan to develop an android application to
serve as another means of control for the robot and can serve as a visual middle man
within the system. The honors portion of this project involves modifying the gesture
recognition system from senior project, discovering how to send messages between the
Raspberry Pi and the Android Phone/Application through the cloud server, building an
Android Application, sending messages between the application and the robot, and
creating scripts to control the robot through Bluetooth.

2.2 Assumptions and constraints
The project has a 16-week timeframe and therefore should be completed and ready to be
presented by the scheduled day of the final presentation.

For this project to work successfully and as intended, it is constrained to both Bluetooth
and Wi-Fi capabilities.

2.3 Project Deliverables
 The following deliverables will be produced during the project:

• Project Management

o Proposal

o Initial Signature Form

o Mid Progress Report and Signature Form

o

• Implementation

o Android Application

3. Project Organization

The responsibilities of each team member are as follows:

Name Responsibility

Deja Tyla
Jackson

Design the Application UI, Software Documentation, Poster, Modifying
Robot Scripts, Android Development(Robot Controls page and Voice
Control page)

Zoe Cesar Setup GitHub, Software Documentation, Poster, Modifying Robot Scripts,
Android Development(Cloud Controls page and Help Page)

4. Project Schedule

The project schedule for this project is as follows:

• Week of Jan 14:

o Due on 1/16: Finalize Project Schedule

o Due on 1/21: Finalize Project Idea and Very Clear Idea of the Project

• Week of Jan 21:

o Due on 1/28: Finalize the Application Design and Finalize a Logo

• Week of Jan 28:

o Due on 2/4: Learn the basics of Android and have an outline of how the
application will work programmatically; Continue to design the pages

• Week of Feb 4:

o Due on 2/11: Have the app structure mostly completed (minus the external
connections- dead links or something to external connections)

• Week of Feb 11:

o Due on 2/18: Research and Finalize a method of connecting the Robot and
Application

• Week of Feb 18:

o Due on 2/25: Continue connecting the app and the robot

• Week of Feb 25:

o Due on 3/4: Work on finding a way to connect the microcontroller to the app and
have something sent (Via Bluetooth for now, if supported), Fully Connect App
and Robot

• Week of March 4:

o Due on 3/11: Fully connect the app and the microcontroller

• Week of March 11:

o Due on 3/18: Research cloud server implementation on the app and finalize the
implementation

• Week of March 18:

o Due on 3/25: Finish cloud server connection, Research Elements for the Poster

• Week of March 25:

o Due on 4/1: Finishing touches on UI and any other of the previous, Research
Elements for the Poster

• Week of April 1:

o Due on 4/8: Research Elements for the Poster, Finish the Poster, Fix any bugs in
the app and have a user test it

• Week of April 8:

o Due on 4/15: Demonstrate and Submit Capstone Poster to Faculty Supervisor
and Department Liaison (4/13)

• Week of April 15:

o Due on 4/22: Submit Capstone Project to Honors College

• Week of April 22:

o Due on 4/27: Capstone Graduation Celebration

5. Design Overview
The images below illustrate the UI of the Application:

Voice Control

Robot Control

Cloud Control

FAQs

6. Requirements
ID: R1
Title: Cloud Latency
Description: Real-time latency of up to 5 seconds for cloud connection to app

ID: R2
Title: Bluetooth Latency
Description: Real-time latency of up to 4 seconds for the Bluetooth connection to the
robot

ID: R3
Title: Usage of the Application
Description: The android application should be easy to use and understand through the
use of simple and efficient User Interface.

ID: R4
Title: Responsiveness of the Application
Description: The android application should be responsive and not lag in performance

ID: R5
Title: Voice Control
Description: The voice recognition should be accurate and have the ability to indicate
the correct voice command.

ID: R6
Title: Usage of battery
Description: The Android device requires sufficiently charged batteries and operating
hardware components.

7. Classes

Class name: HelpActivity

Brief description: This activity holds the FAQ page of the app

Methods (operations) Method Description

protected void
onCreate(Bundle
savedInstanceState)

This method is what is created when the HelpActivity is
run/ selected

Programming Description Language:

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_help);

Class name: CloudActivity

Brief description: This activity page is the page that holds all the information that the
app receives from the cloud server. It also transfers the cloud message to the robot
through bluetooth.

Attributes (fields) Attribute Description

private static final
String
CUSTOMER_SPECIF
IC_ENDPOINT =
"a2zgnpn7ya2td1.iot.u
s-east-
2.amazonaws.com";

AWS Iot CLI describe-endpoint call returns:
XXXXXXXXXX.iot.<region>.amazonaws.com

private static final
String
COGNITO_POOL_ID
= "us-east-
2:be3fd889-5b08-
447a-afa7-
4fc749eed242";

Cognito pool ID. For this app, pool needs to be
unauthenticated pool with AWS IoT permissions.

private static final
String
AWS_IOT_POLICY_N
AME =
"GesturePolicy";

Name of the AWS IoT policy to attach to a newly created
certificate

private static final
Regions MY_REGION
=
Regions.US_EAST_2;

Region of AWS IoT

 private static final
String
KEYSTORE_NAME =
"iot_keystore";

Filename of KeyStore file on the filesystem

private static final
String
CERTIFICATE_ID =
"default";

Certificate and key aliases in the KeyStore

private static final
String
KEYSTORE_PASSW
ORD = "password";

Password for the private key in the KeyStore

TextView
tvLastMessage;
TextView tvStatus;

TextViews that display information from the cloud

EditText txtSubcribe;
EditText txtTopic;
EditText txtMessage;

Text that changes based on user activity

AWSIotClient
mIotAndroidClient;
AWSIotMqttManager
mqttManager;
String clientId;
String keystorePath;
String keystoreName;
String
keystorePassword;

KeyStore
clientKeyStore = null;
String certificateId;

Clients that interact with the app and AWS

Button btnConnect;
Button btnSubscribe;
Button btnDisconnect;

Buttons that connect to the cloud

BluetoothSocket
mmSocket = null;

BluetoothSocket set to null

BluetoothDevice
mmDevice = null;

Bluetooth Device set to null

final byte delimiter =
33;

Sets the delimiter to a final value of 33

int readBufferPosition
= 0;

Buffer position set to the initial position of 0

Methods
(operations)

Method Description

protected void
onCreate(Bundle
savedInstanceState)

Method that launches when the Cloud Activity is run

Programming Description Language:

super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_cloud);
txtSubcribe = (EditText) findViewById(R.id.txtSubcribe);
txtTopic = (EditText) findViewById(R.id.txtTopic);
txtMessage = (EditText) findViewById(R.id.txtMessage);

tvLastMessage = (TextView)
findViewById(R.id.tvLastMessage);
tvStatus = (TextView) findViewById(R.id.tvStatus);

btnConnect = (Button) findViewById(R.id.btnConnect);
 btnConnect.setOnClickListener(connectClick);
btnConnect.setEnabled(false);

btnSubscribe = (Button) findViewById(R.id.btnSubscribe);
 btnSubscribe.setOnClickListener(subscribeClick);

btnDisconnect = (Button) findViewById(R.id.btnDisconnect);
 btnDisconnect.setOnClickListener(disconnectClick);

clientId = UUID.randomUUID().toString();
// Initialize the AWS Cognito credentials provider
// MQTT Client
 mqttManager = new AWSIotMqttManager(clientId,
CUSTOMER_SPECIFIC_ENDPOINT);

// Set keepalive to 10 seconds. Will recognize disconnects
more quickly but will also send
 // MQTT pings every 10 seconds.
 mqttManager.setKeepAlive(10);

// Set Last Will and Testament for MQTT. On an unclean
disconnect (loss of connection)
 // AWS IoT will publish this message to alert other clients.
 AWSIotMqttLastWillAndTestament lwt = new
AWSIotMqttLastWillAndTestament("my/lwt/topic", "Android
client lost connection", AWSIotMqttQos.QOS0);
 mqttManager.setMqttLastWillAndTestament(lwt);

// IoT Client (for creation of certificate if needed)

// To load cert/key from keystore on filesystem
// load keystore from file into memory to pass on connection

new Thread(new
Runnable()
 @Override
 public void run()

Runs when the user requests to connect to the cloud server

Programming Description Language:
 try {
// Create a new private key and certificate. This call
// creates both on the server and returns them to the device.

 // store in keystore for use in MQTT client saved as alias
"default" so a new certificate isn't generated each run of this
application

// load keystore from file into memory to pass on connection

clientKeyStore =
AWSIotKeystoreHelper.getIotKeystore(certificateId,
keystorePath, keystoreName, keystorePassword);

// Attach a policy to the newly created certificate.
 // This flow assumes the policy was already created in
 // AWS IoT and we are now just attaching it to the certificate.
 AttachPrincipalPolicyRequest
policyAttachRequest = new AttachPrincipalPolicyRequest();
 policyAttachRequest.setPolicyName(AWS_IO
T_POLICY_NAME);
 policyAttachRequest.setPrincipal(createKeysA
ndCertificateResult.getCertificateArn());
 mIotAndroidClient.attachPrincipalPolicy(policy
AttachRequest);

runOnUiThread(new Runnable() {
@Override
public void run() {
 btnConnect.setEnabled(true); } });
 } catch (Exception e) {
Log.e(LOG_TAG, "Exception occurred when generating new
private key and certificate.", e);}} }).start();}}

View.OnClickListener
connectClick = new
View.OnClickListener(
) {
 @Override
 public void
onClick(View v) {

Listener for when the user connects to the cloud

Programming Description Language:
Log.d(LOG_TAG, "clientId = " + clientId);
try { mqttManager.connect(clientKeyStore, new
AWSIotMqttClientStatusCallback() {
 @Override
public void onStatusChanged(final AWSIotMqttClientStatus
status, final Throwable throwable) { Log.d(LOG_TAG, "Status
= " + String.valueOf(status));

runOnUiThread(new Runnable() {
@Override
public void run() {
if (status == AWSIotMqttClientStatus.Connecting) {
 tvStatus.setText("Connecting...");
} else if (status == AWSIotMqttClientStatus.Connected)
{ tvStatus.setText("Connected"); } else if
(status == AWSIotMqttClientStatus.Reconnecting) {
if (throwable != null) {
Log.e(LOG_TAG, "Connection error.", throwable);}
 tvStatus.setText("Reconnecting");}
else if (status == AWSIotMqttClientStatus.ConnectionLost) {if
(throwable != null) {

Log.e(LOG_TAG, "Connection error.", throwable);}
 tvStatus.setText("Disconnected");
 } else { tvStatus.setText("Disconnected");}}});}});} catch (final
Exception e) { Log.e(LOG_TAG, "Connection error.",
e);tvStatus.setText("Error! " + e.getMessage());}}};

View.OnClickListener
subscribeClick = new
View.OnClickListener(
) {
 @Override
 public void
onClick(View v)

Listener for when the user subscribes to the cloud

Programming Description Language:

final String topic = txtSubcribe.getText().toString();

Log.d(LOG_TAG, "topic = " + topic);
try { mqttManager.subscribeToTopic(topic,
AWSIotMqttQos.QOS0, new
AWSIotMqttNewMessageCallback() {

@Override
public void onMessageArrived(final String topic, final byte[]
data) { runOnUiThread(new Runnable() {
@Override
public void run() {try {String message = new String(data,
"UTF-8"); Log.d(LOG_TAG,
"Message arrived:");
Log.d(LOG_TAG, " Topic: " +
topic); Log.d(LOG_TAG, " Message: "
+ message);
 tvLastMessage.setText(message);}
catch (UnsupportedEncodingException e)
{ Log.e(LOG_TAG, "Message
encoding error.", e);}}});}}); } catch (Exception e)
{Log.e(LOG_TAG, "Subscription error.", e);}}};

View.OnClickListener
disconnectClick = new
View.OnClickListener(
) {
 @Override
 public void
onClick(View v)

Listener for when the user disconnects from the cloud

Programming Language Description:
try {mqttManager.disconnect(); } catch (Exception e)
{Log.e(LOG_TAG, "Disconnect error.", e); }}};}

sendBtMsg(String
mes)

Sends the bluetooth message to the Raspberry Pi

Programming Description Language:
UUID uuid = UUID.fromString("94f39d29-7d6d-437d-973b-
fba39e49d4ee"); //Standard SerialPortService ID
 try {
 mmSocket =
mmDevice.createRfcommSocketToServiceRecord(uuid);
 if (!mmSocket.isConnected()){

 mmSocket.connect();
 }
 String msg = mes;
 OutputStream mmOutputStream =
mmSocket.getOutputStream();
 mmOutputStream.write(msg.getBytes()); //Sends
Messages
 } catch (IOException e) {
 e.printStackTrace();
 }

onCreateOptionsMenu
(Menu menu)

Creates menu to navigate to different pages of the
application.

Programming Description Language:
getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;

onOptionsItemSelecte
d(MenuItem item)

Based on the id of the selected menu item, the user will be
redirected to the appropriate page of the application.

Programming Description Language:
int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.main) {
 //return true;
 //TODO: Make this work to redirect
 //startActivity(new Intent(CloudActivity.this,
MainActivity.class));

 }
 else if(id == R.id.voice){
 startActivity(new Intent(CloudActivity.this,
VoiceActivity.class));
 //return true;
 }
 else if(id == R.id.cloud)
 {
 startActivity(new Intent(CloudActivity.this,
CloudActivity.class));
 //return true;
 }
 else{
 startActivity(new Intent(CloudActivity.this,
HelpActivity.class));
 //return true;
 }
 return super.onOptionsItemSelected(item);

sendCommandRight() Creates a Toast to indicate that the Pybot is moving as
indicated.

Programming Description Language:
Toast toast=Toast.makeText(this, "PyBot is turning right",
Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommandLeft() Creates a Toast to indicate that the Pybot is moving as
indicated.

Programming Description Language:
Toast toast=Toast.makeText(this, "PyBot is turning left",
Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommandForwar
d()

Creates a Toast to indicate that the Pybot is moving as
indicated.
Programming Description Language:
Toast toast=Toast.makeText(this, "PyBot is moving
forwards", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommandBackw
ards()

Creates a Toast to indicate that the Pybot is moving as
indicated.
Programming Description Language:

Toast toast=Toast.makeText(this, "PyBot is moving
backwards", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommand360() Creates a Toast to indicate that the Pybot is moving as
indicated.
Programming Description Language:
 Toast toast=Toast.makeText(this, "PyBot is turning 360
degrees", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

Class name: VoiceActivity

Brief description: This class allows the user to speak and translates the command
into text and displays it on the screen. The user is able to press the robot button to
send the bluetooth message to the robot.

Attributes (fields) Attribute Description

private TextView
voiceOutputText;

TextView for the Speech Output

private ImageButton
voiceBt;

ImageButton to initiate recording voice when pressed

private ImageButton
robotBt;

ImageButton to iniaite a response from the robot when
pressed

BluetoothSocket mmSocket
= null;

BluetoothSocket set to null

BluetoothDevice mmDevice
= null;

Bluetooth Device set to null

private static final int
REQ_CODE_SPEECH_IN
PUT = 100;

Final Variable for the Speech Input

final byte delimiter = 33; Sets the delimiter to a final value of 33

int readBufferPosition = 0; Buffer position set to the initial position of 0

Methods (operations) Method Description

onCreate(Bundle
savedInstanceState)

Establishes the buttons, button events and
the bluetooth pairing to the phone.

Programming Description Language:
super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_voice);

 voiceOutputText = (TextView)
findViewById(R.id.voiceOutput);
 voiceBt = (ImageButton) findViewById(R.id.voice);
 robotBt = (ImageButton) findViewById(R.id.robot);

 voiceBt.setOnClickListener(new
View.OnClickListener() {

 @Override
 public void onClick(View v) {
 startVoiceInput();
 }
 });
 //set the onClick to the Robot Command*/
 robotBt.setOnClickListener(new
View.OnClickListener() {

 @Override
 public void onClick(View v) {
 sendRobotCommand();
 }
 }); //set the onClick to the Robot Command

 //Setup Bluetooth Connection and Make sure it is
enabled
 BluetoothAdapter mBluetoothAdapter =
BluetoothAdapter.getDefaultAdapter();

//TOO much to include -- Code to establish the bluetooth
and pairing

startVoiceInput() Starts the Activity to begin the voice activity and record
speech from the user.

Programming Description Language:
Intent intent = new
Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEEC
H);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUA
GE_MODEL,
RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUA
GE, Locale.getDefault());
 intent.putExtra(RecognizerIntent.EXTRA_PROMPT
, "Say a Command! Recognized Commands: Spin, Left,
Right, Back, Forward");

 try {
 startActivityForResult(intent,
REQ_CODE_SPEECH_INPUT);
 } catch (ActivityNotFoundException a) {

 }

onActivityResult(int
requestCode, int
resultCode, Intent data)

Obtains the result from the voice data and sets the
voiceOutput value.

Programming Description Language:
super.onActivityResult(requestCode, resultCode, data);

 switch (requestCode) {
 case REQ_CODE_SPEECH_INPUT: {
 if (resultCode == RESULT_OK && null !=
data) {
 ArrayList<String> result =
data.getStringArrayListExtra(RecognizerIntent.EXTRA_
RESULTS);
 voiceOutputText.setText(result.get(0));
 }
 break;
 }

 }

sendRobotCommand() Calls upon methods in order to create Toasts to show
the motion. It creates threads to send to the robot in
bluetooth.

Programming Description Language:

if(voiceOutputText.getText().toString().contains("left"))
 {
 Thread th = new Thread(new WThread("3"));
 th.start();
 sendCommandLeft();
 }else
if(voiceOutputText.getText().toString().contains("right"))
 {
 Thread th = new Thread(new WThread("4"));
 th.start();
 sendCommandRight();
 }else if(voiceOutputText.toString().contains("spin"))
 {
 Thread th = new Thread(new WThread("5"));
 th.start();
 sendCommand360();
 }
 else
if(voiceOutputText.getText().toString().contains("back"))
 {
 Thread th = new Thread(new WThread("2"));
 th.start();
 sendCommandBackwards();

 }else
if(voiceOutputText.getText().toString().contains("forward
"))
 {
 Thread th = new Thread(new WThread("1"));
 th.start();
 sendCommandForward();
 }
 else
 { //Command not recognized
 Toast toast = Toast.makeText(this, "PyBot has
not received a recognized command",
Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);
 }

closeToast(Menu menu) Closes the Toast after a specified delay

Programming Description Language:
Handler handler = new Handler();
 handler.postDelayed(new Runnable() {
 @Override
 public void run() {
 toast2.cancel();
 }
 }, 500);

onCreateOptionsMenu(Men
u menu)

Creates menu to navigate to different pages of the
application.

Programming Description Language:
getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;

onOptionsItemSelected(Me
nuItem item)

Based on the id of the selected menu item, the user will
be redirected to the appropriate page of the application.

Programming Description Language:
int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.main) {
 startActivity(new Intent(VoiceActivity.this,
MainActivity.class));
 //return true;
 }
 else if(id == R.id.voice){
 startActivity(new Intent(VoiceActivity.this,
VoiceActivity.class));

 //return true;
 }
 else if(id == R.id.cloud)
 {
 startActivity(new Intent(VoiceActivity.this,
CloudActivity.class));
 //return true;
 }
 else{
 startActivity(new Intent(VoiceActivity.this,
HelpActivity.class));
 //return true;
 }
 return super.onOptionsItemSelected(item)

sendBtMsg(String mes) Sends the bluetooth message to the Raspberry Pi

Programming Description Language:
UUID uuid = UUID.fromString("94f39d29-7d6d-437d-
973b-fba39e49d4ee");
 try {
 mmSocket =
mmDevice.createRfcommSocketToServiceRecord(uuid)
;
 if (!mmSocket.isConnected()){
 mmSocket.connect();
 }
 String msg = mes;
 OutputStream mmOutputStream =
mmSocket.getOutputStream();
 mmOutputStream.write(msg.getBytes()); //Sends
Messages
 } catch (IOException e) {
 e.printStackTrace();
 }

sendCommandRight() Creates a Toast to indicate that the Pybot is moving as
indicated.

Programming Description Language:
Toast toast=Toast.makeText(this, "PyBot is turning
right", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommandLeft() Creates a Toast to indicate that the Pybot is moving as
indicated.

Programming Description Language:
Toast toast=Toast.makeText(this, "PyBot is turning left",

Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommandForward() Creates a Toast to indicate that the Pybot is moving as
indicated.
Programming Description Language:
Toast toast=Toast.makeText(this, "PyBot is moving
forwards", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommandBackwards() Creates a Toast to indicate that the Pybot is moving as
indicated.
Programming Description Language:

Toast toast=Toast.makeText(this, "PyBot is moving
backwards", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommand360() Creates a Toast to indicate that the Pybot is moving as
indicated.
Programming Description Language:
 Toast toast=Toast.makeText(this, "PyBot is turning 360
degrees", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

Class name: MainActivity

Brief description: This class allows the user to control the robot through pressing the
buttons on the controller displayed in the xml page and sending a Bluetooth message
to the robot.

Attributes (fields) Attribute Description

BluetoothSocket mmSocket =
null;

BluetoothSocket set to null

BluetoothDevice mmDevice =
null;

BluetoothDevice set to null

final byte delimiter = 33; Sets the delimiter to a final value of 33

int readBufferPosition = 0; Buffer position set to the initial position of 0

boolean connectionStatus =
false;

Boolean Value to indicate if the bluetooth is
connected

private TextView rConnection; TextView to display text if the robot is connected

Methods (operations) Method Description

onCreate(Bundle
savedInstanceState)

Handles the onCreate of the Page and handles the
Thread to send the bluetooth message

Programming Description Language:
super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 final Handler handler = new Handler();

 //Setup Bluetooth Connection and Make sure it
is enabled
 BluetoothAdapter mBluetoothAdapter =
BluetoothAdapter.getDefaultAdapter();

//TOO much to include -- code to create the Thread
to handle sending the Bluetooth Message so the
Application doesn’t crash
//TOO much to include -- on click events for all of the
buttons

sendBtMsg(String mes) Sends the bluetooth message to the Raspberry Pi

Programming Description Language:
UUID uuid = UUID.fromString("94f39d29-7d6d-
437d-973b-fba39e49d4ee"); //Standard
SerialPortService ID
 try {
 mmSocket =
mmDevice.createRfcommSocketToServiceRecord(u
uid);
 if (!mmSocket.isConnected()){
 mmSocket.connect();
 }

 String msg = mes;
 OutputStream mmOutputStream =
mmSocket.getOutputStream();
 mmOutputStream.write(msg.getBytes());
//Sends Messages
 } catch (IOException e) {
 e.printStackTrace();
 }

sendCommandRight() Creates a Toast to indicate that the Pybot is moving
as indicated.

Programming Description Language:
Toast toast=Toast.makeText(this, "PyBot is turning
right", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommandLeft() Creates a Toast to indicate that the Pybot is moving
as indicated.

Programming Description Language:
Toast toast=Toast.makeText(this, "PyBot is turning
left", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommandForward() Creates a Toast to indicate that the Pybot is moving
as indicated.
Programming Description Language:
Toast toast=Toast.makeText(this, "PyBot is moving
forwards", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommandBackwards() Creates a Toast to indicate that the Pybot is moving
as indicated.
Programming Description Language:

Toast toast=Toast.makeText(this, "PyBot is moving
backwards", Toast.LENGTH_LONG);
 toast.show();
 closeToast(toast);

sendCommand360() Creates a Toast to indicate that the Pybot is moving
as indicated.
Programming Description Language:
 Toast toast=Toast.makeText(this, "PyBot is turning
360 degrees", Toast.LENGTH_LONG);

 toast.show();
 closeToast(toast);

closeToast(Menu menu) Closes the Toast after a specified delay

Programming Description Language:
Handler handler = new Handler();
 handler.postDelayed(new Runnable() {
 @Override
 public void run() {
 toast2.cancel();
 }
 }, 500);

onCreateOptionsMenu(Menu
menu)

Creates menu to navigate to different pages of the
application.

Programming Description Language:
getMenuInflater().inflate(R.menu.menu_main,
menu);
 return true;

onOptionsItemSelected(MenuIt
em item)

Based on the id of the selected menu item, the user
will be redirected to the appropriate page of the
application.

Programming Description Language:
int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.main) {
 //return true;
 //TODO: Make this work to redirect
 //startActivity(new Intent(MainActivity.this,
MainActivity.class));

 }
 else if(id == R.id.voice){
 startActivity(new Intent(MainActivity.this,
VoiceActivity.class));
 //return true;
 }
 else if(id == R.id.cloud)
 {
 startActivity(new Intent(MainActivity.this,
CloudActivity.class));
 //return true;
 }
 else{
 startActivity(new Intent(MainActivity.this,

HelpActivity.class));
 //return true;
 }
 return super.onOptionsItemSelected(item);

8. Honors Reflection

8.1 Impact and Foundations of Learning – Zoe Cesar
This project will move me in the direction of my goals for the future since machine

learning is a hot research field in Computer Science. By learning these techniques, I will be able
to use them in a wide variety of tasks that deal with data analysis. The skills I utilize in this
project will demonstrate my skills in leadership, critical thinking, information fluency, effective
communication, and creativity and innovation. As part of a team, communicating effectively is
key to having a successful group dynamic, as well being able to lead when leadership is needed. I
will use critical thinking when trying to solve problems along the way, such as connecting the app
to the cloud. Information fluency will come with the research and being able to explain what I
learned clearly and concisely. Lastly, as this project involves UI design of an app as well as app
functionality, creativity will be used in order to give the user a great UX experience with the app.

8.2 Impact and Foundations of Learning – Deja Tyla Jackson
 This project aligns with my future because I aspire to be a Computer Scientist within the
domain of cybersecurity. Cybersecurity is an ever growing field, because many companies are not
taking effective steps to protect their data and information. IoT is renown today as many of the
top companies such as Samsung and Amazon take advantage of the ability of using smart devices
that can assist humans in everyday tasks. For example, the IoT permits users to track their
refrigerator contents from an application on their mobile device, or to even change the
temperature of their homes. While these technologies may seem resourceful, they generally lack
efficient security protocols and are vulnerable to attacks. As a future security specialist, I aspire to
have expertise in protecting users and ensuring these devices meet the adequate security
protocols.

 In my opinion, this project aligns with the “Critical thinking” Honors Foundation of
Learning as well as the “Creativity and Innovation” foundation. Critical thinking is a very
complex concept, and involves unbiased analysis and evaluations of facts in order to come to a
conclusion. Well-designed projects involve taking skills and knowledge, to create a product. This
project requires me to take the skills I have learned in User Interface Design to design a UI, and
the skills I learned in Programming principles to develop the application, as well as learn new
skills to connect and use web servers and Bluetooth communication for IOT devices. Creativity
and Innovation is also a part of this honors project because I am able to have ingenuity in the
development and design of my idea. Therefore, this project can be categorized as honors because
it goes above and beyond what I am already doing in Senior Project to perfect an idea in a
creative manner. Additionally, I am applying many concepts I have learned over a variety of
courses, research and internship experiences to create a tangible software product.

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Spring 4-27-2018

	IoT Voice, Gesture & Application Control System: Proof of Concept Implementation
	Deja Jackson
	Zoe Cesar
	Recommended Citation

	IoT Voice & Gesture & Application Control System: Proof-of-Concept Implementation

