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Three-loop cusp anomalous dimension and a conjecture
for n loops

Nikolaos Kidonakis

Department of Physics, Kennesaw State University,

Kennesaw, GA 30144, USA

Abstract

I present analytical expressions for the cusp anomalous dimension in QCD through

three loops in terms of elementary functions and ordinary polylogarithms. I observe

interesting relations between the results at different loops and provide a conjecture for

the n-loop cusp anomalous dimension in terms of the lower-loop results. I also present

numerical results and simple approximate formulas for the cusp anomalous dimension

relevant to top-quark production.

1 Introduction

The cusp anomalous dimension is a fundamental object in quantum field theory, and QCD in
particular, that controls the infrared behavior of perturbative scattering amplitudes [1–9]. Its
study and related techniques have been useful in a large variety of subjects in perturbative
QCD, including soft anomalous dimensions and infrared structure in hard-scattering processes
(see e.g. [10–26] and references therein).

The first two-loop calculation of the cusp anomalous dimension was performed in [4] and the
result included a few uncalculated integrals. An independent calculation, specifically targeted
towards heavy-quark production, appeared later in [5] (see also [6]) and provided an explicit
result in terms of elementary functions, dilogarithms, and trilogarithms.

Recently, the three-loop result for the cusp anomalous dimension in QCD was calculated
and presented in [9]. The expression is much more complicated and is given in terms of a
large number of harmonic polylogarithms, each of which is defined iteratively and involves
multiple integrals with up to five integrations. In this paper we use the results of [9] and
present the cusp anomalous dimension in a different but fairly compact expression involving
ordinary polylogarithms. All but a few of the harmonic polylogarithms can be expressed in
terms of elementary functions and ordinary polylogarithms, with the remaining few involving
single integrals (complete results for those calculations are given in the Appendix).

We find that the structure of the results is more transparent in the new expressions. In fact
our expressions point to relations among the cusp anomalous dimensions at different number
of loops and suggest a pattern. Thus, a conjecture is made that expresses the n-loop result in
terms of results through n− 1 loops, and we use the conjecture to provide some predictions for
the four-loop and five-loop cusp anomalous dimensions in terms of known and some unknown
functions.

The cusp anomalous dimension is a basic ingredient for calculations of soft anomalous
dimensions for various processes, including top-quark production. Numerical results are shown,
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Figure 1: Typical one-loop (left) and two-loop (middle and right) diagrams for the cusp anoma-
lous dimension.

and simple but excellent approximations are also derived for the cusp anomalous dimension
through three loops. We hope that the explicit analytical and numerical results presented in
this paper will be useful in higher-loop calculations of soft anomalous dimensions. For example,
top-quark production would be one important application.

In the next section we provide explicit results for the cusp anomalous dimension through
three loops. In Section 3 we present numerical results which are particularly relevant to top-
quark production, and we construct simple approximations to the full analytical result. Section
4 presents the conjecture for n loops. We conclude in Section 5. Details and results for the
harmonic polylogarithms and other functions are provided in the Appendix.

2 Cusp anomalous dimension at three loops

The perturbative expansion of the cusp anomalous dimension in QCD is written as

Γcusp =
∞
∑

n=1

(

αs

π

)n

Γ(n) (2.1)

where αs is the strong coupling. Some typical diagrams contributing at one and two loops are
shown in Fig. 1, and at three loops in Fig. 2, with the eikonal (Wilson) lines representing the

massive quarks. The cusp angle θ is given by θ = cosh−1(vi · vj/
√

v2i v
2
j ) where vµi and vµj are

velocity vectors for quarks i and j. In dimensional regularization with 4 − ǫ dimensions, the
cusp anomalous dimension is the coefficient of the ultraviolet 1/ǫ pole arising from the eikonal
diagrams. See Ref. [5] for more details.

The one-loop expression for the cusp anomalous dimension is given in terms of the cusp
angle θ by

Γ(1) = CF (θ coth θ − 1) (2.2)

where CF = (N2
c − 1)/(2Nc) with Nc the number of colors.

The two-loop expression for the cusp anomalous dimension can be written as

Γ(2) =
K

2
Γ(1) +

1

2
CFCA

{

1 + ζ2 + θ2 − coth θ

[

ζ2θ + θ2 +
θ3

3
+ Li2

(

1− e−2θ
)

]

+ coth2 θ

[

−ζ3 + ζ2θ +
θ3

3
+ θ Li2

(

e−2θ
)

+ Li3
(

e−2θ
)

]}

(2.3)

2



Figure 2: Typical three-loop diagrams for the cusp anomalous dimension.

where K = CA(67/18− ζ2)− 10TFnf/9 with CA = Nc, TF = 1/2, and nf the number of light
quark flavors. The expression shown in Eq. (2.3) is even simpler than the one presented in
Ref. [5]. Γ(2) involves a few elementary functions, ζ2 and ζ3 constants, two dilogarithms, and
a trilogarithm (see the Appendix for definitions of the zeta constants and ordinary polyloga-
rithms). The nf terms in Γ(2) arise from quark loops, e.g. as shown in the rightmost diagram
of Fig. 1.

The three-loop result has been presented in [9] in terms of a large number of harmonic poly-
logarithms of weight up to 5, each one of which involves up to quintiple integrals. After explicit
evaluation of those integrals, as detailed in the Appendix, and after some rearrangements and
grouping of terms, the three-loop cusp anomalous dimension can be rewritten compactly as

Γ(3) = CFC
2
Ac1 −

Γ(1)

27
T 2
Fn

2
f

+

{

−
10

9
Γ(2) +

Γ(1)

9

[

5K + CF

(

9ζ3 −
165

16

)

+ CA

(

5ζ2 −
21

2
ζ3 −

209

24

)]

}

TFnf

(2.4)

where the n2
f terms are proportional to Γ(1), and the nf terms have been written compactly in

terms of Γ(1) and Γ(2). Note that the nf and n2
f terms are given by diagrams such as the middle

and right graphs, respectively, of Fig. 2. The term c1 is independent of nf and it is given by

c1 = −
199

288
+

67

18
ζ2 −

7

12
ζ3 −

15

4
ζ4 −

ζ2
2
θ +

(

29

18
−

ζ2
2

)

θ2 −
θ3

12
−

θ4

24

+
θ2

4
ln
(

1− e−2θ
)

−
3

4
θLi2

(

e−2θ
)

−
5

8
Li3

(

e−2θ
)

+coth θ

{

−
ζ3
4
+

15

8
ζ4 +

(

245

96
−

29

9
ζ2 −

ζ3
24

+
15

4
ζ4

)

θ +
(

−
29

18
+

3

2
ζ2

)

(

θ2 +
θ3

3

)

+
7

24
θ4 +

θ5

24
+

1

2

(

θ2 + θ3
)

ln
(

1− e−2θ
)

+

(

−
29

18
+

ζ2
2

)

Li2
(

1− e−2θ
)

−
3

4
θ2Li2

(

e−2θ
)

+
1

4
(1− 7θ)Li3

(

e−2θ
)

+
1

2
Li3

(

1− e−2θ
)

−
15

8
Li4

(

e−2θ
)

}

+coth2 θ

{

−
67

36
ζ3 −

19

8
ζ4 +

3

2
ζ5 +

(

67

36
ζ2 +

3

2
ζ3 −

25

8
ζ4

)

θ +

(

ζ3
4
− ζ2

)

θ2

3



+
(

67

108
−

5

6
ζ2

)

θ3 −
θ4

4
−

11

120
θ5 −

(

−ζ3 + ζ2θ + ζ2θ
2 +

θ3

3
+

θ4

6

)

ln
(

1− e−2θ
)

−θ2 ln2
(

1− e−2θ
)

− θ ln3
(

1− e−2θ
)

−
1

8
ln4

(

1− e−2θ
)

+

[

ζ2
2
+

(

67

36
+

ζ2
2

)

θ − 2θ2 +
θ3

12
− θ ln

(

1− e−2θ
)

]

Li2
(

e−2θ
)

−
1

4
Li22

(

e−2θ
)

+
1

2
ln2

(

1− e−2θ
)

Li2
(

1− e−2θ
)

+
1

4
Li22

(

1− e−2θ
)

−
1

2
ln2

(

e2θ − 1
)

Li2

(

1

1− e2θ

)

+

[

67

36
−

3

2
θ −

θ2

4
− ln

(

1− e−2θ
)

]

Li3
(

e−2θ
)

−

[

θ + ln
(

1− e−2θ
)]

Li3
(

1− e−2θ
)

−

[

2θ + ln
(

1− e−2θ
)]

Li3

(

1

1− e2θ

)

−
9

8
θLi4

(

e−2θ
)

+ Li4
(

1− e−2θ
)

− Li4

(

1

1− e2θ

)

−
3

2
Li5

(

e−2θ
)

}

+
1

4
[A(θ)− A(0) +B(θ)− B(0)] (2.5)

where

A(θ) = coth3 θ

{

−3ζ5 + 4ζ4θ − 3ζ3θ
2 +

4

3
ζ2θ

3 +
θ5

5

+
2

3
θ3Li2

(

e−2θ
)

+ θ2Li3
(

e−2θ
)

+ 2θLi4
(

e−2θ
)

+ 3Li5
(

e−2θ
)

+H1,1,0,0,1(1− e−2θ) +H1,0,1,0,1(1− e−2θ)
}

(2.6)

and

B(θ) =
eθ

e2θ − 1

{

−2ζ2ζ3 + 2ζ3θ
2 +

(

3

2
ζ4 −

θ4

6

)

ln
(

eθ − 1
)

+

(

−
3

2
ζ4 − 2ζ3θ +

θ4

6

)

ln
(

eθ + 1
)

+ 2ζ3
[

Li2
(

−e−θ
)

+ Li2
(

1− e−θ
)]

+
2

3
θ3
[

Li2
(

e−θ
)

− Li2
(

−e−θ
)]

+ 2θ2
[

Li3
(

e−θ
)

− Li3
(

−e−θ
)]

+4θ
[

Li4
(

e−θ
)

− Li4
(

−e−θ
)]

+ 4Li5
(

e−θ
)

− 4Li5
(

−e−θ
)

+4
[

H1,0,1,0,0(e
−θ) +H−1,0,1,0,0(e

−θ)−H1,0,−1,0,0(e
−θ)−H−1,0,−1,0,0(e

−θ)
]}

.

(2.7)

We note that the functions A(θ) and B(θ) involve some weight 5 harmonic polylogarithms that
cannot be expressed in terms of ordinary polylogarithms. However they can be reduced to single
integrals of elementary functions and ordinary polylogarithms as shown in the Appendix. All
other terms in c1 involve elementary functions, ζ2, ζ3, ζ4, and ζ5 constants, as well as ordinary
polylogarithms Lik with k = 2, 3, 4, 5. In particular, we note that coth θ terms appear at one,
two, and three loops; and coth2 θ terms appear at two and three loops; and all these terms

4



can be written in terms of elementary functions and standard polylogarithms. At three loops
we also have coth3 θ terms, in the function A(θ), as well as additional terms in the function
B(θ) which are not expressible in that manner. If we try to express the weight 5 harmonic
polylogarithms in A and B in terms of ordinary polylogarithms then we can reduce the result
to single integrals, and the functions A(θ) and B(θ) can be written alternatively as

A(θ) = coth3 θ

{

3ζ5 +
19

2
ζ4θ − 3ζ3θ

2 +
4

3
ζ2θ

3 +
θ5

5
+

θ

2
ln4

(

1− e−2θ
)

+
(

−2ζ3 + 2ζ2θ +
2

3
θ3
)

Li2
(

e−2θ
)

− ln3
(

1− e−2θ
)

Li2
(

1− e−2θ
)

+
(

2ζ2 − 3θ2
)

Li3
(

e−2θ
)

+ 3 ln2
(

1− e−2θ
)

Li3
(

1− e−2θ
)

− 6θLi4
(

e−2θ
)

−6 ln
(

1− e−2θ
)

Li4
(

1− e−2θ
)

− 3Li5
(

e−2θ
)

+ 6Li5
(

1− e−2θ
)

+
∫ 1−e−2θ

0

[

− ln(1− z) ln3 z +
1

2
ln2(1− z) ln2 z − ln2 z Li2(z)

− ln(1− z) ln z Li2(1− z) + ln2
(

1− z

z

)

Li2

(

z − 1

z

)

−
1

2
Li22(z) +

1

2
Li22(1− z)− ln(1− z)Li3(z) + 2 ln z Li3(z) + 2 ln z Li3(1− z)

−2 ln
(

1− z

z

)

Li3

(

z − 1

z

)

+ 2Li4

(

z − 1

z

)

− 2Li4(z)
]

dz

1− z

}

(2.8)

and

B(θ) =
eθ

e2θ − 1

{

−2ζ2ζ3 + 2ζ3θ
2 +

(

3

2
ζ4 −

θ4

6

)

ln
(

eθ − 1
)

+

(

−
3

2
ζ4 − 2ζ3θ +

θ4

6

)

ln
(

eθ + 1
)

+ 2ζ3
[

Li2
(

−e−θ
)

+ Li2
(

1− e−θ
)]

+
2

3
θ3
[

Li2
(

e−θ
)

− Li2
(

−e−θ
)]

+ 2θ2
[

Li3
(

e−θ
)

− Li3
(

−e−θ
)]

+ 4θ
[

Li4
(

e−θ
)

− Li4
(

−e−θ
)]

+ 4Li5
(

e−θ
)

− 4Li5
(

−e−θ
)

+
∫ e−θ

0

[

2 ln2 z Li2(z
2)− 4 ln z Li3(z

2) + 3Li4(z
2)
] dz

1− z2

}

. (2.9)

As discussed in [9], and as we have verified, the massless limit of the cusp anomalous
dimension, i.e. the limit θ → ∞, can be written as

lim
θ→∞

Γcusp = θ
∞
∑

n=1

(

αs

π

)n

K(n) (2.10)

where at one loop K(1) = CF , at two loops K(2) = CFK/2, and at three loops

K(3) = CFC
2
A

(

245

96
−

67

36
ζ2 +

11

24
ζ3 +

11

8
ζ4

)

+ CFCATFnf

(

−
209

216
+

5

9
ζ2 −

7

6
ζ3

)

+C2
FTFnf

(

ζ3 −
55

48

)

−
1

27
CFT

2
Fn

2
f . (2.11)
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We note that the numbers appearing in K(3) can be easily seen explicitly in the expression for
Γ(3), via Eqs. (2.4) and (2.5), while their origin is less transparent when Γ(3) is expressed in
terms of harmonic polylogarithms.

We observe that the combination (K(3)/CF )Γ
(1) gives the full n2

f term and the full C2
FTFnf

term, as well as parts of the CFCATFnf and of the CFC
2
Ac1 terms in Eq. (2.4). Furthermore,

we observe that the remaining CFCATFnf terms as well as some further CFC
2
Ac1 terms can

be absorbed into the combination Γ(2) − (K/2)Γ(1) multiplied by an overall K. Thus we can
rewrite Eq. (2.4), after these observations and some work, in the even simpler form

Γ(3) = C(3) +K
′(3)Γ(1) +K

[

Γ(2)
−

K

2
Γ(1)

]

(2.12)

where K
′(3) = K(3)/CF and

C(3) = CFC
2
A

{

ζ2
2
−

ζ3
8
−

9

8
ζ4 −

ζ2
2
θ −

θ2

4
−

θ3

12
−

θ4

24

+
θ2

4
ln
(

1− e−2θ
)

−
3

4
θLi2

(

e−2θ
)

−
5

8
Li3

(

e−2θ
)

+coth θ

[

−
ζ3
4
+

15

8
ζ4 +

(

ζ2
2
−

ζ3
2
+

9

8
ζ4

)

θ +
(

1

4
+ ζ2

)

θ2 +

(

1

12
+

ζ2
3

)

θ3 +
7

24
θ4 +

θ5

24

+
1

2

(

θ2 + θ3
)

ln
(

1− e−2θ
)

−
3

4
θ2Li2

(

e−2θ
)

+
1

4
Li2

(

1− e−2θ
)

+
1

4
(1− 7θ)Li3

(

e−2θ
)

+
1

2
Li3

(

1− e−2θ
)

−
15

8
Li4

(

e−2θ
)

]

+coth2 θ

[

−
ζ2ζ3
2

−
19

8
ζ4 +

3

2
ζ5 +

(

3

2
ζ3 −

15

8
ζ4

)

θ +

(

ζ3
4
− ζ2

)

θ2

−
2

3
ζ2θ

3
−

θ4

4
−

11

120
θ5 −

(

−ζ3 + ζ2θ + ζ2θ
2 +

θ3

3
+

θ4

6

)

ln
(

1− e−2θ
)

−θ2 ln2
(

1− e−2θ
)

− θ ln3
(

1− e−2θ
)

−
1

8
ln4

(

1− e−2θ
)

+

[

ζ2
2
+ ζ2θ − 2θ2 +

θ3

12
− θ ln

(

1− e−2θ
)

]

Li2
(

e−2θ
)

−
1

4
Li22

(

e−2θ
)

+
1

2
ln2

(

1− e−2θ
)

Li2
(

1− e−2θ
)

+
1

4
Li22

(

1− e−2θ
)

−
1

2
ln2

(

e2θ − 1
)

Li2

(

1

1− e2θ

)

+

[

ζ2
2
−

3

2
θ −

θ2

4
− ln

(

1− e−2θ
)

]

Li3
(

e−2θ
)

−

[

θ + ln
(

1− e−2θ
)]

Li3
(

1− e−2θ
)

−

[

2θ + ln
(

1− e−2θ
)]

Li3

(

1

1− e2θ

)

−
9

8
θLi4

(

e−2θ
)

+ Li4
(

1− e−2θ
)

− Li4

(

1

1− e2θ

)

−
3

2
Li5

(

e−2θ
)

]

+
1

4
[A(θ)− A(0) +B(θ)− B(0)]

}

. (2.13)

We note that C(3) contains simpler fractions than c1, and it has a somewhat shorter expression.
In fact the structure appearing in Eq. (2.12) appears naturally, as the complicated fractions

6
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Cusp anomalous dimension

Figure 3: The cusp anomalous dimension Γ(n) at one, two, and three loops with nf = 5 as a
function of cusp angle θ.

in c1 are absorbed in K(3) and in the combination of lower-loop cusp anomalous dimensions.
Thus, C(3) is simpler, it is independent of nf , and it involves an overall color factor CFC

2
A.

Eq. (2.12) is our main and simplest expression for the three-loop cusp anomalous dimension.

3 Numerical results and approximations for top-quark

production

We continue with numerical results for the QCD cusp anomalous dimension at one, two, and
three loops. Setting the number of colors Nc = 3, all the color factors can be calculated
explicitly. Furthermore, for numerical evaluations one also has to make a choice for the number
of light flavors, nf . Since we are mostly interested in top-quark production, we choose nf = 5
in all numerical results in this section.

In Figure 3 we plot the cusp anomalous dimension Γ(n) at one, two, and three loops as
a function of θ, with nf = 5. The numerical values increase with θ for all three curves.
Furthermore, for each θ the values increase with loop order. As expected from Eq. (2.10), the
results become nearly linear at large values of θ.

For small θ we can expand the cusp anomalous dimension around θ = 0 (see also [5] and [9])
and we find

Γ(1)
exp =

CF

3
θ2 (3.1)

Γ(2)
exp =

[

CFCA

(

47

54
−

ζ2
3

)

−
5

27
CFTFnf

]

θ2 (3.2)

Γ(3)
exp =

[

CFC
2
A

(

473

288
−

85

54
ζ2 +

5

72
ζ3 +

5

4
ζ4

)

+ CFCATFnf

(

−
389

648
+

10

27
ζ2 −

7

18
ζ3

)

7



+C2
FTFnf

(

−
55

144
+

ζ3
3

)

−
1

81
CFT

2
Fn

2
f

]

θ2 (3.3)

where the subscript “exp” stands for “expansion,” and we neglect higher powers of θ beyond
θ2. It is interesting to note that Γ(n) scales as θ2 for small θ as shown in the above equations,
while it scales as θ for large θ as we saw in Eq. (2.10).

We note that in processes involving heavy-quark pair production, it is convenient to express

the cusp angle in terms of the quantity β =
√

1− 4m2

s
(which at lowest-order is the heavy-quark

speed), where m is the heavy-quark mass and s = (pi + pj)
2 with pµi , p

µ
j the quark momenta,

via the expression θ = ln[(1 + β)/(1− β)]. Equivalently we have β = tanh(θ/2).
For example, the one-loop result, Eq. (2.2), can be expressed in terms of β as [5]

Γ(1)(β) = CF

[

−
(1 + β2)

2β
ln

(

1− β

1 + β

)

− 1

]

. (3.4)

Similarly, the two-loop result can be found explicitly as a function of β in Ref. [5].
We note that for small θ, we have θ2 = 4β2 +O(θ4), so the small θ expansion formulas can

easily be rewritten in terms of β. On the other hand, the massless limit, i.e. the infinite θ limit,
corresponds to β = 1. The cusp anomalous dimension can also be plotted as a function of β.
In Fig. 4 we plot Γ(n) as a function of β using nf = 5. The curves rise sharply as β → 1.

As first shown in Ref. [5] for the two-loop case, we can construct approximations valid for
all values of β. The expansion around β = 0 gives very good approximations to Γ(n) at small β.
The expression in Eq. (2.10) gives the large β limit, which shows that in that limit the higher-
loop results are proportional to the one-loop result. Thus, we can derive an approximation to
Γ(n) for all β values by starting with the small β expansion of Γ(n), then adding K

′(n) Γ(1) and
subtracting from it its small β expansion:

Γ(n)
approx = Γ(n)

exp +K
′(n)Γ(1)

−K
′(n)Γ(1)

exp (3.5)

where K
′(n) = K(n)/CF (and thus K

′(1) = 1, K
′(2) = K/2).

For the one-loop case, n = 1, the approximate and exact results are identical. Applying Eq.
(3.5) to the higher-loop cases n = 2 and n = 3, and numerically evaluating the constants and
setting nf = 5, we find the very simple expressions

Γ(2)
approx(β) = −0.38649 β2 + 1.72704 Γ(1)(β) (3.6)

Γ(3)
approx(β) = 0.09221 β2 + 2.80322 Γ(1)(β) (3.7)

where Γ(1)(β) is given by Eq. (3.4).
In the inset plot of Fig. 4 we plot the ratio Γ(n)

approx/Γ
(n) for n = 1, 2, 3, as a function of

β using nf = 5. For n = 1 the ratio is identically 1, as noted above. We see that this very
simple approximation works remarkably well for n = 2 and n = 3, with the ratio not differing
by more than a few per mille from unity for the entire β range, and in fact indistinguishable
from 1 from much of the β range.

It is important to note that the cusp anomalous dimension is the soft anomalous dimension
for the process e+e− → tt̄ [5], and it is also the first element of the anomalous dimension
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Figure 4: The cusp anomalous dimension Γ(n) at one, two, and three loops with nf = 5 as a
function of β.

matrix that appears in resummations and approximate higher-order calculations [22, 27] for
top hadroproduction via the processes qq̄ → tt̄ and gg → tt̄. Therefore its numerical value
is important in calculations of cross sections. As the plots show, the numerical value of Γ(n)

increases with order. However, the overall contribution to Γcusp is moderated by the overall
factor (αs/π)

n.
To illustrate the last point, in Fig. 5 we plot the quantities (αs/π)

n Γ(n) with n = 1, 2,
3, using nf = 5 and αs = 0.108. We note that numerically the tt̄ cross sections at the LHC
and the Tevatron receive most contributions from the region 0.3 < β < 0.8. We also observe
that, including the (αs/π)

n factors, the one-loop result is about twenty times larger than the
two-loop result, and the two-loop result is about fifteen times larger than the three-loop result,
as can be seen from Fig. 5.

4 A conjecture for the n-loop cusp anomalous dimension

From our expressions in Section 2, we begin to see a pattern emerging for the cusp anomalous
dimension. We write the cusp anomalous dimension at nth order in terms of the previous orders
plus an extra term C(n). Thus we have

Γ(1) = C(1) (4.1)

Γ(2) = C(2) +K
′(2)C(1) (4.2)

and
Γ(3) = C(3) + 2K

′(2)C(2) +K
′(3)C(1) (4.3)

9



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(α
s/π

)n
Γ(n

)

n=1
n=2
n=3

Cusp anomalous dimension

Figure 5: The cusp anomalous dimension (αs/π)
n Γ(n) at one, two, and three loops with nf = 5

and αs = 0.108 as a function of β, for β values up to 0.999999.

Note that at one loop C(1) is defined to be Γ(1) since we start with n = 1. At two loops C(2)

is simply found from Eq. (2.3), i.e. it is (CFCA/2) times all the terms in curly brackets in Eq.
(2.3) [note that (K/2)Γ(1) = K

′(2)C(1)]. At three loops, Eq. (4.3) is a rewriting of Eq. (2.12)
using Eq. (4.2). See also the corresponding observation in Ref. [9].

Observing Eqs. (4.1), (4.2), (4.3), we conjecture that the n-loop result is given by

Γ(n) =
n
∑

k=1

(n− 1)!

(k − 1)! (n− k)!
K

′(k) C(n−k+1) . (4.4)

It is easy to check that the above expession reproduces the results for n = 1, 2, 3. We conjecture
that this relation will hold for arbitrary n. For example, for n = 4 we predict

Γ(4) = C(4) + 3K
′(2)C(3) + 3K

′(3)C(2) +K
′(4)C(1) (4.5)

and for n = 5 we predict

Γ(5) = C(5) + 4K
′(2)C(4) + 6K

′(3)C(3) + 4K
′(4)C(2) +K

′(5)C(1) . (4.6)

Note that C(n) has overall color factor CFC
n−1
A , and it does not involve nf terms as first noted

in [9]. We predict that the terms in Γ(n) will naturally fall into place in the patterns suggested
by the conjecture. The conjecture provides the structure of the n-loop result, and if true it
can be of further use because the calculation of K(n) can predate that of Γ(n), and thus Γ(n)

can be known up to the term C(n) without further calculation. We also note that starting at
four loops new non-planar terms arise in the calculation. The non-planar nf terms would still
appear in K(n). It will be interesting to see how such new corrections will satisfy the relations
we have found and proposed.

10



The above conjecture gives explicit results for Γ(n) in terms of the C(k) terms and the
massless-limit constants K

′(k), but it is nice to have the result directly in terms of the lower-
order cusp anomalous dimensions. Using our previous expressions to express the C’s in terms
of the Γ’s and K

′

’s, and rewriting the equations, we thus find the following explicit expressions
for Γ(n) through n = 5:

Γ(2) = C(2) +K
′(2)Γ(1)

Γ(3) = C(3) + 2K
′(2)Γ(2) +

[

K
′(3)

− 2
(

K
′(2)
)2
]

Γ(1)

Γ(4) = C(4) + 3K
′(2)Γ(3) + 3

[

K
′(3)

− 2
(

K
′(2)
)2
]

Γ(2)

+
[

K
′(4)

− 6K
′(3)K

′(2) + 6
(

K
′(2)
)3
]

Γ(1)

Γ(5) = C(5) + 4K
′(2)Γ(4) + 6

[

K
′(3)

− 2
(

K
′(2)
)2
]

Γ(3)

+4
[

K
′(4)

− 6K
′(3)K

′(2) + 6
(

K
′(2)
)3
]

Γ(2)

+
[

K
′(5)

− 8K
′(4)K

′(2)
− 6

(

K
′(3)
)2

+ 36K
′(3)

(

K
′(2)
)2

− 24
(

K
′(2)
)4
]

Γ(1) (4.7)

We see another pattern emerging, involving repetition of terms in brackets in Eq. (4.7),
when writing the n-loop cusp anomalous dimension directly in terms of the lower-loop ones.
We can thus rewrite our conjecture as

Γ(n) = C(n) +
n
∑

k=2

(n− 1)!

(k − 1)! (n− k)!
F (k) Γ(n−k+1) (4.8)

where

F (2) = K
′(2)

F (3) = K
′(3)

− 2
(

K
′(2)
)2

F (4) = K
′(4)

− 6K
′(3)K

′(2) + 6
(

K
′(2)
)3

F (5) = K
′(5)

− 8K
′(4)K

′(2)
− 6

(

K
′(3)
)2

+ 36K
′(3)

(

K
′(2)
)2

− 24
(

K
′(2)
)4

(4.9)

etc.
Eqs. (4.4) and (4.8) provide two alternate but equivalent forms for our conjecture for the

n-loop cusp anomalous dimension.

5 Conclusions

I have provided an explicit and compact expression for the three-loop cusp anomalous dimension
in QCD, which is Eq. (2.12). The result is based on the calculation of [9], and is expressed
in terms of elementary functions, zeta constants, and ordinary polylogarithms. The massless
limit was taken and it agrees with known results.
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Numerical results and approximate expressions were also derived for the cusp anomalous
dimension through three loops with nf = 5, relevant for top-quark production. The approxi-
mate formulas, Eqs. (3.6) and (3.7), are very simple, yet they provide excellent approximations
to the exact results at the per mille level or better.

The new expressions provide new insights into the structure of the terms. Relations were
derived among the cusp anomalous dimensions through three loops. Observing those relations
and an emerging pattern, a conjecture was made for the n-loop result in terms of the lower-
loop expressions and constants from the massless limit. The conjecture displays the analytical
structure of the results and may deepen understanding, it can be used to make predictions for
higher-loop results, and it is expressed in two alternate forms, Eqs. (4.4) and (4.8).

The results for the cusp anomalous dimension presented in this paper may be useful in
calculations of soft-anomalous dimensions for heavy quark production, such as top-antitop pair
and single-top production, and other hard-scattering processes. The very simple approximate
formulas derived in this paper also enable very fast numerical calculations with excellent accu-
racy.
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A Appendix

The zeta constants used in our equations are given by ζk =
∑

∞

n=1 1/n
k. In particular, ζ2 = π2/6,

ζ3 = 1.202056903 · · ·, ζ4 = π4/90, and ζ5 = 1.036927755 · · ·.
The polylogarithm is given by Lik(z) =

∑

∞

n=1 z
n/nk. Note that Lik(1) = ζk.

The harmonic polylogarithms [28] of weight n are defined iteratively by

Ha1,a2,···,an(z) =
∫ z

0
fa1(z

′)Ha2,···,an(z
′) dz′ (A.1)

where

f0(z) =
1

z
f1(z) =

1

1− z
f−1(z) =

1

1 + z
(A.2)

and the weight 1 harmonic polylogarithms are

H0(z) = ln z

H1(z) =
∫ z

0

dz′

1− z′
= − ln(1− z)

H−1(z) =
∫ z

0

dz′

1 + z′
= ln(1 + z) (A.3)

For example

H0,1(z) =
∫ z

0
f0(z

′)H1(z
′) dz′ =

∫ z

0

1

z′
(− ln(1− z′)) dz′ = Li2(z) . (A.4)
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We begin by calculating all the harmonic polylogarithms appearing in the results of Ref. [9]
for the cusp anomalous dimension through three loops that involve the variable y = 1 − e−2θ.
The calculations involve up to quintiple integrals for the weight 5 harmonic polylogarithms.
We first show explicit results for all harmonic polylogarithms that involve multiple integrals
that in the end have explicit expressions in terms of standard functions:

H1(y) = 2θ (A.5)

H1,1(y) = 2θ2 (A.6)

H0,1(y) = Li2
(

1− e−2θ
)

(A.7)

H1,1,1(y) =
4

3
θ3 (A.8)

H1,0,1(y) = −2ζ3 + 2ζ2θ + 2θLi2
(

e−2θ
)

+ 2Li3
(

e−2θ
)

(A.9)

H0,1,1(y) = ζ3 + 2θ2 ln
(

1− e−2θ
)

− 2θLi2
(

e−2θ
)

− Li3
(

e−2θ
)

(A.10)

H0,0,1(y) = Li3
(

1− e−2θ
)

(A.11)

H1,1,1,1(y) =
2

3
θ4 (A.12)

H1,1,0,1(y) = 3ζ4 − 4ζ3θ + 2ζ2θ
2
− 2θLi3

(

e−2θ
)

− 3Li4
(

e−2θ
)

(A.13)

H0,1,1,1(y) = ζ4 +
4

3
θ3 ln

(

1− e−2θ
)

− 2θ2Li2
(

e−2θ
)

− 2θLi3
(

e−2θ
)

− Li4
(

e−2θ
)

(A.14)

H1,0,0,1(y) = −
1

2
Li22

(

1− e−2θ
)

+ 2θLi3
(

1− e−2θ
)

(A.15)

H1,0,1,1(y) = −3ζ4 + 2ζ3θ + 2θ2Li2
(

e−2θ
)

+ 4θLi3
(

e−2θ
)

+ 3Li4
(

e−2θ
)

(A.16)

H0,1,0,1(y) =
11

4
ζ4 + (−2ζ3 + 2ζ2θ) ln

(

1− e−2θ
)

+
(

−ζ2 + 2θ2
)

ln2
(

1− e−2θ
)

+
1

4
ln4

(

1− e−2θ
)

+
[

−ζ2 + 4θ2 + 2θ ln
(

1− e−2θ
)

+ ln2
(

1− e−2θ
)]

Li2
(

e−2θ
)

+
1

2
Li22

(

e−2θ
)

+ ln2
(

e2θ − 1
)

Li2

(

1

1− e2θ

)

+
[

4θ + 2 ln
(

1− e−2θ
)]

Li3
(

e−2θ
)

+ 2 ln
(

1− e−2θ
)

Li3
(

1− e−2θ
)

+
[

4θ + 2 ln
(

1− e−2θ
)]

Li3

(

1

1− e2θ

)

+ 2Li4
(

e−2θ
)

− 2Li4
(

1− e−2θ
)

+ 2Li4

(

1

1− e2θ

)

(A.17)

H1,1,1,1,1(y) =
4

15
θ5 (A.18)

H0,1,1,1,1(y) = ζ5 +
2

3
θ4 ln

(

1− e−2θ
)

−
4

3
θ3Li2

(

e−2θ
)

− 2θ2Li3
(

e−2θ
)

− 2θLi4
(

e−2θ
)

−Li5
(

e−2θ
)

(A.19)

H1,0,1,1,1(y) = −4ζ5 + 2ζ4θ +
4

3
θ3Li2

(

e−2θ
)

+ 4θ2Li3
(

e−2θ
)

+ 6θLi4
(

e−2θ
)

+4Li5
(

e−2θ
)

(A.20)
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H1,1,0,1,1(y) = 6ζ5 − 6ζ4θ + 2ζ3θ
2
− 2θ2Li3

(

e−2θ
)

− 6θLi4
(

e−2θ
)

− 6Li5
(

e−2θ
)

(A.21)

H1,1,1,0,1(y) = −4ζ5 + 6ζ4θ − 4ζ3θ
2 +

4

3
ζ2θ

3 + 2θLi4
(

e−2θ
)

+ 4Li5
(

e−2θ
)

(A.22)

We continue by showing results for two harmonic polylogarithms of weight 5 involving
y = 1 − e−2θ where the integrations can be reduced down to a single integral (plus standard
functions in the result for the second one):

H1,1,0,0,1(y) =
∫ y

0

[

−
1

2
Li22(z)− ln(1− z)Li3(z)

]

dz

1− z
(A.23)

H1,0,1,0,1(y) = 6ζ5 +
11

2
ζ4θ +

θ

2
ln4

(

1− e−2θ
)

+ (−2ζ3 + 2ζ2θ)Li2
(

e−2θ
)

− ln3
(

1− e−2θ
)

Li2
(

1− e−2θ
)

+ (2ζ2 − 4θ2)Li3
(

e−2θ
)

+3 ln2
(

1− e−2θ
)

Li3
(

1− e−2θ
)

− 8θLi4
(

e−2θ
)

−6 ln
(

1− e−2θ
)

Li4
(

1− e−2θ
)

− 6Li5
(

e−2θ
)

+ 6Li5
(

1− e−2θ
)

+
∫ y

0

[

− ln(1− z) ln3 z +
1

2
ln2(1− z) ln2 z − ln2 z Li2(z)

− ln(1− z) ln z Li2(1− z) + ln2
(

1− z

z

)

Li2

(

z − 1

z

)

+
1

2
Li22(1− z) + 2 ln z Li3(z) + 2 ln z Li3(1− z)

−2 ln
(

1− z

z

)

Li3

(

z − 1

z

)

+ 2Li4

(

z − 1

z

)

− 2Li4(z)
]

dz

1− z
(A.24)

Next we provide results for the harmonic polylogarithms up to weight 5 appearing in the
results for the three-loop cusp anomalous dimension in Ref. [9] that involve the variable x = e−θ.
We first show explicit results for all harmonic polylogarithms that have explicit expressions in
terms of standard functions:

H1(x) = − ln
(

1− e−θ
)

(A.25)

H−1(x) = ln
(

1 + e−θ
)

(A.26)

H1,0(x) = θ ln
(

1− e−θ
)

− Li2
(

e−θ
)

(A.27)

H−1,0(x) = −θ ln
(

1 + e−θ
)

+ Li2
(

−e−θ
)

(A.28)

H1,0,0,0,0(x) = −
θ4

24
ln
(

1− e−θ
)

+
θ3

6
Li2

(

e−θ
)

+
θ2

2
Li3

(

e−θ
)

+θLi4
(

e−θ
)

+ Li5
(

e−θ
)

(A.29)

H−1,0,0,0,0(x) =
θ4

24
ln
(

1 + e−θ
)

−
θ3

6
Li2

(

−e−θ
)

−
θ2

2
Li3

(

−e−θ
)

−θLi4
(

−e−θ
)

− Li5
(

−e−θ
)

(A.30)
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We finish by showing results for harmonic polylogarithms of weight 5 involving x = e−θ

where the integrations can be reduced down to a single integral:

H1,0,1,0,0(x) =
∫ x

0

[

1

2
ln2 z Li2(z)− 2 ln z Li3(z) + 3Li4(z)

]

dz

1− z
(A.31)

H−1,0,1,0,0(x) =
∫ x

0

[

1

2
ln2 z Li2(z)− 2 ln z Li3(z) + 3Li4(z)

]

dz

1 + z
(A.32)

H1,0,−1,0,0(x) =
∫ x

0

[

−
1

2
ln2 z Li2(−z) + 2 ln z Li3(−z)− 3Li4(−z)

]

dz

1− z
(A.33)

H−1,0,−1,0,0(x) =
∫ x

0

[

−
1

2
ln2 z Li2(−z) + 2 ln z Li3(−z)− 3Li4(−z)

]

dz

1 + z
(A.34)
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