
Kennesaw State University
DigitalCommons@Kennesaw State University

Faculty Publications

1-2004

Move to Component Based Architectures:
Introducing Microsoft's .NET Platform into the
College Classroom
Meg C. Murray
Kennesaw State University, mcmurray@kennesaw.edu

Follow this and additional works at: http://digitalcommons.kennesaw.edu/facpubs

Part of the Programming Languages and Compilers Commons, Science and Mathematics
Education Commons, Software Engineering Commons, and the Systems Architecture Commons

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

Recommended Citation
Murray, Meg. "Move to Component Based Architectures: Introducing Microsoft's .NET Platform into the College Classroom." Journal
of Computing Sciences in Colleges 19.3 (2004): 301-310.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231827344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1378&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

* Copyright © 2003 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

301

MOVE TO COMPONENT BASED ARCHITECTURES:

INTRODUCING MICROSOFT'S .NET PLATFORM INTO THE

COLLEGE CLASSROOM*

Dr. Meg Murray
Kennesaw State University

Kennesaw, GA
mcmurray@kennesaw.edu

ABSTRACT

A transformation has been occurring in the architectural model for computer-based
application intense software systems. This new model, software-as-a-service, will
have a profound impact on the design and development of software for many years
to come and as such college level computing curriculums will need to incorporate
the concepts and methodologies associated with this new architecture. The platform
is built upon a view of interrelated, distributed peer-level software modules and
components that work in tandem to achieve specified functional goals. From
Microsoft's viewpoint, migration to the new platform requires a radical shift in the
software development lifecycle. It is becoming imperative that higher education
computing programs take a proactive stance in reviewing their curriculums and
making plans to align them with this new paradigm. This paper explores Microsoft's
.NET strategy and provides a synopsis of the efforts taken by one Computer
Science and Information Systems Department to incorporate .NET into the
curriculum and the classroom.

JCSC 19, 3 (January 2004)

302

INTRODUCTION

A transformation has been occurring in the architectural model for computer-based
application intense software systems. In the past, the model espoused the large software
application that encapsulated all needed functionality into one centralized system. The focus
was on the software application or an integrated suite of related applications as the primary
source of functionality. These cohesive application sets are generally implemented, managed
and maintained and even purchased by end users from one primary source. A major paradigm
shift is on the horizon that is challenging the view of the all-encompassing software application
to what, Steve Ballmer, CEO of Microsoft eloquently stated as software that provides a service
(Ballmer, 2000). This software-as-a-service model will have a profound impact on the design
and development of software for many years to come.

Envisioning software as a service requires a major change in the underlying platform that
supports the interoperability of software applications. Spratt (2001) puts it succinctly when he
states, "The applications that developers write, the services they wish to provide for their target
environment, and the embedded devices that form the end-points of the network they will be
deploying, will all work together as a platform to provide access to the information their
customers need at anytime and anyplace via the Web" (p. 91). This platform represents the first
comprehensive architecture for the post - PC era (Spratt, 2001) and many believe that this
model will become the dominant architecture for enterprise and Internet applications (Meyer,
2001).

Both Sun Microsystems and Microsoft have introduced frameworks to support this new
component-based, Service Oriented Architecture (SOA). These platforms provide support
for software development, deployment, execution and management that facilitate interoperability
across servers, development languages, applications and devices. Both Sun's Java2 Enterprise
Edition (J2EE) and now their Open Net Environment (Sun ONE) and Microsoft's .Net provide
capabilities to achieve this goal but they approach this in different ways. The primary focus of
Sun ONE is the definition of an underlying architecture through specifications of a standard
platform for hosting and delivering J2EE applications. Microsoft has embraced this change by
the introduction of their .NET initiative. Microsoft describes .NET as "an open language
platform for enterprise and Web development" (Microsoft, 2002). While the frameworks offer
similar services, the cliché commonly used to describe them is that '.Net is Windows-centric and
language neutral while J2EE is java-centric and platform neutral.' Both platforms offer viable
alternatives, however this paper focuses on the Microsoft .NET environment.

The .Net platform is built upon a view of interrelated, distributed peer-level software
modules and components that work in tandem to achieve specified functional goals. From
Microsoft's viewpoint, migration to the new platform requires a radical shift in the software
development lifecycle. Their model is built upon a three-pronged approach: develop, deploy
and execute without constraints. Their plan is to provide the strategies and tools necessary to
simplify the development, deployment and execution processes so that interoperability between
various heterogeneous computing technologies and software applications can be achieved in as
seamless a manner as possible.

CCSC: Southeastern Conference

303

This transformation in software development has many implications for college level
programs that teach computing technologies. It will require a review of what is currently being
done and an assessment of how that can be aligned to this new paradigm. The focus is shifting
away from the development structure of one program equals one application to where one
application is made up of a collection of software modules. Students will not only be challenged
to understand isolated program development, they will be required to understand program
interoperability. Students must also be introduced to the new development platforms and their
associated development tools. Curriculums will need to be revised to incorporate the
theoretical concepts associated with the new Service Oriented Architecture and course
instruction will need to be extended to include the new tools into the classroom. It is becoming
imperative that higher education computing programs take a proactive stance in this area so that
students in the computing sciences will able to be successful participants and contributors to the
discipline. Some of the most often cited desired skills for computing jobs is now knowledge of
Sun's J2EE and Microsoft's .NET (Swinton, 2003). This paper provides an overview of the
.NET framework and discusses the experience of utilizing .NET in the college classroom.

INTRODUCTION TO THE .NET ENVIRONMENT

Microsoft's .NET is not a product, but as Microsoft states, ".NET is a series of Microsoft
technologies interconnecting the world of information, people and devices" (Microsoft, 2002).
Consequently, .NET is a collection of resources that includes development tools and languages,
server software and protocols. .NET also includes device code specifications that allow
developers to create interoperable applications that run on a multitude of end user devices such
as PCs, PDAs, mobile phones, etc. Other underlying technical components of .NET include
Visual Studio.NET, Microsoft's multi-language development tool, C#, a new object oriented
programming language, a Common Language Runtime (CLR) component supporting the
inclusion of source code written in multiple programming languages and a new version of Active
Server Pages. Foundational to the .NET platform is the incorporation of the eXtensible
Markup Language (XML) and the Simple Object Access Protocol (SOAP) that serve as
mediums for the exchange of data between applications accessible over the Internet. While not
all of Microsoft's server products meet the specifications of the .NET architecture, their intention
is to migrate all Microsoft products into the .NET structure. A .NET server is scheduled for
released in early 2003 and Bill Gates (2001) has stated that .NET will affect every piece of
code that Microsoft develops and that all future Microsoft products will be touched by .NET.

The thread that ties .NET technologies together is known as the .NET Framework. The
premise of the Framework is to be a common foundation that allows applications, regardless
of their source of programming language origin, to access system services in the same way. For
example, the Framework supports Internet browser-accessible applications, Web services
applications and even Windows based applications. The .NET Framework is based on two
components, The Common Language Runtime (CLR) and .NET Framework Classes, that
work together to provide a standard set of data types and standard set of code to perform
common functions. The .NET Framework, available as a free download from the Microsoft
Web site, must be installed on both client and server machines.

JCSC 19, 3 (January 2004)

304

DEVELOPMENT

In the past, the model for the development of software systems was focused on
developing the all-encompassing software application. The trend is now towards developing
more concurrent, more distributed, and more connected applications. This represents many
challenges to the software developer. Previous attempts to support this kind of development
were characterized by complex development environments and developers often had to use
several development tools to create one application. Microsoft has addressed the need to
simplify software development with the introduction of their new integrated development
environment (IDE) known as Visual Studio .NET. Not only does Visual Studio .NET provide
support for the development of source code in three different languages and Web based
technologies such as ASP.NET, it also automates the assembly of discrete components into one
unified entity. The intent behind the .NET platform (Visual Studio combined with the .NET
Framework) is to allow developers to concentrate on the creation of the functional aspects of
an application while the IDE handles the background details.

.NET provides development support for source code in three major programming
languages: Visual C++, Visual C# (C-Sharp), and Visual Basic .NET. These languages are able
to create and execute services that can be distributed over the Internet. Visual Studio .NET
supports auto-generation of most code by providing a graphical environment allowing the
developer to concentrate on design rather than code writing. Further, Visual Studio .NET
features auto-completion (Intelli-sence) of code which can be used to program for any device,
including mobile devices. Visual Studio.NET also includes a major overhaul to the
Internet-based server-side scripting language, ASP. ASP.NET tools incorporate programmatic
support for building smart Web sites. One advantage of the language support provided in
Visual Studio .NET is its ability to target the development of XML-based Web Services.

Microsoft has made it easy to create applications using Visual Studio .NET. For instance,
Visual Studio .NET provides Web service developers with a whole plethora of tools to create
Web services. The developer begins by selecting the project type (ASP Web service,
executable, etc) and the programming language to be used. The developer will also name the
service and specify the location of the Web server that will run the Web service. The developer
then creates the application using the many graphical resource aids and/or wizards provided
with the development environment. Upon completion, the developer simply chooses to build
the application. The build process not only performs compilation but also creates the auxiliary
files needed to successfully implement a Web service (SOAP file, WSDL file, etc.). Visual
Studio .NET even provides a Web services registration facility that allows developers to search
for or publish Web services through the globally available yellow pages of Web services known
as the UDDI.

Visual Studio .NET represents the strongest link in the .NET platform. In the past, if
developers wanted to create component-based systems or even Web services, they had to
write a good deal of code to 'glue' the parts together. Microsoft has greatly simplified this
process while at the same time provided an easy-to-use IDE that allows the developer to focus
solely on functional aspects. Visual Studio .NET does facilitate faster development times and
enhances application integration.

CCSC: Southeastern Conference

305

DEPLOYMENT

Once an application is developed, it must be accessible in order to be used. Distributed
applications comprised of a series of functional components greatly increase the complexities
involved in their deployment and distribution. Today, deployment typically means copying a set
of software components to individual client and server systems on which they will be run and
then describing those components to the operating system (in Windows this means making a
series of registry entries). A primary goal of the .NET Framework is to simplify this process
and .NET does this through an application assembly and packaging scheme. .NET applications
are built from assemblies. Assemblies are logical units comprised of a combination of classes,
executable files and other needed resources such as image files, etc. Accompanying each
assembly is a manifest or metadata that describes the assembly's originator, version identifier,
cultural identifier, listing of included files and listing of dependencies on other assemblies.
Developers can pick and choose different collections of resources 'a la carte' and combine them
as needed to construct applications that serve different purposes. These applications become
self-describing units of deployment greatly simplifying the distribution process.

EXECUTION

Assemblies provide a way to package modules into applications for deployment but the
real requirement of any application is that it is available when needed. In a truly distributed
environment, this means that an application must be able to be executed on a variety of different
operating platforms without concern for the source code development language. As such, one
of the goals of .NET is to be language-independent (Meyer, 2000). To achieve
language-independence, Microsoft has developed the Microsoft Intermediate Language
(MSIL). Source code, regardless of its origination language, will be compiled into MSIL. The
MSIL is executed in the Common Language Runtime (CLR), part of the .NET Framework.
This concept is very similar to the Java Virtual Machine. Applications compiled into the
intermediate language will be portable across varying operating system platforms. In addition,
the CLR performs resource management tasks such as garbage collection, memory allocation
and debugging support. Translation into machine code, required at the time the application is
to be executed, will occur in what is referred to as Just-in-Time compilation. At the base level,
everything in the .NET platform boils down to assemblies that can be executed on the CLR.

Creating a language neutral platform is a major undertaking. It requires adherence to set
of specifications. For a programming language to be eligible for inclusion as a .NET supported
language, a set of possibilities and constructions must be specified and included in an agreement
called the Common Language Specification. Once this is completed, all that is required is the
development of a compiler that translates source code into MSIL. In theory, MSIL increases
flexibility; the reality is more limiting. The CLS serves as the common denominator for all .NET
supported languages. According to Lauer (2001), this common denominator imposes
restrictions such that the compiled code may have little in common with the original, except that
the syntax remains the same. To date, Microsoft reports that more than 20 languages have been

JCSC 19, 3 (January 2004)

306

ported to the CLR and, of course, Microsoft provides full CLR support for C#, VB.NET, C++
and ASP.NET.

.NET represents a major undertaking by Microsoft. Their vision is to provide an
all-encompassing platform that provides the underlying commonality needed to bring together
disparate technologies and software components. This can only be supported by new ways of
viewing software development and as this approach becomes more widely accepted, students
within the computing sciences must be introduced to the underlying concepts and tools within
their college curriculum. The movement towards more highly integrated and interoperable
software components is still very young but implications for the future are immense and college
level computing programs must be on the forefront of this movement.

LESSONS LEARNED: INTRODUCING .NET INTO THE CLASSROOM

Microsoft's .NET platform not only represents a major shift in the approach taken to
software development and deployment, it also has the potential to change what is done in the
college classroom. Migrating to the .NET platform is not trivial. There are many considerations
that must be made. These encompass a realm of issues ranging from hardware requirements
to the approach taken to teaching code development. Recognizing that component-based
development and the .NET platform are being widely adopted in industry, a combined
Computer Science and Information Systems Department in a regional state university made the
decision to explore this emerging technology and assess what would be the best way to
incorporate .NET into the Computer Science and Information Systems programs.

An internal grant was secured to procure a dedicated server to be used for the .NET
project. In addition, the University subscribed to the Microsoft Developer Network Academic
Alliance program that provides access to Microsoft's programs and developer tools. Through
this program, software may also be installed in departmental instructional labs and may also be
checked out to students and faculty to be used for research or instructional purposes. The
.NET framework and Visual Studio.NET were installed in the computer lab and a server
running the Windows 2000 Server operating system and IIS was made accessible for hosting
student work.

The incorporation of .NET was designed to be implemented in stages that span three
academic semesters. Prior to beginning the project, an upper-level undergraduate student was
engaged in an independent study to initially investigate installation and ease of use issues. The
focus was specifically on using Visual Studio.NET to develop simple programs including a
Visual Basic.NET application and an ASP.NET application. The results of this work showed
that there were many desirable features to the .NET platform but also highlighted some problem
areas. Applications could be developed quickly using the Visual Studio.NET environment.
However, issues arose in the installation of the product and in the completeness of the
documentation. While good documentation and resources exist related to the programming
languages, such as Visual Studio.NET, limited documentation was found related to the Visual
Studio.NET interface and some of the documentation related to ASP.NET and the associated
technology of Web Services was out-of-date or incomplete.

CCSC: Southeastern Conference

307

Given the preliminary findings, a second independent study program was set up. This time
four students were involved. The outcome of this independent study was to thoroughly explore
installation requirements, make an assessment of ease of use and to develop sample programs
using the primary development environments supported under Visual Studio.NET including
Visual Basic.NET, C# and ASP.NET. Further, the Visual Studio.NET development
environment was introduced to a group of graduate students studying e-business technologies.
The students were asked to develop an e-business solution using ASP.NET. The culmination
of this part of the .NET project was the development of a special topics course to be
introduced as an upper-level undergraduate course. The experience gained through the
previous introduction of .NET into the classroom was insightful. Problems that were not
anticipated arose and the opportunity provided a chance to find ways to overcome these
problems. As a result of the initial introduction of Visual Studio.NET, it was recognized that
gradual implementation into the classroom was necessary to insure a smooth transition to this
new environment. Widespread adoption of the .NET platform in those courses deemed
appropriate for its use will occur after the special topics course is completed.

One of the first considerations that must be made when moving to the .NET platform is
related to available computer resources. There are two areas of concern. One relates to the
.NET framework and the other to the Visual Studio.NET integrated development environment.
The primary issue with the .NET framework is that it must be installed on the computer used
for code development and also on any client machine that will be executing code built using
.NET. The framework is available for the most commonly used Windows operating systems
and can be downloaded for free from the Microsoft upgrade site. The only caveat is that the
.NET framework appears to be modified quite frequently and upgrades must be consistently
maintained.

The Visual Studio.NET environment is an extremely rich tool. The environment includes
support for three programming languages, Visual Basic.Net, C++.NET and Microsoft's new
language, C#. Also included is support for ASP.NET and the development of Web services.
Visual Studio.NET has 13 main tool windows that can be incorporated into the development
environment and users can create profiles that meet their needs. Visual Studio.NET also
includes tools that support additional functions such as an XML editor and what is termed,
'Server Explorer.' The Server Explorer provides automatic access to databases, mail servers,
and other system resources making it much easier to incorporate these resources into program
code. A default scheme is selected when a specific language is chosen for development and is
often best to use this default scheme when first learning the tool otherwise the screen can
become cluttered making it difficult to effectively utilize the needed resources. Spending time
upfront to explore the different tools offered within this truly integrated development
environment is well worth the effort.

Many challenges and issues arose during the installation process. Visual Studio.NET
requires a fairly fast processor and uses a fair amount of system resources. For instance,
minimum requirements are a 600MHZ processor, 128MB of RAM and a minimum of 4GB
hard drive space. A CD or DVD is required to install the software and installation time can
extend to well over 2 hours when no problems are encountered. The installation comes on

JCSC 19, 3 (January 2004)

308

either one DVD or 5 CDs and while it can be distributed over the network, the download time
is prohibitive without fast access. Visual Studio.NET is only supported on the Windows 2000,
Windows NT and Windows XP operating systems. These requirements are a concern when
assessing the resources available in the classroom, student labs and on student owned
computers. For instance, while Visual Studio.NET will run on XP home edition, it can only be
utilized to develop Windows based applications such as those written in Visual Basic.NET. In
order to utilize Internet programming support such as ASP.NET or Web services, the
development computer must support the IIS Web server. IIS is supported on XP Professional
edition but not on XP home edition. Many students do not have personal systems that support
these operating systems. The necessary operating systems can be distributed to students under
the MSDN Academic Alliance; however the operating system upgrade is a major undertaking.
This restriction means that institutions moving to the .NET platform must be prepared to offer
substantial student computer lab support and if distribution to students is an option, one must
be prepared to spend the first couple of weeks of the course assisting students in the installation
process.

Actual code development using the Visual Studio.NET environment did not present
problems beyond those expected when teaching a programming language. (It should be noted
for those familiar with earlier versions of Visual BasiC, substantial revisions have been made to
Visual Basic.NET to evolve it to a more pure object oriented language.) Developing Windows
applications, for the most part, worked as expected. The only issue arose when transporting
the code from the development system. The new host or client machine must be running the
.NET framework in order to execute the application. Unexpected problems did arise when
developing Internet-based applications. In order to support the developer, Visual Studio.NET
automatically creates the necessary folder structure for the ASP.NET application utilizing the
file structure supported by IIS of the machine on which the application is developed. The
common practice is to develop on one system and then transport the finished application to a
host Web server. Consequently an ASP.NET application may run on the localhost where it
was developed, but due to permissions settings, the same application may not run when copied
to another machine. In previous versions of ASP, configuration settings were managed at the
IIS level. A new feature of ASP.NET is to associate these settings with individual applications.
These settings are contained in a 'Web.config' file. When an ASP.NET application is
transferred from one system to another, the configurations settings must be manipulated to
match the requirements of the new host system. As one student stated, coding is now only one
part of the development process, configuration management becomes just as important. This
adds another layer of complexity in the course curriculum. A course incorporating Internet
programming using ASP.NET must now include a section on configuration management, an area
that previously may have been relegated to a more specialized course on systems administration.

The primary goal of the .NET platform and Visual Studio.NET in particular, is to enhance
the process of software development. Software applications have become increasingly complex
and continue to be built upon intrinsically difficult technology that changes continuously.
Microsoft's .NET initiative is an attempt to address these complexities by providing developers
with a way to easily develop and deploy distributed applications. In many ways, .NET achieves

CCSC: Southeastern Conference

309

its goal but it does not escape the challenges and issues that befall any new technology. The
learning curve with .NET is not trivial and, as with all software, Visual Studio.NET has its set
of idiosyncrasies that must be identified and dealt with. Widespread adoption of .NET into
the college classroom should not be undertaken before sufficient exploration of experimentation
with this technology has occurred.

CONCLUSIONS

The software applications of tomorrow will be interrelated, distributed peer-level software
modules and components that work in tandem to achieve specified functional goals. These
complex software systems encompass a collection of distributed applications, resources and
services connected via a network of computing systems. This software as a service model is
based upon a build-via-assembly approach and this type of development will require new ways
of thinking about hardware and software architectures. These new ways of thinking must begin
to permeate what and how computing technologies are taught in the college classroom.

.NET fundamentally changes software development (Meyer, 2000). The model of
develop, deploy and execute within an integrated environment will serve as the software
development methodology for the service oriented architectural model which represents the next
generation of software-based applications. This means that students of computing will be
required to learn new processes and utilize new tools as a part of their course of study. And
even while the technology is still young and evolving, the time has come to find ways to
incorporate these new platforms in to the curriculum and into the classroom.

REFERENCES

Ballmer, S. (2002). Steve Ballmer's Comments to Media at Forum 2000. Available on-line:
http://www.microsoft.com/presspass/exec/steve/06-22f2k.asp

Chappell, D. (2002). Understanding .NET: A Tutorial and Analysis. Boston:
Addison-Wesley.

Douglass, B. P. (2001, January), The evolution of computing, Software Development
Magazine, 01(1).

Farley, J. (2001, March), "Picking a winner .NET vs. J2EE," , 9(3), pp. 36-50.

Gates, B. (2001, June 14), Microsoft .NET Today, Memo to Developer and IT
Professionals. Microsoft Corporation.

King, N. (2002, June 28). Visual Studio's (Dot) Net Worth: Not just a new version; a new
v i s i o n . I n t e l l i g e n t E n t e r p r i s e . A v a i l a b l e o n - l i n e :
http://www.intelligententerprise.com/020628/511products1_1.shtml

Lauer, C. (2001, January). Introducing Microsoft .NET, Available on-line:
http://www.dotnet101.com/articles/art014_dotnet.asp.

JCSC 19, 3 (January 2004)

310

Meyer, B. (2000, November), "The Significance of 'dot-NET'," Software Development,
8(11), pp. 51-60.

Meyer, B. (2001, August.). .NET is Coming. Computer p. 92-97

Microsoft Corporation. (2002, April 04). Defining the Basic Elements of .NET (2002, April
04) Available on-line: http://www.microsoft.com/net/defined/whatis.asp

Microsoft Corporation. MSDN Academic Alliance Program. Available on-line:
http://www.msdnaa.net/program

Spratt, D. (2001, April). Leveraging Microsoft .NET and Sun One Technologies in Control
Systems Design. Control Solutions 74(4). P. 91-92.

Swinton, A. (2003, January 7). .Net may top list of job skills in demand. Available on-line:
http://zdnet.com.com/2100-1104-978922.html

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	1-2004

	Move to Component Based Architectures: Introducing Microsoft's .NET Platform into the College Classroom
	Meg C. Murray
	Recommended Citation

	C:\MyFiles\sesccc03\jcsc19_3.PDF

