
Kennesaw State University
DigitalCommons@Kennesaw State University

Faculty Publications

12-2003

Software Development Productivity and Cycle
Time Reduction
Victor A. Clincy
Kennesaw State University, vclincy@kennesaw.edu

Follow this and additional works at: http://digitalcommons.kennesaw.edu/facpubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

Recommended Citation
Victor A. Clincy. 2003. Software development productivity and cycle time reduction. J. Comput. Small Coll. 19, 2 (December 2003),
278-287.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231827343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1581&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1581&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1581&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1581&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

* Copyright © 2003 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Consortium
for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

278

SOFTWARE DEVELOPMENT PRODUCTIVITY AND CYCLE

TIME REDUCTION *

Dr. Victor A. Clincy
Computer Science & Information Systems Department

Kennesaw State University
Kennesaw, Georgia 30144

770-420-4440
vclincy@kennesaw.edu

ABSTRACT:

Increasing software developers' productivity and reducing the software development
process' cycle time are key goals for organizations responsible for building software
applications. This paper proposes four major areas impacting an organization's
ability to increase developer productivity and reduce development cycle time. The
four areas are (1) organizational structure and climate, (2) reward system, (3)
software development process and (4) the use of software design and testing tools.

0. INTRODUCTION

Increasing software developers' productivity and reducing the software development
process' cycle time are key goals for organizations responsible for building software
applications. This paper proposes four major areas impacting an organization's ability to
increase developer productivity and reduce development cycle time. This paper characterizes
an organizational structure, reward system, software development process and the use of
technology in enabling and promoting increased productivity and reduced cycle time. The
characterizations and perspectives presented in this paper is a summarization of a survey given
to some team leaders of a Fortune 100 company with proven track records of cultivating and
managing effective teams.

CCSC: Eastern Conference

279

In addition to the four areas effecting an organization's ability to increase productivity and
decrease cycle time, some common attributes of highly effective teams were realized and
documented.

1. ATTRIBUTES OF EFFECTIVE SOFTWARE DEVELOPMENT TEAMS

The following common attributes were identified for highly effective software development
teams. In Table 1.0, each attribute is described with the associated impact on cycle time and
productivity.

Attribute Description Cycle Time and/or Productivity Impact

The teams were greatly involved with the
customers and users through out the life
cycle of the project (not just initially).

Reduced handoffs and formal
communications, thus reducing overall cycle
time.

The team sizes were typically small (less
than 15 members)

Cut down on the lines of communications
and handoffs amongst team members, thus
reducing cycle time. Also by having smaller
teams, less cost was spent on human
resources (typically the largest cost factor)

The team were near-to-completely
self-contained (not depending on any
external support in completing the project).
The teams were mostly comprised of
generalists versus specialists.

Because the team could handle the entire
project, it minimized external handoffs and
bureaucracy, thus decreasing cycle time and
increasing overall productivity. By team
members being generalists, productivity per
member was increased.

Each software developer was competent in
more than one language.

By each software developer being
competent in more than one language,
productivity per member was increased.

Each software developer was competent in
more than one function (ie. design, coding,
testing, etc..) throughout the life cycle of the
project.

By each software developer being involved
in more than one function throughout the life
cycle of the project, it boosted productivity
per developer.

The manager (or leader) of the team had a
broad range of responsibilities relating to
gathering requirements, software
development and project management.

Increased the teams' overall efficiency by
increasing productivity and reducing cycle
time at the same time.

The manager (or leader) of the team
functioned as the motivator, coordinator, and
supporter of the team and its members.

Increased the teams' overall efficiency by
increasing productivity and reducing cycle
time.at the same time.

JCSC 19, 2 (December 2003)

280

The team members were hand picked (not
assigned) and were chosen based on their
abilities (not general experience level).

Right sizing with the right mix of skills
optimized the human resource cost factor.

The team members worked well together;
and routinely did activities together outside
of work.

In some fashion, cycle time was reduced
due to the added informal communications
amongst members.

Each team member was empowered to take
whatever action is needed to succeed.

Reduced bureaucracy and development
idleness

All team members were focused on project
goals.

N/A

The team welcomed new "value-added"
ideas, approaches and technologies (and
tools)

Reduced cycle time and increased
productivity

For the most part, each software developer
worked autonomously with very little direct
supervision.

Reduced formal and informal
communications, thus increasing productivity
per member and decreasing overall cycle
time.

The team members communicated very
frequently in an informal manner.

Reduced formal communications provided
decreased cycle time.

The teams generated a minimum (and
essential) amount of documentation.

Reduced documentation provided decreased
cycle time.

Team members were willing to change roles
in completing the project

Members were active throughout the
projects' life cycles which increased each
member's productivity

A quality plan was integral from the start of
the projects. Quality By Design Versus
Conformance

By incorporating a proactive approach to
quality at the start of the project, it
minimized reworked and gave rise to
decreased cost and decreased cycle time.

The members in the groups were
geographically close.

Reduced formal communications but
increased informal communications, thus
increasing productivity per member and
decreasing overall cycle time

Table 1.0:Attributes of Effective Development Teams

2. ORGANIZATIONAL STRUCTURE RECOMMENDATIONS

The organizational structure is critical to creating and maintaining highly effective software
development teams. Key recommendations for organizational structure are described in Table
2.0 and for each recommendation, impacts and needs are listed.

CCSC: Eastern Conference

281

Recommendation Description Impacts Needs

 • Staff projects with small effective
teams

 • Keep effective teams intact
 • Effective teams should take on

new projects over time.
 • Teams should be self-contained,

self-directed and small (< 10
people).

 • Team members should be able to
perform tasks that require more
than one skill set (ie. UI, DB, etc..)

 • The number of effective
teams will increase over
time thus increasing
overall performance of
the company.

 • Critical, high-priority
projects will be
powered by an
effective team

 • Upper management
will need to make
resource plans around
this concept.

 • Upper management
will need to make
necessary
organizational changes
to align resources to fit
this concept.

 • A key to creating or maintaining a
high performance team is having
an effective Technical Team Lead:

 • Technical Team Lead must be
officially Empowered and
Accountable

 • The Technical Team Lead should
have significant knowledge of
systems engineering, systems
architecture, software
development techniques and
tools, and project management.

 • The Technical Team Lead must
have proven/potential leadership
skills.

 • The Technical Team Lead should
be able to foster a climate of
innovation and managed risk
taking.

 • Technical Team Lead
will be responsible for
end-to-end delivery of
a solution, cycle time,
handoffs and
bureaucracy will be
greatly reduced. Also
efficiency and
productivity will
increase.

 • A Technical Team Lead
being accountable
without legitimate
empowerment will not
work.

 • Upper management
will need to appoint
technical team leads
with proven track
record of effectively
performing the
described role.

 • In providing
accountability and
empowerment to
Technical Team Leads,
this will require some
risk-taking on the part
of upper management.

 • Collaborative/complementary
skills are key in functioning as a
high performance team.

 • All members should embrace
flexible spiral development
processes

 • Team members must understand
business needs and growth
directions

 • Team should develop and employ
off-the-shelf component
integration expertise

 • Skill development in people
should include mentoring and
formal training within the team

 • The right sized skills
mix helps make teams
more self-contained,
effective and
productive.

 • Integrative approaches
reduce cycle time.

 • On a per project basis,
objectively define skill
set; only add people to
the team that have the
set of skills needed
(otherwise, you could
be creating
unnecessary
overhead)

 • Be willing to disband a
team if performance
goals aren't reached

 • Be willing to move
people from team to
team in creating high
performance teams

Table 2.0:Organizational Structure Criteria

JCSC 19, 2 (December 2003)

282

3. REWARD SYSTEM RECOMMENDATIONS

An objective reward system is key in boosting a team's productivity..Highly productive
teams must be rewarded accordingly; rewards could be financial or non-financial in nature. By
properly rewarding effective teams, it sets the environment to be more productive. If all teams,
both high performance teams and not so high performance teams, are rewarded the same, it (1)
penalizes the high performance teams, (2) reduces the high performance teams' morale and (3)
doesn't give average-to-low performance teams an incentive to do better since their reward is
practically the same as the high performance teams' rewards. Key recommendations of a
reward system that promote effective software development teams are described in Table 3.0.
For each key recommendation, impacts and needs are listed.

Recommendation Description Impacts Needs

 • Reward system needs to be
objective in fostering high
productive teams:

 • Rewards can be financial and
non-financial in nature

 • The non-financial rewards can be
giving the team a high visibility or
critical projects.

 • Individual financial rewards can be
traditional raises and promotions.

An objective reward system
should encourage desired
individual and team behaviors
to increase performance

Use various metrics in
measuring teams
performance

 • In the application of objective
factors in the rewards systems,
consideration must be given to
circumstances beyond the control of
project teams.

 • Rewards should also be considered
for research, application of new
technologies, and infrastructure
improvements

Encourage desired individual
and team behaviors to
increase performance

Define criteria to use in
measuring these areas
(ie. research,
infrastructure,
improvements, etc..)

Provide incentive for successful
Technical Team Leads to move to lesser
productive teams; also provide a
vehicle for the Technical Team Lead to
gracefully exit the project provided they
are not able to turnaround
average-to-low performance team.

 • Will increase the number
of high performance teams

 • Will increase the number
of effective Technical
Team Leads by opening
up slots on high
performance teams

Define the criteria for
Technical Team Leads
moving and exiting; the
reward system should
be tied to the criteria

Table 3.0:Reward System Criteria

4. SOFTWARE DEVELOPMENT PROCESS RECOMMENDATIONS

The software development process should be adapted to the team and not the team
adapted to the process. In enabling increased productivity, a multi-path process should be used

CCSC: Eastern Conference

283

that is robust and adaptive in nature. The process should be designed to accommodate three
general types of software projects: (1) Problem Resolution type (ie. building non-production
software applications to quickly resolve business problems), (2) Creativity/Experimental/New
Technology type (ie. software projects requiring new technology or approaches; critical
solutions needed very fast; make use of rapid prototyping) and (3) Tactical/Execution/Legacy
type (ie. existing systems requiring enhancements and new features). Key recommendations
for a software development process that enables productivity are described in Table 4.0. For
each key recommendation, impacts and needs are listed.

Recommendation Description Impacts Needs

Define a multi-path process that is
adaptive and robust; the process
should fit the project versus the
project fitting the process

Reduces cycle time
by eliminating
overhead

Define a multi-path process; put
together a team of effective
Technical Team Leads in devising
process

The Developer role should expand into
a System Integrator Role which
consists of the responsibilities of
end-to-end development of features
and systems.

Reduces cycle time
by eliminating
handoffs; role
reduction and
consolidation

Develop community with breath
of knowledge for better flexibility
in staffing and job portability

 • Architecture and OOD skills
 • Coding proficiency (UI,

application and DB)
 • Testing skills (unit, integration,

system)
 • Product Delivery and deployment

skills

Systems engineering should be a task
within the development process and
not a hand off; Systems Engineers
should be involved with the project
during it's entire life cycle; SE performs
numerous different tasks in addition to
requirements gathering.

Increase the number
of people performing
System Integrator
Role; Reduces cycle
time by eliminating
overhead and
handoffs

Define systems engineering role
as an integral role with in the
development process

Don't document anything for the sake
of documenting; multi-path process
should address this more specifically

Reduces cycle time
by eliminating
overhead

Determine documentation actually
needed

Table 4.0:Software Development Process Criteria

5. TECHNOLOGY USE AND ARCHITECTURE RECOMMENDATIONS

Architecture sets the stage for a project's success or failure. There should be some
investment up-front from an architectural perspective in devising an architecture that will allow
rapid development in the future; in addition to this, it's not suggested that the devising of that
architecture take long periods of time or that the development of that architecture's infrastructure
takes long periods of time, due to the fact there are new technologies being constantly

JCSC 19, 2 (December 2003)

284

introduced in the market. Key recommendations of technology use and architecture that enables
decreased cycle time and increased productivity are described in Table 5.0. For each key
recommendation, impacts and needs are listed.

Recommendation Description Impacts Needs

 • Define suitable and robust
architecture up-front;

 • The cost and time-to-market delays
associated with re-architecting have
to be viewed as an investment in
higher productivity and lower costs
for future releases.

 • If modifiability/Reuse is not built-in
to the architecture, productivity will
not be good.

Architecture sets the stage
for a project's success or
failure

Don't expect a quantum leap
in productivity unless you
make quantum leap
architectural changes.

Perform architecture
discovery before project
starts (make sure
knowledgeable folks are
involved)

Don't use new technology for
technology sake. Convince yourself
that the technology will bring some
tangible and needed improvements and
business value

Reduces the probability of
slipping schedules and
increasing cycle time and
cost; increases probability
of success

 • As a part of the process, encourage
teams to use modeling tools, testing
tools, a common modeling language
(UML), etc.

 • Also as part of the process,
encourage teams to reuse code,
write code generation programs for
the more repetitive coding tasks (ie.
UI forms, DB CRUD) and review,
evaluate and use off-the-shelf
components to boost productivity

Reduces cycle time over
time, everyone speaks the
same language

Identify useful tools

Table 5.0:Technology Use Criteria

6. CONCLUSION

The potential amount of improvement is expected to vary by the type and size of the
project and particularly by the nature of any existing systems architecture that may be
foundational for the project efforts.

On high performance teams, each member of the team is motivated to work hard and
do whatever it takes to make the project a success. Somehow this work ethic is achieved.
It is believed that factors in the organizational climate, processes, rewards systems and use
of design tools can encourage and enhance effective team performance.

CCSC: Eastern Conference

285

7. APPENDIX

A. Survey Questions

What is your project's title ?

Give a brief overview or purpose of the system.

Is the project a new start-up or is it an enhancement to an existing application ?

Is your application critical to the company (ie. example of a critical application would be an
application that touches some network element). Will it be very detrimental to the company if your
system went down for a day or so ?

When did the project start ? Number of releases thus far ?

What are the Function Point Metric Results for all releases analyzed (include FP, FP/SM, $/FP and
time-to-market) ?

Give a brief history of the start

What is the Project Team size ? # of systems engineers ? # of developers ? # of non-developers and
non-systems engineers ? Is there a project manager ?

Does your team consist of contractors ?. If so, what percentage ?

What is the structure of your project team ? Is the project broken in functional areas ? (ie UI,
application, data, etc..) If so, are there team leads for each functional area ? Are the project team
members from different organizations ? Is there a lead developer ? Given more than one systems
engineer, is there a lead systems engineer ?

How was the team formed (ie. hand picked, assigned, etc...)

What criteria (if any) was used to choose team members

For developers, do they perform more than one technology task ? (ie. developed UI, developed
application, developed DB, etc..)

For developers, do they perform more than one function (ie, design, development, testing, etc..).

Do the systems engineers stay with the project through it's life cycle or do the SE only gather and
document requirements? If the latter, how long did the hand-off take? Was the handoff formal ?

What type of approach is used in gathering requirements ?. Do you gather ALL requirements
upfront before starting development ?. Or do you gather some requirements and perform some
prototyping before starting development ? Do you have multiple releases throughout the year ?

Is the problem domain very stable, fairly stable or not so stable ?

In general, how often does the team interface with the users or user reps ?. Are demos given to the
users ? If so, how often. Is there a formal requirements document requiring signatures before
development work began ? Who interfaces with the user or user reps (ie. lead SE, project manager,
lead developer, etc....)

Is your team responsible for all of the development or is some of the development done by other
teams ?.

JCSC 19, 2 (December 2003)

286

How often does the team meet ?. In general, how is communications conducted amongst the team
members (ie. meetings, conference calls, emails, etc..). What's the frequency of the various
communications vehicles ?

Did you make use of prototypes - did you practice prototyping ? If so, why ?

Is there Upper Management involvement ?. If so, how often. What issues did upper management
bring forth as they related to your project ?. Who sought funding for your project ?. Who
communicated issues regarding the project to upper customer management ?. In general, was upper
management involvement critical to your project's success. If so, why ?

Did your project conduct an architectural discovery before development ? If so, who conducted the
architectural discovery ?. Did you need approval for the architecture ?. For the architecture
recommended, was it a new technology or an existing technology ?

Are you following some company formal process?. If not, describe the process used ?.

Are you making use of off-the-shelf components ?. If so, which components ?

Are you making use of OOD/P ? If so, explain briefly ? If so, what areas are these concepts applied
to (ie. application, etc...) ?

Are you making use of a database ?. If so, what type and why ? Are you initially creating database
models ? If so, who does this ?

Are you practicing "reuse" ? If so, explain ? If so, what areas ?

What documentation are you generating ? Are you creating formal design documents ?. If so, who
creates them ?. Are you creating test plans. If so, who creates them ?

Do you do testing within the team ?. If so, what testing. Is there any testing done outside of the
team ?. If so, who does this testing ?. If so, do you have to create some documentation before
turning it over for testing ? How long acceptance testing last ?

What software tools did you make use of (ie. Sablime, etc...)

B. Bibliography

[1] Steve McConnell, Rapid Prototyping: Taming Wild Development Schedules.
Microsoft Press, 1996

[2] Barry Boehm, Software Engineering Economies. Prentice Hall, 1981.

[3] Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams.
Dorset House Publishing, 1999

[4] J. Albano, J. Bramley, V. Clincy, M. Colluci, and N. Hultman, High Performance
Team Task Force, AT&T, November 5, 1999

C. Author's Profile

Dr. Victor Clincy is currently an Associate Professor of Computer Science and
Information Systems at Kennesaw State University. Prior to joining KSU's faculty, he was a

CCSC: Eastern Conference

287

Senior Engineering Manager with Scientific-Atlanta Corporation responsible for network
analysis. Prior to Scientific-Atlanta, he worked for AT&T and managed a group of
systems engineers and software developers responsible for building applications and tools
for network designers. In his earlier years with AT&T, he was a Member of Technical Staff
with Bell Labs in New Jersey. He has also worked for companies such as NorTel,
ALCOA, Bridgestone/Firestone and Texas Instruments.

Dr. Clincy holds a post-graduate degree from Columbia University in Computer
Systems Engineering. He also holds a doctorate in engineering from Southern Methodist
University and two Masters degrees in engineering, one from the University of Pittsburgh
and another from North Carolina State University. His undergraduate degree is in Electrical
Engineering from Mississippi State University.

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	12-2003

	Software Development Productivity and Cycle Time Reduction
	Victor A. Clincy
	Recommended Citation

	G:\nwsccc03\JCSC19_2.PDF

