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ABSTRACT
Many data mining algorithms focus on clustering methods.
There are also a lot of approaches designed for outlier de-
tection. We observe that, in many situations, clusters and
outliers are concepts whose meanings are inseparable to each
other, especially for those data sets with noise. Clusters and
outliers should be treated as the concepts of the same im-
portance in data analysis. In our previous work [22] we
proposed a cluster-outlier iterative detection algorithm in
full data space. However, in high dimensional spaces, for a
given cluster or outlier, not all dimensions may be relevant
to it. In this paper we extend our work in subspace area,
tending to detect the clusters and outliers in another per-
spective for noisy data. Each cluster is associated with its
own subset of dimensions, so is each outlier. The partition,
subsets of dimensions and qualities of clusters are detected
and adjusted according to the intra-relationship within clus-
ters and the inter-relationship between clusters and outliers,
and vice versa. This process is performed iteratively until a
certain termination condition is reached. This data process-
ing algorithm can be applied in many fields such as pattern
recognition, data clustering and signal processing.

1. INTRODUCTION
The generation of multi-dimensional data has proceeded at
an explosive rate in many disciplines with the advance of
modern technology. Many new clustering, outlier detection
and cluster evaluation approaches are presented in the last a
few years. Nowadays a lot of real data sets are noisy, which
makes it more difficult to design algorithms to process them
efficiently and effectively.

We observe that, in many situations, clusters and outliers
are concepts whose meanings are inseparable to each other,

especially for those data sets with noise. Thus, it is neces-
sary to treat clusters and outliers as concepts of the same
importance in data analysis.

Based on this observation, in previous work [22], we present
a cluster-outlier iterative detection algorithm for noisy multi-
dimensional data set in which clusters are detected and ad-
justed according to relationships between clusters and out-
liers.

However, clustering and outlier detection approaches are not
always efficient and effective when applied in full data space.
It is well acknowledged that in the real world a large pro-
portion of data has irrelevant features which may cause a
reduction in the accuracy of some algorithms. In this paper,
we propose a new approach SubCOID, tending to explore
cluster-outlier iterative detection approaches in subspace. In
our approach, each cluster is associated with its own subset
of dimensions, so is each outlier. We first find some initial
(rough) sets of clusters and outliers. Based on the initial
sets, we gradually improve the clustering and outlier detec-
tion results. In each iteration, the partition, subsets of di-
mensions and compactness of each cluster are modified and
adjusted based on intra-relationship among clusters and the
inter-relationship between clusters and outliers. The sub-
set of dimensions and quality rank each outlier is associated
with are modified and adjusted based on relationship among
outliers and the inter-relationship between clusters and out-
liers.

The remainder of this paper is organized as follows. Section
2 introduces the related work of clustering, outlier detection
and cluster evaluation. Section 3 presents the formaliza-
tion and definitions of the problem. Section 4 describes the
subspace cluster-outlier iterative detection (SubCOID) algo-
rithm.

2. RELATED WORK
More and more large quantities of multi-dimensional data
need to be clustered and analyzed. Cluster analysis is used
to identify homogeneous and well-separated groups of ob-
jects in data sets. It plays an important role in many fields of
business and science. The basic steps in the development of
a clustering process can be summarized as [9] data cleaning,
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feature selection, application of a clustering algorithm, val-
idation of results, and interpretation of the results. Among
these steps, the clustering algorithm and validation of the
results are especially critical, and many methods have been
proposed in the literature for these two steps. Existing clus-
tering algorithms can be broadly classified into four types:
partitioning [13, 15, 18], hierarchical [25, 10, 11], grid-based
[23, 21, 3], and density-based [8, 12, 4] algorithms.

Outlier detection is concerned with discovering the excep-
tional behaviors of certain objects. It is an important branch
in the field of data mining and in some sense it is at least as
significant as cluster detection. There are numerous stud-
ies on outlier detection. D. Yu etc. [24] proposed an out-
lier detection approach termed FindOut as a by-product
of WaveCluster [21] which removes the clusters from the
original data and thus identifies the outliers. E. M. Knorr
etc. [16] detected a distance-based outlier which is a data
point with a certain percentage of the objects in the data set
having a distance of more than dmin away from it. S. Ra-
maswamy etc. [19] further extended it based on the distance
of a data point from its kth nearest neighbor and identified
the top n points with largest kth nearest neighbor distances
as outliers. M. M. Breunig etc. [5] introduced the concept
of local outlier and defined local outlier factor (LOF) of a
data point as a degree of how isolated the data point is with
respect to the surrounding neighborhood. Aggarwal etc. [2]
considered the problem of outlier detection in subspace to
overcome dimensionality curse.

High dimensional data sets continue to pose a challenge to
clustering algorithms at a very fundamental level. One of
the well known techniques for improving the data analysis
performance is the method of dimension reduction[3, 1, 20]
in which data is transformed to a lower dimensional space
while preserving the major information it carries, so that
further processing can be simplified without compromising
the quality of the final results. Dimension reduction is often
used in clustering, classification, and many other machine
learning and data mining applications.

There are some previous work on detecting clusters and out-
liers in subspace [1]. However, PROCLUS [1] does not ex-
plore the interactivity between clusters and outliers. Also
PROCLUS favors spherical clusters, which limits its appli-
cation for the real data with clusters of arbitrary shapes.

Our approach is different from the previous clustering and
outlier detection methods in that we tried to detect and
adjust the set of clusters and outliers according to the intra-
relationship in the set of clusters and the set of outliers, as
well as the inter-relationship between clusters and outliers.
Furthermore, our algorithm is performed in subspace, rather
than in full data space.

There are several criteria for quantifying the similarity (dis-
similarity) of the clusters. ROCK[11] measures the sim-
ilarity of two clusters by comparing the aggregate inter-
connectivity of two clusters. Chameleon [14] measures the
similarity of two clusters based on a dynamic model.

Many approaches [6, 17] have been proposed for evaluating
the results of a clustering algorithm. These clustering valid-

ity measurements evaluate clustering algorithms by measur-
ing the overall quality of the clusters.

3. PROBLEM DEFINITION
In order to describe our approach we shall introduce a few
notation and definitions. Let n denote the total number of
data points and d be the dimensionality of the data space.
Let the input d-dimensional dataset be X

X = { ~X1, ~X2, ..., ~Xn},
which is normalized to be within the hypercube [0, 1]d ⊂ Rd.

Each data point ~Xi is a d-dimensional vector:

~Xi = [xi1, xi2, ..., xid]. (1)

We assume the current number of clusters is kc, and the
current number of outliers is ko. The set of clusters is C =
{C1, C2, ..., Ckc}, and the set of outliers isO = {O1, O2, ..., Oko}.
For a given cluster Ci, i=1,...,kc, its associated subspace is
sci . For a given outlier Oj , j=1,...,ko, its associated subspace
is soj .

We use ds(X1, X2) to represent the distance between two
data points X1 and X2 under a certain distance metric. In
a high dimensional space the data are usually sparse, and
widely used distance metric such as Euclidean distance may
not work well as dimensionality goes higher. The Lp norm is
widely used in the research work of distance measurement.
Lp: d(X1, X2) = (

∑d
i=1 |X1i − X2i|p)1/p. In our previous

work, we prefer L0.1 to L2 metric.

For two data points X1 and X2, under L0.1 norm, their dis-
tance under a d-dimensional data space is: L0.1: d(X1, X2) =

(
∑d

i=1 |X1i −X2i|0.1)10.

However, since in our approach we focus on working on clus-
tering and outlier detection in individual subsets of sub-
spaces, it’s crucial that the distance measurements in dif-
ferent subspaces are fair to each other. Hence we modified
the L0.1 norm slightly as L′0.1. For two data points X1 and
X2, under L′0.1 norm, their distance under a d-dimensional
data space is:

d(X1, X2) = (
∑d

i=1 |X1i−X2i|0.1

d
)10. L′0.1 norm erases the dif-

ference caused by the different set of dimensions involved in
the distance metrics.

Suppose the distance is calculated in subspace s, we denote
it as: ds(X1, X2).

In our previous work, we proposed some concepts regard-
ing to the diversities between clusters, cluster-outlier pairs
and outliers. However, they are not applicable regarding
to subspace problem. First of all, each cluster/outlier now
has its own associated subsets of dimensions, instead of the
usual full data space. Thus Compactness of a cluster should
be changed since it was original defined in full data space.
We should also significantly redefine the diversities between
clusters, cluster-outlier pair and outliers.

Definition 1: For a cluster Ci, let sci be its associated sub-
space, let MST (C) be a minimum spanning tree on the dense
cells of the minimal subgraph containing Ci. The internal
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connecting distance (ICD) of Ci, denoted as ICD(Ci),
is defined as the length of a longest edge of MST (Ci). The
external connecting distance (ECD) of Ci, denoted as
ECD(Ci), is defined as the length of a shortest edge connect-
ing the centers of Ci and other clusters. The compactness
of Ci, denoted as Compactness(Ci), is defined as

Compactness(Ci) =
ECD(Ci)

ICD(Ci)
. (2)

In the following we use CPT (Ci) to denote Compactness(Ci).

Definition 2: The diversity between a cluster C and an
outlier O is defined as:

D1(C, O) =
w1 · dmin(O, C) + w2 · davr(O, C)

1 + |Cosθ| (3)

where w1 = 1
CPT (C)+1

, w2 = CPT (C)
CPT (C)+1

, davr(O, C) =

ds(O, mc), dmin(O, C) = max(ds(O, mc) − rmax, 0) where
s = sc∩so, rmax is the maximum distance of the data points
in C from its centroid, and θ is the angle between the eigen-
vector of cluster C corresponding to the largest eigenvalue
and the vector connecting mc and O. The criteria for set-
ting the weights w1 and w2 are similar to those in [7].

Definition 3: The diversity between two clusters C1 and
C2 is defined as:

D2(C1, C2) =
ds(C1, C2) ∗ (1 + |Cosθ|)
CPT (C1) + CPT (C2)

(4)

where ds(C1, C2) can be either the average distance between
the two clusters or the minimum distance between them in
subspace s = sc1 ∩ sc2 . Here we simply apply the former one
d(mC1 , mC2). θ is the angle between the two eigenvectors
corresponding to the two largest eigenvalues of C1 and C2,
respectively. The larger the value of D2(C1, C2) is, the larger
diversity the clusters C1 and C2 have to each other.

Definition 4: The diversity between two outliers O1 and
O2 is defined as:

D3(O1, O2) = ds(O1, O2) (5)

where s = so1 ∩ so2

Definition 5: We measure the quality of a cluster C as:

Qc(C) =

∑
C′∈C,C′ 6=C D2(C,C′)

kc−1
+

∑
O∈O D1(C,O)

ko

CPT (C)
(6)

The larger Qc(C) is, the better quality cluster C has.

Similarly, the quality of an outlier O is reflected not only
by the diversity between it and clusters, but also by the di-
versity between it and other outliers. The farther distances
it has from other outliers and clusters, the better quality it
should obtain.

Definition 6: We measure the quality of an outlier O as:

Qo(O) =

∑
O′∈O,O′ 6=O D3(O, O′)

ko − 1
+

∑
C∈C D1(C, O)

kc
(7)

The larger Qo(O) is, the better quality outlier O has.

4. ALGORITHM
The main goal of the SubCOID algorithm is to mine the
optimal set of clusters and outliers for the input data set
in cluster/outlier associated subspaces. As we mentioned in
the previous sections, in our approach, for a given multi-
dimensional data, clusters and outliers associated with indi-
vidual subsets of dimensions are detected, adjusted and im-
proved iteratively. Clusters and outliers are closely related
and they affect each other in a certain way. The relation-
ship between clusters with different subsets of dimensions
are complicated, so are that of outliers and that of cluster-
outlier pairs. The basic idea of our algorithm is that clusters
are detected and adjusted according to the intra-relationship
within clusters and the inter-relationship between clusters
and outliers in subspace, and vice versa. The adjustment
and modification of the clusters and outliers are performed
iteratively until a certain termination condition is reached.
This analysis approach for multi-dimensional data can be
applied in many fields such as pattern recognition, data clus-
tering and signal processing. The overall pseudocodes for
the algorithm is given in Figure 1.
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Algorithm SubCOID (k: No. of Clusters)
Begin

1. Initialization Phase
Repeat
Const1 and Const2 are two proportion constants to k
Const1 > Const2;
RandomSize1 = Const1·k;
RandomSize2 = Const2·k;
RS1 = random sample with the size of Randomsize1;
RS2 = FindKMedoids(RS1, RandomSize2);
{Assign data points to medoids to form medoid-
associated sets}
E ← SubDispatchDataPoints(RS2); {E is set of
initial data division;}
{Determine the characteristics of the medoid-
associated sets, and the initial subspace for each
set}
{C and O} ← SubClusterOrOutlier();

Until(|C| ≥ k)

2. Iterative Phase
{Merge the clusters according to the input cluster
number k}
C ← MergeSubspaceCluster(C);

Repeat
{Find the nearest cluster for each outlier}
For each outlier o ∈ O do
Begin
Find its nearest cluster ∈ C

End
Sort current set of clusters in ascending order based
on their qualities;
Sort current set of outliers in ascending order based
on their qualities;
{Reorganize the structure of clusters and outliers}
ExchangeSubspaceClusterAndOutlier();
O′ is the set of outliers with worst qualities;
BDP is the set of boundary data points with worst
qualities;
U = O′ ∪ BDP;

Until(U is stable or iteration number ≥ =)
End.

Figure 1: Algorithm: SubCOID
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