
Kennesaw State University
DigitalCommons@Kennesaw State University

Faculty Publications

12-2009

Object Oriented Program Correctness with
OOSimL
José M. Garrido
Kennesaw State University, jgarrido@kennesaw.edu

Follow this and additional works at: http://digitalcommons.kennesaw.edu/facpubs

Part of the Programming Languages and Compilers Commons, and the Software Engineering
Commons

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

Recommended Citation
Garrido, José M. "Object oriented program correctness with OOSimL." Journal of Computing Sciences in Colleges 25, no. 2 (2009):
85-91.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231827326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1456&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1456&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1456&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1456&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1456&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F1456&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

* Copyright © 2009 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

85

OBJECT ORIENTED PROGRAM CORRECTNESS WITH

OOSIML*

José M. Garrido
Department of Computer Science and Information Systems

Kennesaw State University
Kennesaw, GA 30144

jgarrido@kennesaw.edu

ABSTRACT

Software reliability depends on program correctness and robustness and these
are extremely important in developing high-quality software. Correctness is
also essential when considering aspects of software security. However,
experience applying these concepts, associated methods, and supporting
software with Eiffel and Java have shown that students find some diffculty
learning program correctness and in learning the software tools provided. We
have developed an experimental language, OOSimL, that includes an assertion
notation similar to that of Eiffel but which has much more flexibility, and that
provides the same semantics as Java.
The first part of this paper provides an overview of concepts and methods on
software reliability then briefly describes our experience in teaching these. The
second part introduces the Design by Contract (DBC) using the OOSimL
programming language, which we recently developed.

INTRODUCTION

Program correctness is a quality factor that indicates whether a program performs
according to its specification. Program robustness indicates whether a program can handle
abnormal situations that were not covered in the specification in a graceful manner. These
two important concepts combined define software reliability. These are important for
developing reliable and reusable software components and for defining software security
aspects.

JCSC 25, 2 (December 2009)

86

The Design by Contract (DBC) principle, defined originally by Bertrand Meyer in
[1] and [2], is one of the most widely-used approaches for improving development of
reliable software. DBC is supported by the Object Constraint Language (OCL) [6], which
is a specification language used with the Unified Modeling Language (UML). At the
implementation level, DBC is supported by the Eiffel programming language [3] [4].

The Design by Contract approach specifies a contract between a supplier class and
its client classes. The respective responsibilities (obligations) between the supplier class
and the client classes must be stated very clearly and precisely. These mutual obligations
are called contracts, and assertions are used to check whether an application complies
with a contract.

Assertions are Boolean expressions that define correct program states and are placed
at specific locations in the code. The assertion must normally evaluate to true. Failure of
an assertion (evaluate to false) is typically a symptom of a bug in the software, so it must
be reported to the user.

Assertions used in programming are: preconditions that have to be satisfied
(evaluate to true) on method invocation, post-conditions that are evaluated after method
execution, and class invariants that express conditions for the consistency of data in the
class.

The assertions in a class specify a contract between its instances and their clients.
According to the contract, a server promises to return results satisfying the
post-conditions if a client requests available services and provides input data satisfying
the preconditions. Class invariants must be satisfied before and after each service (method
invocation).

Including assertions in classes provide a powerful tool for finding errors. Assertion
monitoring is a way to check what the software does against what its developer described
it should do. This results in a good approach to debugging, testing, in which the search
for errors is based on consistency conditions provided by the developers themselves.

EXPERIENCE WITH DBC

We have used Design by Contract in our Object Oriented Software Development
course (CS4650, a senior elective course) for several years. For the first few years of
teaching the course, we used the Eiffel programming language, which has direct support
for assertions and DBC. One of the problems found is that students found the language
and its environment difficult to master.

Our next approach in teaching DBC was to direct students to write contracts as
comments in C++ programs. The problem observed was that students viewed DBC as an
afterthought.

The Java programming language has very limited support for including assertions.
However, several software tools [7] have emerged that indirectly allows the Java
programmers to use assertions.

In this approach, we directed students to develop code in Java and write contracts
using jContractor. This is a Java library that uses methods to include contracts in a class.

CCSC: Southeastern Conference

87

The main challenge in the course is that students find the assertion notation fairly
complex.

We have started to experiment with a new approach for teaching DBC: use DBC in
a lower-level (required) course, Introduction to Data Structures (CS3401). This course
directs students to write class specifications in OCL then implement the classes in the
OOSimL programming language, which we have developed recently [5]. This
programming language is higher level than Java and has built-in support for assertions.

The OOSimL language has appropriate syntax statements to process assertions, and
at runtime, it checks the assertions via the exception-handling mechanism. The OOSimL
compiler generates Java code. Students use the jGRASP or Eclipse environments to
develop their programs.

USING ASSERTIONS WITH OOSIML

There are several types of assertions that are included in a source program, these are
discussed in the following subsections.

Preconditions and Postconditions

The precondition clause introduces an input condition, or precondition; the
postcondition clause introduces an output condition, or postcondition. The following
OOSimL example introduces the use of precondition and postcondition in a function:
description

This function inserts an element x to a list, the element must be
retrievable through key. */

function put
parameters x of class Element,
 key of type string
is
precondtion
count <= capacity and key.length() > 0
begin

... instructions of insertion algorithm ...
postcondition

find(key) == x and
count == old_count + 1
endfun put

In the precondition, count is the current number of elements and capacity is the
maximum number. In the post-condition, the Boolean query which tells whether a certain
element is present invoking function find, which returns the element associated with a
certain key. The variable old_count refers to the value of count on entry to the routine,
e.g., in the previous state of the object.

Class Invariant

In OOSimL, class invariants are written using the keyword invariant followed by
a Boolean expression. Class invariants are written after all attribute declarations. The
following example shows how a simple class invariant is written:

JCSC 25, 2 (December 2009)

88

invariant
 count >= 0 and count <=
 capacity

Loop Invariants and Variants

Loop invariants and variants are used to help verify the correctness of loops. A loop
invariant is a Boolean expression that evaluates to true on every iteration of the loop. This
Boolean expression normally includes variables used in the loop.

The loop invariant has to be true before each iteration of the loop body, and after
each iteration of the loop body. If the invariant is true before entering the loop, it must
also be true after exiting the loop.

The initial value of the loop invariant helps determine the proper initial values of
variables used in the loop condition and body. In the loop body, some statements make
the invariant false, and other statements must then re-establish the invariant so that it is
true before the loop condition is evaluated again.

In OOSimL, a loop invariant is written using the keyword loopinv followed by a
Boolean expression. This Boolean expression is true after loop initialization and
maintained on every iteration. This is the general property of a loop invariant.

loopinv // loop invariant
max_elem >= a[i]

Invariants can serve as both aids in recalling the details of an implementation of a
particular algorithm and in the construction of an algorithm to meet a specification.

The loop variant is an integer expression that always evaluates to a non-negative
integer value and decreases on every iteration. The loop variant helps to guarantee that
the loop terminates (in a finite number of iterations). In OOSimL, a loop variant is written
using the keyword loopvariant followed by an integer expression.

In the following example of a loop variant, an integer expression that decreases in
value on every iteration of the loop:

loopvariant // loop invariant
num_elements - i

An Example in OOSimL

The following example in the OOSimL language is the class implementation of a
stack; it illustrates the use of assertions and the Design by Contract principle.
import all psimjava
description
 This class defines a stack implemented by a simple linked list.
 This version supports Assertions. */
class DStack is
 private
 constants

define N = 100 of type integer // capacity of stack
 variables

define count of type integer // current number of items
define old_count of type integer // previous state

 object references
define mList of class DList

CCSC: Southeastern Conference

89

 invariant
count >= 0 and count <= 100

 public
 description

Initializes the stack. */
 function initializer is
 begin

set count = 0
create mList of class DList

 postcondition
count == 0

 endfun initializer
 //
 description

Return true if the stack is empty */
 function isEmpty return type boolean is
 variables

define temp of type boolean
 begin

set temp = call mList.isEmpty // is LinkList object empty?
return temp

 endfun isEmpty
 description

Return true if the stack is full */
 function isFull return type boolean is
 variables

define temp of type boolean
 begin

if count == N // is stack full?
then

 set temp = true
else

 set temp = false
endif
return temp

 endfun isFull
 description

Push a Link or node to the top of the stack */
 function push
 parameters idata of class Data is
 precondition

count < N // stack not full
 begin

set old_count = count // set previous state
call mList.insertFirst using idata
set count = count + 1

 postcondition
count > 0 && count == old_count + 1

 endfun push
 //
 description

Return a copy of the data in the Link or node
at the top of the stack. */

 function top return class Data is
 variables

define old_count of type integer
 object references
define tdata of class Data
 precondition

count > 0 // stack not empty
 begin

set old_count = count
set tdata = call mList.getFirst
 postcondition

count == old_count && count > 0 // no change in stack

JCSC 25, 2 (December 2009)

90

return tdata // return reference to Data object
 endfun top
 //
 description

Remove a Link or node from the top of the stack. */
 function pop is
 precondition

count > 0 // stack not empty
 begin

set old_count = count // previous state
call mList.deleteFirst

set count = count - 1
 postcondition

// stack not full and stack has one less node
count < N && count == old_count - 1

 endfun pop
endclass DStack

The complete class definition, which includes the implementation of the class can
be downloaded from the following Web page:

http://science.kennesaw.edu/~jgarrido/psim.html

CONCLUSION

An important property of software is reliability, which depends on correctness and
robustness. Design by Contract (DBC) is a relatively easy principle to understand and
learn; the challenge is to apply this principle in good object-oriented software design and
implementation. DBC is based on the notion of client and supplier contracts that specify
all operations in terms of responsibilities and obligations. Contracts in object-oriented
software systems are expressed in with assertions that are included in specified location
in the class definitions.

After several years teaching DBC and working with students applying various
approaches, we have started to experiment teaching DBC by specifying classes with the
Object Constraint Language (OCL) and implementing them with the new OOSimL
language. With OOSimL, preconditions, postconditions, and class invariants can be used
for the specification of classes. Contract violations are signaled as exceptions during
program execution. These assertions together with loop invariants and variants can help
enhance the understanding, learning, and development of program correctness.

REFERENCES

1. Meyer, Bertrand. Object Oriented Software Construction. Prentice Hall,
Englewood Cliffs, NJ, 1988.

2. Meyer, Bertrand. “Applying Design by Contract". IEEE Computer, Vol 25, Issue
10, Oct 1992.

3. Meyer, Bertrand. Eiffel: The Language. Prentice Hall International, Hemel
Hemstead, 1992.

4. Meyer, Bertrand. Object Oriented Software Construction. Second Ed. Prentice
Hall, Upper Saddle River, NJ, 1997.

CCSC: Southeastern Conference

91

5. Garrido, José M. The OOSimL Simulation Language Reference. Technical
Report, Department of Computer Science and Information Systems, Kennesaw
State University, June 2008.

6. Warmer, Jos and Anneke Kleppe. The Object Constraint Language.
Addison-Wesley, Upper Saddle River, NJ, 1999.

7. Plösch, Reinhold. “Evaluation of Assertion Support for the Java Programming
Language". Journal of Object oriented Technology. Vol 1, No. 3, Special issue:
TOOLS USA 2002 proceedings, pages 5-17.

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	12-2009

	Object Oriented Program Correctness with OOSimL
	José M. Garrido
	Recommended Citation

	JCSC25_2.pdf

