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Abstract 
Relationship Extraction (RE) from biomedical li-
terature is an important and challenging problem 
in both text mining and bioinformatics. Although 
various approaches have been proposed to extract 
protein-protein interaction types, their accuracy 
rates leave a large room for further exploration of 
more effective methods.  In this paper, two super-
vised learning algorithms based on newly-defined 
“bio-semantic token subsequence” are proposed 
for multi-class biomedical relationship extraction. 
The first approach calculates a “bio-semantic to-
ken subsequence kernel”, while the second one 
explicitly extracts weighted features from bio-
semantic token subsequences. The proposed struc-
ture called “bio-semantic token subsequence” is 
able to capture semantic features from natural lan-
guage sentences for biomedical RE. Two super-
vised learning algorithms based on the proposed 
structure outperform the state-of-the-art biomedi-
cal RE methods on multi-class protein-protein in-
teraction extraction. 

1 Introduction 

Relationship Extraction (RE), which aims at extract-
ing relationship(s) between given entities from un-
structured data, has attracted intensive research efforts 
in the last few years especially in the bioinformatics 
area. Various computational approaches were reported 
to extract protein-protein interactions from biomedical 
literature.  However, most of those approaches are 
limited to binary relationship extraction that deter-
mines whether two proteins interact. Since two pro-
teins may interact with each other in multiple ways, it 
is far more useful to extract the exact type of interac-
tion between them. More specifically, given a sen-
tence containing two target biomedical entities, we 
would like to have a machine learning algorithm that 
is able to automatically identify the type of relation-
ship expressed by the sentence between these two 
entities. This problem is referred to as multi-class 
relationship extraction.   
  Our work in this paper focuses on using supervised 
learning methods to solve the multi-class relationship 
extraction problem. Each sentence in the training set 
contains the two target entities and is assigned a rela-
tion type between these two entities.  The challenge of 
this type of supervised learning methods for RE lies 
on explicit or implicit extraction of relationship-

related features from natural language sentences. The 
work of Blaschke and Valencia [2] used manually 
generated rules composed of sequences of words, part 
of speech (POS) tags, and categories with positional 
information to capture the features for RE.  Although 
the generated rules might be expressive, this approach 
itself is not scalable. The work on text categorization 
using the string kernels [8] motivated the design of 
kernel methods for RE [12]. The string kernel based 
approach uses character sequences to capture features 
for RE.   
     In order to address the challenge of automatic fea-
ture extraction from natural language sentences for 
biomedical RE, we first introduce a structure called 
bio-semantic token subsequence.  A bio-semantic to-
ken subsequence is composed of both biomedical 
entities and their semantic types, as well as stemmed 
non-biomedical words that are automatically extracted 
from a given sentence. This proposed structure is an-
ticipated to capture semantic features from natural 
language sentences for biomedical RE. Based upon 
the extracted bio-semantic token subsequences, two 
learning methods are proposed to conduct relationship 
classification. The first approach calculates a “bio-
semantic token subsequence kernel” that implicitly 
utilizes features captured by the bio-semantic token 
subsequences. The second learning approach is called 
“discriminative bio-semantic token subsequence clas-
sifier”, which explicitly generates a discriminative 
subset of bio-semantic token subsequences from a 
training set to form the feature vectors for further in-
duction.   

2 Related Work 

We divide the related work on relationship extraction 
into three broad categories: rule-based, graphical 
models and discriminative models.      
   Rule-based systems: The paper by Blaschke and 
Valencia [2] uses manually built language constructs 
(patterns) to extract protein-protein interactions. This 
is one of the early RE works in biomedical domain 
and showed its potential. But the authors concluded 
that a system in future should be more flexible and 
easy to build without the need to construct rules ma-
nually.  Other rule/template-based relationship extrac-
tion systems include [11].  The paper [7] uses an In-
ductive Logic Programming (ILP) method on protein-
location relationship extraction. A major advantage of 
ILP is that it provides a straight-forward way to in-
corporate domain knowledge and produces logical 
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clauses suitable for analysis and revision by humans 
to improve performance. All of these works use pre-
defined templates or semantic grammars which are 
not portable from one domain to another.  Further-
more, none of these approaches studied multi-class 
relationship extraction. 
   Graphical Models: The paper by Ray and Craven 
[9]  used Hidden Markov Models (HMM) to extract 
relationships among objects from biomedical texts. 
Their approach incorporates grammatical structure of 
sentences into HMM architecture to extract subcellu-
lar-localization relations. This work showed that using 
the grammatical structure of the sentences improves 
the precision and recall performance compared to 
using only words of sentences. However, one of the 
difficult aspects of using HMM is in designing the 
architecture, which also requires domain knowledge. 
Furthermore, HMM does not allow modeling of the 
long-range dependencies of the observations that are 
often found in biomedical RE. Conditional Random 
Fields (CRF) provide a solution to this problem.    
   Discriminative Models: Chang and Altman [5] de-
veloped models based on maximum entropy to extract 
pharmaco-genetic relationships between genes and 
drugs from the biomedical literature.  String kernel-
based methods for relationship extraction were em-
ployed in [12] and [3].  However, both of these me-
thods conducted binary relationship extraction; that is, 
to determine if a relationship exists or not. The work 
of Erkan et al. [6] used the shortest path between two 
genes evaluated by edit distance in a dependency tree 
to define a kernel function for extracting gene interac-
tions. Although, the dependency tree, which is ob-
tained by shallow parsing of the sentences, is able to 
capture the relationships between non-contiguous 
words, the edit distance itself doesn't model the local 
matches well.  The work of Airola et al. [1] presented 
a kernel method called “all-paths graph kernel” for 
protein-protein interaction extraction. Their method 
uses the dependency graph in defining a graph kernel.   
The work only studied binary relationship extraction.  
The two methods proposed in this paper also belong 
to the category of discriminative models.  However, 
in contrast to [5], our methods use semantically 
enriched subsequences to implicitly and explicitly 
form features for classification, instead of just using 
bag of words.  

3 Bio-semantic Token Subsequences  

Given a sentence “This report describes a patient with 
generalized argyria caused by ingestion of homemade 
colloidal silver solution”, the relationship between 
entities argyria and colloidal silver solution can be 
described by a non-contiguous subsequence, “argyria 
caused by colloidal silver solution”.  Meaningful sub-
sequences like the previous example are good features 
for relationship extraction.  According to the defini-
tion in [8], a sparse subsequence is a subsequence that 
may not be contiguous in the original sequence. Can-
cedda et al. [4] directly utilized sparse subsequences 

of words shared by two sentences to form a kernel 
that is an extension of string kernel [8] for text cate-
gorization. We propose a structure called bio-
semantic token subsequences as the basis for feature 
extraction from biomedical sentences. A bio-semantic 
token subsequence is a semantically enriched sparse 
subsequence. In order to illustrate the concept of bio-
semantic token subsequences, we take the sen-
tence S as an example to go through the following 
steps that transform S to another sequence *S .  Step 1, 
remove stop words from S; Step 2, identify all bio-
medical entities, such as the ones underlined in sen-
tence S; Step 3, each biomedical entity (BME) in S is 
tagged with its semantic type (ST), such that each 
BME becomes a (ST-BME) pair. The semantic types 
are a set of broad subject categories provided by the 
Unified Medical Language System (UMLS); Step 4, 
identify the verbs.  We distinguish words which are 
verbs from other words because relationship key-
words are more likely to be verbs. We denote this new 
sequence obtained as the result of applying the above 
three steps as *S . 
Sentence S : “Additional treatment with losartan potentiated 
the stimulatory effects of a low-salt diet, of furosemide and 
of isoproterenol infusion on renin gene expression.”   

Sequence *S : “Additional treatment (DRUG-losartan) 
potentiated stimulatory effects (TREATMENT-low-salt 
diet) (DRUG-furosemide) (DRUG-isoproterenol) infusion 
(PROTEIN-rennin) (GENE FUNCTION-gene expres-
sion)”  

   We refer to *S as bio-semantic token sequence.  The 
bio-semantic token subsequences shared by two or 
more bio-semantic token sequences form bio-
semantic token subsequence patterns.  

4 Bio-semantic Kernel  

In this section, we present the bio-semantic kernel that 
utilizes the common bio-semantic token subsequences 
shared by two sentences to evaluate the similarity 
between the two sentences.    The bio-semantic kernel 
can be viewed as an implicit way to perform feature 
extraction based on the concept of bio-semantic token 
subsequence.   
  Given two sentences S and T, we first convert them 
to the corresponding bio-semantic token sequences 

*S and *T . The proposed kernel is similar to that of 
word sequence kernel (WSK) proposed in [4], with 
the added property that each token can carry addition-
al features such as entity types, part-of-speech tag 
information. The common subsequences (bio-
semantic token subsequences) are made-up of tokens 
of different types: ‘biomedical entities”, ‘semantic 
types”, “verb words” and “non-verb words”. 
For example, consider the following sentences: 
 
S = “Results show that meropenem interacts synergistically 
in combination with aminoglycoside”  
T = “Results show that meropenum acts more synergistical-
ly with zidovudine than with aminoglycoside” 
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     The corresponding bio-semantic sequences are: 

*S  = “Results (DRUG-meropenem) interacts synergistical-
ly combination (DRUG- aminoglycoside)” 

*T  = “Results (DRUG-meropenem) acts more synergisti-
cally (DRUG-zidovudine) (DRUG-aminoglycoside)” 

 
Some of the common bio-semantic token subse-
quences that will be generated are: “Results synergis-
tically”, “meropenum synergistically aminoglyco-
side”, “DRUG synergistically DRG”. 
    In string kernels [8], two common subsequences of 
same length and same number of characters in the gap 
contribute exactly the same value to the similarity 
between two sequences. In WSK, authors proposed 
the idea of using symbol-dependent decay factors for 
words in the common subsequences (matches) and for 
words in the gap. We further build on this idea by 
explaining two key observations in the context of re-
lationship extraction. 
    First, two common bio-semantic token subse-
quences with the same length and the same number of 
tokens in gap but composed of different types of to-
kens may contribute differently to the degree of simi-
larity between the corresponding pair of sequences.   
The following two common bio-semantic token sub-
sequences shared by *S and *T  are examples for 
token subsequences that are the same in length but 
differ in the type of tokens that they contain: “DRUG 
synergistically DRUG”, “meropenem synergistically 
aminoglycoside”. The subsequence “meropenem syn-
ergistically aminoglycoside” contributes more to the 
degree of similarity between *S and *T than that of 
“DRUG synergistically DRUG”, given that a biomed-
ical entity itself provides more details than its seman-
tic type.  
  Secondly, two common bio-semantic token subse-
quences with the same length and composed of the 
same types of tokens, but having gaps that are com-
posed of different types of tokens may contribute dif-
ferently to the degree of similarity between the cor-
responding pair of sequences.    
  In order to model the complexity brought by differ-
ent types of tokens in a bio-semantic token sequence, 
we use two different sets of decay factors. One is ,m xλ  
to reflect the effect that different types of tokens in a 
common bio-semantic token subsequence have on the 
evaluation of similarity between two corresponding 
bio-semantic token sequences; the other is ,g xλ  to 
reflect the effect brought by different types of tokens 
in a gap within a common subsequence on similarity 
evaluation.  Each element in the following set of ,m xλ  
represents the matching decay factors for tokens of 
type semantic type, biomedical entity, verb, and non-
verb word respectively: { ,m stλ , ,m bmeλ , ,m vλ , ,m nvλ }.  

While the following set of ,g xλ  are the gap decay 
factors for the following tokens (ST-BME), verb, and 

non-verb when they occur in a gap: 
{ ,g bmeλ , ,g vλ , ,g nvλ } (Please note that when a (ST-
BME) occurs in a gap, we only consider the effect of 
the biomedical entity to avoid dual counting).  The 
type-dependent decay factors were also used in the 
word sequence kernels [4]. In word sequence kernels, 
however, the decay factors of words are just based on 
their part-of-speech tags. The bio-semantic kernel is 
the combination of the basic construct of string kernel 
and the complex setting of ,m xλ , ,g xλ . The bio-
semantic kernel function is presented as formula 4.1: 

    

_ _
* * * *

1

( , ) * ( , )
n

n l

l

K S T l K S T
=

= ∑   …… (4.1) 

  In the bio-semantic kernel, kernel value between two 
sequences is calculated by computing the sub-kernel 
values for subsequences of length from 1 to n sepa-
rately and giving the higher weight to the kernel val-
ues corresponding to longer common subsequences. 
As shown in the equation 4.1, * *( , )lK S T is the sub-
kernel value computed using the common bio-
semantic subsequences of length l ; and the weighted 
sum of all sub-kernels with different lengths forms the 

final kernel value
__

* *( , )nK S T . The sub-kernel 
* *( , )lK S T between two sequences *S and *T is de-

fined as: 

      
* * * *( , ) ( ) ( )l u u

u CU

K S T S Tφ φ
∈

= ∑  ……….. (4.2)  

In equation 4.2, CU is the set of all common bio-
semantic subsequences of length 
l and *( )u Sφ , *( )u Tφ are the weights of a common 

subsequence u CU∈ in sequences *S , *T respectively.   
The weights are computed using the below equation: 

 
       …….(4.3) 
 

In the above equation, , jm uλ and , ig sλ are the token 

dependent match and gap decay factors that we have 
discussed earlier in this section. Please refer to the 
section 4.1.2 of the paper by Cancedda et al. [4] for 
further details about the weight equation and kernel 
formulation. The weight *( )u Tφ can be computed us-
ing the same equation. The direct computation of the 
kernel defined in equation 4.2 is very costly. Hence, 
in the implementation of bio-semantic kernel we use 
the recursive dynamic programming formulation pro-
posed in [4].  
  Although this proposed bio-semantic kernel is able 
to take advantage of semantic information provided 
by the bio-semantic token subsequences, a potential 
issue of this kernel is that all common token subse-
quences are utilized in computing the kernel value for 
a pair of sequences, which may lead to overfitting. In 
the next section, therefore, we propose a new method 
for biomedical RE that is not only able to utilize all 
the information that the bio-semantic kernel based 

1 | |
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method does, but also takes into account the discri-
minative measure of the common token subsequences. 

5 Discriminative Bio-semantic Token Subse-
quence Classifier (DTS) 

The proposed DTS classifier utilizes only the top 
ranking discriminative bio-semantic token subse-
quence patterns as the feature set for classification. 
This method uses feature vectors formed by explicit 
feature extraction (The kernel method proposed in 
section 4 does not enumerate the common subse-
quences and hence is referred as implicit feature ex-
traction method).  In subsection 5.1, we first discuss 
how to explicitly extract bio-semantic token subse-
quence patterns and calculate their weights.  Then in 
subsection 5.2, we present the strategy for selecting a 
given number of top ranking discriminative patterns 
to form the feature vectors for further classification.  

5.1 Pattern-Sentence Matrix Computation 

We first convert all the sentences in the training set to 
bio-semantic token sequences. Then, for each se-
quence in a relationship class, we compute the com-
mon bio-semantic token subsequences with other se-
quences from the same class.  In order to avoid gene-
rating too many bio-semantic token subsequences, we 
require that each subsequence must contain at least 
one of the two target entities.   
    The common bio-semantic token subsequences 
generated are stored in a matrix called the Pattern-
Sentence matrix.  In this matrix, rows correspond to 
the computed common bio-semantic token subse-
quences, also referred to as bio-semantic token subse-
quence patterns or just patterns for simplicity, col-
umns correspond to sentences. The cell values 

( , )w i j represent the weight of a pattern in a sentence. 
The weight of a pattern within a sentence is computed 
by considering the following factors: 1) different 
types of tokens included in the pattern, 2) gaps within 
the pattern in the corresponding bio-semantic token 
sequence; 3) the number of tokens in the pattern; and 
4) the frequency of a pattern within the sequence.                   
                                                                      
                                                             …….(5.1) 
 

5.2 Discriminative Patterns Computation 

The weighting formula discussed in the previous sub-
section only takes into consideration statistics within 
each sequence.  We also need to factor the statistics 
within each relationship class and across classes in 
order to achieve better performance.   In this subsec-
tion, we use Chi-Square test to evaluate different de-
grees of discriminative power of different patterns. 
Chi-Square scores are computed for all the patterns in 
the Pattern-Sentence matrix. A high value of Chi-
Square for a pattern u  and class c means the pattern u 
is a discriminatory pattern that can help in distin-
guishing a sentence belonging to class c.  All the pat-

terns are ordered for each class according to their Chi-
Square values. Feature selection is done by choosing 
only the top “k” patterns from the ordered list of pat-
terns for every class.  

The feature vector for each sentence is finally 
formed using the set of discriminative patterns se-
lected by the Chi-Square measure. Recall that the 
weight of each pattern selected as one of the features 
has already been calculated by using formula 5.1 in 
the pattern-sentence matrix computation process. In 
our experiments, we use the Support Vector Machine 
(SVM) as the learning algorithm.  

6 Experimental Results 

In this section, we present the experimental results of 
the two proposed relationship extraction methods on a 
protein-protein interaction data. We used the protein-
protein interaction data from the BioText group at the 
University of California, Berkeley [10]. This dataset 
is created using the HIV-1 human protein interactions 
database that contains the following information: 1) 
A pair of proteins (PP); 2) The interaction types be-
tween them; and 3) Pubmed identification numbers 
(PMID) of the journal articles describing the interac-
tions.  The combination of a pair of protein and a re-
lated PMID is referred to as a triple. A triple is as-
signed an interaction type in this database. All the 
sentences of a triple are assigned the same interaction 
type of the triple as their class label. We randomly 
selected 75% of the data (triples) as training set and 
the remaining is held out as test set (The same percen-
tages are used in [16] for dividing training and testing 
data).   

6.1 Learning Parameter Values on Training Set 

An important step for learning both the bio-semantic 
kernel based classifier and the DTS classifier is to 
find out an optimal set of values for the following 
parameters:  match decay factors ( xm,λ ), gap decay 

factors ( xg ,λ ), and the maximum pattern length (L).  
We divide the parameter learning for the DTS clas-
sifier into two stages: The first stage of learning finds 
out a good set of values for decay factors; then the 
second stage of learning finds out a good value for L.  
On both stages of parameter learning, 10-fold cross-
validation is used on the training set to evaluate the 
performance of each set of parameter values under 
examination. The same set of decay factors and L 
value learned for the DTS classifier will also be used 
to build the bio-semantic kernel based classifier on 
the training set. Further details on the parameter learn-
ing are omitted due to page limit.       

6.2 Overall Performance of the Proposed Me-
thods on the Test Set 

Finally, we compare the results of our proposed 
methods with the following three methods Neural 
Networks, Dynamic Model, and Naïve Bayes that were 
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reported in [10].  We use the optimal parameter set-
tings found in subsection 6.1 to test both the methods 
on the held-out test data. In [10], two settings are used 
to test the proposed methods. The first setting retains 
all target proteins in the sentences, whereas the 
second setting replaces the target proteins with 
“PROT1” and “PROT2”.  The second setting is “fair-
er” in the sense that it tries to avoid the same pair of 
target proteins to appear in both training data and test 
data, which may cause a learning algorithm to overfit 
on the target protein names. The results in Table-1 
show that our discriminative method outperforms all 
three existing approaches reported in [10] in both set-
tings. Our bio-semantic kernel approach outperforms 
the three existing learning methods in second setting, 
and outperforms two of the three methods in the first 
setting.     

 
  Classification Accuracy  

Setting- 1 Setting - 2 
Dynamic Model  60.5% 60.5% 
Naïve Bayes 58.1% 59.7% 
Neural Networks 63.7% 51.6% 
Discriminative Method 66.7% 65.6% 
Bio-semantic Kernel 60.9% 60.6% 
Table-1: Comparison of the two methods with other me-
thods 

7 Conclusions 

In this paper, we proposed a structure called bio-
semantic token subsequence to capture semantic fea-
tures from natural language sentences for biomedical 
RE.  Two supervised learning algorithms based on the 
proposed structure are designed.  The first approach 
"bio-semantic token subsequence kernel" implicitly 
utilizes features captured by the bio-semantic token 
subsequences. The second learning approach is called 
"discriminative bio-semantic token subsequence clas-
sifier", which explicitly generates a discriminative 
subset of bio-semantic token subsequences.  Com-
pared with the proposed kernel-based approach, the 
proposed discriminative bio-semantic token subse-
quence classifier further takes into consideration dif-
ferent discriminative degrees of different features, so 
as to select the most discriminative features to build a 
classification model. Both of these two proposed me-
thods outperform the state-of-the-art methods reported 
in the literature.  As expected, the performance of 
discriminative bio-semantic token subsequence clas-
sifier is the best.   
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