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Problem solving and proving via generalisation 
MICHAEL DE VILLIERS1 & MARY GARNER2 

1On sabbatical from UKZN (Edgewood) as Visiting Professor to Dept. of Mathematics & 

Statistics, Kennesaw State University, USA. E-mail: profmd@mweb.co.za 
2 Dept. of Mathematics & Statistics, Kennesaw State University, USA. E-mail: 

mgarner@kennesaw.edu 

"Let us see whether we could, by chance, conceive some other general problem that 
contains the original problem and is easier to solve." - Leibnitz quoted in Polya (1954: 29) 
 
"As it often happens, the general problem turns out to be easier than the special problem 
would be if we had attacked it directly." - Lejeune-Dirichlet & Dedekind quoted in Polya 
(1954: 30)  
 
A very useful problem solving strategy often emphasised at school and regularly tested in 

Mathematical Olympiads and Challenges is to consider special cases of a problem. Not 

only are the special cases usually more easy to solve, but often allows one to identify a 

pattern or give some clue towards a general solution or proof. Less well known (or utilised) 

appears to be the opposite strategy, namely, to consider a more general case than the given 

problem. Contrary to what one might expect, the general case is sometimes much easier to 

solve than the special case. 

George Polya (1945, 1954) in his seminal problem solving books gives several 

examples of this strategy. For example, taking a hard problem in the plane and solving it 

quite easily in space, and then translating it back into the context of the plane. Similarly, a 

difficult numerical problem is sometimes remarkably simplified by simply translating it 

into algebra.  

The purpose of this article is to give some illustrative examples of this strategy of 

solving problems and proving by generalisation. First some simple calculation examples 

will be given followed by some algebraic proof examples. Two geometry examples are then 

provided, and lastly a couple of examples of the use of complex numbers.  

Some simple calculation examples 

(a) Calculate 9992 !1 

(b) Calculate 19 !  99 + 19 

(c) Calculate 1 + 2 + 3 + 4 + … + 100 
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(d) Find the 200th term in the sequence 3, 6, 11, 18, 27, 38, … 

 

The above types of examples are quite common in AMESA Mathematics Challenges and 

the Harmony SA Mathematics Olympiad, and also appear in most textbooks. Since time is 

a factor it is clearly not sensible to just carry out the calculation as given. Moreover, the 

calculations are significantly simplified by transforming each of the above by observing the 

underlying general structure. Not only is time saved, but also the possibility of making 

calculation errors is decreased. 

For example, by using the difference between squares, the first example simply 

becomes (999 – 1) !  (999 +1) = (998) !  (1000) = 998000. Similarly, the second example 

becomes straightforward if one transforms it using the distributive property as follows: 19 

!  (99 + 1) = 19 !  (100) = 1900. The third example can be neatly solved by noting the 

following general pattern (apparently used by the young Gauss when his class was given 

this problem): 1 + 100 = 101; 2 + 99 = 101; 3 + 98 = 101; …; 50 + 51 = 101, and since 

there are 50 pairs the answer is simply 50 !  101 = 5050. Or equivalently, rewrite the series 

twice as follows: 

1 + 2 + 3 + … + 98 + 99 + 100 

100 + 99 + 98 + … + 3 + 2 + 1  

101 + 101 + 101 + … + 101 + 101 +101 = 100 !  101 

But since we’ve added the series to itself, the answer to the original problem is 

simply 100
2
!101  = 5050. Note that this latter technique is but a small step away from 

deriving a general formula for the sum of any arithmetic series, namely, S = n
2
a + l( ) .  

The third example shows the value and power of problem solving via general 

pattern or structure rather than just carrying out calculations by brute force. The next 

example demonstrates the utility of seeing a sequence as a function with the set of natural 

numbers as domain, and using algebraic techniques to obtain that function. 

To find the 200th term in the sequence for the 4th example, the student could observe 

that the sequence of first differences is 3, 5, 7, 9, 11, … and then find the sixth term by 

adding 13 to the fifth term, and find the seventh term by adding 15 to the sixth term, and 

continue adding odd integers until you reach the 200th term. A far less tedious approach 

would be to find an algebraic form for the nth term of the sequence, and this could be 

accomplished in a variety of ways.  
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One approach could be Gauss’ approach as described previously. In other words, if 

we view the sequence as shown in the following table, the nth term can be viewed as 3 plus 

the sum of the odd integers beginning with 3. 

n nth term 
1 3 
2 3+3 
3 3+3+5 
4 3+3+5+7 
5 3+3+5+7+9 
6 3+3+5+7+9+11 
…  

 

So the nth term is 3 plus 3+5+7+9 +… + 2n-1. Using Gauss’ approach we would obtain the 

following formula for the sum of the first n-1 terms: 

  3         +   5       +    7  +                … + 2n-3     + 2n-1 

  2n-1   +   2n-3   +    2n-5   +…          + 5          + 3     

  (2n+2) + (2n+2)  +  (2n+2) +…         + (2n+2) + (2n+2) 

We could then observe that there are n-1 such sums, so the nth term of the original 

sequence could be obtained by the formula  

3
2

)22)(1(
)( +

+!
=

nn
xf  

Another approach relies more heavily on algebraic techniques, but can be easily 

generalized to sequences produced by other kinds of functions. Note that the second 

difference of the sequence is constant, and therefore a quadratic function could describe the 

sequence. Then since you know a quadratic function can be written in the form  

cbnanxf ++=
2)(   

you could use a system of equations to determine the quadratic function as shown below: 

cba

cba

cba

++=

++=

++=

937

245

3

 

Solving for a, b, c gives the function  

2)( 2
+= nnf  

The system of equations could be solved by the process of elimination of variables, but 

could also be solved using matrices. This approach could then be used to find a formula for 

sequences that have a constant third difference (cubic function), or a constant fourth 

difference (quartic function), etc. 
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Algebraic proof 

(a) Take a two-digit number and reverse its digits. Prove that the sum of these two 

numbers is always divisible by 11.  

(b) Prove that the square of any odd number leaves a remainder of 1 when divided by 4. 

(c) Prove that if the sum of the digits of a number is divisible by 3, then the number is 

also divisible by 3. 

(d) Find a general formula for the product of the roots of a quadratic equation. 

 

Proof by its nature has to be general and cover all cases. A couple of numerical examples 

are not sufficient. The power of algebra is precisely the generality obtained by replacing a 

specific numerical value with a variable. 

 Though the first example can also be done by brute force checking by hand (or 

computer) by starting from 10 and going up to 99, it is much easier just doing the algebra. 

For example, any two-digit can be written as 10a + b  where a and b are digits from 1 to 9. 

Thus, (10a + b) + (10b + a) = 11(a + b) , which is clearly divisible by 11.  

 Similarly, for the second example, any odd number can be written as 2n !1 . Thus, 

(2n !1)
2
= 4n

2
! 4n +1 = 4(n

2
! n) +1 , which will clearly leave a remainder of 1 if divided 

by 4. Note that unlike the first example this result and its proof deals with an infinite 

number of cases, and therefore numerical checking is quite impossible. 

 For the third example, consider the generic case of a three-digit number written as 

100a +10b + c = (99a + 9b) + (a + b + c) . Since 99a + 9b  is clearly divisible by 3, the 

original three-digit number will be divisible by 3 if a + b + c  is also divisible by 3. In the 

same way this result can be proved for any number. 

 Let’s finally consider the fourth example. Typically the familiar formula 

! 

c

a
 for the 

product of the roots, say 

! 

"  and 

! 

" , of a quadratic equation 

! 

ax
2

+ bx + c = 0 is derived 

traditionally in many high school textbooks by using the quadratic formula for the two 

roots, and then multiplying them out as follows to achieve the desired result: 

! 

"b + #

2a
$
"b " #

2a
=
b
2
" (b

2
" 4ac)

4a
2

=
c

a
. 

The problem with this approach is that it is limited because if one wanted to find the 

product of the roots of a cubic or a quartic equation, one would have to firstly know the 
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respective formulae for their roots. More-over, this approach will break down when one 

considers polynomials of order 5 or higher as it has been proved that no such general 

formula exists for their roots. 

However, let’s consider a general polynomial equation 

! 

a
1
x
n

+ a
2
x
n"1

+ ...+ a
n
x + a

n+1 = 0  with roots 

! 

"
1
,"

2
, ..."

n#1,"n
. Therefore, 

! 

(x "#
1
) (x "#

2
) ... (x "#

n"1)(x "#n
) = 0, which upon multiplying out clearly gives us 

! 

x
n

+ ...+"
1
"
2
..."

n#1"n
= 0 if n is even or 

! 

x
n

+ ..."#
1
#
2
...#

n"1#n
= 0  if n is odd. By dividing 

the polynomial equation through by 

! 

a
1
 we obtain

! 

x
n

+
a
2

a
1

x
n"1

+ ...+
a
n

a
1

x +
a
n+1

a
1

= 0. By now 

comparing term by term the latter equation with the preceding two, it immediately follows 

that the product of the roots of a polynomial equation in general is 

! 

a
n+1

a
1

 if n is even and 

! 

"
a
n+1

a
1

 if n is odd. 

Not only do we now have a general formula for any polynomial, but the derivation 

above requires almost no algebraic manipulation nor a formula for the roots. 

 

Solving 2D by going 3D 

Normally a generalisation in mathematics, precisely because it is more general, is harder to 

prove than a special case. One need only think of the cosine rule as a generalisation of the 

theorem of Pythagoras, the arithmetic-mean/geometric-mean inequality generalised to n 

numbers, etc. Similarly, problems in 3 dimensions are usually much harder than their 

corresponding counterparts in 2 dimensions. However, this is not always true. Surprisingly, 

a generalisation can sometimes simplify a problem dramatically and unexpectedly, as will 

be strikingly illustrated by the following two examples. 

The first example is Desargues’s theorem, discovered by Gérard Desargues (1591-

1661), a French architect and geometer, and provides a striking example of the power of 

sometimes generalising to three dimensions. Succinctly put, this remarkable theorem states 

that “Two triangles are point perspective, if and only if, they are also line perspective.”  
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As shown in Figure 1, this means that if for triangles ABCand ! A ! B ! C , lines A ! A , 

B ! B  and C ! C  connecting corresponding vertices are concurrent in a point O, then the 

respective intersections X, Y and Z of the corresponding sides (extended if necessary) are 

collinear (lie on a line), and of course, conversely, the other way round. Now this theorem 

is quite difficult to prove in the plane only using the axioms of plane Euclidean geometry 

(and perhaps an intrepid reader may want to attempt it to see that it is no easy task!). 

However, if we consider the two triangles as lying not on the same plane, but instead on 

two non-parallel planes in three dimensions, the problem becomes almost trivial. 

Figure 1 

Proof 

Let’s assume the two triangles are point perspective in O. Each pair of corresponding sides 

of the two triangles are coplanar (i.e. contained in a plane). Therefore, each pair of 

corresponding sides, since they are coplanar and not parallel (they lie on non-parallel 

planes) must intersect, if extended, in the respective intersection points X, Y and Z. But the 

points X, Y and Z must belong to both planes ABCand ! A ! B ! C , and thus to the intersection 

of the two planes. However, since the intersection of two non-parallel planes is a straight 
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line, it follows that X, Y and Z are collinear. 

 The converse can be proved in the same way. Moreover, since collinearity (line-

perspectiveness) and concurrency (point-perspectiveness) are always preserved in 

projective geometry, the two-dimensional version can now simply be considered as a 

projection of the three-dimensional version onto the plane! 

 The second example dates from the 19th century and is another striking example of 

the generalisation heuristic. If triangles DBA, ECB and FAC are constructed outwardly on 

the sides of any ∆ABC so that DA = FA, DB = EB and EC = FC, then the perpendicular 

from D to AB, the perpendicular from E to BC and the perpendicular from F to AC are 

concurrent (see Figure 2).  

Figure 2 

Like Desargues’s theorem this result is very hard to prove using plane Euclidean geometry, 

and is usually proved in advanced geometry texts by means of inversive geometry utilising 

the inversive concept of the “power of a point”.  The perpendiculars DT, ET and FT are 

generally called “power lines” and the point T the corresponding “power point” of a 

triangle.  

However, this result can be proved very easily by considering a tetrahedron and 

folding it flat as shown in Figure 2. Reconstructing the tetrahedron by folding up points D, 

E and F to meet at the top vertex T, it follows that the perpendiculars from D, E and F to 

the three sides must meet at the foot of the perpendicular from T to the plane ABC.  

(Just a word of caution that the above argument actually does not provide a 
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sufficiently general proof to cover all possibilities in the plane as it’s based on the 

assumption that folding up any 2D-configuration like that shown in Figure 2 will give a 

tetrahedron. But that will only be possible when for example the sum of the two exterior 

angles surrounding each vertex is greater than the interior angle of the triangle at that 

vertex). 

The preceding two results not only provide some interesting enrichment material, 

but could also be used to illustrate to students the value of sometimes considering a more 

general case of a problem at hand. 

 

Generalizing the Real Number System 
 
(a) Prove De Moivre’s Theorem 

[ ] ))sin()(cos())sin()(cos( !!!! ninrir
nn

+=+  

(b) Given any quadrilateral, construct squares on each of the sides of the quadrilateral. 

Prove the line segments joining the centers of opposite squares are perpendicular and of 

equal length. (This result is known as Van Aubel’s theorem). 

 

The history of Mathematics could be described as the effort to identify, describe, and 

generalize patterns. One example is the historical march from arithmetic to school algebra 

to abstract algebra. Another example is the generalization of the real number system to 

complex numbers. It took hundreds of years for mathematicians to accept the complex 

numbers; indeed, the name “imaginary” for the square root of -1 was intentional and at first 

considered quite appropriate (Nahin, 1998). It was the geometric interpretation of complex 

numbers as points in the plane that opened the door to a wealth of “real” applications. In the 

classroom, complex numbers not only offer an interesting story historically, but can show 

the student how changing the setting or form of a problem can lead to simple solutions. 

Proof of De Moivre’s Theorem is trivial using Euler’s classic formula: 

  ))sin()(cos( !!!
irre

i
+=   

since   )()( )( !! ninni
erre =  

by the properties of exponents. Indeed, many trigonometric identities can be proven easily 

using Euler’s formula. 

 Proof of the second result is challenging without complex numbers (for a 

transformation geometry proof of this result, see Yaglom (1962), and for transformation 
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geometry proofs of generalizations of this result to similar rectangles and similar rhombi on 

the sides, see De Villiers (1998)).  

Consider the quadrilateral ABCD in Figure 3, with sides represented by the complex 

numbers (or vectors) a, b, c, and d, with the initial point of a at the origin of the complex 

plane. The centers of the squares constructed on each of the sides are E, F, G, and H. Since 

the quadrilateral is a closed figure, a + b + c + d = 0.  

Figure 3 

Since vertex A is at the origin of the complex plane, the location of H can be described as 

22

a
i

a
! . The location of E is 

22

b
i

b
a !+ , and of F is 

22

c
i

c
ba !++ , and of G is 

22

d
i

d
cba !+++ . We want to show that the line segment FH is perpendicular and 

congruent to the line segment GE. The segment FH can be described as the complex 

number  

a

b

c

d
G

E

H

F

A

B

C

D
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and the segment through GE can be described as the complex number 
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Since a + b + c + d = 0, then a = -(b + c + d) and d = -(a + b + c). Substituting -a for (b + c 

+ d) and substituting -(a + b + c) for d in the complex number representing GE we get: 

!
"

#
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%
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Thus, FH can be described as 

 )
2

(
2

2 ac
i

cba !
!

++  

and GE can be described as  

!
"

#
$
%

& ++
+

'

2

2

2

cba
i

ac  

 

The moduli of these two complex numbers are clearly the same, and GE can be obtained 

from FH by multiplication by –i, which indicates they are perpendicular. 

 

Note 

Dynamic Geometry (Sketchpad 4) sketches in zipped format (Winzip) of the geometry 

results discussed here can be downloaded directly from: 

http://mysite.mweb.co.za/residents/profmd/desarguespowerlines.zip 

(If not in possession of a copy of Sketchpad 4, these sketches can be viewed with a free 
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demo version of Sketchpad 4 that can be downloaded from: 

http://www.keypress.com/x17670.xml ) 
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