A Graph Theoretic Summation of the Cubes of the First n Integers

Joseph DeMaio
Kennesaw State University, jdemaio@kennesaw.edu
Andy Lightcap
Georgia State University

Follow this and additional works at: https://digitalcommons.kennesaw.edu/facpubs
Part of the Applied Mathematics Commons, and the Mathematics Commons

Recommended Citation

DeMaio, J., \& Lightcap, A. (2009). A graph theoretic summation of the cubes of the first n integers. Mathematics Magazine, 82(5), 363-364. doi:10.4169/002557009X478409

A Graph Theoretic Summation of the Cubes of the First n Integers
Joe DeMaio
Kennesaw State University
Kennesaw, GA 30144
jdemaio@kennesaw.edu

Andy Lightcap
Kennesaw State University
Kennesaw, GA 30144
andy.lightcap@gmail.com

The complete graph K_{n+1} contains $n+1$ vertices and $\binom{n+1}{2}$ edges. Iteratively building the complete graph K_{n+1} by introducing vertices one at a time and counting the new edges incident to the new vertex provides a combinatorial proof that $\sum_{i=1}^{n} i=\binom{n+1}{2}$.

Figure 1: $\sum_{i=1}^{4} i=\binom{4+1}{2}$

Since $\sum_{i=1}^{n} i^{3}=\binom{n+1}{2}^{2}$ it seems natural to look for a combinatorial proof that also uses graphs. Consider the complete bipartite graph $K_{\binom{n+1}{2},\binom{n+1}{2}}$ that contains $2\binom{n+1}{2}$ vertices and $\binom{n+1}{2}^{2}$ edges. As before, we will count the new edges incident to newly introduced vertices in n stages. At stage i we introduce i new vertices to each side of the graph and count the edges incident to these new vertices. Since $\sum_{i=1}^{n} i=\binom{n+1}{2}$ this process enumerates all the edges in $K_{\binom{n+1}{2},\binom{n+1}{2}}$. New vertices on one side are adjacent only to vertices on the other side. When just considering the edges between the new vertices, the subgraph $K_{i, i}$ immediately appears with i^{2} edges. It turns out that these i^{2} edges along with the additional edges constructed between a new vertex on one side and an old vertex on the other side will always total i^{3} new edges. This shows that $\sum_{i=1}^{n} i^{3}=\binom{n+1}{2}^{2}$.

In order to see that we always introduce i^{3} new edges at stage i, we will partition the new edges into complete bipartite graphs. At stage i, there exist

$\binom{i}{2}=\frac{i(i-1)}{2}$ previously introduced vertices on each side of the graph and the new vertices on each side are labeled $\binom{i}{2}+1,\binom{i}{2}+2 \ldots,\binom{i}{2}+i=\binom{i+1}{2}$. The partition of these edges into complete bipartite graphs depends upon the parity of i. Figure 2 illustrates these stages for $n=5$. To prevent a deluge of edges in the graph, a complete bipartite graph such as $K_{2,4}$ is represented as	1,2	$-1,2,4$

Figure 2: $\quad \sum_{i=1}^{5} i^{3}=\binom{5+1}{2}^{2}$

When i is odd, the new edges quickly form i disjoint copies of $K_{i, i}$. For odd i we partition the old vertices into $\frac{i-1}{2}$ sets of i vertices for each side. Both sets of i new vertices are adjacent to each of the $\frac{i-1}{2}$ sets of i vertices on the other side. This yields $2\left(\frac{i-1}{2}\right)=i-1$ additional copies of $K_{i, i}$. Along with the initial copy of $K_{i, i}$ on only the new vertices, we have i copies of $K_{i, i}$ for a total of i^{3} new edges.

When i is even, we have to work a bit harder. For even i, we partition the old vertices on each side into $\frac{i}{2}-1$ sets of i vertices and one set of $\frac{i}{2}$ vertices. This yields $2\left(\frac{i}{2}-1\right)$ copies of $K_{i, i}$ and two copies of $K_{\frac{i}{2}, i}$ for $2\left(\frac{i}{2}-1\right) i^{2}+2 \frac{i}{2} i=$ $i^{3}-i^{2}$ edges. As before, with the original $K_{i, i}$ between the sets of new vertices, the total once again is i^{3} new edges.

References

[1] J. DeMaio and J. Tyson, Proof without words: a graph theoretic summation of the first n integers, The College Mathematics Journal 38 (2007) 296.

