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 THE TEACHING OF MATHEMATICS

 EDITED BY MELVIN HENRIKSEN AND STAN WAGON

 A Simple Test for the nth term of a Series to Approach Zero

 JONATHAN LEWIN

 Department of Mathematics, Kennesaw College, Marietta, GA 30061

 MYRTLE LEWIN

 Department of Mathematics, Agnes Scott College, Decatur, GA 30030

 Using Stirling's formula, one may see at once that if an = (2n)!/4n(n !)2, then an
 is of the order of 1/ Vn, and one may conclude from the alternating series test that
 the series E( - l)nan is conditionally convergent. At an elementary level, however,
 the convergence of the latter series may be a little more difficult to obtain. Since

 an+11an = (2n + 1)/(2n + 2) < 1 for each n, it is clear that the sequence (an) is
 decreasing, but it is not immediately obvious within the environment of a typical

 calculus course that an--* 0 as n -- oo. For this purpose, one might use the
 following simple result which takes a leaf out of the theory of infinite products:

 THEOREM. Suppose (an) is a decreasing sequence of positive numbers and for each
 natural number n, define bn = 1 - an+1/an. Then the sequence (an) converges to zero
 if and only if the series Ebn diverges.

 Proof. We note first that unless bn -* 0 as n -- oo, both of the series Ybn and
 E log(l - bn) diverge. On the other hand, if bn 0, then bn/( - log(l - bn)) -* 1 as
 n -4 oo, and it follows from the limit comparison test that 2bn diverges if and only
 if ? log(l - bn) diverges. We note also that since 0 < bn < 1, we have log(l - bn) <
 0 for each n.

 Now since 1 - bn = an+ /an for every n, it is clear that an = a1(1 - bl)
 (1 - b2)(1- b3) ... (1 - bn-1) for each n > 2, and we therefore conclude that
 an 0 iff log an - -oo iff log a, + Ei log(l - bi) - o- iff ,log(l - bn)
 diverges iff Ebn diverges.

 Returning now to the above example, we see that bn= 1/(2n + 2) for each n,
 and the obvious divergence of :2bn implies that an -* 0. The same technique gives
 an easy proof of the convergence of such series as -((- 1)'n/enn!), and the series
 E(t) of binomial coefficients with a > -1.

 Universal Topological Spaces

 K. D. MAGILL, JR.

 Department of Mathematics, SUNY, Buffalo, NY 14214

 Let U = {a, b, c } and let Y1 = { U, 4, {a}}. It has been known for a long time
 that U with the topology 31 is a universal topological space in the sense that any
 topological space whatsoever is homeomorphic to a subspace of some topological

 942

This content downloaded from 130.218.13.44 on Thu, 08 Jun 2017 22:28:03 UTC
All use subject to http://about.jstor.org/terms


	Kennesaw State University
	DigitalCommons@Kennesaw State University
	12-1988

	A Simple Test for the nth Term of a Series to Approach Zero
	Jonathan W. Lewin
	Myrtle Lewin
	Recommended Citation



