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Next-to-next-to-leading soft-gluon corrections for the
top quark cross section and transverse momentum

distribution

Nikolaos Kidonakis

Kennesaw State University, Physics #1202,

1000 Chastain Rd., Kennesaw, GA 30144-5591, USA

Abstract

I present results for top quark production in hadronic collisions at LHC and Tevatron
energies. The soft-gluon corrections to the differential cross section are resummed at next-
to-next-to-leading-logarithm (NNLL) accuracy via the two-loop soft anomalous dimension
matrices. Approximate next-to-next-to-leading-order (NNLO) differential and total cross
sections are calculated. Detailed theoretical predictions are shown for the tt̄ cross section
and the top quark pT distribution at the Tevatron and the LHC.

1 Introduction

The top quark occupies a unique position in the list of elementary particles as the most massive
particle discovered to date. Its high mass suggests an important role for the top quark in the
physics of electroweak symmetry breaking. After a long period of searches, the discovery of the
top quark via top-antitop production in proton-antiproton collisions (pp̄ → tt̄) was announced
in 1995 by the CDF and D0 collaborations at the Fermilab Tevatron collider [1]. The tt̄ cross
section has been measured with increasing precision at Run II of the Tevatron [2, 3] and there
has also been data for the transverse momentum, pT , distribution of the top quark [4]. More
recently single top quark production was observed by D0 [5] and CDF [6]. Measurements of the
top quark mass have also been increasingly more precise [7]. The LHC is expected to observe a
very large number of top quark events and to bring top quark physics to a new energy frontier.
For reviews of top quark physics at the Tevatron and the LHC see Ref. [8] (experiment) and
Ref. [9] (theory).

The experimental measurements of the top quark cross section and pT distribution at the
Tevatron are currently in good agreement with theoretical predictions. However, as the experi-
mental errors continue to get smaller with time, precise theoretical calculations with smaller un-
certainties are required. Next-to-leading order (NLO) calculations of the QCD corrections have
been available for over two decades [10, 11] (electroweak corrections, which are much smaller
numerically, have also been calculated more recently [12]) but the associated uncertainty is
much bigger than current experimental errors. The inclusion of higher-order soft-gluon correc-
tions enhances the cross section and pT distribution and significantly reduces the theoretical
error [13, 14].

Until recently, the state of the art in theoretical predictions was approximate next-to-next-
to-leading order (NNLO) calculations based on next-to-leading-logarithm (NLL) resummation
of soft-gluon corrections for the differential cross section, supplemented with further subleading
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terms [13, 14]. These soft-gluon corrections are dominant not only near partonic threshold but
also away from it. The accuracy at NLL was achieved by the calculation of the one-loop soft
anomalous dimension matrices for the partonic channels in top quark production in Ref. [15].

To achieve next-to-next-to-leading-logarithm (NNLL) accuracy in the resummation one
needs to calculate the soft anomalous dimensions at two loops. This is a much more difficult
undertaking. For massless quark scattering, the two-loop soft anomalous dimension matrix was
first calculated in Ref. [16]. Further work on soft and collinear singularities of dimensionally-
regularized scattering amplitudes in massless gauge theories followed in Refs. [17, 18, 19, 20, 21].
More recently, a lot of work on massive two-loop soft anomalous dimensions has appeared in
Refs. [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. The presence of a mass for the top quark
considerably complicates the calculation relative to the massless case.

Soft-gluon resummation is a consequence of factorization. The partonic cross section can be
factorized into functions associated with the hard scattering, collinear and soft-gluon emission
from the external partons, and noncollinear soft-gluon emission that depends on the color
structure of the process [15]. The renormalization group evolution of these functions results
in expressions for the resummed cross section. The resummation formalism followed here has
already been presented and reviewed in numerous papers over a period of more than a decade
(see Refs. [13, 15, 28, 29, 33, 34, 35] and references therein) so we will not repeat the derivation
of resummation and we will not repeat explicit expressions in this paper except for new two-
loop results in Section 2. Resummation is performed in Mellin moment space: we define a
kinematical variable s4 that measures distance from partonic threshold, and then N is the
moment variable conjugate to s4. For tt̄ production the resummed partonic cross section in
moment space is given by

σ̂res(N) = exp





∑

i=a,b

Ei(Ni)



 exp



2
∑

i=a,b

∫

√
s

µF

dµ

µ
γi/i

(

Ñi, αs(µ)
)



 Tr
{

Hab

(

αs(
√
s)
)

× exp

[

∫

√
s/Ñ ′

√
s

dµ

µ
Γ†
S ab (αs(µ))

]

Sab

(

αs(
√
s/Ñ ′)

)

exp

[

∫

√
s/Ñ ′

√
s

dµ

µ
ΓS ab (αs(µ))

]}

. (1.1)

The first exponent in the above expression resums soft and collinear corrections from the in-
coming partons a and b (quark-antiquark or gluon-gluon) while the second exponent controls
the factorization scale, µF , dependence of the cross section. Hab is the hard-scattering function
while Sab is the soft function describing noncollinear soft gluon emission. The renormalization
group evolution of the soft function is controlled by the soft anomalous dimension, ΓS ab [15].
It is important to note that Hab, Sab, and ΓS ab are matrices in the space of color structures
of the process [15, 33, 34]. In the next section we will present explicit expressions for the new
two-loop results for the soft anomalous dimension matrices ΓS qq̄, for the qq̄ → tt̄ channel, and
ΓS gg, for the gg → tt̄ channel. It is these new ingredients that allow us to complete the NNLL
resummation in our formalism (for other approaches see Refs. [25, 26, 27, 30, 32] and the
discussion in Section 5).

The resummed cross section, Eq. (1.1) can be expanded at fixed order in αs to NLO, NNLO,
etc., and inverted back to momentum space, see e.g. Refs. [13, 33, 34, 35]. At each order in αs,
one encounters plus-distribution terms of the form [lnk(s4/m

2)/s4]+, where m is the top quark
mass and, for the n-th order corrections, the power of the logarithm, k, can range from the
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leading value of 2n−1 down to the lowest value of 0. Thus at NLO k = 1 or 0, while at NNLO
k can take the values 3,2,1,0. From NLL resummation one can determine the coefficients of
both, k = 1, 0, powers of the logarithms at NLO, but only the powers k = 3, 2, 1 at NNLO
(determining the NNLO k = 1 term requires matching with NLO). Partial results for the k = 0
term at NNLO were provided in Ref. [13] and also used in [14]. From NNLL resummation one
can in addition fully determine the k = 0 term at NNLO.

In the following section we present the soft anomalous dimension matrices for the qq̄ → tt̄
and gg → tt̄ channels at one and two loops. In Section 3 we use the NNLL resummation to
obtain approximate NNLO results for the total tt̄ cross section and the top quark pT distribution
in proton-antiproton collisions at the Tevatron. In Section 4 corresponding results are given for
proton-proton collisions at LHC energies. A comparison with other approaches and conclusions
are given in Section 5.

2 Soft anomalous dimension matrices for tt̄ production

We begin with the result for the soft (cusp) anomalous dimension ΓS [22] for e+e− → tt̄, which is
an integral part of the calculation for the soft anomalous dimension matrices ΓS qq̄ and ΓS gg for tt̄
hadroproduction. The calculations of soft anomalous dimensions involve diagrams with eikonal
lines representing the top quarks. The eikonal diagrams are calculated in Feynman gauge in
momentum space, and we use dimensional regularization with d = 4 − ǫ dimensions to isolate
the ultraviolet (UV) poles of the diagrams. The soft anomalous dimension is then determined

from the coefficients of the UV poles [22]. Writing ΓS = (αs/π)Γ
(1)
S +(αs/π)

2Γ
(2)
S + · · ·, we have

the one-loop expression

Γ
(1)
S = CF

[

−
(1 + β2)

2β
ln

(

1− β

1 + β

)

− 1

]

= −CF [Lβ + 1] (2.1)

where CF = (N2
c − 1)/(2Nc), with Nc = 3 the number of colors; β =

√

1− 4m2/s, with s the
squared c.m. energy; and

Lβ =
1 + β2

2β
ln

(

1− β

1 + β

)

. (2.2)

The two-loop soft (cusp) anomalous dimension, determined from the UV poles of two-loop
eikonal diagrams, is [22, 29]

Γ
(2)
S =

K

2
Γ
(1)
S + CFCAMβ (2.3)

where K = CA(67/18 − ζ2) − 5nf/9, with CA = Nc and nf = 5 the number of light-quark

flavors. We have written the two-loop result Γ
(2)
S in Eq. (2.3) in the form of a term which is a

multiple of the one-loop soft anomalous dimension Γ
(1)
S plus additional terms, denoted as Mβ :

Mβ =
1

2
+

ζ2
2
+

1

2
ln2

(

1− β

1 + β

)

−
(1 + β2)2

8β2

[

ζ3 + ζ2 ln

(

1− β

1 + β

)

+
1

3
ln3

(

1− β

1 + β

)

+ ln

(

1− β

1 + β

)

Li2

(

(1− β)2

(1 + β)2

)

− Li3

(

(1− β)2

(1 + β)2

)]
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−
(1 + β2)

4β

[

ζ2 − ζ2 ln

(

1− β

1 + β

)

+ ln2

(

1− β

1 + β

)

−
1

3
ln3

(

1− β

1 + β

)

+ 2 ln

(

1− β

1 + β

)

ln

(

(1 + β)2

4β

)

− Li2

(

(1− β)2

(1 + β)2

)]

.

(2.4)

This result, first obtained in [22], is written in terms of logarithms, dilogarithms, and triloga-
rithms, and it provides a more explicit analytical expression than earlier work [36]. Note that
as β → 1, Mβ → (1− ζ3)/2.

We can now proceed with the results for the two-loop soft anomalous dimension matrices
for the partonic processes qq̄ → tt̄ and gg → tt̄. The calculation involves the two-loop soft
(cusp) anomalous dimension for all pairs of external lines in the process (cf. [22, 28, 29]) as
well as graphs with gluons connecting three external lines (cf. [23, 27, 31]). We begin with top
quark production through light quark annihilation,

q(pa) + q̄(pb) → t(p1) + t̄(p2) . (2.5)

We define the kinematical invariants

s = (pa + pb)
2 , t1 = (pb − p1)

2 −m2 , u1 = (pa − p1)
2 −m2 , (2.6)

and s4 = s+ t1+ u1, where s4 measures distance from partonic threshold. The calculations are
performed in a color tensor basis consisting of singlet and octet exchange in the s channel,

c1 = δabδ12 , c2 = T c
F ba T

c
F 12 . (2.7)

Here the color indices for the incoming (light) quark and antiquark are a and b, respectively,
and for the outgoing top quark and antiquark 1 and 2, respectively, and T c

F are the generators
of SU(3) in the fundamental representation.

The matrix for qq̄ → tt̄ in this c1, c2 color basis is

ΓS qq̄ =

[

Γqq̄ 11 Γqq̄ 12

Γqq̄ 21 Γqq̄ 22

]

. (2.8)

At one loop:

Γ
(1)
qq̄ 11 = −CF [Lβ + 1] = Γ

(1)
S ,

Γ
(1)
qq̄ 21 = 2 ln

(

u1

t1

)

,

Γ
(1)
qq̄ 12 =

CF

CA
ln
(

u1

t1

)

,

Γ
(1)
qq̄ 22 = CF

[

4 ln
(

u1

t1

)

− Lβ − 1
]

+
CA

2

[

−3 ln
(

u1

t1

)

+ ln
(

t1u1

sm2

)

+ Lβ

]

. (2.9)

The result in Eq. (2.9) is somewhat different from the original in Ref. [15] because the
original calculation used the axial gauge while Eq. (2.9) is in Feynman gauge. Of course this
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does not affect the complete resummed expression because other terms in the resummed cross
section compensate by also taking different forms in the two gauges. We note that the “11”
element of the matrix is simply the cusp anomalous dimension, ΓS.

At two loops:

Γ
(2)
qq̄ 11 =

K

2
Γ
(1)
qq̄ 11 + CFCAMβ = Γ

(2)
S ,

Γ
(2)
qq̄ 21 =

K

2
Γ
(1)
qq̄ 21 + CANβ ln

(

u1

t1

)

,

Γ
(2)
qq̄ 12 =

K

2
Γ
(1)
qq̄ 12 −

CF

2
Nβ ln

(

u1

t1

)

,

Γ
(2)
qq̄ 22 =

K

2
Γ
(1)
qq̄ 22 + CA

(

CF −
CA

2

)

Mβ . (2.10)

Here the term

Nβ =
1

2
ln2

(

1− β

1 + β

)

−
(1 + β2)

4β

[

ln2

(

1− β

1 + β

)

+ 2 ln

(

1− β

1 + β

)

ln

(

(1 + β)2

4β

)

− Li2

(

(1− β)2

(1 + β)2

)]

(2.11)

comes from graphs with gluons connecting three external lines, whose contribution were first
calculated explicitly in [27]. Note that Nβ is just a subset of the terms of Mβ, Eq. (2.4), so all
analytical structures already appear in Mβ, and that as β → 1, Nβ → 0. The two-loop matrix,
Eq. (2.10) is not proportional to the one-loop matrix, Eq. (2.9). This fact was first discussed
in Ref. [22] and it is to be contrasted with the simple proportionality relation for the massless
case that was found in Ref. [16].

We continue with the gg channel:

g(pa) + g(pb) → t(p1) + t̄(p2) . (2.12)

We choose the following basis for the color factors:

c1 = δab δ12, c2 = dabc T c
12, c3 = ifabc T c

12 (2.13)

where dabc and fabc are the totally symmetric and antisymmetric SU(3) invariant tensors,
respectively. We define s, t1, and u1 for this channel as in Eq. (2.6).

The matrix for gg → tt̄ in this basis is

ΓS gg =











Γgg 11 0 Γgg 13

0 Γgg 22 Γgg 23

Γgg 31 Γgg 32 Γgg 22











. (2.14)

At one loop:

Γ
(1)
gg 11 = −CF [Lβ + 1] = Γ

(1)
S ,

Γ
(1)
gg 31 = 2 ln

(

u1

t1

)

,
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Γ
(1)
gg 13 = ln

(

u1

t1

)

,

Γ
(1)
gg 22 = −CF [Lβ + 1] +

CA

2

[

ln
(

t1u1

m2s

)

+ Lβ

]

,

Γ
(1)
gg 32 =

N2
c − 4

2Nc
ln
(

u1

t1

)

,

Γ
(1)
gg 23 =

CA

2
ln
(

u1

t1

)

. (2.15)

The expression in Eq. (2.15) is again somewhat different from the original in Ref. [15] because
Eq. (2.15) is derived in Feynman gauge.

At two loops:

Γ
(2)
gg 11 =

K

2
Γ
(1)
gg 11 + CFCAMβ = Γ

(2)
S ,

Γ
(2)
gg 31 =

K

2
Γ
(1)
gg 31 + CANβ ln

(

u1

t1

)

,

Γ
(2)
gg 13 =

K

2
Γ
(1)
gg 13 −

CA

2
Nβ ln

(

u1

t1

)

,

Γ
(2)
gg 22 =

K

2
Γ
(1)
gg 22 + CA

(

CF −
CA

2

)

Mβ ,

Γ
(2)
gg 32 =

K

2
Γ
(1)
gg 32 ,

Γ
(2)
gg 23 =

K

2
Γ
(1)
gg 23 . (2.16)

As was the case for the qq̄ channel, we note that for the gg channel the two-loop matrix, Eq.
(2.16) is not proportional to the one-loop matrix, Eq. (2.15).

The expressions in Eqs. (2.10) and (2.16) are different from the corresponding ones in [27]
due to different definitions and formalism.

With the two-loop soft anomalous dimension matrices at hand we achieve NNLL accuracy
in the resummed cross section, Eq. (1.1). Expanding the resummed cross section to NNLO we
then calculate approximate NNLO cross sections and transverse momentum distributions for
top quarks at the Tevatron and the LHC.

3 Top cross section and pT distribution at the Tevatron

We now provide a detailed phenomenological study of top quark production at the Tevatron
collider, including the total tt̄ cross section and the top quark pT distribution. We present NLO
and approximate NNLO calculations for these quantities. The NNLO approximate results are
computed by adding the NNLO soft-gluon corrections (derived from NNLL resummation) to
the exact NLO quantities. The total and differential cross sections depend on the factorization
scale, µF , and the renormalization scale, µR. These two scales are often set equal to each other
and denoted simply as µ, but they are in principle independent.

6
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m (GeV)
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b)
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NLO  

pp -> tt   at  Tevatron      S
1/2

=1.96 TeV      µ=m 

Figure 1: The NLO and approximate NNLO cross section for tt̄ production at the Tevatron
with

√
S = 1.96 TeV and MSTW2008 NNLO pdf.

3.1 tt̄ cross section at the Tevatron

In Fig. 1 we plot the cross section for top-antitop production in proton-antiproton collisions
at the Tevatron over a top quark mass range 165 ≤ m ≤ 180 GeV at a factorization and
renormalization scale µ = m. The exact NLO and the approximate NNLO cross sections are
shown. The enhancement from the NNLO soft-gluon corrections is 7.8%. Here we have used
the MSTW2008 NNLO parton distibution functions (pdf) [37]. We will use these pdf for our
calculations throughout this paper except where noted otherwise.

Table 1 lists the values for the NNLO approximate cross section at the Tevatron for top
quark masses between 170 GeV and 175 GeV. There are two kinds of theoretical uncertainties
associated with the calculation: dependence on the factorization/renormalization scale, and
uncertainties from the parton densities.

The scale dependence of the cross section for m = 173 GeV is plotted in Fig. 2 over a
range of two orders of magnitude, 0.2 ≤ µ/m ≤ 10. It is clear that at leading order (LO)
the cross section is strongly dependent on the choice of scale, varying by a factor of 5.45
between maximum and minimum values in the range shown. The NLO corrections significantly
stabilize the LO variation: the NLO cross section varies by a factor of 1.61. The NNLO soft-
gluon corrections further reduce the scale dependence: the NNLO approximate cross section
varies by a factor of only 1.18. The improvement provided by the NNLO corrections is even
more impressive if one considers only the variation 0.5 ≤ µ/m ≤ 2 as traditionally used to
estimate errors. For this range the LO cross section varies by a factor of 1.85, the NLO cross
section by 1.16, while the NNLO approximate cross section by a factor of only 1.034.

7



NNLO approx tt̄ cross section (pb)
m (GeV) Tevatron LHC 7 TeV LHC 14 TeV

170 7.78 179 998
171 7.54 173 972
172 7.31 168 946
173 7.08 163 920
174 6.87 158 896
175 6.66 154 873

Table 1: The NNLO approximate tt̄ production cross section in pb in pp̄ collisions at the
Tevatron with

√
S = 1.96 TeV and in pp collisions at the LHC with

√
S = 7 TeV and 14 TeV.

We set µ = m and use the MSTW2008 NNLO pdf [37].

For a top quark mass of 173 GeV, the NLO cross section is 6.57+0.27
−0.66

+0.34
−0.25 pb and the NNLO

approximate cross section is

σNNLOapprox
tt̄ (m = 173GeV, 1.96TeV) = 7.08+0.00

−0.24
+0.36
−0.27 pb . (3.1)

Here the first uncertainty is from scale variation over 0.5 ≤ µ/m ≤ 2 and the second is
from the MSTW2008 NNLO pdf errors at 90% C.L. (to be conservative, we do not use the
smaller 68% C.L. pdf errors). At NLO the scale uncertainty is bigger than that from the
pdf, but at NNLO the scale uncertainty is much smaller than the pdf one. In fact the scale
uncertainty at NNLO is about four times smaller than that at NLO, again highlighting the
dramatic reduction of scale dependence provided by the higher-order corrections. Adding the
scale and pdf errors in quadrature, the NNLO approximate result is 7.08±0.36 pb, i.e. we have
a ± 5.1% total uncertainty, which is to be contrasted with a much larger (+6.6% -10.7%) total
error (in quadrature) at NLO.

One can also study the dependence of the cross section separately on the factorization scale
and the renormalization scale. This can be important because in some cases setting µF equal
to µR may give a smaller uncertainty than from varying the scales independently. In Fig. 3 we
plot the scale dependence of the cross section for m = 173 GeV in three different ways at NLO
(top plot) and approximate NNLO (bottom plot). The first way is to set µ = µF = µR and vary
this common scale, exactly as we did in Fig. 2. The second way is to vary the factorization scale
µF while keeping the renormalization scale fixed at µR = m. The third way is to vary µR while
keeping µF = m. It is clear from the top plot that varying µF and µR independenty over the
range m/2 and 2m does not give a wider range of cross section values than varying the common
scale µ = µF = µR. In fact as can be seen from the figure this holds true for a very wide range
of scale variation. We also note that setting µF = m/2 and µR = 2m or setting µR = m/2 and
µF = 2m still gives a smaller variation than varying the common scale µ = µF = µR between
m/2 and 2m. Therefore the NLO theoretical uncertainty that we provided above from scale
variation is not increased by separately varying µF and µR. For the approximate NNLO cross
section in the bottom plot of Fig. 3 we see that the variation with µ = µF and µR = m affects
the upper uncertainty (which was stated before as +0.00) and this new upper uncertainty is
+0.20. However the lower uncertainty (−0.24) is unaffected. So the result for the approximate
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Figure 2: The scale dependence of the tt̄ cross section at the Tevatron with
√
S = 1.96 TeV

and m = 173 GeV.
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Figure 3: The µF and µR dependence of the tt̄ cross section at the Tevatron with
√
S = 1.96

TeV and m = 173 GeV. The top plot is at NLO and the bottom is at approximate NNLO
accuracy.
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Figure 4: The top quark pT distribution at the Tevatron with
√
S = 1.96 TeV and m = 173

GeV.

NNLO cross section for m = 173 GeV with the scale uncertainy from independent µF and µR

variation can be written as 7.08+0.20
−0.24

+0.36
−0.27 pb. Finally, we note that not only is the scale variation

with µ = µF = µR greatly reduced in going from NLO to approximate NNLO but so is the
separate µF variation and the separate µR variation.

The MSTW2008 parton densities are the only ones available at NNLO and so we use them
for our best predictions. It is interesting nevertheless to see if the results change significantly
using the new CT10 pdf [38], which are at NLO, and the pdf errors associated with them.
Using CT10 pdf we find a NLO cross section for m = 173 GeV of 6.81+0.35

−0.75
+0.42
−0.30 pb, and an

approximate NNLO cross section of 7.38+0.14
−0.25

+0.45
−0.32 pb, where the first uncertainty is from scale

variation (with µF and µR independently varied) and the second is from the pdf errors. We thus
find both a larger cross section and a larger uncertainty with CT10 pdf than with MSTW2008
NNLO pdf.

3.2 Top quark pT distribution at the Tevatron

The top quark transverse momentum distribution at the Tevatron with m = 173 GeV is plotted
in Figs. 4 and 5 using the MSTW2008 NNLO pdf. Fig. 4 shows the differential distribution
dσ/dpT over a range 0 ≤ pT ≤ 300 GeV. Both NLO and NNLO approximate results are shown
for three different scale choices, µ = m/2, m, and 2m. The integrated pT distribution gives the
same result for the total cross section as found in the previous subsection, which provides a
good consistency check of the calculation. The scale variation of the pT distribution at NNLO
is again significantly smaller than at NLO. The NNLO soft-gluon corrections enhance the NLO
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Figure 5: The top quark pT distribution at the Tevatron with
√
S = 1.96 TeV, m = 173 GeV,

and µ = m or µ = mT in a logarithmic plot.

result but the shape is similar.
Figure 5 presents the top quark pT distribution in a logarithmic plot that makes it easier

to see dσ/dpT at high pT values. Results are now shown up to a pT of 500 GeV. In Fig. 4 the
central value for the scale was taken to be µ = m as for the total cross section, and the scale
variation was around that central value. Another possible scale choice for the top quark pT
distribution is the transverse mass mT , defined by mT = (p2T +m2)1/2. In Fig. 5 we show our
NLO and approximate NNLO results for both µ = m and µ = mT . We find that the choice of
scale, m versus mT , makes very little difference even for high pT of 500 GeV - the curves are
practically indistinguishable.

Joint threshold and recoil resummation for the pT distribution (at NLL accuracy only) has
been studied in [39]. The effect of recoil is entirely negligible except at extremely high pT (∼800
GeV and above) so we do not consider it further.

4 Top cross section and pT distribution at the LHC

We continue with a detailed phenomenological study of top quark production in proton-proton
collisions at the LHC. We present results for the current LHC energy of 7 TeV and the future
(design) energy of 14 TeV, and also a few results at 10 TeV.
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NNLO pdf.

4.1 tt̄ cross section at the LHC

In Fig. 6 we plot the NLO and approximate NNLO cross section for top-antitop production at
the LHC at 7 TeV energy over a top quark mass range 165 ≤ m ≤ 180 GeV at a factorization
and renormalization scale µ = m using the MSTW2008 NNLO pdf. The enhancement from
the NNLO soft-gluon corrections is 7.6%. Table 1 lists the values for the NNLO approximate
cross section at the LHC at an enery of 7 TeV for top quark masses between 170 GeV and 175
GeV.

The scale dependence of the cross section for m = 173 GeV is plotted in Fig. 7 over
a range of two orders of magnitude, 0.2 ≤ µ/m ≤ 10. Again, at LO the cross section is
strongly dependent on the choice of scale, varying by a factor of 4.64 between maximum and
minimum values in the range shown. The NLO corrections stabilize the LO variation: the
NLO cross section varies by a factor of 1.85. The NNLO soft-gluon corrections further reduce
the scale dependence: the NNLO approximate cross section varies by a factor of 1.43. The
improvement from the NNLO corrections is again more impressive if one considers only the
traditional variation 0.5 ≤ µ/m ≤ 2. For this range the LO cross section varies by a factor of
1.75, the NLO cross section by 1.27, while the NNLO approximate cross section by a factor of
only 1.08.

For a top quark mass of 173 GeV, the NLO cross section is 152+16
−19

+8
−9 pb and the NNLO

approximate cross section is

σNNLOapprox
tt̄ (m = 173GeV, 7TeV) = 163+7

−5
+9
−9 pb (4.1)
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Figure 7: The scale dependence of the tt̄ cross section at the LHC with
√
S = 7 TeV and

m = 173 GeV.

where the first uncertainty is from scale variation over 0.5 ≤ µ/m ≤ 2 and the second is from
the MSTW2008 NNLO pdf errors at 90% C.L. At NLO the scale uncertainty is about twice as
big as the pdf one, but at NNLO it is significantly smaller. The scale uncertainty at NNLO is
about three times smaller than that at NLO. Adding the scale and pdf errors in quadrature the
NNLO approximate result is 163+11

−10 pb, i.e. we have a +7.0% -6.3% total uncertainty, which is
to be contrasted with a much larger (+11.8% -13.8%) total error at NLO.

We also study the dependence of the cross section separately on the factorization scale and
the renormalization scale. In Fig. 8 we plot the scale dependence of the cross section in three
different ways at NLO (top plot) and approximate NNLO (bottom plot). The first way is to
set µ = µF = µR and vary this common scale, as we did in Fig. 7. The second way is to
vary µF while keeping µR = m, and the third way is to vary µR while keeping µF = m. From
the top plot we see that varying µF and µR independenty over the range m/2 and 2m does
not give a wider range of cross section values than varying the common scale µ = µF = µR,
and this actually holds true for nearly the entire wide range of scale variation shown in the
plot. We also find that setting µF = m/2 and µR = 2m or setting µR = m/2 and µF = 2m
still gives a smaller variation than varying the common scale µ = µF = µR between m/2 and
2m. Therefore the NLO theoretical uncertainty from scale variation provided previously is not
increased by separately varying µF and µR. For the approximate NNLO cross section in the
bottom plot of Fig. 8 we also see that the independent variation of µF and µR does not affect
the uncertainty that we wrote previously. Finally, we note that the separate µF variation and
µR variation are reduced when going from NLO to approximate NNLO.

Again we can check if the results change significantly using the CT10 pdf, which are at
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Figure 8: The µF and µR dependence of the tt̄ cross section at the LHC with
√
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m = 173 GeV. The top plot is at NLO and the bottom is at approximate NNLO accuracy.

NLO. Using CT10 pdf we find a NLO cross section at m = 173 GeV of 150+18
−20

+11
−10 pb, and an

approximate NNLO cross section of 162+9
−7

+12
−11 pb, so the results are very similar to those with

MSTW2008 NNLO pdf.
For reference, the cross section at a possible future LHC energy of 10 TeV is plotted in

Fig. 9 using the MSTW2008 NNLO pdf. For a top quark mass of 173 GeV, we find a NLO
cross section of 385+41

−45
+17
−18 pb, while at NNLO

σNNLOapprox
tt̄ (m = 173GeV, 10TeV) = 415+17

−21
+18
−19 pb . (4.2)

The cross section for the design LHC energy of 14 TeV is plotted in Fig. 10 using the
MSTW2008 NNLO pdf. The enhancement from the NNLO soft-gluon corrections is 8.0%.
Table 1 lists the values for the NNLO approximate cross section at 14 TeV LHC energy for top
quark masses between 170 GeV and 175 GeV. The NLO cross section for a top quark mass of
173 GeV is 852+91

−93
+30
−33 pb and the approximate NNLO cross section is

σNNLOapprox
tt̄ (m = 173GeV, 14TeV) = 920+50

−39
+33
−35 pb . (4.3)

Again we observe a significant decrease in scale dependence at NNLO relative to NLO, and
also note that separate variation of µF and µR does not increase the uncertainty. The pdf
uncertainties at this high energy are much smaller than the scale variation at NLO, and some-
what relatively smaller at NNLO. Adding the scale and pdf errors in quadrature the NNLO
approximate result is 920+60

−52 pb, i.e. we have a +6.5% -5.7% total uncertainty, which is to be
contrasted with a much larger (+11.2% -11.6%) total error at NLO.
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4.2 Top quark pT distribution at the LHC

The transverse momentum distribution of the top quark with m = 173 GeV at the LHC at
7 TeV energy is plotted in Figs. 11 and 12 using the MSTW2008 NNLO pdf. Fig. 11 shows
NLO and approximate NNLO results for the differential distribution dσ/dpT over a range
0 ≤ pT ≤ 350 GeV for three different scale choices, µ = m/2, m, and 2m. The scale variation
of the pT distribution at NNLO is much smaller than that at NLO.

Figure 12 presents the results for dσ/dpT in a logarithmic plot for high pT values up to
1000 GeV, using both µ = m and µ = mT , where again mT is the transverse mass. At very
high pT the NNLO approximate corrections become increasingly more significant and begin to
change the shape of the distribution relative to NLO. This is not unexpected since the soft-
gluon corrections are large near partonic threshold, which is dominant at high pT . The change
of shape is more pronounced with the choice µ = m than it is with µ = mT .

The pT distribution of the top quark with m = 173 GeV at the LHC at 14 TeV energy is
plotted in Figs. 13 and 14. Fig. 13 shows NLO and approximate NNLO results over a range
0 ≤ pT ≤ 400 GeV for three different scale choices, µ = m/2, m, and 2m. Again, the scale
variation of the pT distribution at NNLO is much smaller than that at NLO.

Figure 14 presents the results for dσ/dpT in a logarithmic plot for high pT values up to
1500 GeV, using µ = m and µ = mT . The NNLO soft-gluon corrections provide a significant
enhancement and change the shape of the NLO distribution at very high pT . Again, the change
in shape is larger with the choice µ = m than it is with µ = mT .
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5 Comparison with other approaches and Conclusions

In this paper we have resummed the soft-gluon logarithms in top quark production to NNLL
accuracy. This work directly extends the earlier NLL resummation in Ref. [15] and the further
work in [33, 34] and later in [13, 14]. To achieve NNLL (NLL) accuracy, it is necessary to
derive the soft anomalous dimension matrix at two (one) loops for each partonic process. At
NLL and NNLL the color structure of the hard scattering enters the resummation in a non-
trivial way. The soft anomalous dimension matrices are explicitly dependent on the kinematical
variables s, t1, u1, and the resummation involves these quantities and logarithms of s4, where
s4 = s+ t1+ u1 measures distance from partonic threshold. Thus this is a fully differential cal-
culation and the formalism in this paper has been used to calculate not only total cross sections
but also differential cross sections, such as transverse momentum distributions. Approximate
NNLO differential cross sections are extracted from the resummation (higher-order contribu-
tions beyond NNLO are small, see e.g. Ref. [35]). The NNLO expansion avoids the need for
prescriptions to deal with Landau-pole divergences in the resummation, and we prefer to take
this approach since the numerical discrepancies between different prescriptions are larger than
the corrections beyond NNLO (see e.g. discussion in [33, 14]).

There also exist formalisms of resummation and finite-order expansions for the total cross

section only [40] that are calculationally simpler, and only involve the variable β =
√

1− 4m2/s.

Logarithms of β have been resummed at NLL in [40, 41] and at (partial) NNLL in [42] (Ref.
[42] made an incorrect assumption about the two-loop terms which, as later understood, is not
valid). This approach does not, however, involve the exact differential kinematics and hence
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numerical deviations from the exact kinematics-sensitive result may appear. Furthermore this
approach is inapplicable to pT or other differential distributions, so it is limited in scope. For
further discussion of the differences see also Ref. [14] and [30]. More recently, complete NNLL
results in logarithms of β have appeared in Ref. [25] using soft-collinear and non-relativistic
effective theory, and in Ref. [26] using resummation in moment space. Threshold expansions
to NNLO for the total cross section from this ln β resummation have recently appeared in
[43, 44]. Again, all these results are for total cross sections only, based on expansions in β. It
is important to note that the terminology “NLL” and “NNLL” means different things in the
approaches of Refs. [25, 26, 40, 41, 42, 43, 44] than it does in the differential-level formalism of
Refs. [13, 14, 15, 33, 34] and of this paper because different types of logarithms are resummed.

Another differential-level formalism that has recently appeared [30, 45] is based on soft-
collinear effective theory and heavy-quark effective theory. While the resummation in [13, 14,
15, 33, 34] and this paper is done in moment space, in [30] it is performed in momentum space.
The total cross section and invariant mass distribution at NNLL have been presented in [30].
The total cross section results in [30] are quite different from those in this paper. One major
reason for the difference is the different choice of kinematics, as we describe below.

In Refs. [33, 34, 13, 14] (based on the formalism of [15]) results were provided in both
single-particle-inclusive (1PI) and pair-invariant-mass (PIM) kinematics. The kinematics am-
biguity was studied in detail in [34] and found to be an important source of uncertainty. In
1PI kinematics the soft-gluon logarithms are of the form [lnk(s4/m

2)/s4]+ and the soft-gluon
corrections to the double differential cross section, d2σ/(dt1du1), are calculated. In PIM kine-
matics, the soft logarithms are of the form [lnk(1−z)/(1−z)]+ with z = M2/s, and z → 1 near
threshold, where M2 is the tt pair mass squared. In PIM kinematics, the soft gluon corrections
to the double differential cross section, d2σ/(dM2d cos θ), where θ is the scattering angle in the
partonic center-of-mass frame, are calculated. The cross section in PIM kinematics was found
to be smaller than the 1PI result. The results in Refs. [33, 34] were based on NLL resummation
and were later improved by adding subleading terms [13, 14]. The kinematics ambiguity was
thus reduced in [13, 14]. Still it was shown in [13] that the PIM kinematics gives large negative
results at NNLO for the gg channel at LHC energies (for tt̄ production at the LHC, the gg
channel is by far dominant over the qq̄ channel). These negative corrections are deemed un-
physical since already at NLO the PIM approximation for the corrections does not reproduce
well the exact NLO result while the 1PI result is a much better approximation (detailed graphs
for the partonic scaling functions in 1PI and PIM kinematics were shown in [34] and also [13]).
In the present paper we have thus used 1PI kinematics. In contrast, Ref. [30] uses a modified
PIM kinematics. Although the modified PIM kinematics of Ref. [30] produces less negative
results than PIM in [34] and [13], the overall NNLO contribution in modified PIM is still neg-
ative. This explains why both the NNLL resummed cross section and the NNLO approximate
cross section with modified PIM in [30] is less than the NLO cross section at µ = m for both
Tevatron and LHC energies. This is in sharp contrast to the 1PI results here and in all our pre-
vious calculations (at both NLL and NNLL accuracy) where the NNLO soft-gluon corrections
are found to provide a positive enhancement of the NLO cross section. The 1PI kinematics
provides an excellent approximation as evidenced by the fact that the NLO approximate 1PI
corrections from the expansion of the resummed cross section account for well over 98% (up
to 99.8%) of the exact NLO corrections in the gg channel (with µ = m) at both Tevatron and
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LHC energies. This is a far better agreement than can be attained with PIM or modified PIM
kinematics. We thus remain of the opinion that the results in [30] do not accurately reflect the
true contribution of soft-gluon corrections.

It is also interesting to compare the results in this paper with our previous results in [13, 14].
Although NNLL resummation requires calculation of the two-loop soft anomalous dimension
matrices as presented in this paper, it was argued in [13, 14] that the numerical contribution
of this matrix at two loops to the cross section is expected to be small. In [13, 14] many of the
terms beyond NLL were already included in the calculation and it was argued based on the
study of the scaling functions in 1PI and PIM kinematics that these additional subleading terms
were relatively dominant. Now that the full two-loop NNLL terms are known it is important to
revisit the validity of this argument. We find that indeed the new two-loop terms from the soft
anomalous dimension matrices contribute very little to the total cross section, and hence the
argument was valid and the results in [13, 14] were robust. For example, using the MSTW2008
NNLO pdf [37] the calculation at the accuracy of Ref. [14] for the top quark cross section at the
LHC at 7 TeV gives 165 pb, while in this paper we find 163 pb based on NNLL resummation.
The difference between the two numbers is very small compared with the overall theoretical
uncertainty. Any differences in the numbers provided in [13, 14], and the present work are
overwhelmingly due to the use of different pdf and only to a rather small extent due to the
different theoretical accuracy.

To conclude, we have shown in this paper that the top quark cross section and trans-
verse momentum distribution receive significant enhancements from soft-gluon corrections at
NNLO. These corrections have been resummed at NNLL accuracy by calculating the two-loop
soft anomalous dimension matrices for the partonic processes. Approximate NNLO total and
differential cross sections have been derived from the NNLL resummed result. The NNLO soft-
gluon corrections enhance the total cross section and the pT distribution and greatly reduce the
theoretical uncertainty from scale variation. The pdf uncertainty of the cross section has also
been presented. Our NNLL resummation formalism can be used to calculate other differential
distributions of interest, such as the top quark rapidity distribution. This will be a topic of
future work.
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