
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Spring 4-27-2017

Feature Selection and Improving Classification
Performance for Malware Detection
Carlos A. Cepeda Mora
Kennesaw State University

Follow this and additional works at: http://digitalcommons.kennesaw.edu/cs_etd

Part of the Other Computer Engineering Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Cepeda Mora, Carlos A., "Feature Selection and Improving Classification Performance for Malware Detection" (2017). Master of
Science in Computer Science Theses. 10.
http://digitalcommons.kennesaw.edu/cs_etd/10

http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd/10?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

FEATURE SELECTION AND IMPROVING CLASSIFICATION

PERFORMANCE FOR MALWARE DETECTION

A Thesis Presented to

Department of Computer Science

By

Carlos Andres Cepeda Mora

In Partial Fulfillment of

Requirements for the Degree

Master of Science, Computer Science

KENNESAW STATE UNIVERSITY

May, 2017

II
FEATURE SELECTION AND IMPROVING CLASSIFICATION

PERFORMANCE FOR MALWARE DETECTION

Approved:

Dr. Dan Chia-Tien Lo - Advisor

Dr. Dan Chia-Tien Lo– Department Chair

Dr. Jon Preston - Dean

III
In presenting this thesis as a partial fulfillment of the requirements for an

advanced degree from Kennesaw State University, I agree that the university

library shall make it available for inspection and circulation in accordance with its

regulations governing materials of this type. I agree that permission to copy from,

or to publish, this thesis may be granted by the professor under whose direction it

was written, or, in his absence, by the dean of the appropriate school when such

copying or publication is solely for scholarly purposes and does not involve

potential financial gain. It is understood that any copying from or publication of,

this thesis which involves potential financial gain will not be allowed without

written permission.

Carlos Andres Cepeda Mora

IV
Unpublished thesis deposited in the Library of Kennesaw State University

must be used only in accordance with the stipulations prescribed by the

author in the preceding statement.

The author of this thesis is:

CARLOS ANDRES CEPEDA MORA

1876 HEDGE BROOKE WAY NW, ACWORTH – GA. 30101

The director of this thesis is:

DAN CHIA-TIEN LO

Users of this thesis not regularly enrolled as students at Kennesaw State

University are required to attest acceptance of the preceding stipulations by

signing below. Libraries borrowing this thesis for the use of their patrons

are required to see that each user records here the information requested.

Name of user Address Date Type of use
(examination/copying)

V
FEATURE SELECTION AND IMPROVING CLASSIFICATION

PERFORMANCE FOR MALWARE DETECTION

An Abstract of

AThesis Presented to

Department of Computer Science

By

Carlos Andres Cepeda Mora

Electrical Engineering, National University of Colombia, 2008

In Partial Fulfillment of

Requirements for the Degree

Master of Science, Computer Science

KENNESAW STATE UNIVERSITY

May, 2017

VI

ABSTRACT

The ubiquitous advance of technology used on the Internet, computers, smart

phones, tablets, and Internet of things has been conducive to the creation and

proliferation of cyber threats resulting in cyber-attacks that have grown exponentially. On

the other hand, Anti-Virus Companies are struggling to deal with this massive amount of

cyber-threats by using conventional manual methods as signature based. Consequently,

researchers have developed new approaches for dealing with discovering and classifying

malware. New approaches include using Machine Learning Algorithms and Big Data

technologies, which are being used for feature extraction, detection, and clustering of

cyber threats. However these new methods have required significant amount of extracted

features for correct malware classification, making that feature extraction, training, and

testing take significant time; even more, it has been unexplored which are the most

important features for accomplish the correct classification.

In this Thesis, we created and analyzed a dataset of malware and clean files

(goodware) from the static and dynamic features provided by the online framework

VirusTotal. The purpose was to select the smallest number of features that keep the

classification accuracy as high as possible, compared to other researches.

Selecting the most representative features for malware detection relies on the

possibility of reducing the training time, given that it increases in O(n2) with respect to

the number of features, and creating an embedded program that monitors processes

executed by Operating Systems looking for characteristics that match malware behavior

VII
as explained on Appendix A. Thus, feature selection is made taking the most important

features and our results show that “9” features were enough to distinguish malware from

“goodware” with an accuracy of 99.60%.

In addition, classification algorithms such as Random Forest (RF), Support Vector

Machine (SVM) and Neural Networks (NN) are used in a novel combination that not

only shows an increase in accuracy, but also in the training speed from hours to just

minutes. Next, the model is tested on one additional dataset of unseen malware files.

Finally, as an additional work, it is described how doing some modifications to existing

free tools makes possible to create an embedded program to monitor the relevant features

for malware detection.

8
FEATURE SELECTION AND IMPROVING CLASSIFICATION

PERFORMANCE FOR MALWARE DETECTION

AThesis Presented to

Department of Computer Science

By

Carlos Andres Cepeda Mora

In Partial Fulfillment of

Requirements for the Degree

Master of Science, Computer Science

Advisor: Dan Chia-Tien Lo

KENNESAW STATE UNIVERSITY

May, 2017

9

ACKNOWLEDGMENTS

First, I want to thank the Lord my God because he has supported me in all aspects of

my life and it has been promised to allow me to carry out these studies providing me

everything that I have requested. Second, I want express my gratitude to my parents,

brother and sister who have always supported me unconditionally. A special thanks to my

uncle Marco Mora and his family who have welcomed me in this country and treated me

as their own family. To my advisor, Dr. Dan Lo, my sincere gratitude for his guidance

and his willingness to support me. Also special thanks to my friend and confident Pablo

Ordonez, who throughout my study at KSU has shared his knowledge with me and with

which I have worked extensive journeys supporting each other the developing of our

researches. Finally, it is important to mention that this research was partially supported

by the National Science Foundation.

10
TABLE OF CONTENTS

ABSTRACT.. 6
ACKNOWLEDGMENTS .. 9
LIST OF TABLES.. 12
LIST OF FIGURES .. 13
I. INTRODUCTION... 15

1. 1 Malware Overview... 15
1.2 Types Of Malware Analyses... 17
1.3 Big Data And Security Overview ... 18

II. RELATED WORK AND PROBLEM DEFINITION ... 21
2.1 Related Work Overview ... 21
2.2 Comparison To Malware Detection Work Without Feature Selection................... 22
2.3 Comparison To Malware Detection Work With Feature Selection/Reduction 24
2.4 Real-Time Malware Detection.. 25
2.5 Problem Definition.. 25

III. PROPOSED SOLUTION, IMPLEMENTATION AND RESULTS 27
3.1 The Dataset ... 27
3.2 Feature Selection... 32

3.2.1 First Stage .. 33
3.2.2 Second Stage.. 33
3.3.3 Third Stage... 34

3.3 Results of Classification Algorithms .. 37
3.3.1 Preliminary Accuracy Results.. 38
3.3.2 Improving Neural Network classification performance 39
3.3.3 Improving the Test Accuracy on the Best 9 Features Dataset: 46
3.3.4 Verifying the robustness of the model ... 50

IV. CONCLUSIONS .. 53
V. REFERENCES... 55
APPENDIX A: SOFTWARE IMPLEMENTATION FOR MALWARE DETECTION. 59

A.1 Portable Executable File Format (Pe): ... 59
A.1.1 MS Dos MZ header and DOS Stub:.. 61
A.1.2 PE File Header: ... 62
A.1.3 Optional Header Fields: .. 63

11
A.1.4 Section Table or Section Header:.. 63
A.1.5 Sections: .. 64
A.1.6 PE Variations: ... 65

A.2 Imports ... 66
A.3 Api Calls: ... 68
A.4 Metadata:.. 70
A.5 Software Tools And Implementation:.. 71

A.5.1 PE File – Extraction Tools: ... 71
B.5.2 API Calls – Extraction Tools: ... 74
A.5.3 METADATA – Extraction Tools: .. 75
A.5.4 Networking Monitor: .. 77
A.5.5 Batch File Implementation:... 78

A.6 Remarks ... 80

12

LIST OF TABLES

Table ..Page

Table 1. Comparison of related researches on accuracy... 23
Table 2. Comparison of related researches on feature .. 25
Table 3. Type of "All-info" features per Matrix ... 31
Table 4. Type of "behavior" features per Matrix .. 32
Table 5. Feature Selection for the best 9 features. .. 36
Table 6. Feature Type Importance .. 37
Table 7. Comparison PE file analysis Tools ... 71
Table 8. Comparison API Calls analysis Tools .. 74

13

LIST OF FIGURES

Figure ...Page

Figure 1. Malware growth statistics form reference AVTEST [3]. 17
Figure 2. Sample of behavioral information extracted from VirusTotal. 28
Figure 3. Sample of All-Info extracted from VirusTotal. ... 29
Figure 4. Comparison on accuracy for the feature selection algorithms using Random
Forest... 35
Figure 5. Comparison on accuracy for the feature selection algorithms using SVM. 35
Figure 6. Comparison on accuracy for the feature selection algorithms using Neural
Network... 35
Figure 7. Accuracy for RF and NN through the number of features. 39
Figure 8. Accuracy for SVM through the number of features. ... 39
Figure 9. Test Accuracy for best 30 features dataset. ... 40
Figure 10. Comparison of Training Errors for best 30 features dataset (75% training –
25% test) (Base dataset and transformed with SVM). .. 41
Figure 11. Comparison of Training Errors (Err) and Test Accuracy (Acc) for best 30
features dataset (Base dataset and transformed with SVM. 70% training – 30% test)..... 42
Figure 12. Comparison of Training Errors and Test Accuracy for best 9 features dataset
(Base dataset and transformed with SVM70% training – 30% test). 42
Figure 13. Original sample dataset. .. 43
Figure 14. Feature vectors by separate. .. 43
Figure 15. Quadratic function applied to feature vector one. ... 44
Figure 16. Sinusoidal function applied to feature vector two. .. 44
Figure 17. Transformed dataset by transforming feature vectors by separate. 44
Figure 18. Three feature vectors from the original dataset. .. 45
Figure 19. Three feature vectors transformed by applying Random Forest to each feature
vector... 45
Figure 20. Assembly classification schema. ... 48
Figure 21. Best assembly classification schema ... 49
Figure 22. ROC for the model .. 49
Figure 23. Zero Day Attach hash sample 1... 51
Figure 24. Zero Day Attach hash sample 2... 51
Figure 25. Zero Day Attach hash sample 3... 52
Figure 26. Common schema of a PE file .. 61
Figure 27. Modified PE structure example [32]. .. 66
Figure 28. Import Flow structure [31] .. 68
Figure 29. Example of metadata from EXIFTOOL for pictures [37] 70
Figure 30. Modification to PEFILE.py for reading Overlay_Size.................................... 72
Figure 31. Code in python for automate the execution of the PEFILE 73
Figure 32. An example of execution of Exiftool .. 76

14
Figure 33. An example of execution of TRID .. 77
Figure 34. An example of the output of WinDump/Wireshark .. 78
Figure 35. The batch file created for automate feature extraction. 79
Figure 36. Output files after running the batch file created for automate feature
extraction... 79

15

I. INTRODUCTION

Since the creation of the second generation of computers (1947-1962), and specifically

the advent of the IBM 650 and 700 series computers – 1953, hundreds of programing

languages appeared and consequently thousands of computer programs. At the same time

John von Neumann (1903-1957) developed the theory of self-reproducing automata,

which was the first theoretical work in computer viruses, but it was until 1982 that the

first computer virus was detected called “Elk Cloner” – a Mac virus [47][47].

Thenceforth, proliferation of computer programs and computer viruses have increased

exponentially as much as nowadays there are around 700 million of viruses in the world.

In this chapter, introduced will be an overview of the importance of studying malware

characteristics, and the new approaches that antivirus companies have developed in order

to improve the malware detection and how it is related to big data and machine learning

topics.

1. 1 Malware Overview

There are different types of cyber-attacks such as phishing, botnets, searching

poisoning, denial of services, spamming, and malware. As mentioned before, cyber-

attacks grow exponentially compromising computers, stealing information, and damaging

critical structures, which produce significant losses averaging $345.000 per incident [1].

In recent years, Malware proliferation increased not just by the Internet growth but also

because of developing new malicious programs is becoming easier; in fact, more than

16
317 million new pieces of Malware were created in 2014 [2], which means that “nearly

one million new threats were released each day”. As a consequence, Antivirus

Companies – AV, are no longer able to process all of them. First, it is not possible to

capture all Malware on the network; even more, it is not possible to generate signatures

for all these files-programs collected by the AV companies in a reasonable time due to

the huge number of them. It is also important to mention that along news and more

sophisticated Anti-Virus programs, cyber criminals also have increased the complexity of

malicious programs. There are techniques such obfuscation/Metamorphism (code

substitution, code reordering, register swapping), Noise Insertion (garbage instructions,

unused functions) and Packing (Cryptors, Protectors, Packers), which decrease the

detection rate from the Anti-Virus programs.

Malware is a trend that tends to increase and will remain as the “greatest security

threat faced by computer users” [1]. Thus, the necessity for automatic malware detection

and classification has allowed the creation of tool as CWSandbox, Cuckoo Sandbox,

Norman Sand-box, and hybrid platforms as ThreatExpert, ANUBIS, VirusTotal,

Metascan ®, Payload Security – VxStream, and Malwr. These systems execute the

suspicious malware files on a virtual or controlled environment in order to monitor and

extract static and behavioral information, which is used for analyses, detection and

classification. In this thesis, it is analyzed the static and dynamic data extracted from

malicious and “good” files in order to classify a test dataset. Because the size of the

dataset is relatively big (9448 cases by 682.936 feature vectors) for running machine

learning algorithms, Big Data tools are required; in our case, SPARK was used for

17
dealing with the whole dataset for making the initial feature selection and then, R Cran

and TORCH frameworks were used for other stages of feature selection and

classification.

Figure 1. Malware growth statistics form reference AVTEST [3].

1.2 Types Of Malware Analyses

Two approaches are used to analyze Malware files, Static and Dynamic Analysis. The

Static Analysis extracts features directly from the byte-code or disassembled instructions,

so it is not required to run the program. “Static Analysis includes string signature, byte-

sequence n-grams, syntactic library call, control flow graph and opcode (operational

code) frequency distribution” [4]. The advantage of this analysis is that it could follow all

possible execution paths and it is less resource intensive, but it is sensible to packing

18
techniques, encryption, compression, garbage code insertion, and code permutation, thus

malware detection based on static features can be bypassed by obfuscation methods.

The Dynamic Analysis is executed on a virtual or insulated environment in order to

monitor the malware behavior (file system, registry monitoring, process monitoring,

network monitoring, system change detection, function call monitoring, function

parameter analysis, information flow tracking, instruction traces, and autostart

extensibility points) [4]. Its advantage is that it is insensitive to packing/obfuscation

techniques. However it is time consuming and sometimes it has a limited view of the

features that the program could exhibit given different input values.

1.3 Big Data And Security Overview

Big Data refers to dealing with larger and complex data sets where traditional analysis

is inadequate for processing this type of data. Big Data Analytics is the process of

searching, capturing, data curation, storage, and processing the data sets in order to

extract meaningful information, discover patterns and relations, market and customer

trends and discovering abnormal behaviors. Consequently, Big Data Analytics is

nowadays an important field that provides predictive analyses, better decision making,

reduce risk, combat crime, and so on. Other definition of Big Data is as mention on [1],

“high volume, high velocity, and/or high variety information”, where high volume refers

to large size data sets (terabytes, petabytes or exabytes), high velocity is related to the

speed at which the data is generate and must to be processed, and high variety stand by

different type or sources of data.

19

In recent years, Big Data has taken more importance due to the growing ability to get

data from distinct sources at low cost. Numerous types of sensing machines, such as

computers, mobile devices, tablets, the Internet, and cameras, allow us to capture and

storage information which increase exponentially. As mentioned by Martin Hilbert on

[5], “The global telecommunication capacity per capita is doubled every 34 months, and

the world’s storage capacity per capita required roughly 40 months”. Thus, new software

and technological platforms have arisen in order to handle big data. Due to the

unstructured large amount of data, non-relational databases are been used; in addition due

to the large size of the data, high power performance computing is required and distribute

the data is a necessity because a single machine could not handle the large datasets. With

respect to emerging Big Data technologies, we have developed Hadoop – MapReduce,

SPARK, HPCC, YARN, Hive, Pig, and NoSQL databases.

On the other hand, security and privacy are two important topics nowadays,

particularly because of growing of Internet and the Big Data Era, which have magnified

these trends. As mentioned in [6], Big Data infrastructures are easily accessible to

different organizations or individuals across multiple cloud infrastructures. In addition, it

is known that The Internet has been an infrastructure which has enabled the expansion of

cyber treats and attacks. In [7], it is stated that the “first cyber-crime was reported in 2000

and infected almost 45 million internet users”, and since then, “cyber criminals

continuously exploring new ways to circumvent security solutions to get illegal access to

computer systems and networks”. In the same way, as mentioned on [8], the growth of

20
Malware attacks has been exponential, so Antivirus companies are struggling to analyze

and create signatures for all these new attacks.

With the power of extracting patterns and dealing with huge amounts of data,

platforms for extracting, analyzing and finding patterns is possible to identify normal and

abnormal behaviors and then prevents consequences from malware attacks, Big Data

Analytics and machine learning could provide a better solution. In the next chapters

related work will be presented to applying machine learning techniques and feature

selection from different malware datasets, and next potential points for improvements

described on the Problem Definition and Proposed Solution (chapters two and three)

along with the results from the new approach developed for malware detection.

21

II. RELATED WORK AND PROBLEM DEFINITION

In this thesis, data mining techniques are used for malware detection. A number of

learning base methods have been developed and used for complex data analysis.

Supervised learning methods will be used given their success on deriving information

from heterogeneous and complex data. There are various machine learning approaches to

classify and/or detect malware, but in this research we are going to focus on malware

detection. In addition, many types of algorithms have been used for different type of data;

just to mention few ones association rules, decision trees, random forest, support vector

machine, neural networks, among others. In general, in [4] a summary of the major

approaches applying data mining techniques to malware is mentioned. Next, it is briefly

described.

2.1 Related Work Overview

The first study to introduce the use of data mining belongs to Schultz et al. [9], where

they extracted static features (DLLs calls, strings and byte sequences) from 3265

malicious and 1001 benign programs. They argue a classification accuracy of 97.11%.

Next, Kolter et al. [10] used n-grams on the data extracted by the previous mentioned

study, and using Naïve-Bayes, SVM, decision trees, and their boosted versions, improved

previous results. Nataraj et al. [11] using image processing techniques for visualizing

binaries as gray-scale images, found comparable results to previous dynamic analysis but

with faster classification.

22
Later studies started to use dynamic analysis. Thus, Rieck et al. [12] collected malware

and analyzed their behavior in a virtual environment. Using clustering and classification

techniques they could process the behavior of thousands of malware on daily basis. Next,

Anderson et a. [13] using an algorithm based on graphs constructed from instruction

traces, n-grams, markov-chain, Gaussian kernel, and spectral kernels, demonstrated good

results, but with a high complexity cost. Firdausi et al. [14] using Anubis (sandbox

environment) to extract behavioral data, and applying KNN, Naïve-Bayes, J48, SVM,

MLP, got an accuracy of 96.8% for 490 samples.

Islam, et al. [15] improved previous results analyzing static (function length frequency

and printable string information) and dynamic (API calls) features with SVM, IB1, DT,

and RF (the study included 2939 malware files and 541 goodware files). Finally,

Anderson et al. [16] combining several types of static and dynamic features, markov

chain graphs, and SVM, they got 98.07% accuracy with 780 malware files and 776

benign programs. Next, a comparison of works related to machine learning applied to

malware detection with and without focusing on feature selection will be presented,

which as described on ahead, it will be part of the problem definition and solution.

2.2 Comparison To Malware Detection Work Without Feature Selection

Schultz et al. [9] extracted static features (DLLs calls, strings and byte sequences)

from 3265 malicious and 1001 benign programs and their classification accuracy was

97.11%. Michal Kruczkowoski and Ewa Niewiadomska, 2014 [17] used a dataset of

23
10746 samples, they got an overall accuracy of 95.8%. D. Swathigavaishnave and R.

Sarala, 2012 [8], using opcode features on a dataset of 500 malicious and 300 benign

files, they got a TPR of 0.992 and a FPR of 0.53. Rafiqul Islam, Ronghua Tian, Lynn M.

Batten and Steve Versteeg, 2013 [15] got an accuracy of 97.1% from a dataset of 2939

samples, using Static and Dynamic features. Igor Santos, Jaime Devesa, Felix Brezo,

Javier Nieves, and Pablo G. Bringas 2013 [2] using opcodes and API calls got an

accuracy of 96.6% on a dataset of 1000 Malicious and 1000 good files. Finally, Ekta

Gandotra, Divya Bansal, Sanjeev Sofat 2014 [4] gave an overview of the state of the art

on Malware analysis and Classification. As we can see, all of these researches were

focused on accuracy but not in feature selection or reduction, which we believe is

important for fast analysis, training, and prediction required on real-time detection.

Reference Year Data Features Accuracy
%

[9] 2001 4266
String

(printable and
not printable)

97.11

[6] 2006 3622 Byte n-grams 96.8
[14] 2010 -- System Call 96.8

[8] 2012 800 Opcode
sequences 99.2

[2] 2013 26189
Opcode n-

gram + APIs,
Function calls

96.22

[18] 2013 12199 Byte n-grams 96.64

[15] 2013 2939 FLF + PSP, +
API calls 97.05

[21] 2013 2.6 M Several static
and dynamic 99.58

[17] 2014 10746 -- 95.8

[19] 2015 121856
API calls and

API
parameters

97.2

Our
approach 2016 14902 Several static

and dynamic 99.60

Table 1. Comparison of related researches on accuracy

24
2.3 Comparison To Malware Detection Work With Feature
Selection/Reduction

Usukhbayar Baldangombo, Nyamjav Jambaljav, and Shi-Jinn Horng [7], using static

features as PE headers, DLLs and API functions, they selected the best subset of features

consisting on 88 PE headers that had the best performance with their classifiers (accuracy

of 0.995). The dataset was 236756 malicious and 10592 clean programs. Despite they

applied feature reduction, static features are not convenient to detect malware files given

that malware detection based on static features can be bypassed by obfuscation methods.

Chih-Ta Lin, Nai-Jian Wang, Han Xiao and Claudia Eckert [20], created n-grams from

static and dynamic features. Using around 790.000 n-grams, they applied feature

selection/reduction and they got an accuracy near to 90% with 10 features and 96% with

100 features. The dataset was 3899 malware and 389 benign samples. About this last

article, feature selection and reduction were made on the number of n-grams, however it

is not strictly related with the number of features that is required to read from the static-

dynamic behavior from the files.

Also, compared to results of this current research, it was possible to achieve an

accuracy of 99.60% with just 9 features. George E. Dahl, Jack W. Stokes, Li Deng and

Dong Yu, 2013 [21] used Deep Neural networks with static and dynamic features. In

addition, they used mutual information for selecting 179.000 features from 50 Millions

and then Random Projections for reducing to “few” thousand dimensions. The overall

accuracy was 0.9958 on a dataset of 2.6 Millions of files. Thus, we can see that the

25
accuracy is really high; however we are looking for real-time applications, so thousands

of features could be still considered many features.

Reference Year Data
Set Features Accuracy

%
#Selected
Features

[7] 2012 247348

DLLs, APIs, PE
header (static

features) 99.5 80

[20] 2015 4288

Static and
Dynamic. N-

grams features ~96 100
Our

approach 2016 14902
Several static
and dynamic 99.60 9

Table 2. Comparison of related researches on feature
Selection and accuracy

2.4 Real-Time Malware Detection

Micha Moffie, Winnie Cheng and David Kaeli, 2006 [22] developed a security

framework as complement to anti-virus programs called HTH. It is able to extract vast

amount of runtime information in a “faster” manner (System calls, Library calls, Data

flow), which is used for malware detection on real time. Regarding to this article, we

believe that the overhead could be significant reduced if just the most important features

are collected for detection on real time.

2.5 Problem Definition

As it is described, machine learning is not a new approach for malware detection and

their accuracy is good compared to another type of data; however, given the huge traffic

on internet and the exponential proliferation of malware, cyber security models require to

be scalable, fast and flexible as stated by Ekta et al. [4]. With this in mind, one possible

26
improvement to current studies is to select the most representative features for malware

detection in order to reduce the complexity of the models. Thus, having seen the Malware

overview and related work, there are few studies related to selecting best features for

Malware detection. As mentioned on previous sections, there are two current studies that

performed feature selection but one of them just used static analysis (which is effective

for obfuscation techniques – see reference [7]) and the other one, its accuracy is lower

than the state of the art research – see reference [20]. In addition, it is a fact that models

with thousand features requires long time for training and these are not suitable for real-

time applications given that it requires intensive use of resources to extract the features

during running time.

With this in mind, it is proposed the use of Machine Learning and Big Data tools for

selecting the most representative features (from static and dynamic analysis) that keep the

classification accuracy as high as of the state of the art models that use hundreds or

thousands of features, allowing possible embedded programs to run fast looking for the

characteristics that match malware behavior (it is important to mention that the creation

of the embedded program is not the purpose of this thesis).

27

III. PROPOSED SOLUTION, IMPLEMENTATION AND RESULTS

In sum, the work presented on this research follows four main stages. First, the

creation of a dataset by creating scripts-programs for downloading and parsing the

metadata. Second, feature selection for reducing the datasets, removing noise and

selecting the smallest number of features keeping accuracy high was accomplished. Next,

training speed and accuracy improvement and finally, an additional work for adapting

existing free tools for extracting the relevant behavioral and metadata features for

malware detection is described on Appendix B.

3.1 The Dataset

In order to get the information from Malware and “good” files, it was considered two

possibilities. First, use the Cuckoo Sand-box software [23], which is a platform for

Malware analysis, for extracting information from programs executed on an isolated

environment. In that way, a dataset of malware and “goodware” executable files was

required, so malware dataset from Georgia Tech State University and a couple of others

were downloaded. However, datasets of goodware files were harder to find and even

more, the execution process of each file in an insulated environment and the extraction of

information are so tedious, and time consuming, so a second option was evaluated.

The second option considered was to use VIRUSTOTAL [24], which is a free online

service for analyzing files or URLs that runs a distributed setup of Cuckoo sandbox,

28
“enabling the identification of viruses, worms, Trojans and other kinds of malicious

content detected by antivirus engines and website scanners”. In addition, VIRUSTOTAL

provide information such as file version and properties, PE info, file metadata, and

behavioral information, so VIRUSTOTAL was chosen given that it is possible to save

the time regarding to the analysis because results are already available from the

VIRUSTOTAL website. VIRUSTOTAL provide a public API for scanning, submit, and

accessing to results. However, all the information is not public, so it was necessary to get

the permission for having access to full scan results.

Figure 2. Sample of behavioral information extracted from VirusTotal.

29

Figure 3. Sample of All-Info extracted from VirusTotal.

The first step to download the information from VIRUSTOTAL was to create a list of

hashes for malware and “goodware” files. These two lists were created using the private

API from VIRUSTOTAL and the query for malware hashes was any file with positive

detection greater than 2 that belong to Windows OS. The query for “goodware” files was

files with zero positives that belongs to NSRL and classified as “trusted” for Windows

OS.

30
Next, using the same API and a couple of scripts, the lists of hashes were used to

request the “behaviour” and the “allinfo” (see private API documentation for details). As

a result, we got the information for 7630 malware files and 1818 “Goodware” scan

reports (two json documents per each file containing the static, behavioral and metadata

information).

Using R CRAN [25], the files were parsed and 57 different type of features were

extracted; just for mentioned some ones, files opened, copied, deleted, etc, DLLs,

codesize, Flags, datasize, language-code, file-info, entry-point, PE-info, imports,

services, API-info, processes-info, network-info, among others. Finally, the information

extracted was storage on matrices and the total number of features was 682.936 with a

size of 22 GB. Finally, it is important to mention that for the current total population of

malware, which is near to 600 millions of samples (according to statistics for August

2016 by AVTEST [3]), the sample size 9448 correspond approximately to a confidence

level of 99% with a margin error of 1.33%.

The next two tables shows the number and type of features extracted from the JSON

files “behavior” and “allinfo” per each submatrix created. For example, the matrix 29 on

the table 3 contains 19128 features extracted from the “allinfo” json files that correspond

to the “Imports”.

31

Features from "AllInfo" JSON file
Number of Features Type of Features
1 43705 File System _ALL
2 2256 File System _COPIED
3 10767 File System _DELETED
4 1 File System _DOWNLOADED
5 8102 File System _MOVED
6 38525 File System _OPENED
7 8552 File System _READ
8 10 File System _REPLACED
9 17502 File System _WRITTEN

10 1394 Run Time DLLS
11 27 CHARACTERSET
12 1272 CODESIZE
13 14 FILE FLAGS MASK
14 10 FILE OS
15 4 FILE TYPE
16 3 FILE TYPE EXTENSION
17 1327 INITIAL DATA SIZE
18 52 Language Code
19 7 Object File Type
20 3 PE Type
21 7 SubSystem
22 178 Unpacker
23 4068 PE Entry Point
24 4 PE Machine Type
25 5108 PE Overlay Entropy
26 22 PE Overlay File Type
27 2433 PE Overlay Size
28 1446 PE Overlay Offset
29 19128 IMPORTS
30 323 SERVICES
31 97 TRID

Table 3. Type of "All-info" features per Matrix

32

Features from "behaviour" JSON file
Number of Features Type of Feature
1 4024 SUMMARY FILES
2 164863 SUMMARY KEYS
3 2159 SUMMARY MUTEXES
4 50 CALLS API
5 12 CALLS CATEGORY
6 48353 CALLS RETURN
7 5 CALLS STATUS
8 67 CALLS ARGUMENTS_NAME
9 207222 CALLS ARGUMENTS_VALUE

10 13621 PROCESSES FIRST_SEEN
11 452 PROCESSES PARENT_ID
12 575 PROCESSES ID
13 9226 PROCESSES NAME
14 425 PPROCESS TREE PID
15 8466 PPROCESS TREE NAME
16 1620 NETWORK UDP_DPORT
17 818 NETWORK UDP_SPORT
18 2070 NETWORK UDP_DST
19 35019 NETWORK HOSTS
20 4168 NETWORK DNS_HOST
21 907 NETWORK HTTP_HOST
22 8161 NETWORK HTTP_URI
23 14 NETWORK HTTP_PORT
24 1506 NETWORK TCP_DPORT
25 1511 NETWORK TCP_SPORT
26 1275 NETWORK TCP_DST

Table 4. Type of "behavior" features per Matrix

3.2 Feature Selection

Feature selection is an important step for this research. As mentioned, one of the

objectives is to select the smallest number of features that keep the detection rate as the

state of the art models in order to minimize the resources for the malware detection task.

Furthermore, feature selection and reduction is already know that can reduce the noise,

improve the accuracy, and of course improve speed for training the classification

algorithms as given that time increased in O(n2) with respect to the number of features as

33
state by Kolter and Maloof [6]. Next, the processes used for feature selection is

explained.

3.2.1 First Stage

Due to the large dimensionality, it was used SPARK given that this platform can deal

with large datasets. The machine learning library for SPARK - MLlib – was used as first

stage for feature selection. In particular, the Feature Selector “ChiSqSelector” was

applied getting the 10 % of the most relevant features. This first reduced matrix contains

68.800 features with 9448 observations with a size of 2.2 GB. The use of

“ChiSqSelector” is justified as a fast method for features selection for large datasets (it is

not used in further steps as it might end up committing errors).

3.2.2 Second Stage

In this point, it was possible to select the best features running the Random Forest

library (randomForest) on R–Cran (Rstudio) (ranking by decrease on accuracy and

ranking on decrease on node impurity – see “importance” on randomForest package).

There are many algorithms for feature selection, which can be seen as techniques of

combining features in subsets that are scored in order to determine relevant features. This

search can be an intractable problem given the number of possible permutations.

Furthermore, according to the metrics used these can be classified in three categories,

34
wrapper filter and embedded methods. In this research it is used the embedded methods

for Random Forest by Mean Decrease in Accuracy and Mean Decrease in Impurity.

“Permutation Importance or Mean Decrease in Accuracy (MDA) is assessed for

each feature by removing the association between that feature and the target. This is

achieved by randomly permuting the values of the feature and measuring the resulting

increase in error. The influence of the correlated features is also removed” and “Gini

Importance or Mean Decrease in Impurity (MDI) calculates each feature importance

as the sum over the number of splits (across all tress) that include the feature,

proportionally to the number of samples it splits” [26].

In this process, six steps of reduction were developed running for each step the

algorithms for classification. First, it was reduced from 68.800 features to 10.000

features, next to 5.000, 1.000, 300, 100, 31, 10 and finally 9 features.

3.3.3 Third Stage

In order to validate how well the feature selection was being accomplished,

classification algorithms as Support Vector Machine -SVM, Random Forest -RF and

Artificial Neural Network -NN were used for tracking the classification accuracy. Figures

Figure 4, Figure 5 and Figure 6 compare the accuracy as result of the described process.

35

Figure 4. Comparison on accuracy for the feature selection algorithms using Random Forest.

Figure 5. Comparison on accuracy for the feature selection algorithms using SVM.

Figure 6. Comparison on accuracy for the feature selection algorithms using Neural Network.

36
From the charts above, it is possible to infer that ranking by decrease on accuracy

(RFAcc) performs better than the other one. Furthermore, SVM classifier had a better

behavior on accuracy than other methods specially using small amount of features.

However, it is important to mention that Neural Networks were trained with just 100

iterations just for saving training time and because the objective in this stage was just

compare the performance of the feature selection methods (no comparing the

performance between classification algorithms).

Another important consideration to mention is that due to the unbalanced data (7630

malware files vs 1818 goodware files), oversampling was used (goodware files were

duplicated 4 times, and thus the new amount of observations was 14902).

Next two tables show the main type of features to consider form malware detection

and the selected best “9” features. (Note: CSUM correspond to the sum of the

observation for each feature type, thus row 1 is the total number of “imports” that a

specific program make).

Rank Feature Type Feature Name
1 IMPORTS CSUM
2 NETWORK DNS_HOST CSUM
3 CALLS ARGUMENTS_NAME lpFileName
4 IMPORTS EnumSystemLocalesW
5 PE Overlay Size 512
6 FILE FLAGS MASK 63
7 CALLS CATEGORY system
8 Language Code Neutral
9 TRID Win32 Executable generic

Table 5. Feature Selection for the best 9 features.

37

Feature Type
100 Features Dataset 30 Features Dataset

Features % # Features %

CALLS ARGUMENTS_VALUE 20 20.0 2 6.5

IMPORTS 19 19.0 6 19.4

TRID 10 10.0 6 19.4

CALLS ARGUMENTS_NAME 9 9.0 1 3.2

CALLS RETURN 8 8.0 2 6.5

NETWORK UDP_DST 4 4.0 1 3.2

Language Code 4 4.0 1 3.2

NETWORK HOSTS 3 3.0 1 3.2

CALLS API 2 2.0 1 3.2

CALLS CATEGORY 2 2.0 1 3.2

NETWORK UDP_DPORT 2 2.0 0 0.0

NETWORK UDP_SPORT 2 2.0 0 0.0

NETWORK DNS_HOST 2 2.0 1 3.2

NETWORK TCP_DPORT 2 2.0 1 3.2

Run Time DLLS 2 2.0 2 6.5

PE OVERLAY SIZE 2 2.0 1 3.2

SUMMARY MUTEXES 1 1.0 0 0.0

NETWORK TCP_SPORT 1 1.0 1 3.2

NETWORK TCP_DST 1 1.0 1 3.2

FILE FLAGS MASK 1 1.0 1 3.2

FILE OS 1 1.0 1 3.2

UNPACKER 1 1.0 0 0.0

Table 6. Feature Type Importance

3.3 Results of Classification Algorithms

In this section, accuracy performance for Random Forest and Neural Networks are

tested with different number of features. Next, Support Vector Machine is used to

preprocess feature vectors as a previous step to apply Neural Networks. Finally an

assembly model is build and tested for the current dataset and a newer dataset from

previously unknown malware files.

38
3.3.1 Preliminary Accuracy Results

In this first stage, three main algorithms were used, Random Forest (RF), Support

Vector Machine (SVM) and Neural Network (NN) in R-Cran (packages “randomForest”

and “nnet”). To mention, the whole dataset was divided in training dataset and testing

dataset. The testing set was 3724 observations that correspond to the 25% of the original

“balanced” dataset.

Results showed that Random Forest (RF) presented similar accuracy to Neural

Network (NN) for large number of features; however SVM was better in general,

especially for smaller number of features. Regarding to the parameters for RF, the

number of trees to “grow” was 1000. For NN, the number of iterations was 200 (other

parameters as default). It’s important to mention that RF had a better True Positive Rate

than NN, which implies RF had better performance to classify “goodware” samples.

In addition, NN had a lower False Positive Rate than RF, so NN classify better the

“malware” samples, but compared to SVM, this last one had a better performance at all.

Finally, regarding to accuracy, SVM presented a peak in accuracy around 9 and keep

almost the same (in fact decrease) even when the features increase. Note: Positive refers

to “Goodware” (P).

39

Figure 7. Accuracy for RF and NN through the number of features.

Figure 8. Accuracy for SVM through the number of features.

3.3.2 Improving Neural Network classification performance

On this stage, it was first decided to work in deep on the Neural Network, given that

previously It was just used 200 iterations. The neural network model used was the NN

package on TORCH with one hidden, one Tanh and one logsoftmax layer. Also, we

divided the dataset on 70% for Training and 30% for Testing (Note that previously it was

divided 75% - 25%, so in general accuracy results in testing dataset decreased). Using the

84.0%

86.0%

88.0%

90.0%

92.0%

94.0%

96.0%

98.0%

100.0%

1 10 100 1000 10000 100000

Ac
cu

ra
cy

 (%
)

Number of Features

Accuracy RF vs NN

RF

NN

75
80
85
90
95
100

0 5 10 15 20 25 30

Ac
cu

ra
cy

 (%
)

Features

Classification Accuracy with SVM

40
dataset with the best 30 features selected by RF-decrease on accuracy, and running the

NN, results showed that even with a large number of iterations, the accuracy does not

increased considerably.

Figure 9. Test Accuracy for best 30 features dataset.

Here is interesting to ask why SVM has better performance in this case. Without going

deep, simple Neural Networks (with one or some small hidden layers) are based on

combinations of sums of their inputs multiplied by weights and some nonlinear functions

as tanh or sigmoid or RELU applied on particular layers. On the other hand, SVM uses

nonlinear kernels (polynomial, radial basis functions, tanh) to transform its inputs into a

hyperplane that is easier to separate. Thus, we could think that using the power of

transforming the feature vectors one by one to an easier separable hyperplane and then to

allow NN to build separation spaces for whole transformed dataset could be a good idea.

Further, we introduce simples but effective steps to preprocess the dataset to improve

not just the training speed but also the accuracy of the Neural Network algorithm. First,

0.86
0.865
0.87
0.875
0.88
0.885
0.89
0.895

1 10 100 1000
Iterations

Test Accuracy

41
we need to apply nonlinear functions as the kernels used by the SVM to the dataset.

Being said that, we applied SVM on each feature vector.

Thus, after having tried the polynomials and Radial base functions, this last one

presented the best results for transform each feature vector into a hyperspace. After

having applied these transformations with the SVM, we assembled all of these new

feature vectors into another dataset and the Neural Network was trained again.

Next charts compare the behavior of the training error – Err (the track of the errors or

loss during the training process) and the accuracy – Acc (gotten on the test dataset for

each iteration) for the Neural Network applied to the original dataset – Base-, and the NN

applied to the transformed dataset –withSVM.

Figure 10. Comparison of Training Errors for best 30 features dataset (75% training – 25% test)
(Base dataset and transformed with SVM).

42

Figure 11. Comparison of Training Errors (Err) and Test Accuracy (Acc) for best 30 features dataset
(Base dataset and transformed with SVM. 70% training – 30% test).

Figure 12. Comparison of Training Errors and Test Accuracy for best 9 features dataset (Base
dataset and transformed with SVM70% training – 30% test).

From Figure 10 we can see that the training error after 2000 iterations on the base

dataset is reached with just two iterations on the transformed dataset and it is also the

double of the error after 200 iterations on the transformed dataset. Even more, from

Figure 11 and Figure 12, the accuracy from the test dataset increased around 8% to 17%

and errors decreased around 55% to 60% in average. In fact just with one iteration,

results are better that the base dataset after 2000 iterations (see Figure 11) or 1000 (see

Figure 12) iterations.

43
The process suggested before sounds simple, but what is this doing? The

preprocessing discussed is transforming the feature vectors applying functions to

transform to another space easier separable. Even more, we can apply other classification

algorithms to each feature and get a dataset that is easier to classify. Next, we show a

brief explanation sample.

Suppose you have the dataset in the Figure 13. Next you can take each feature vector

by separate as shown in Figure 14. If you apply a quadratic function to the data on Figure

155 and a sinusoidal function to Figure 166, you can transform the original dataset into

an easier separable space as shows in Figure 177.

Figure 13. Original sample dataset.

Figure 14. Feature vectors by separate.

44

Figure 15. Quadratic function applied to feature vector one.

Figure 16. Sinusoidal function applied to feature vector two.

Figure 17. Transformed dataset by transforming feature vectors by separate.

45
Now, on our real dataset we have transformed three feature vectors using Random

Forest just for illustrating how it looks like.

Figure 18. Three feature vectors from the original dataset.

Figure 19. Three feature vectors transformed by applying Random Forest to each feature vector.

46
In sum, the preprocessing discussed is transforming the feature vectors applying

functions to transform to another space easier separable. Concluding this section,

preprocessing the feature vectors by separated before training the classification

algorithms increase the accuracy and the speed given that with few iterations is possible

to get lower errors and better accuracy (at least it was valid on our dataset using the

Neural Network algorithm). It is also important to mention that the time to transform the

features, let say of our 30 best feature dataset, it was around six minutes, which compared

with the time that took to train the NN with this dataset (around a couple of hours or

more) is small. Note: SVM was also applied after transform the feature vectors with the

SVM, but the accuracy remains quite similar and sometimes it decreased.

3.3.3 Improving the Test Accuracy on the Best 9 Features Dataset:

In this section we present the process used for improving the current Test

Classification Accuracy, which is 99.2% for the 9 best features using the SVM algorithm.

(SVM was used to track the accuracy sequentially adding feature vectors in the ranked

order. We saw that with the first 9 features the higher accuracy is reached).

At this point, it was decided to create a new dataset from combining The original best

9 features dataset plus its transformed one applying SVM and RF to each feature vector,

plus the dataset after PCA transformation, the results by RF from the original dataset, the

results by RF from the dataset transformed by PCA and the results by SVM to the

original dataset.

47
With this new combined dataset, we applied SVM and NN, but preliminary results

show that SVM made overfitting and the accuracy decreased on the testing dataset.

However, NN shows a significant improvement, achieving an accuracy results near to

99.4%. Consequently, we decided to use the schema shows on the Figure 20, where we

tried different combinations to create a new dataset that give us the best result.

Finally after around 40 combinations, we found that the schema on Figure 21 gives

the best result, which increase the Testing Accuracy up to 99.6% from the best 9 features.

This schema includes the original dataset, the transformed dataset by SVM applied to

each feature and the results by SVM applied to the original dataset.

Note: The total time required for create the dataset and training the schema on Figure

21 was around 16 minutes, and the NN required 255 iterations -13 minutes, to reach the

maximum accuracy value.

 The configuration of the NN was as follow:

Package TORCH “nn”
sgd_params = {learningRate = 2e-2, learningRateDecay = 1e-4, weightDecay = 1e-3,
momentum = 1e-4}
net = nn.Sequential()
net:add(nn.Linear(19, 10))
net:add(nn.Dropout(0.2))
net:add(nn.Linear(10, 4))
net:add(nn.ReLU())
net:add(nn.Linear(4, 2))
net:add(nn.LogSoftMax())
criterion = nn.ClassNLLCriterion()

48
Note 1: Simulations were performed on a server with the next specifications:
 Processor: Intel Core i7-3930k CPU @ 3.20 GHz x12
 Graphics Tesla C2075/PCIe/SSE2
 OS Type 64-bit
 RAM 48 GB
 OS UBUNTU 14.04 LTS

Figure 20. Assembly classification schema.

49

Figure 21. Best assembly classification schema

Finally, we decided to build the Receiver Operating Characteristic – ROC curve,

which shows great performance for our classifier (the area under the curve - AUC was

around 0.997). Next, the ROC curve is shown on the Figure 22.

Figure 22. ROC for the model

50
3.3.4 Verifying the robustness of the model

In this section, the model is intended to be tested on malware files that belong to Zero

Day Attacks, which would show the robustness of the model to detect malware that

exploit unknown vulnerabilities on software products. In addition, a new dataset of

malware files classified as seen by first time on dates posteriors to the creation of the

original dataset was created and tested with the model, thus the robustness of our model

to detect new samples of malware is checked.

3.3.4.1 Zero Day Vulnerabilities:

What is Zero Day Vulnerability and attack? According to [27] and [28], Zero Day

Vulnerabilities refers to a hole that is unknown to the vendor and can be exploited by

hackers to affect adversely computers, networks, data, etc. The term “zero day” refers to

the unknown nature of the hole to the developers, but once the vulnerability becomes

known, developers need to release patches to mitigate the damage.

Zero-day protection is the ability to provide protection against zero-day exploits,

which is often difficult given the nature of the unknown treat. For example, “Zero-day

attacks are often effective against "secure" networks and can remain undetected even

after they are launched” [28].

In order to determine the robustness of our model to detect Zero Day Attacks, a list of

480 vulnerabilities from years 2015 and 2016 was created from [29]. Next, using

51
VirusTotal private API, we searched by hashes of malware files linked to these

vulnerabilities. In this way, we got a list of 297 hashes of malware related to Zero Day

Attacks. The Next step was download the behavioral information extracted by

VirusTotal, and the result was 3 JSON files with not empty information (294 hashes

belongs to malware which behavioral information is empty). Given that 3 zero-day

malware files are not enough to test our model with statistical consistency, it was

decided to avoid test the model with this data, so it is not possible conclude the

effectiveness of the model to detect Zero Day Attacks. In addition, a point to consider

is the amount of empty behavioral files from VIRUSTOTAL regarding to this zero-day

attacks, clearly requires further research.

Figure 23. Zero Day Attach hash sample 1.

Figure 24. Zero Day Attach hash sample 2.

52

Figure 25. Zero Day Attach hash sample 3.

3.3.4.2 New Malware Dataset:

This new dataset of malware files was gotten searching by the hashes of malware files

of malware seen by first time between November 2015 to June 2016. The dataset

contains 253 malware files and the testing results for our model was 98,4% of

“accuracy”, which in this case correspond to the True Negative Rate TNR given that the

dataset contains just malware samples. In sum, we can see that the model, which was

trained with samples previous to October 2015, is able to classify new unseen malware

files with an acceptable good accuracy.

53

IV. CONCLUSIONS

Reaching the final step of this research many lessons were learned not only regarding

to the security point of view but also from machine learning topics. Initially, it was seen

that there are absence of “goodware” and malware datasets that researches can use to

compare results. However, great tools as Virustotal can be used to download many

behavioral and metadata information.

Regarding to the objectives of this thesis, feature selection showed that it is possible to

use few features to reach high level of accuracy for malware detection, which could

implies to reduce resources in programs that look for detecting malware, and warn

software developers to study further how these important features could be related to

security breaches. Thus, the best classification accuracy can be gotten using the 9 features

ranked by Random forest by decrease on accuracy.

In addition, SVM algorithm showed a great performance compared to RF and NN;

however combining algorithms can lead to better results at it happened in our case. Final

accuracy results with the assembly structure proposed was 99.6%, which is even better

than classifications without feature selection with hundreds or thousands of features. In

terms of numbers, our results showed that assuming a simple sample size of 7630

malware files from a population of 600 Millions, we could say that we were 99% sure

that our model could detect a malware between 99.2% +/- 1.5% using just 9 features.

54
An important finding to mention was that transforming the dataset by applying SVM

to each feature vector could lead to increase accuracy and performance for further use of

classification algorithms applied to the whole dataset (at least it was valid on our dataset

using the SVM or RF for preprocessing each feature vector by separated and then using

Neural Network or RF algorithms for classification). Furthermore, the vector feature

transformation opens the possibility to explore building new architecture layers on the

Neural Network; we believe that structures that allows emulate more complex functions

as polynomials, exponentiation, etc. on the NN could help to increase the overall

performance.

As a final suggestion for researches, further analysis is required to select best features

that can be extracted in a faster manner; it would help to build a light weight embedded

program for monitoring suspicious behavior.

55

V. REFERENCES

[1].Xin Hu, “Large-Scale Malware Analysis, Detection, and Signature
Generation,” The University of Michigan, 2011.

[2].Igor Santos, Jaime Devesa, Felix Brezo, Javier Nieves, and Pablo G.
Bringas, “OPEM: A Static-Dynamic Approach for Machine-learning-based
Malware Detection,” Deusto Institute of Technology University of Deusto,
Bilbao, Spain. Year: 2013.

[3].AVTEST. March 2017. “Malware”. Retrieved from https://www.av-
test.org/en/statistics/malware/

[4].Ekta Gandotra, Divya Bansal, and Sanjeev Sofat, “Malware Analysis and
Classification: A Survey,” IPEC University of Technology, Chandigarh,
India. Journal of Information Security. April 2014.

[5].Cloud Security Alliance, “Expanded Top Ten Big Data Security and Privacy
Challenges,” April, 2013.

[6].J. Zico Kolter, and Marcus A. Maloof, “Learning to Detect and Classify
Malicious Executables in the Wild,” Stanford University. Journal of
Machine Learning Research 7. 2006.

[7].Usukhbayar Baldangombo, Nyamjav Jambaljav, and Shi-Jinn Horng, “A
Static Malware Detection System Using Data Mining Methods,” National
University of Mongolia, and University of Science and Technology, Taipei,
Taiwan. 2012.

[8].D. Swathigavaishnave, and R. Sarala, “Detection of Malicious Code-
Injection Attack Using Two Phase Analysis Technique,” Pondicherry
Engineering College Puducherry, India. May 2012.

[9].Schultz, M., Eskin, E., Zadok, F. and Stolfo, S. (2001) Data Mining Methods
for Detection of New Malicious Executables. Proceedings of 2001 IEEE
Symposium on Security and Privacy, Oakland, 14-16 May 2001, 38-49.

[10]. Kolter, J. and Maloof, M. (2004) Learning to Detect Malicious
Executables in the Wild. Proceedings of the 10th ACM. SIGKDD
International Conference on Knowledge Discovery and Data Mining, 470-
478.

[11]. Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath, B. (2011) Malware
Images: Visualization and Automatic Classification. Proceedings of the 8th
International Symposium on Visualization for Cyber Security, Article No. 4.

[12]. Rieck, K., Trinius, P., Willems, C. and Holz, T. (2011) Automatic
Analysis of Malware Behavior Using Machine. Learning. Journal of
Computer Security, 19, 639-668.

56
[13]. Anderson, B., Quist, D., Neil, J., Storlie, C. and Lane, T. (2011) Graph

Based Malware Detection Using Dynamic. Analysis. Journal in Computer
Virology, 7, 247-258. http://dx.doi.org/10.1007/s11416-011-0152-x

[14]. Firdausi, I., Lim, C. and Erwin, Analysis of Machine Learning Techniques
Used in Behavior Based Malware Detection, Proceedings of 2nd
International Conference on Advances in Computing, Control and
Telecommunication Technologies (ACT), Jakarta, 2010, 201-203. 2010

[15]. Rafiqui Islam (Charles Sturt University, NSW 2640, Australia), Ronghua
Tian (Deakin University, Victoria 3125, Australia), Lynn M. Battena and,
Steve Versteeg (CA Labs, Melbourne, Australia), “Classification of malware
based on integrated static and dynamic features,” Journal of Network and
Computer Applications 36 (2013) 646–656. 2013.

[16]. Anderson, B., Storlie, C. and Lane, T. (2012) Improving Malware
Classification: Bridging the Static/Dynamic Gap. Proceedings of 5th ACM
Workshop on Security and Artificial Intelligence (AISec), 3-14.

[17]. Michal Kruczkowoski (Research and Academic Computer Network
NASK, Warsaw, Poland) and Ewa Niewiadomska (Institute of Control and
Computation Engineering, Warsaw University of Technology, Warsaw,
Poland), “Comparative Study of Supervised Learning Methods for Malware
Analysis”. 2014

[18]. Ohm Sornil (National Institute of Development Administration, Bangkok,
Thailand), and Chatchai Liangboonprakong (Suan Sunandha Rajabhat
University, Bangkok, Thailand), “Malware Classification Using N-grams
Sequential Pattern Features,” International Journal of Information Processing
and Management (IJIPM) Volume4, Number5. July 2013.

[19]. Mariano Grazing, Davide Canali and Davide Balzarotti (Eurecom), Leyla
Bilge (Symantec Research Labs), Andrea Lanzi (Universita’ degli Studi di
Milano), “Needles in a Haystack: Mining Information from Public Dynamic
Analysis Sandboxes for Malware Intelligence,”. 2015.

[20]. Chih-Ta Lin, Nai-Jian Wang, Han Xiao and Claudia Eckert. “Feature
Selection and Extraction for Malware Classification”. National Taiwan
University of Science and Technology, Taipei. Taiwan. 2015.

[21]. George E. Dahl (University of Toronto, Toronto, ON, Canada), and Jack
W. Stokes, Li Deng, Dong Yu (Microsoft Research, One Microsoft Way
Redmond, WA 98052, USA), “Large-Scale Malware Classification Using
Random Projections And Neural Networks,” ICASSP. 2013.

[22]. Micha Moffie, avid Kaeli (Northeastern University, Boston, MA) and
Winnie Cheng (Massachusetts Institute of Technology Cambridge, MA),
“Hunting Trojan Horses”. 2006.

[23]. Cuckoo-Sandbox. http://www.cuckoosandbox.org/
[24]. VirusTotal - Free Online Virus, Malware and URL Scanner.

https://www.virustotal.com/en
[25]. R Cran. https://cran.r-project.org/index.html

57
[26]. Alex Pierrer. August 2015. “Feature Importance in Random Forest”.

Retrieved from http://alexperrier.github.io/jekyll/update/2015/08/27/feature-
importance-random-forests-gini-accuracy.html

[27]. PCTOOLS by Symantec. Security news. Retrieved from
http://www.pctools.com/security-news/zero-day-vulnerability/

[28]. Wikipedia, March 27, 2017. Zero-day (Computing). Retrieved from
https://en.wikipedia.org/wiki/Zero-day_%28computing%29.

[29]. CVE Common Vulnerabilities and Exposures. March 2017. Retrieved
from https://cve.mitre.org/

[30]. PE File. Retrieved from
http://repo.hackerzvoice.net/depot_madchat/vxdevl/papers/winsys/pefile/pefi
le.htm

[31]. Matt Pietrek. March 1994. Microsoft Documentation. “Peering Inside the
PE”. Retrieved from https://msdn.microsoft.com/en-
us/library/ms809762.aspx

[32]. Mario Vuksan and Tomislav Pericin. Reversing Labs. 2011. “Constant
insecurity”. Retrieved from https://media.blackhat.com/bh-us-
11/Vuksan/BH_US_11_VuksanPericin_PECOFF_Slides.pdf

[33]. Wikipedia. January 2017. “Dynamic-link Library”. Retrieved from
https://en.wikipedia.org/wiki/Dynamic-link_library

[34]. Microsoft. “Windows API sets”. Retrieved from
https://msdn.microsoft.com/en-
us/library/windows/desktop/hh802935%28v=vs.85%29.aspx

[35]. Wikipedia. March 17. “Windows API”. Retrieved from
https://en.wikipedia.org/wiki/Windows_API

[36]. Jacquelin Potier. “WinAPIOverride”. Retrieved from
http://jacquelin.potier.free.fr/winapioverride32/documentation.php

[37]. Phil Harvey. March 2017 “ExifTool”. Retrieved from
http://www.sno.phy.queensu.ca/~phil/exiftool/

[38]. Cuckoo-Modified. GitHub. November 2015. Retrieved from
https://github.com/brad-accuvant/cuckoo-modified/tree/master/docs

[39]. Ascend4nt. August 3, 2013. “PE Overlay Extraction”. Retrieved from
https://www.autoitscript.com/forum/topic/153277-pe-file-overlay-extraction/

[40]. Marco Pontello. March 2017. “TrID – File Identifier”. Retrieved from
http://mark0.net/soft-trid-e.html

[41]. Windump. Retrieved from https://www.winpcap.org/windump/

[42]. Smita Ranveer, and Swapnaja Hiray, “Comparative Analysis of Feature
Extraction Methods of Malware Detection,” Sinhgad College of
Engineering, Savitribai Phule Pune University, India. International Journal
of Computer Applications (0975 8887) Volume 120 - No. 5. June 2015.

[43]. Wikibooks. February 2, 2017. “x86 Disassembly”. Retrieved from
https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files

[44]. Ero Carrera. December 2016. “pefile”. Retrieved from
https://github.com/erocarrera/pefile

58
[45]. Microsoft. “Windows Sysinternals. Process Monitor v3.32”. Retrieved

from https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
[46]. Rohitab Batra. 2012. “API Monitor”. Retrieved from

http://www.rohitab.com/apimonitor
[47]. Margaret Rouse. 2005. “Elk Cloner”. Retrieved from

http://searchsecurity.techtarget.com/definition/Elk-Cloner

59
APPENDIX A: SOFTWARE IMPLEMENTATION FOR MALWARE

DETECTION

As referenced on table 5 and restated on next table, the selected best “9” features are as

follow.

Rank Feature Type Feature Name
1 IMPORTS CSUM
2 NETWORK DNS_HOST CSUM
3 CALLS ARGUMENTS_NAME lpFileName
4 IMPORTS EnumSystemLocalesW
5 PE Overlay Size 512
6 FILE FLAGS MASK 63
7 CALLS CATEGORY system
8 Language Code Neutral
9 TRID Win32 Executable generic

In this additional section, it is presented information regarding the different type of

data that need to be extracted from files for the malware detection purpose. This

information will give the general idea about where come from the data and why it is

important for malware detection. Finally, it is described how doing modifications to

existing free tools, it is possible to create an embedded program to monitor relevant

features for malware detection.

A.1 Portable Executable File Format (Pe):

The "portable executable file format" (PE) specify the structure of the binary

executable programs (exe, dll, sys, scr) and object files (bpl, dpl, cpl, ocx, acm, ax) for

MS windows NT, windows 95 and win32s [30].

60
The format was designed by Microsoft as a standard for Microsoft, Intel, Borland,

Watcom, IBM and others, that share "common object file format" (COFF - the format

used for object files and executables on several UNIX and VMS Oses) [30].

Loading an executable into memory is requires to map structures from the PE file into

the address space, therefore the information on memory will have almost the same

structure of PE files. The information mapped into memory represents all the code, data,

and resources that a program requires to be executed. However some parts of a PE file

may be read, but not mapped, for example, when debug information is placed at the end

of the file. In the case of Windows, the “Win32 loader” decides what portions of the file

to map in memory.

In general, the structure of a PE file follow the next pattern, a DOS MZ Header, DOS

Stub, PE File Header, Optional Header, Section Table, and Sections. Here it is important

to mention that this structure could be changed; in fact some malware is created altering

this structure.

Each section header has some flags about what kind of data it contains ("initialized

data"," readable data","writable data", etc), and pointers. A PE header component is

called the "IMAGE_DIRECTORY HEADER". This header holds information about

some PE Sections (Resources, Import, and so on). Each Record being [PointerToSection]

[Size].

61

Figure 26. Common schema of a PE file

A.1.1 MS Dos MZ header and DOS Stub:

The first 2 bytes are always: 4Dh 5Ah > "MZ" is dos exe signature, Last Page Size,

Total Pages in File, Relocation Items, Dos Header Size, Min Size, Max Size, Initial Stack

Segment (SP register value at run time), Initial Stack Pointer, Checksum for Header,

Initial Instruction Pointer, Initial Code Segment, Relocation Table Offset, Overlay #,

Betov's CheckSum and the PE Header Pointer [30].

Next, the MS-DOS stub is a kind of EXE that indicates if the file is compatible with

the PE structure. When the Win32 loader memory maps a PE file, the first byte of the

mapped file corresponds to the first byte of the MS-DOS stub.

62
A.1.2 PE File Header:

PE file header contains a collection of fields at specific locations that define the

structure of the rest of the file. This header contains information such as the locations and

sizes of the code and data areas, what operating system the file is intended for, the initial

stack size, and other vital pieces of information. Next, the main components of the PE

File Header are shown: [30], [31]

 The Signature: is a field viewed as ASCII text is "PE\0\0". The 32-bit-PE

signature (first 4 bytes contains the number 4550h > "PE") @ offset 80h , the

2 byte IMAGE_FILE_MACHINE @ offset 84h for x86: (14Ch) for Intel

80386 processor or better, (14Dh) for Intel 80486 processor or better,(14Eh)

for Intel Pentium processor or better.

 Number OfSections: The number of sections in the file

 TimeDateStamp: The time that the linker produced this file.

 PointerToSymbolTable: The file offset of the COFF symbol table. This field

is only used in OBJ files and PE files with COFF debug information. PE files

support multiple debug formats, so debuggers should refer to the

IMAGE_DIRECTORY_ENTRY_DEBUG entry in the data directory.

 NumberOfSymbols: The number of symbols in the COFF symbol table.

 SizeOfOptionalHeader: The size of an optional header that can follow this

structure. In OBJs, the field is 0. In executables, it is the size of the

IMAGE_OPTIONAL_HEADER structure that follows this structure.

 Characteristics: consists of a collection of flags, most of which are valid for

libraries and object files.

63
A.1.3 Optional Header Fields:

In general, this section could contain the next items: [30], [31]

 Magic: contains the value 10Bh, 'Version' of the linker.

 SizeOfCode: Usually, most files only have one code section, so this field

matches the size of the .text section.

 SizeOfInitializedData: This is supposedly the total size of all the sections that

are composed of initialized data.

 SizeOfUninitializedData: The size of the sections that the loader commits

space for in the virtual address space, but that don't take up any space in the

disk file.

 AddressOfEntryPoint: The address where the loader will begin execution.

This is an RVA, and usually can usually be found in the .text section.

 BaseOfCode: where the file's code sections begin.

 BaseOfData: where the file's data sections begin.

 Others can be ImageBase, SectionAlignment, FileAlignment,

MajorOperatingSystemVersion, MinorOperatingSystemVersion,

MajorImageVersion, MinorImageVersion, MajorSubsystemVersion,

MinorSubsystemVersion, Reserved1, SizeOfImage, SizeOfHeaders,

CheckSum, Subsystem, among others.

A.1.4 Section Table or Section Header:

There is one section header for each section, and each data directory will point to one

of the sections. Several data directories may point to the same section, and there may be

64
sections without a data directory pointing to them. Sections have two alignment values,

one within the disk file and the other in memory [30], [31].

The Section Table is like a directory that describes the location and size of a

particular piece of information, which is located in one of the sections that follow the

directory entries [30].

A.1.5 Sections:

 .text section: where all general-purpose code emitted by the compiler or

assembler ends up.

 .data section is where your initialized data goes (global and static variables). It

also includes string literals.

 .bss section: where any uninitialized static and global variables are stored.

 .CRT: is another initialized data section utilized by the Microsoft C/C++ run-

time libraries

 .rsrc section: contains all the resources for the module, allowing the linker to

not "know" anything special about resources.

 .idata section: It is also called the Import Table. Contains information about

functions (and data) that the module imports from other DLLs.

 .edata section: list of the functions and data that the PE file exports for other

modules.

 .reloc section: holds a table of base relocations. A base relocation is an

adjustment to an instruction or initialized variable value that's needed if the

loader couldn't load the file where the linker assumed it would.

65
 .rdata section: is used for holds the debug directory, which is only present in

EXE files and contains information about the type, size, and location of the

various types of debug information stored in the file (also contains description

strings).

 .drective section: only appears in OBJ files. It contains text representations of

commands for the linker.

A.1.6 PE Variations:

As mention before, PE files have not always the same structure, so programmers can

create modified versions of PE files. These modifications can be out of the boundaries of

permitted but they can still be run by the OS. From the security perspective, these

modifications could compromise the integrity, breaking unpacking systems, allowing

remote code execution, Denial of service, Sandbox scape, etc [32].

One of the common modifications to the PE file is the additional section append to

the final of the PE file, called Overlay. This section is important for Malware detection

given that machine learning algorithms shows that its size helps to differentiate between

malware files and “good-ware” files. To support this argument, it is found that Viruses

are likely to use the executable portion to gain a foothold into the system, and then load

more suspicious code into memory from the overlay once they have appropriate

permissions.

66

Figure 27. Modified PE structure example [32].

A.2 Imports
As mentioned before, The PE file contains on a subsection called .idata. This

particular section contains the information about the addresses of target functions (or

libraries to import) [30].

“The .idata section (or import table) start with an array of

IMAGE_IMPORT_DESCRIPTORs. There is one IMAGE_IMPORT_DESCRIPTOR for

each DLL that the PE file implicitly links to” and “the last element of the array is

indicated by an IMAGE_IMPORT_DESCRIPTOR that has fields filled with NULLs”.

Next, main components of the import sections are described: [31]

 Characteristics: is an offset (an RVA) to an array of pointers. Each of these

pointers points to an IMAGE_IMPORT_BY_NAME structure.

 TimeDateStamp: The time/date stamp indicating when the file was built.

67
 ForwarderChain: This field relates to forwarding. Forwarding involves one

DLL sending on references to one of its functions to another DLL.

 Name: This is an RVA to a NULL-terminated ASCII string containing the

imported DLL's name ("KERNEL32.DLL", "USER32.DLL", etc).

 FirstThunk: This field is an offset (an RVA) to an IMAGE_THUNK_DATA

union. In almost every case, the union is interpreted as a pointer to an

IMAGE_IMPORT_BY_NAME structure.

When the Win32 loader maps the information from the PE file, this also allocate the

resources required for the proper execution of the program and make those addresses

available (resources include the imported functions). It is also possible create links

directly against the code and data of another DLL, OCX or DRV files. Per each DLL

there is an array of function pointers known as the Import Address Table (IAT). Each

imported API has its own reserved spot in the IAT, which contains the address that is

invoked when calling imported APIs.

Also, it is important to mention that the ability for sharing code and data from the

DLLs, allow to developer to upgrade functionality without requiring applications to be

re-linked or re-compiled, so “Windows and OS/2 can be thought of as a collection of

DLLs that are upgraded, allowing applications for one version of the OS to work in a

later one, provided that the OS vendor has ensured that the interfaces and functionality

are compatible” [33].

68
Next char shows the general data flow for calling imports.

Figure 28. Import Flow structure [31]

A.3 Api Calls:

In general, Application Program Interfaces are set of routines, protocols, and tools for

building software applications. The API specifies how software components should

interact in order to allow programmers uses these properly. “A good API makes it easier

to develop a program by providing all the building blocks” [34].

In our case, we have to refer to Windows API. These relay on “the library loader to

effectively introduce a namespace redirection component into the library binding process.

Subject to various inputs, including the API Set name and the binding (import) context,

69
the library loader performs a runtime redirection of the reference to a target host binary

that houses the appropriate implementation of the API Set” [35].

General characteristics of Windows APIs: [36]

 Sometimes are informally called WinAPI and refer to a number of different

platform implementations (for example, Win32 API).

 Developer support is available in the form of the Windows Software

Development Kit (SDK), providing documentation and tools necessary to

build software in Windows. Documentation exposes functions and data

structures for each API.

 Win32) is primarily focused on the C programming language; however, the

API may be used by any programming language compiler or assembler

capable of handling the (well defined) low level data structures.

 Windows contains thousands of API, and they are classified on groups; just

for mention few ones, System services, Data access and Storage, Devices,

Graphics, Internet, COM, Security and identity, and so on.

 A simple schema for calling an API is as follow:

LibraryName| [ReturnType] FuncName(ParamType [paramName]) [;]

 Example of API call:

DLL_ORDINAL@0x1dd@USER32.DLL|int MessageBoxA(HWND

hWnd,LPCSTR lpText,LPCSTR lpCaption,UINT uType);

 Related to Malware detection, API calls could reveal patterns of behavior

allowing differentiate between good files and Malware. For example, from the

70
previous research we know that some specific call arguments and some

categories of API calls are useful for malware detection.

A.4 Metadata:

Other important feature for Malware detection come from extracting metadata from

files. In general, Metadata summarizes basic information about the information that you

can find, making some task easier (as example, looking in a library for a book by its

author, or date of publication, or identifying a file by its size, date of creation, type of

language, etc). In our case, metadata from files as its language code, flags, and

information about their binary signatures (as we will see ahead) helps on the detection

job.

Figure 29. Example of metadata from EXIFTOOL for pictures [37]

71

A.5 Software Tools And Implementation:

In this section, we made a research for software tools that allows extracting the type

of information described on previous sections. The analysis is carry out from the point of

view of easy implementation, good support, ability for execute from command line, and

free use.

A.5.1 PE File – Extraction Tools:

As mention before, attackers can modify the PE structure, and use techniques for

avoiding extracting static information from files, so we are looking for tools that can deal

with complex PE structures, even more we need tools able to unpack and decrypt PE

compatible files.

TOOL PROS CONS

PEView Easy to use
No documentation support,
Extract basic information,
No command line support

PEStudio

Good interface. Powerful
to extract complex PE

files, able to detect
anomalies. Command line

interface

No so much
documentation support.

ExeInfo
Able to analyze obfuscated
files, Powerful to extract

complex PE files

No so much
documentation support, No

command line support.

PEFILE

Documentation support,
command line option, able

to read malformed PE
files, packer detection,
Table 7. Comparison PE file analysis Tools

72

In this point, we decide to use PEFILE, which provides great functionalities and also

is a tool already used by powerful programs to analyze Malware files in sandboxes

(VirusTotal and Cuckoo). With this tool we can extract information from the PE

including the Imports and information related to the “overlay”.

1. PEFile installation:

2. Install python last version

3. Add variables to the path

4. Inside the folder in python where is located PIP, run pip to install the package

“pefile”

Given that PE Overlay size is required and the original version of PEFILE has not

contain this function, it was required to modify the code used by Cuckoo-Modified [38]

and [39], we add some lines to the code as shows the next picture (lines 5285 – 5300).

Figure 30. Modification to PEFILE.py for reading Overlay_Size

73

Next, we created a small program in python to look for the information of my interest

and the code is shown next:

Figure 31. Code in python for automate the execution of the PEFILE

74
B.5.2 API Calls – Extraction Tools:

TOOL PROS CONS
Procmon Good support, reliable,

several functionalities.
No easy to configure,

Despite has support for
command line, it is not

flexible.
API Monitor Great tool, excellent GUI,

lot functionalities, good
support, easy to use

No command line support

SpyStudio Easy to use, good GUI No command line support,
api calls are not in normal

format (designed for
traces)

WinAPIOverride Great tool, lot
functionalities, good

support.

No command line support

Table 8. Comparison API Calls analysis Tools

After having researched for different API Calls free monitoring tools, we could not

find any with the ability to use command line support, which is a big problem in my

implementation for extracting Calls in automatic fashion. Maybe the tool nearest to the

solution is “Procmon”, however we could not completely to use command line to analyze

files from batch, given that it is not possible specify the name of the file to monitor from

command line. However, this tool can be started from command line at any moment

previously configured to monitor all processes (or excluding some ones from creating an

exclusion list).

The problem here will be the overhead of continuously monitoring and extracting

information; also the memory used increase fast long time analysis is not possible. In

75
sum, as a future work, we will look for other possibilities to extract the API calls, where

low level tools as Pin Instrumentation by Intel sounds promising.

A.5.3 METADATA – Extraction Tools:

For extraction of metadata, there are two different main tools that are normally used

for malware analysis. The first one is EXIFTOOL and the other one is TRID.

 EXIFTOOL:

Exiftool is a powerful tool designed by Phil Harvey for Read, Write and Edit

metadata information in a lot of different types of files (from picture format to execution

files) [37]. In addition, this tool provides command line interface with flexible number of

parameters and analysis. In particular we look for the “Language Code” and the “File

Flag Masks” parameters.

1. Exiftool Installation (note: install full version)

2. Install Perl

3. Install 7z to unzip tar

4. Download image-exiftoo.tar.gl

5. Unzip

6. Follow instructions from the website (rename the pile file to pile.exe)

7. Cut all folder and paste on C:\ProgramFiles\Exiftool

8. Add the variable to the path

76

Figure 32. An example of execution of Exiftool

 TRID:

This program designed by Marco Pontello [40] can analyze and identify patterns-

signatures on the binary code. This tool is used for forensics, support in file recovery, etc.

Also, it's extensible and can be trained to recognize new formats in a fast and automatic

way. Currently, the program has a database of signatures for around 6790 file types.

Results are presented in a list of highest probabilities of belonging to a particular

signature.

TRID Installation:

1. Download the appropriate version for your OS

2. Unzip the file

3. Download the TrIDDefs.TRD package and paste it on the folder where you

unzip the previous file.

77

Figure 33. An example of execution of TRID

A.5.4 Networking Monitor:

In the world of free software, two already known program are used for network

monitoring, Wireshark and WinDump [41]. In this case we use both, WinDump for

extracting the data given that runs from command line and Wireshark/Tshark for

converting that .pcap data extracted by WinDump into a .csv file.

The installation is straightforward, just download and execute the installation file.

78

Figure 34. An example of the output of WinDump/Wireshark

A.5.5 Batch File Implementation:

In order to automate the process for analyzing files and extracting the relevant

information for Malware detection, we implemented a batch program that receive as a

input parameter the path\name of the file to analyze and then call every program

described before to be executed. The output information from each program is stored in

text/csv files for posterior transformation to a matrix of data (this last part will be

implemented in the future).

79

The output files looks like the pictures displayed next:

Figure 36. Output files after running the batch file created for automate feature extraction.

Figure 35. The batch file created for automate feature extraction.

80
A.6 Remarks

Along this research and implementation of these different tools, we got aware of the

big overhead that produces programs such as API calls monitoring and TRID. In

addition, extracting the API Calls requires a program able to be executed from command

line, which was not possible in this stage but low level tools as Pin Instruments could be

used in the future. However, despite of this last difficulty, the current used tools can be

used for extracting additional useful static information, which implies to avoid exposing

the OS to be affected by possible Malware files.

Future work need to be done comparing the possible information that can be gotten

from these tools and the accuracy of the prediction model for the corresponding

information. Thus, removing for example the TRID tool and adding features extracted for

the PE file could get the same accuracy with lower overhead (just for saying an

hypothetical case). Also, an additional work will be to attach this batch script to run

automatically for each executed user program, transforming the data to a vector and

running the prediction model.

Finally, as an afterthought, this project allows us to know more in deep how programs

as Dll/exe are mapped into memory, how and why API calls are implemented, and in

general how to monitor different parameters during execution time. In the same way, it

was possible to get a better grasp of programming in python and in batch.

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Spring 4-27-2017

	Feature Selection and Improving Classification Performance for Malware Detection
	Carlos A. Cepeda Mora
	Recommended Citation

	FEATURE SELECTION AND IMPROVING CLASSIFICATION PERFORMANCE FOR MALWARE DETECTION

