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Abstract—Predictive models that are developed in a regulated 

industry or a regulated application, like determination of credit 

worthiness must be interpretable and “rational” (e.g., 

improvements in basic credit behavior must result in improved 

credit worthiness scores). Machine Learning technologies 

provide very good performance with minimal analyst 

intervention, so they are well suited to a high volume analytic 

environment but the majority are “black box” tools that provide 

very limited insight or interpretability into key drivers of model 

performance or predicted model output values. This paper 

presents a methodology that blends one of the most popular 

predictive statistical modeling methods with a core model 

enhancement strategy, found in machine learning. The resulting 

prediction methodology provides solid performance, from 

minimal analyst effort, while providing the interpretability and 

rationality, required in regulated industries.   

Keywords—logistic regression; ensemble; predictive model; 

binary classification; quadratic programming 

 

I. INTRODUCTION 

Logistic regression is a historically successful statistical 
method for predicting a binary event (i.e., an event with two 
possible outcomes). The methodology estimates the log-odds 
of the event based on linear regressors, using the functional 
form:  

          ln (
𝑝

1 − 𝑝
) = 𝛽𝑥            (1) 

 
For model estimation purposes, this functional form is 

transformed to express the binary event in terms of the logit 
function:  

                 𝑦 =
1

1 + 𝑒−𝛽𝑥
                    (2)       

This same logit function is used as the activation function 
(represented by arrows in the model below), in neural nets, 
deep nets and convolutional neural nets.  

Fig 1: Multi-Layer Perceptron Structure 

 

One critical concern for any predictive model is its general 
applicability. Developing a “better” performing model that 
doesn’t generalize to new data, provides limited value for the 
business or agency that needs to make decisions based on the 
application of the model. In many situations, models perform 
within time, but when applied to a future time period, model 
performance suffers and performance further deteriorates as the 
time from initial model development increases.  

In machine learning, generalizability of modeling 
techniques that tend to suffer from issues related to over fittting 
can be mitigated by employing one or more ensemble 
methodologies, that combine the results of multiple lower 
performing models to provide a high performing solution that 
generalizes better than a single model. One example of this 
technique is the development of random forests which combine 
the results of multiple decision trees [1].  

The current study compares a combination of k less 
effective logistic regression models (predictors) to a fully 
developed model (predictor). In specifying the fully developed 
predictor,  techniques that are commonly applied to maximize 
the performance of a single model (e.g., nonlinear 
transformations) are applied. The combination of k predictors 
will be of the form:  

           𝑝 = 𝜆1𝑝1 + 𝜆2𝑝2 + ⋯ + 𝜆𝑘𝑝𝑘              (3) 

This study examines credit data for 11.8 million 
prospective business customers. The quarterly data was 
provided by a major U.S. based credit bureau and span 9 years 
from 2006 to 2014. It offers an opportunity to not only assess 
performance of a predictive binary classification model  versus 
the proposed solution within a specified time frame, but also to 
assess model performance over an extended period of time.  

The fundamental hypothesis for the project is:  

A composition of multiple logistic regression 
classifiers, using no analyst derived attribute 
transformations or attribute selection steps* will 
perform as well or better than an optimally 
developed logistic regression model, in the 
original time period and performance will be 
more stable (better), than the optimally developed 
logistic regression model across an extended time 
period.  

 

* - no analysis/data manipulation beyond basic cleansing and imputation of missing 
values 
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II. LITERATURE REVIEW 

The concept of developing “ensembles” of models has been 
around for more than 30 years. “Stacking” is one of the 
primary forms of ensemble creation where multiple models, 
which may be based on different modeling methodologies or 
use the same methodology, but with different predictive 
elements. [2] 

In 1992, David Wopert published “Stacked Generaliztion” 
in which he examines the “stacking” of neural net models, to 
boost generalizability of predictive models [2]. For scenarios 
where multiple predictors are available, choosing the “best” 
predictor (e.g., via a voting process, from applying the 
predictors on a validation sample) may not be generate the best 
result.  Instead, Wolpert performs a heuristic analysis of the 
viability of using the results from multiple predictors, that he 
positions as a “generalization” of predictors. Wolpert starts 
with the most fundamental assessment of generalization of 
predictive models – the validation sample –  and then extends 
his analysis to generalization of a predictor to other 
populations/samples. Wolpert not only provides a heuristic 
foundation supporting the use of stacked models, but includes 
two key experiments that demonstrate the applicability and 
value. [2] 

Wolpert’s work is a general discussion of and strong 
support for combing predictors, but he doesn’t arrive at a single 
“best practice” for combining predictors. Leo Brieman [3] 
examines simple linear combinations of predictors of the form: 

   𝑣(𝑥) = ∑ 𝛼𝑘𝑣𝑘(𝑥)

𝑘

              (4) 

To estimate the optimal 𝛼𝑘,  Brieman minimizes the 
quadratic cost function. 

∑(𝑦𝑛

𝑛

− ∑ 𝛼𝑘𝑣𝑘(𝑥)

𝑘

)2        (5) 

Unrestricted 𝛼𝑘’s, could lead to a combined solution that 
isn’t as effective as one or more of the available predictors. 
Restricting the parameters to be non-negative and ∑ 𝛼𝑘 = 1, 
results in what Brieman calls an “interpolating” predictor, that 
performs at least as well as the best single predictor. Brieman 
also notes that after optimization is complete, a relatively small 
number of predictors have a non-zero weight [3]. This sum of 
squared error for the linear combination of predictors will be 
used to optimize the ensemble that’s produced in this study. 

In his work, Brieman examined stacking five different 
types of predictors. This study focuses on stacking “Subset 
Regressions” which combines predictors that utilize different 
sets of predictors, to derive an optimal predictor [3]. 

 

III. DATA  

This study examines the incidence of a business falling two 
or more months behind on payments of Non-Financial 
Accounts (NFAs). Much like unsecured credit accounts in the 
consumer market, businesses may have multiple NFA\s. This 
type of account was the most prominent account activity for 
businesses found in the 36 month credit file. In 2006, just 

under three million of the 11.8 million businesses found in the 
file had sufficient activity (i.e. sufficient number of fields to 
provide predictive input for the record; in this case have 
account behaviors for at least one other account type for the 
time period) to be considered for inclusion in a model 
development project.  

In the available data files, the initial file, Q1 2006, contains 
3.18 million records where the data are not missing for all 
fields except the account keys. Of these records, almost 2.9 
million have sufficient data representation (i.e., they are not 
“coded” missing/null) to use in a predictive model 
development effort. On average, each subsequent quarter adds 
an additional 106K records, to reach 6.88 million viable 
records by the 4th quarter of 2014. Less than half of the 4th 
quarter 2014 records have available data for all 36 quarters.  
Almost 5 million records have missing values for all date 
except the account keys, for all quarters. This trend of missing 
data is captured in Fig 2.  

 

Fig 2: Missing Date Rate Across Quarterly Files 

 

 

Fig 1. Missing data counts, by quarter. Of the 11.8 million records in the 
provided data, a large number have missing values for all date, except the 

account keys.  

 

As is the case with all studies that involve the analysis of 
real data, cleansing of the data, including imputation of missing 
values, logic checks and data conversion into structured 
formats that can be used by the desired analytic method is as 
critical as the choice of analytic method.  

 

A. Missing Value Imputation  

Before the data can be analyzed, a considerable amount of 
recoding and data logic corrections were required. For 
example, a field may have a coded “missing” value (e.g., 
“999999999” for account balance fields). In most cases, for 
example account balance, when the reported number of 
accounts is 0, imputing with 0 is the most logical choice. One 
type of coded missing data takes the form of coded missing for 
all data of an account type. Figure 3, contains an example 
where NFA data is coded missing for the 1st 3 quarters, for an 
account. This scenario is taken to mean that no accounts of 
type NFA were open/active. For these records, accounts of 
other types (e.g., utility) have account activity.  
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Fig 3: Example of Coded Missing 

 

 

Another type of coded missing due to no account activity is 
an “activity gap” where the business had one or more quarters 
of zero active accounts, of the reported type, that are 
interspersed in a time sequence where they had accounts that 
had activity. In these cases, the number of accounts is reported 
as zero, but the account total is coded missing. Figure 4 below 
contains an example of this coded missing scenario.  

Fig 4: Example of Coded Missing 

 

 

B. Missing Value Imputation  

Even in cases where non-zero and non-missing coded 
values are available, logic errors are present. For example, in 
Figure 4, the quarter 3 maximum balance for the past 3 months 
(HstNFACmt3mon) is reported to be 25,000, but in the current 
quarter and the prior quarter, the current month maximum 
balance values (totNFAcc) are reported to be over 42,000. In 
this case, using the one of the two “current” values is the 
logical choice or both of the current month values must be 
reduced. In addition, the 2nd quarter has a reported value of 65 
which matches the current value for the prior quarter. This 
scenario is prevalent throughout the data files, so it is assumed 
that “prior n months” refers literally to months prior to current, 
but not current. Using this insight, 3 month values are logic 
checked with the current value for prior quarter and updated as 
appropriate.  

Fig 5: Highest Account Balance Logic Error 

 

 

Logic checking the 12 month and 24 month metrics is 
somewhat easier. Assuming that they use the same base 
reference for time, the 12 month can be compared to the 3 
month values for the current quarter plus 3 prior quarters. The 
24 month can be compared to the 12 month for current quarter 
and 12 month for 1 year prior. For the first, three quarters, the 
available prior quarters is used. For example, in the second 
quarter of 2006, the logic check for the 12 month value, uses 
current 3 month and prior quarter 3 month, sincetwo and three 
prior quarters are unavailable. When, additional prior quarters, 
outlined above aren’t available, the logic check is restricted to 
the available quarters. The same logic is applied to the 24 
month values for the first four quarters use a similar strategy. 

 

 

C. Model Target  

The current study attempts to predict prospective customers 
that will have at least one account for which they are 2 or more 
months behind on payments (including being in default), in the 
following year. In any given quarter, just under 8% of 
businesses will have at least one NFA in this status. Almost 62 
percent of these businesses will be in the same status for at 
least one NFA in the prior year. Since it would be irrational for 
a provider to extend an offer to these accounts, any business in 
the model development time period, that has been behind by 12 
or more months on an NFA will be removed from 
consideration. Including these accounts in the analysis would 
also artificially “improve” model performance, to the potential 
detriment of generalizatibity to prospect businesses, that are the 
rational target of business. Not only is the decision, to remove 
current year “bad accounts” (those with at least one account 
that is two or more months behind on an NFA payment) is 
consistent with rational business behavior, but it provides a 
bigger challenge when attempting to predict business behavior 
and a greater test for the proposed model development process.  

Removing the businesses with the 12 month behavior also 
removes companies with similar 24 month behavior, as well as 
businesses that are 3 or more months behind in the 12 month 
period. Related data fields report these behaviors, so this logic, 
also removes data elements that would provide false high 
performing model behavior.  

 

IV. METHODOLOGY 

This study uses full year data, for a base year to predict the 
delinquent behavior, in the following year. After removing 
currently delinquent accounts, just under three percent of the 
businesses had an account delinquency of two or more months, 
in the following year. The base year for model development is 
2006, to predict behavior in 2007. The models are developed 
on a training sample for, for 2006, then assessed for 
generalization, on a validation sample for 2006 as well as for 
each year 2007 through 2013, predicting behavior in the 
following year.  

Almost 2.9 million records were available for 2006. The 
data were split 30/70, into training and validation data sets, 
respectively. With almost 900K records, care must be taken, 
since almost any affect will meet the traditional 0.05 threshold 
for a significant p value. For the purpose of model 
development, the p value threshold is reduced to 0.0001. 

The primary goal of the study is to compare the proposed 
ensemble of logistic regression models to a logistic regresion 
“Base Model” that is built using standard data transformations.  
The Ensemble Model is developed without the benefit of 
recodings or transformations, beyond the coded missing value 
and logic checks described in the Data section. 

 

A. Base Model 

The “Base Model” uses a series of data evaluations, 
transformations and recodings to build the best possible 
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performing logistic regression model. There are over 300 data 
elements, in each of 4 quarters, that are available for model 
development, including a considerable amount of redundant 
information. If individual predictor interpretation was not 
required, a principal component analysis or factor analysis 
could be used to reduce data without reducing valuable 
variance that has the potential to be predictive. Instead, 
variable clustering, using SAS’ Proc Varclus [4], is performed, 
to identify similar underlying critical variance dimensions 
while allowing the analyst to select representative data 
elements that are highly associated with the variance 
dimensions.  

Each quarter is assessed, to identify variance dimensions 
and representative data elements. A 60 variable cluster 
solution, for each quarter, represents over 80% of the variance 
within a single quarter, so it is chosen for the first clustering 
step. The 240 remaining data elements for the year are then 
combined and an additional variable clustering is conducted, to 
identify the 53 data elements to be used for recode. These data 
elements represent over 80% of the variance, in the 240 data 
element set.  

At this point two different binning procedures are used:  

a) equal size bins, for each data element (but may not be 
equal record counts for each), using Proc Rank[5], in 
SAS 

b) equally spaced bins, where the range for each bin is 
equal, but the counts within the bins aren’t equal.  

For each binned data element, two nonlinear 
transformations are developed:  

a) the odds, for the dependent variable (a binary flag that 
indicates the business has an NFA that’s two or more 
months late payment) 

b) log-odds for the dependent variable.  

At this point, there are 371 variables. As was the case with 
the 300+ variables at the start of the analysis, there is a high 
degree of information redundancy across the 371 variables.  A 
third variable clustering process reduces the number of data 
elements to identify 57 data elements that represents over 85% 
of the variance in the data.  

The logistic regression model was estimated using SAS 
Proc Logistic [6] with backwards elimination. The initial 
model was developed using a data element p value of 0.0001 
(i.e., SLSTAY = 0.0001). From that point, results were 
examined to identify low contributing data elements as well as 
data elements that may suffer from multi-collinearity issues. 
The final Base Model has 22 predictive data elements.  

It should be noted that while the project was spread over 
several months, this model development effort required the 
equivalent of at least 2 weeks of full time effort.  

 

B. Logistic Ensemble 

The fundamental premise of ensembles is the aggregation 
of the results of multiple sub-optimal models with an 
application of a “winning strategy” to result in the final 

prediction. For classification problems, like the binary 
classification examined in this study, strategies range from 
simple voting (classify a record on all models then count the 
yes vs no results and classify accordingly) to more 
sophisticated strategies like using the model results as inputs to 
an additional binary classifier – similar to the functionality of a 
simple neural net. For the purposes of this study, an optimal 
linear combination of the predictions, based on the sum of 
squared errors, per Brieman’s work [3], for the set of logistic 
regression models is used.  

Similarly, the development of the models that make up the 
ensemble may utilize different strategies. For random forests, 
the standard methodology is to use bootstrapping to develop 
multiple models using the same data elements in the 
consideration set. This project will utilize the stacking of 
multiple logistic regression models that are developing using a 
randomly chosen subset of the available data elements.  

One of the goals of this effort is to test to determine, if an 
ensemble based on minimal analyst intervention can produce 
results that are on par with the more involved model 
development process outlined earlier. To achieve this goal, 
data element samples were drawn from the 300+ raw data 
points that were available after data cleansing outlined in 
section 3 above. Due to the goal of minimal intervention by the 
analyst, models for ensemble consideration will be developed 
using individual quarter data, with each quart having an equal 
number of models that predict behavior in the following year.  

For each quarter, 40 samples of the data elements were 
drawn. A random number generator in Microsoft Excel was 
used to sample 25% of the available data elements. The logistic 
procedure in SAS, with backwards elimination (again using 
SLSTAY = 0.0001) was used to develop the 160 models. No 
additional model/variable assessments were used to improve 
individual model performance or to reduce model 
generalization concerns like multi-collinearity.  

 

C. Identifying the Optimal Ensemble 

After the 160 models were estimated SAS’s Proc LP 
procedure [7] was used to determine the optimal linear 
combination of models that maximize prediction. A quadratic 
program, using the least squares cost function, found in 
regression analysis was used. To simplify, this step a closed 
form of the squared error function was calculated by expanding 
the quadratic function. The resulting quadratic program is then 
solved.  

𝑚𝑖𝑛 ∑ (𝑦 − 𝜆1𝑝1 − 𝜆2𝑝2 − ⋯ − 𝜆160𝑝160)2

𝑜𝑣𝑒𝑟 𝑇

      (6𝑎) 

             𝑠𝑡 𝜆1 + 𝜆2 + ⋯ +𝜆159 + 𝜆160 = 1                  (6𝑏) 

                                                   𝜆𝑖 ≥ 0                             (6𝑐) 

where T is the training set and 

 𝑝𝑖 is the logistic regression estimate for the ith model 

For 160 models, the closed form of the objective function 
requires over 13,000 coefficients. Solving the quadratic 
program identified 22 models that contribute to the optimal 
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combination of values. For others, the 𝜆𝑖
′s  are 0. For each 

record in the validation set and for each subsequent year, the 
22 models with non-zero weights (𝜆𝑖

′ s ) are scored and the 
weights are used to generate the linear combination of models 
(i.e., the ensemble score).  

 

V. FINDINGS 

A. Base Model Performance 

The Base Model has relatively good performance. The 22 
predictive data elements produced a model that has a percent 
concordance of 85.2 and a KS statistic of 54:  

 

Fig 6: Base Model Performance 

 

Fig 5. Base Model percent of “bad accounts” by model score decile in the 
model ordered validation sample vs the percent of “good accounts”  

 

Somewhat surprisingly, the Base Model had very impressive 
performance when applied to the additional years. These 
additional years of data represent not only a lag forward in time 
(one type of generalization challenge), but also due to the 
increasing number of available records, for scoring, the 
additionaly years of data represented an assessment of 
generalization on new prospective accounts. Performance not 
only didn’t degrade but had a modest increasing trend, in terms 
of the KS statistic:  

 

Fig 7: Base Model Performance Over Time 

 

Fig 6. Base Model KS statistic for application of the model to independent 
samples, over time. 

 

This model development effort required the equivalent of 3 
days to complete. Most of the time (roughly 2 days) was 
waiting for the near automated development of the 160 
predictors that make up the ensemble. 

 

B. Ensemble Model Performance 

The ensemble of quarterly  logistic regression models had 
comparable performance. While percent concordance isn’t 
available, the KS statistic can be calculated for the ensemble. 
When applied to the 2006 validation set, the Ensemble Model 
performed on par with the Base Model and had a KS statistic 
of almost 58: 

  

Fig 8: Ensemble Model Performance 

 

Fig 7. Ensemble Model percent of “bad accounts” by decile in the model 
ordered validation sample vs the percent of “good accounts”  

 

While higher performance in the same time period is good, 
the most important assessment is the application over time. As 
can be seen in the chart below, Ensemble Model continued to 
outperform the Base Model in each of the available years of 
data.  

 

Fig 9: Ensemble Model Performance 

 

Fig 8. Base Model KS statistic for application of the model to independent 
samples, over time. 
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C. Coefficient Interpetation 

For a single logistic regression model, an analyst interprets 
a coefficient in terms of change in log odds, for a unit change 
in the data value.  In its simplest terms,  

          ln (
𝑝

1 − 𝑝
) = 𝛽(𝑥 + 1)            (7) 

 

                
𝑝

1 − 𝑝
= 𝑒𝛽𝑥 𝑒𝛽                     (8) 

 

So change x by 1 and the odds change by a multiple of 𝑒𝛽 . 

Given the nature of the ensemble, calculating change in 
odds isn’t viable. Instead, analysts can lean on multivariate 
calculus and derive the rate of change with respect to a given 
data element. For n predictors in the optimal ensemble:  

𝜕𝑝

𝜕𝑥𝑖
=  𝜆1

𝜕𝑝1

𝜕𝑥1
+ 𝜆2

𝜕𝑝2

𝜕𝑥2
+ ⋯ +𝜆𝑛

𝜕𝑝𝑛

𝜕𝑥𝑛
                           (9)       

 

=  𝜆1

𝜕𝑝1

𝜕𝑥𝑖
+ 𝜆2

𝜕𝑝2

𝜕𝑥𝑖
+ ⋯ +𝜆𝑛

𝜕𝑝𝑛

𝜕𝑥𝑖
                         (10) 

 

 =  𝜆1

𝛽1𝑖𝑒−𝛽1𝑥

(1 + 𝑒−𝛽1𝑥)2
+ ⋯ + 𝜆𝑛

𝛽𝑛𝑖𝑒
−𝛽𝑛𝑥

(1 + 𝑒−𝛽𝑛𝑥)2
       (11) 

 

=  𝜆1𝑝1
2𝛽1𝑖𝑒−𝛽1𝑥 + ⋯ + 𝜆𝑛𝑝𝑛

2𝛽𝑛𝑖𝑒
−𝛽𝑛𝑥                (12) 

 

While this calculation is more complicated than what is 
typically done, in interpreting logistic regression coefficients, 
the resulting insight is a direct change in model score or credit 
score (if the model scores are converted to credit score metrics) 
for a change in identified parameter for a specific business 
behavioral profile. For general reporting purposes (e.g., reports 
to regulators), the mean or median value for the data element 
could be used. 

 

D. Conclusions 

The current study represents a successful enhancement of a 
powerful machine learning enhancement process, blended with 

a traditional statistical predictive methodology. The Base 
Model, performed very well, but given the 3 separate variable 
clustering processes that were used to reduce the number of 
data elements, may have reduced the available variance (i.e, 
“explanatory power” of the predictive data elements) by more 
than 50%, since roughly 15% of variance is removed in each of 
the variable clustering steps.  

The Ensemble Model didn’t have the benefit of the 
nonlinear transformations, but was able to utilize all of the 
initial variance that was available in the data, for the year. In 
addition to the opportunity to “operationalize” the Ensemble 
Model development process, and the reduced time to develop,  
this increase in available variance, to contribute predictive 
power is a very compelling argument for employing the 
proposed ensemble process.  
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