
Kennesaw State University
DigitalCommons@Kennesaw State University
KSU Proceedings on Cybersecurity Education,
Research and Practice

2016 KSU Conference on Cybersecurity Education,
Research and Practice

Semi-Supervised Deep Neural Network for
Network Intrusion Detection
Mutahir Nadeem
Roanoke College, mnadeem@mail.roanoke.edu

Ochaun Marshall
University of North Carolina at Greensboro, oemarsha@uncg.edu

Sarbjit Singh
North Carolina A & T State University, ssingh@aggies.ncat.edu

Xing Fang
Illinois State University, xingfang912@gmail.com

Xiaohong Yuan
North Carolina A & T State University, xhyuan@ncat.edu

Follow this and additional works at: https://digitalcommons.kennesaw.edu/ccerp

Part of the Information Security Commons, Management Information Systems Commons, and
the Technology and Innovation Commons

This Event is brought to you for free and open access by the Conferences, Workshops, and Lectures at DigitalCommons@Kennesaw State University. It
has been accepted for inclusion in KSU Proceedings on Cybersecurity Education, Research and Practice by an authorized administrator of
DigitalCommons@Kennesaw State University. For more information, please contact digitalcommons@kennesaw.edu.

Nadeem, Mutahir; Marshall, Ochaun; Singh, Sarbjit; Fang, Xing; and Yuan, Xiaohong, "Semi-Supervised Deep Neural Network for
Network Intrusion Detection" (2016). KSU Proceedings on Cybersecurity Education, Research and Practice. 2.
https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231827141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2016?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2016?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Abstract
Network security is of vital importance for corporations and institutions. In order to protect valuable
computer systems, network data needs to be analyzed so that possible network intrusions can be detected.
Supervised machine learning methods achieve high accuracy at classifying network data as normal or
malicious, but they require the availability of fully labeled data. The recently developed ladder network, which
combines neural networks with unsupervised learning, shows promise in achieving a high accuracy while only
requiring a small number of labeled examples. We applied the ladder network to classifying network data
using the Third International Knowledge Discovery and Data Mining Tools Competition dataset (KDD
1999). Our experiments, show the ladder network was able to achieve similar results compared to supervised
classifiers while using a limited number of labeled samples.

Disciplines
Computer Sciences | Information Security | Management Information Systems | Technology and Innovation

This event is available at DigitalCommons@Kennesaw State University: https://digitalcommons.kennesaw.edu/ccerp/2016/
Practice/2

https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2?utm_source=digitalcommons.kennesaw.edu%2Fccerp%2F2016%2FPractice%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages

1. INTRODUCTION

Network security is essential to corporations as intrusions can result in massive

monetary losses. According to a report by the Ponemon Institute, which sampled

252 companies in 7 countries, the U.S. continues to rank highest in its cost of

cybercrime at an annual average of $15.4 million per company (Ponemon

Institute, 2015). Current Intrusion Detection Systems (IDS) are either signature

based or anomaly based. Signature based detection methods require the attack to

be documented beforehand, thus new types of attacks that are not yet documented

cannot be detected. Anomaly based detection methods focus on finding unknown

or unusual activity patterns in the observed data (Holtsnider & Jaffe, 2010). They

allow new attacks to be discovered, however a domain expert is required to

analyze the anomalies.

Network data has been classified by a host of machine learning techniques.

Among the literature we reviewed included the work of Jadidi et al (2013), who

used Support Vector Machines (SVM) and flow based data sets to classify

network data as benign or malicious. Salama et al. (2011) have used a hybrid

intrusion detection scheme utilizing both Support Vector Machines and Deep

Belief Networks. Hasan and his colleagues have developed two IDS models: one

that uses SVMs and the other that uses the Random Forest Classifier (Hasan,

Nasser, Pal, & Ahmad, 2014). Haweliya and Nigam used a semi-supervised

Support Vector Machine (SVM) to classify an optimized version of the KDD

1999 dataset (Haweliya & Nigam, 2014).

Though supervised learning methods achieve high accuracy, they require fully

labeled data. Acquiring fully labeled data is a nontrivial task as labeling data

requires time and a human expert. Thus, learning from unlabeled data is more

desirable. Semi-supervised learning is learning with a small amount of labeled

data and a large amount of unlabeled data (Zien, Scholkopf, & Chapelle, 2006).

Recently, Rasmus et al. (2015) had shown that Ladder Networks, a semi-

supervised neural network scheme, are able to achieve a high classification rate

while using only a few labeled samples on the Mixed National Institute of

Standards and Technology (MNIST) dataset. In this paper, we use the Ladder

Networks to classify the Third International Knowledge Discovery and Data

Mining Tools Competition dataset (KDD 1999). Three well studied, supervised

classifiers, a Deep Belief Network (DBN), a Support Vector Machine (SVM), and

a Random Forest were used to classify KDD 1999. These supervised results serve

as a baseline to compare with the Ladder Networks results.

1

Nadeem et al.: Semi-Supervised Deep Neural Network for Network Intrusion Detecti

Published by DigitalCommons@Kennesaw State University, 2016

The rest of this paper is organized as follows. Section 2 provides a background

on the classifiers: Support Vector Machine, Random Forest, Deep Belief Network

and Ladder Network. Section 3 describes our experiments and the results. Related

Work is discussed in Section 4 and Section 5 concludes the paper.

2. BACKGROUND

2.1 Support Vector Machine

Support Vector machines are supervised learning models for classifying data. The

goal of a SVM is to find the optimum margin that maximizes the distance

between two target classes (Bishop, 2006; Schmidhuber, 2015; Hasan et al.,

2014). Essentially, a SVM tries to minimize the error of the distance between

each point in each class and a dividing line. This is done by finding the shortest

distance between two points in both classes. The line orthogonal to the shortest

distance line is the dividing line.

2.2 Random Forest

Random forests are an ensemble of classification or regression trees. The random

forest classifier works by partitioning the training set of the data into k subsets and

constructing a decision tree out of each subset. All of the subsets are created by

randomly selecting samples from the original set. Each decision tree is

independent of all other decision trees.

Each decision tree is made by randomly selecting m variables (features) out of

all the variables and finding the best split on the selected variables. The best split

is determined by the entropy or unpredictability of the variables. This is done at

each node and continued until a node cannot be split further, leading to the leaf

nodes. The testing data is then run through each tree and each tree provides a

classification. The classifications of all the trees are then taken into account and

the final classification of the forest is determined by the majority of the decision

trees (Breiman, 2001).

2

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 2 []

https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2

2.3 Deep Belief Neural Network

Artificial Neural Networks (ANN) aim to imitate the biological process of a path

of neurons being strengthened in the brain when a skill is learned. An ANN is

composed of an input layer which represents the features of the data. The input

layer is connected to one or more hidden layers where matrices of weighted

connections are used to map the input to the output layer, which consists of the

classes of the data. Essentially, a Neural Network learns by updating the matrices

of weights until it is able to achieve a high accuracy in mapping the input layer to

the output layer. A Deep Belief Neural Network (DBN) is a Neural Network with

multiple hidden layers. It can be viewed as a stack of restricted Boltzmann

machine (Hinton, 2009). Boltzmann machines are networks of neuron units that

are symmetrically connected. These neuron units make stochastic decisions

whether to be on or off (Hinton, 2007). A Boltzmann machine is restricted in that

there are no connections between neural units of the same layer (Hinton,

Osindero, & Teh, 2006).

The DBN learns iteratively by updating the weights through the backward

propagation algorithm. It works by calculating the net input for each neuron,

which is the sum of (inputs * weights) for each connection leading into that

neuron (Hecht-Nielsen, 1989). After that, the current output for each neuron is

calculated using a logistic function. Then the error is calculated for all neurons.

Finally, the error is fed back through the layers and the weights are updated to get

a better accuracy.

Figure 1. Ladder Network Architecture

3

Nadeem et al.: Semi-Supervised Deep Neural Network for Network Intrusion Detecti

Published by DigitalCommons@Kennesaw State University, 2016

2.4 Ladder Networks

Ladder Networks can be seen as nested denoising Auto-Encoders (dAE) that

share lateral connections between the encoder and decoder at each layer. An auto-

encoder tries to learn a classifying function by mapping an input x to an output y.

This is prone to over-fitting, which is the classifier having learned the training

examples well, but cannot generalize to new data. To avoid over-fitting, noise is

introduced, specifically a corrupted version of x is created and the auto-encoder

tries to map it to the same y. With Ladder Networks, this happens at each layer,

latent variables (variables inferred from observed variables) are used in layers

beyond the input layer. Learning is based on minimizing the cost || (ẑ - z) ||2 where

z is the original latent variable and ẑ is the reconstruction of the corrupted version

of it. Each layer adds to a cost function for decoder d, Cd
 (l) = ||z(l) - ẑ(l) ||2 which

trains the layers to learn the denoising function ẑ(l) = g(l) (z̃
(l),ẑ(l+1)) which maps

the corrupted z̃(l) onto the estimate without noise, ẑ(l). One of the parts

differentiating Ladder Networks from dAEs are skip connections between the

encoder and decoder at each layer that allow some of the details to be represented

by the lower layers and the higher ones. An illustration of the architecture of a 3

layer Ladder Network is shown in Figure 1.

In Figure 1, L =3. x → z(l) →z(2) →z(3) → y is the clean feedforward path, x →

z̃{(l)} → z̃
(2) → z̃

(3) → ỹ is the corrupted feedforward path, and ẑ(3) → ẑ(2) → ẑ(1)

→ x̂ is the decoder. The decoder has denoising functions, g{(i)} , and cost

functions, Cd
(l), that try to minimize the difference between ẑ(l) and z(l) . See

Rasmus et al., (2015) for more information on Ladder Networks.

3. EXPERIMENTS & RESULTS

We analyzed the dataset used in the Third International Knowledge Discovery

and Data Mining Tools Competition (KDD 1999), held in conjunction with the

Fifth International Conference on Knowledge Discovery and Data Mining. The

raw training data contains about 4GB of compressed packet capture data from

seven weeks of network traffic. This data has been processed into approximately

4.9 million connection records, with a set of 41 features. These features describe

various aspects of a particular connection record, such as the service used,

protocol, source bytes, and destination bytes (Fiore, Palmieri, Castiglione, & De

Santis, 2013). Each sample is labeled as a normal or an abnormal connection. The

abnormal connections fall into four main categories with subcategories based on

the popular nomenclature of the specific attack at the time (e.g. Ping of Death)

(Tavallaee, Bagheri, Lu, & Ghorbani, 2009). Table 1 describes both the categories

and subcategories of malicious connections found in the KDD 1999 dataset.

4

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 2 []

https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2

The Random Forest and SVM classifiers were implemented using sci-kit learn

(Pedregosa et al., 2011). For both classifiers data was cross-validated using K-fold

cross validation (Refaeilzadeh, Tang, & Liu, 2009). Ten folds were used with the

test evaluation at the final fold. The DBN was implemented using Theano and

Blocks (Theano Development Team, 2016; van Merrënboer et al., 2015). The

Ladder Network was implemented using Theano, Blocks and Fuel. Theano is a

Python library used in creating and solving mathematical expressions; Blocks

allows neural networks to be built on top of Theano; and Fuel provides the

datasets to be used in machine learning methods. In order to use the KDD 1999

dataset, the Fuel package for the Ladder Network had to be modified to allow for

pre-processing.

Major Categories Sub-Categories

Denial of Service (DoS) Ping of Death, LAND, Neptune,

Backscatter, Smurf, Teardrop

User to Root (U2R) Buffer Overflow, Loadmodule, Perl,

Rootkit

Remote to Local (R2L) FTP write, password guessing, IMAP

attacks, Multi-hop, PHF, Spy,

Warezclient, Warezmaster

Probing Ipsweeping, Nmap, Portsweeping, Satan

Table 1. Categories of Malicious Behavior

3.1 Supervised Classification

A DBN, a Random Forest classifier, and a SVM classifier were used to analyze

the KDD dataset. For each classifier, four tests were run varying the number of

examples for each class. The tests were run requiring 10, 1000, 3000, and 5000

examples per class. They correspond to 16, 9, 6, and 6 classes respectively. These

classes include one normal class and the rest of the classes belong to

subcategories of attacks. Our experiments differ from Salama et al. (2011) in that

they used the four main categories for the abnormal classes. We decided to use

the subcategories in order to classify specific types of attacks. Two-thirds of the

data was randomly selected for training and the rest for testing. The classification

accuracy results are shown in Table 2. The time required for training and testing

combined is shown in Table 3.

5

Nadeem et al.: Semi-Supervised Deep Neural Network for Network Intrusion Detecti

Published by DigitalCommons@Kennesaw State University, 2016

Examples Accuracy %

per class # of classes SVM Random

Forest

DBN

10 16 42% 87% 90%

1000 9 76% 99% 95%

3000 6 98% 99% 98%

5000 6 97% 99% 98%

Table 2. Accuracy of SVM, Random Forest, and DBN classifiers on KDD 1999 data.

 Execution Time (sec.)

Examples per

class

SVM Random Forest DBN

10 .014 1.832 13.2

1000 8.488 5.745 205.2

3000 14.01 8.717 399.6

5000 30.784 14.47 639.0

Table 3. Time needed for runs of supervised classifiers (in seconds)

The Random Forest classifier achieves a high accuracy on the second to fourth

tests and does so in the shortest time. The DBN has fairly high accuracy for each

test, when it is run for 1000 epochs with two hidden layers of 150 nodes each.

However, compared with the other two methods, the DBN takes the longest time.

3.2 Semi-Supervised Classification

Two experiments were performed using Ladder Networks to classify the KDD

1999 dataset. In the first experiment, four tests varying the number of examples

required for each class, i.e. 10, 1000, 2000, and 5000 were run. The training data

set includes both labeled and unlabeled examples. The ratio of labeled data is

50%. The classification accuracy, training and testing time are given in Table 4.

6

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 2 []

https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2

Examples per

class

Accuracy Training Time Testing Time

10 N/A N/A N/A

1000 92.18% 12.4 0.3

3000 98.13% 21.5 0.3

5000 99.03% 21.8 0.4

Table 4. Accuracy, testing, and training time (minutes) required for Ladder Network

For the second experiment we used the dataset requiring 3000 examples in

each class and changed the number of labeled examples in different tests from 60,

600, 2400, 9600, and 12000. We keep the total number of data examples constant

at 18000, among which 12000 were used for training and the rest for testing. The

results are shown in Table 5.

labeled Percentage Accuracy Training Testing

60 0.5% 97.35 26.1 0.3

600 5.0% 99.06 26.6 0.3

2400 20.% 98.78 26.6 0.3

9600 80.0% 99.2 27.0 0.3

12000 100% 99.18 27.0 0.3

Table 5. Results of Ladder Network with 3000 samples per class and varying the number

of labeled samples use, Training and Testing times in minutes. Percentage is from

training set.

The accuracy of the Ladder Networks increases as more examples are given

per class. However, it achieves a fairly high accuracy (97.35%) even with just 60

(0.5%) labeled examples, or 10 labeled examples per class. This is encouraging

since it is good accuracy with few labeled examples, which is desirable for real

world use. When using just 10 examples per class, a different architecture of the

Ladder Network is required. Therefore, the test with 10 examples per class was

not run.

7

Nadeem et al.: Semi-Supervised Deep Neural Network for Network Intrusion Detecti

Published by DigitalCommons@Kennesaw State University, 2016

The iterative DBN and Ladder Network take the longest to achieve their

results. The Ladder Network was run for 50 epochs and it took 12.4 minutes for

1000 examples per class. The other Ladder Network tests took over 20 minutes.

Since retraining may take significant time, Ladder Networks may not be good for

real-time intrusion detection, but for forensic analysis, they may still be practical.

4. RELATED WORK

All of the supervised classifiers we have used have their own semi-supervised

versions. They have been used not for just intrusion detection, but also for image

classification. There is also another hybrid classifier with SVM and DBN (Salama

et al., 2011). In addition to different classifiers and different implementations of

those classifiers, there is also an alternative to the KDD 1999 dataset available:

the NSL-KDD dataset (Tavallaee et al., 2009).

 Haweliya & Nigam (2014) used a semi-supervised SVM to classify the NSL-

KDD dataset. Their semi-supervised method consisted of self-training where the

SVM is trained on labeled data and then is used to classify unlabeled data which

is then used to further train the classifier as new labeled data. They also used

multiple training methods to compare and achieved 91.9% accuracy at their

highest. The problem with self-training is that incorrect classifications can

reinforce themselves. Our semi-supervised Ladder Network method does not use

questionable labels to train so the problem of self-training is prevented.

Jadidi et al. (2013) use S4VM to classify network data. S4VM improves upon

S3VM (the semi-supervised version of SVM) by creating diverse separators with

large margins and low densities. They use 10\% labeled examples and achieve an

accuracy as high as 93.76% on one of their datasets.

Our method achieved accuracy as high as 99% with a smaller percentage of

labeled data. However, for direct comparison, we need to run the Ladder Network

on their packet based datasets with the same percentage of labeled examples.

Tian & Gao (2009) used a Genetic Algorithm to optimize a Neural Network

and help the neural network avoid finding local minimums and help converge

faster. They used a small training set (100 examples) and achieved a low error

rate. Their dataset was similar to the KDD 1999 dataset. This work is related to

ours as it also achieves a low error while using a Neural Network to classify

intrusions.

8

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 2 []

https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2

5. CONCLUSION

In this paper, Ladder Networks, a semi-supervised approach, was used in

analyzing network data. To establish benchmarks, we used well-known, existing

supervised learning methods for Network intrusion detection to classify the KDD

1999 dataset: the Deep Belief Network, Support Vector Machine and Random

Forest. Two experiments using the Ladder Network were conducted. In the first

experiment, where the number of classes and examples per class were changed,

the semi-supervised Ladder Network was able to perform well at network data

classification in comparison to the supervised classifiers. In the second

experiment, where the number of labeled examples was changed, the Ladder

Network was able to maintain results above 90% with varying ratios of labeled

and unlabeled examples. In the near future, we would like to use the Ladder

Network on the NSL-KDD dataset and other, newer datasets. Other future work

includes exploring what other feed-forward neural network architectures could be

integrated with the Ladder Network structure to improve classification

performance.

6. ACKNOWLEDGEMENT

We would like to thank Dr. Kaushik Roy, Dr. Albert Esterline, and Mr. William

Nick for their guidance and discussion.

This work is partially supported by the National Science Foundation under the

grant CNS-1460864. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

7. REFERENCES

Adankon, M. M. and Cheriet, M. (2010). Genetic algorithm-based training for semi-supervised

svm. Neural Computing & Applications, 19(8):1197--1206.

Alom, M. Z., Bontupalli, V., and Taha, T. M. Intrusion detection using deep belief networks. In

2015 National Aerospace and Electronics Conference (NAECON), pages 339--344.

Ashfaq, R. A. R., Wang, X.-Z., Huang, J. Z., Abbas, H., and He, Y.-L. (In Press). Fuzziness based

semi-supervised learning approach for intrusion detection system. Information Sciences.

Back, T., Hammel, U., and Schwefel, H. P. (1997). Evolutionary computation: comments on the

history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3--17.

9

Nadeem et al.: Semi-Supervised Deep Neural Network for Network Intrusion Detecti

Published by DigitalCommons@Kennesaw State University, 2016

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and

Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5--32.

Fiore, U., Palmieri, F., Castiglione, A., and De Santis, A. (2013). Network anomaly detection with

the restricted boltzmann machine. Neurocomputing, 122:13--23.

Hasan, M. A. M., Nasser, M., Pal, B., and Ahmad, S. (2014). Support vector machine and random

forest modeling for intrusion detection system (ids). Journal of Intelligent Learning

Systems and Applications, 6(1):45.

Haweliya, J. and Nigam, B. (2014a). Article: Network intrusion detection using semi supervised

support vector machine. International Journal of Computer Applications, 85(9):27--31.

Full text available.

Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks, 1989.

IJCNN., International Joint Conference on, pages 593--605 vol.1.

Hinton, G. (2009). Deep belief networks. Scholarpedia, 4:5947.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets.

Neural Computation, 18(7):1527--1554.

Hinton, G. E. (2007). Boltzmann machine. 2(5):1668. revision #91075.

Holland, J. (2012). Genetic algorithms. Scholarpedia, 7:1482.

Holtsnider, B. and Jaffe, B. D. (2010). 7.3.3.2 Intrusion Detection and Prevention. Elsevier.

Jadidi, Z., Muthukkumarasamy, V., Sithirasenan, E., and Sheikhan, M. (2013). Flow-based

anomaly detection using neural network optimized with gsa algorithm. In 2013 IEEE

33rd International Conference on Distributed Computing Systems Workshops, pages 76--

81.

Lin, L.-z., Liu, Z.-g., and Duan, X.-h. Network intrusion detection by a hybrid method of rough set

and rbf neural network. In 2010 2nd International Conference on Education Technology

and Computer, volume 3, pages V3--317--V3--320.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825--2830.

Ponemon Institute (2015). 2015 cost of cybercrime report: United states. Hewlett Packard

Enterprise.

Rasmus, A., Valpola, H., Honkala, M., Berglund, M., Raiko, T., and th Annual Conference on

Neural Information Processing Systems, N. t. A. C. o. N. I. P. S. N. (2015). Semi-

supervised learning with Ladder Networks. Advances in Neural Information Processing

Systems, 2015-January:3546--3554.

Refaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-Validation, pages 532--538. Springer US,

Boston, MA.

Salama, M. A., Eid, H. F., Ramadan, R. A., Darwish, A., and Hassanien, A. E. (2011). Hybrid

Intelligent Intrusion Detection Scheme, pages 293--303. Springer Berlin Heidelberg,

Berlin, Heidelberg.

10

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 2 []

https://digitalcommons.kennesaw.edu/ccerp/2016/Practice/2

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61:85-

-117.

Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. A detailed analysis of the kdd cup 99 data

set. In 2009 IEEE Symposium on Computational Intelligence for Security and Defense

Applications, pages 1--6.

Tian, J. and Gao, M. Network intrusion detection method based on high speed and precise genetic

algorithm neural network. In Networks Security, Wireless Communications and Trusted

Computing, 2009. NSWCTC '09. International Conference on, volume 2, pages 619--

622.

Theano Development Team (2016). Theano: A Python framework for fast computation of

mathematical expressions. arXiv e-prints, abs/1605.02688.

Tesfahun, A. and Bhaskari, D. L. (2013). Intrusion detection using random forests classifier with

smote and feature reduction. In Cloud Ubiquitous Computing Emerging Technologies

(CUBE), 2013 International Conference on, pages 127--132.

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., and Lin, W.-Y. (2009). Intrusion detection by machine

learning: A review. Expert Systems With Applications, 36(10):11994--12000.

van Merriënboer, B., Bahdanau, D., Dumoulin, V., Serdyuk, D., Warde-Farley, D., Chorowski, J.,

and Bengio, Y. (2015). Blocks and fuel: Frameworks for deep learning. CoRR,

abs/1506.00619.

Zien, A., SchoÌˆlkopf, B., and Chapelle, O. (2006). Semi-supervised Learning. Adaptive

Computation and Machine Learning. The MIT Press, Cambridge, Mass.

(1999). Kdd cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

11

Nadeem et al.: Semi-Supervised Deep Neural Network for Network Intrusion Detecti

Published by DigitalCommons@Kennesaw State University, 2016

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	

	Semi-Supervised Deep Neural Network for Network Intrusion Detection
	Mutahir Nadeem
	Ochaun Marshall
	Sarbjit Singh
	Xing Fang
	Xiaohong Yuan
	Abstract
	Disciplines

	tmp.1495142329.pdf.930B5

