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Abstract
Network security is of vital importance for corporations and institutions. In order to protect valuable
computer systems, network data needs to be analyzed so that possible network intrusions can be detected.
Supervised machine learning methods achieve high accuracy at classifying network data as normal or
malicious, but they require the availability of fully labeled data. The recently developed ladder network, which
combines neural networks with unsupervised learning, shows promise in achieving a high accuracy while only
requiring a small number of labeled examples. We applied the ladder network to classifying network data
using the Third International Knowledge Discovery and Data Mining Tools Competition dataset (KDD
1999). Our experiments, show the ladder network was able to achieve similar results compared to supervised
classifiers while using a limited number of labeled samples.
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1. INTRODUCTION 

Network security is essential to corporations as intrusions can result in massive 

monetary losses. According to a report by the Ponemon Institute, which sampled 

252 companies in 7 countries, the U.S. continues to rank highest in its cost of 

cybercrime at an annual average of $15.4 million per company (Ponemon 

Institute, 2015). Current Intrusion Detection Systems (IDS) are either signature 

based or anomaly based. Signature based detection methods require the attack to 

be documented beforehand, thus new types of attacks that are not yet documented 

cannot be detected. Anomaly based detection methods focus on finding unknown 

or unusual activity patterns in the observed data (Holtsnider & Jaffe, 2010). They 

allow new attacks to be discovered, however a domain expert is required to 

analyze the anomalies. 

Network data has been classified by a host of machine learning techniques. 

Among the literature we reviewed included the work of Jadidi et al (2013), who 

used Support Vector Machines (SVM) and flow based data sets to classify 

network data as benign or malicious. Salama et al. (2011) have used a hybrid 

intrusion detection scheme utilizing both Support Vector Machines and Deep 

Belief Networks. Hasan and his colleagues have developed two IDS models: one 

that uses SVMs and the other that uses the Random Forest Classifier (Hasan, 

Nasser, Pal, & Ahmad, 2014). Haweliya and Nigam used a semi-supervised 

Support Vector Machine (SVM) to classify an optimized version of the KDD 

1999 dataset (Haweliya & Nigam, 2014). 

Though supervised learning methods achieve high accuracy, they require fully 

labeled data. Acquiring fully labeled data is a nontrivial task as labeling data 

requires time and a human expert. Thus, learning from unlabeled data is more 

desirable. Semi-supervised learning is learning with a small amount of labeled 

data and a large amount of unlabeled data (Zien, Scholkopf, & Chapelle, 2006). 

Recently, Rasmus et al. (2015) had shown that Ladder Networks, a semi-

supervised neural network scheme, are able to achieve a high classification rate 

while using only a few labeled samples on the Mixed National Institute of 

Standards and Technology (MNIST) dataset. In this paper, we use the Ladder 

Networks to classify the Third International Knowledge Discovery and Data 

Mining Tools Competition dataset (KDD 1999). Three well studied, supervised 

classifiers, a Deep Belief Network (DBN), a Support Vector Machine (SVM), and 

a Random Forest were used to classify KDD 1999. These supervised results serve 

as a baseline to compare with the Ladder Networks results. 
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The rest of this paper is organized as follows. Section 2 provides a background 

on the classifiers: Support Vector Machine, Random Forest, Deep Belief Network 

and Ladder Network. Section 3 describes our experiments and the results. Related 

Work is discussed in Section 4 and Section 5 concludes the paper. 

2. BACKGROUND 

2.1 Support Vector Machine 

Support Vector machines are supervised learning models for classifying data. The 

goal of a SVM is to find the optimum margin that maximizes the distance 

between two target classes (Bishop, 2006; Schmidhuber, 2015; Hasan et al., 

2014). Essentially, a SVM tries to minimize the error of the distance between 

each point in each class and a dividing line. This is done by finding the shortest 

distance between two points in both classes. The line orthogonal to the shortest 

distance line is the dividing line. 

2.2 Random Forest 

Random forests are an ensemble of classification or regression trees. The random 

forest classifier works by partitioning the training set of the data into k subsets and 

constructing a decision tree out of each subset. All of the subsets are created by 

randomly selecting samples from the original set. Each decision tree is 

independent of all other decision trees.  

Each decision tree is made by randomly selecting m variables (features) out of 

all the variables and finding the best split on the selected variables. The best split 

is determined by the entropy or unpredictability of the variables. This is done at 

each node and continued until a node cannot be split further, leading to the leaf 

nodes. The testing data is then run through each tree and each tree provides a 

classification. The classifications of all the trees are then taken into account and 

the final classification of the forest is determined by the majority of the decision 

trees (Breiman, 2001). 
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2.3 Deep Belief Neural Network 

Artificial Neural Networks (ANN) aim to imitate the biological process of a path 

of neurons being strengthened in the brain when a skill is learned. An ANN is 

composed of an input layer which represents the features of the data. The input 

layer is connected to one or more hidden layers where matrices of weighted 

connections are used to map the input to the output layer, which consists of the 

classes of the data. Essentially, a Neural Network learns by updating the matrices 

of weights until it is able to achieve a high accuracy in mapping the input layer to 

the output layer. A Deep Belief Neural Network (DBN) is a Neural Network with 

multiple hidden layers. It can be viewed as a stack of restricted Boltzmann 

machine (Hinton, 2009). Boltzmann machines are networks of neuron units that 

are symmetrically connected. These neuron units make stochastic decisions 

whether to be on or off (Hinton, 2007). A Boltzmann machine is restricted in that 

there are no connections between neural units of the same layer (Hinton, 

Osindero, & Teh, 2006).  

The DBN learns iteratively by updating the weights through the backward 

propagation algorithm. It works by calculating the net input for each neuron, 

which is the sum of (inputs * weights) for each connection leading into that 

neuron (Hecht-Nielsen, 1989). After that, the current output for each neuron is 

calculated using a logistic function. Then the error is calculated for all neurons. 

Finally, the error is fed back through the layers and the weights are updated to get 

a better accuracy.  

Figure 1. Ladder Network Architecture 
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2.4 Ladder Networks 

Ladder Networks can be seen as nested denoising Auto-Encoders (dAE) that 

share lateral connections between the encoder and decoder at each layer. An auto-

encoder tries to learn a classifying function by mapping an input x to an output y. 

This is prone to over-fitting, which is the classifier having learned the training 

examples well, but cannot generalize to new data. To avoid over-fitting, noise is 

introduced, specifically a corrupted version of x is created and the auto-encoder 

tries to map it to the same y. With Ladder Networks, this happens at each layer, 

latent variables (variables inferred from observed variables) are used in layers 

beyond the input layer. Learning is based on minimizing the cost || (ẑ - z) ||2 where 

z is the original latent variable and ẑ is the reconstruction of the corrupted version 

of it. Each layer adds to a cost function for decoder d, Cd
 (l) =  ||z(l) - ẑ(l) ||2 which 

trains the layers to learn the denoising function ẑ(l)  = g(l) (z̃
(l),ẑ(l+1)) which maps 

the corrupted z̃(l)  onto the estimate without noise, ẑ(l). One of the parts 

differentiating Ladder Networks from dAEs are skip connections between the 

encoder and decoder at each layer that allow some of the details to be represented 

by the lower layers and the higher ones. An illustration of the architecture of a 3 

layer Ladder Network is shown in Figure 1. 

In Figure 1, L =3. x → z(l) →z(2) →z(3) → y is the clean feedforward path, x → 

z̃{(l)} → z̃
(2)  → z̃

(3)  → ỹ is the corrupted feedforward path, and ẑ(3) → ẑ(2)  → ẑ(1)   

→ x̂ is the decoder. The decoder has denoising functions, g{(i)}  , and cost 

functions, Cd
(l), that try to minimize the difference between ẑ(l) and z(l) . See 

Rasmus et al., (2015) for more information on Ladder Networks. 

3. EXPERIMENTS & RESULTS 

We analyzed the dataset used in the Third International Knowledge Discovery 

and Data Mining Tools Competition (KDD 1999), held in conjunction with the 

Fifth International Conference on Knowledge Discovery and Data Mining. The 

raw training data contains about 4GB of compressed packet capture data from 

seven weeks of network traffic. This data has been processed into approximately 

4.9 million connection records, with a set of 41 features. These features describe 

various aspects of a particular connection record, such as the service used, 

protocol, source bytes, and destination bytes (Fiore, Palmieri, Castiglione, & De 

Santis, 2013). Each sample is labeled as a normal or an abnormal connection. The 

abnormal connections fall into four main categories with subcategories based on 

the popular nomenclature of the specific attack at the time (e.g. Ping of Death) 

(Tavallaee, Bagheri, Lu, & Ghorbani, 2009). Table 1 describes both the categories 

and subcategories of malicious connections found in the KDD 1999 dataset.  
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The Random Forest and SVM classifiers were implemented using sci-kit learn 

(Pedregosa et al., 2011). For both classifiers data was cross-validated using K-fold 

cross validation (Refaeilzadeh, Tang, & Liu, 2009). Ten folds were used with the 

test evaluation at the final fold. The DBN was implemented using Theano and 

Blocks (Theano Development Team, 2016; van Merrënboer et al., 2015). The 

Ladder Network was implemented using Theano, Blocks and Fuel. Theano is a 

Python library used in creating and solving mathematical expressions; Blocks 

allows neural networks to be built on top of Theano; and Fuel provides the 

datasets to be used in machine learning methods. In order to use the KDD 1999 

dataset, the Fuel package for the Ladder Network had to be modified to allow for 

pre-processing. 

 

Major Categories Sub-Categories 

Denial of Service (DoS) Ping of Death, LAND, Neptune, 

Backscatter, Smurf, Teardrop 

User to Root (U2R) Buffer Overflow, Loadmodule, Perl, 

Rootkit 

Remote to Local (R2L) FTP write, password guessing, IMAP 

attacks, Multi-hop, PHF, Spy, 

Warezclient, Warezmaster 

Probing Ipsweeping, Nmap, Portsweeping, Satan 

Table 1. Categories of Malicious Behavior 

 

3.1 Supervised Classification 

A DBN, a Random Forest classifier, and a SVM classifier were used to analyze 

the KDD dataset. For each classifier, four tests were run varying the number of 

examples for each class. The tests were run requiring 10, 1000, 3000, and 5000 

examples per class. They correspond to 16, 9, 6, and 6 classes respectively. These 

classes include one normal class and the rest of the classes belong to 

subcategories of attacks. Our experiments differ from Salama et al. (2011) in that 

they used the four main categories for the abnormal classes. We decided to use 

the subcategories in order to classify specific types of attacks.  Two-thirds of the 

data was randomly selected for training and the rest for testing. The classification 

accuracy results are shown in Table 2. The time required for training and testing 

combined is shown in Table 3. 
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Examples Accuracy % 

# per class # of classes SVM Random 

Forest 

DBN 

10 16 42% 87% 90% 

1000 9 76% 99% 95% 

3000 6 98% 99% 98% 

5000 6 97% 99% 98% 

Table 2. Accuracy of SVM, Random Forest, and DBN classifiers on KDD 1999 data. 

 

 Execution Time (sec.) 

Examples per 

class 

SVM Random Forest DBN 

10 .014 1.832 13.2 

1000 8.488 5.745 205.2 

3000 14.01 8.717 399.6 

5000 30.784 14.47 639.0 

Table 3. Time needed for runs of supervised classifiers (in seconds) 

 

The Random Forest classifier achieves a high accuracy on the second to fourth 

tests and does so in the shortest time. The DBN has fairly high accuracy for each 

test, when it is run for 1000 epochs with two hidden layers of 150 nodes each. 

However, compared with the other two methods, the DBN takes the longest time. 

 

3.2 Semi-Supervised Classification 

Two experiments were performed using Ladder Networks to classify the KDD 

1999 dataset. In the first experiment, four tests varying the number of examples 

required for each class, i.e. 10, 1000, 2000, and 5000 were run. The training data 

set includes both labeled and unlabeled examples. The ratio of labeled data is 

50%. The classification accuracy, training and testing time are given in Table 4. 
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Examples per 

class 

Accuracy Training Time Testing Time 

10 N/A N/A N/A 

1000 92.18% 12.4 0.3 

3000 98.13% 21.5 0.3 

5000 99.03% 21.8 0.4 

Table 4. Accuracy, testing, and training time (minutes) required for Ladder Network 

 

For the second experiment we used the dataset requiring 3000 examples in 

each class and changed the number of labeled examples in different tests from 60, 

600, 2400, 9600, and 12000. We keep the total number of data examples constant 

at 18000, among which 12000 were used for training and the rest for testing. The 

results are shown in Table 5. 

 

# labeled Percentage Accuracy Training Testing 

60 0.5% 97.35 26.1 0.3 

600 5.0% 99.06 26.6 0.3 

2400 20.% 98.78 26.6 0.3 

9600 80.0% 99.2 27.0 0.3 

12000 100% 99.18 27.0 0.3 

Table 5. Results of Ladder Network with 3000 samples per class and varying the number 

of labeled samples use, Training and Testing times in minutes. Percentage is from 

training set. 

 

The accuracy of the Ladder Networks increases as more examples are given 

per class. However, it achieves a fairly high accuracy (97.35%) even with just 60 

(0.5%) labeled examples, or 10 labeled examples per class. This is encouraging 

since it is good accuracy with few labeled examples, which is desirable for real 

world use. When using just 10 examples per class, a different architecture of the 

Ladder Network is required. Therefore, the test with 10 examples per class was 

not run. 
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The iterative DBN and Ladder Network take the longest to achieve their 

results. The Ladder Network was run for 50 epochs and it took 12.4 minutes for 

1000 examples per class. The other Ladder Network tests took over 20 minutes. 

Since retraining may take significant time, Ladder Networks may not be good for 

real-time intrusion detection, but for forensic analysis, they may still be practical. 

4. RELATED WORK 

All of the supervised classifiers we have used have their own semi-supervised 

versions. They have been used not for just intrusion detection, but also for image 

classification. There is also another hybrid classifier with SVM and DBN (Salama 

et al., 2011). In addition to different classifiers and different implementations of 

those classifiers, there is also an alternative to the KDD 1999 dataset available: 

the NSL-KDD dataset (Tavallaee et al., 2009).  

    Haweliya & Nigam (2014) used a semi-supervised SVM to classify the NSL-

KDD dataset. Their semi-supervised method consisted of self-training where the 

SVM is trained on labeled data and then is used to classify unlabeled data which 

is then used to further train the classifier as new labeled data. They also used 

multiple training methods to compare and achieved 91.9% accuracy at their 

highest. The problem with self-training is that incorrect classifications can 

reinforce themselves. Our semi-supervised Ladder Network method does not use 

questionable labels to train so the problem of self-training is prevented.  

Jadidi et al. (2013) use S4VM to classify network data. S4VM improves upon 

S3VM (the semi-supervised version of SVM) by creating diverse separators with 

large margins and low densities. They use 10\% labeled examples and achieve an 

accuracy as high as 93.76% on one of their datasets. 

Our method achieved accuracy as high as 99% with a smaller percentage of 

labeled data. However, for direct comparison, we need to run the Ladder Network 

on their packet based datasets with the same percentage of labeled examples. 

Tian & Gao (2009) used a Genetic Algorithm to optimize a Neural Network 

and help the neural network avoid finding local minimums and help converge 

faster. They used a small training set (100 examples) and achieved a low error 

rate. Their dataset was similar to the KDD 1999 dataset. This work is related to 

ours as it also achieves a low error while using a Neural Network to classify 

intrusions. 
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5. CONCLUSION 

In this paper, Ladder Networks, a semi-supervised approach, was used in 

analyzing network data. To establish benchmarks, we used well-known, existing 

supervised learning methods for Network intrusion detection to classify the KDD 

1999 dataset: the Deep Belief Network, Support Vector Machine and Random 

Forest. Two experiments using the Ladder Network were conducted. In the first 

experiment, where the number of classes and examples per class were changed, 

the semi-supervised Ladder Network was able to perform well at network data 

classification in comparison to the supervised classifiers. In the second 

experiment, where the number of labeled examples was changed, the Ladder 

Network was able to maintain results above 90% with varying ratios of labeled 

and unlabeled examples. In the near future, we would like to use the Ladder 

Network on the NSL-KDD dataset and other, newer datasets. Other future work 

includes exploring what other feed-forward neural network architectures could be 

integrated with the Ladder Network structure to improve classification 

performance. 
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