
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Spring 4-20-2017

On Intelligent Mitigation of Process Starvation In
Multilevel Feedback Queue Scheduling
Joseph E. Brown
Kennesaw State University

Follow this and additional works at: http://digitalcommons.kennesaw.edu/cs_etd

Part of the Computational Engineering Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Brown, Joseph E., "On Intelligent Mitigation of Process Starvation In Multilevel Feedback Queue Scheduling" (2017). Master of
Science in Computer Science Theses. 8.
http://digitalcommons.kennesaw.edu/cs_etd/8

http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd/8?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

On Intelligent Mitigation of Process Starvation In Multilevel Feedback

Queue Scheduling

Master of Science in Computer Science

Thesis

By

Joseph E Brown

MSCS Student

Department of Computer Science

College of Computing and Software Engineering

Kennesaw State University, USA

Submitted in partial fulfillment of the

Requirements for the degree of

Master of Science in Computer Science

November 2016

On Intelligent Mitigation of Process Starvation In Multilevel Feedback Queue Scheduling

This thesis approved for recommendation to the Graduate Council.

2

Kennesaw State University
College of Computing and Software Engineering

Thesis Title: On Intelligent Mitigation of Process Starvation In Multilevel Feedback Queue Schedul-

ing .

Author: Joseph E Brown.

Department: Computer Science.

Approved for Thesis Requirements of the Master of Science Degree

Thesis Advisor: Ken Hoganson Date

Thesis Reader: Dr. Jose Garrido Date

Thesis Reader: Dr. Selena He Date

Thesis Reader: Dr. Edward Jung Date

Department Chair: Dr. Dan Lo Date

Director of the Graduate School:

Dean: Dr. John Preston Date

Dedication

To Willy Gommel.

ii

Acknowledgments

People I intend to acknowledge: Xie, Hoganson, Bryant, Gayler,the College,. . .

iii

List of Tables

1.1 Simulated Processes CPU burst requirement distributions. 10
1.2 CPU quanta by queue. 10

2.1 Simulated Process CPU burst requirements. 13

iv

List of Figures

1.1 An MLFQ Implementation . 3
1.2 Simulated MLFQ Without IO . 10
1.3 Bursts in Q5, MLFQ and MLFQ-NS side-by-side 12
1.4 Q1 mean and max wait-times, MLFQ and MLFQ-NS side-by-side. 12

2.1 Bursts in Q5, MLFQ and MLFQ-NS, using PSimJEB 14
2.2 Q1 wait-times, MLFQ and MLFQ-NS, using PSimJEB 14

3.1 Bursts in Q5 :reallocation constant, weights varied. 16
3.2 Mean Reallocated Returned Times . 17
3.3 Bursts in Q5 :reallocation varied, weights constant. 18

4.1 MLFQ-IM bursts in Q5 . 20
4.2 MLFQ-IM bursts in Q4 . 20
4.3 MLFQ-IM bursts in Q4 . 21
4.4 Processes remaining in Q1 . 21
4.5 Processes remaining in Q2 . 21
4.6 Processes remaining in Q3 . 22
4.7 Processes remaining in Q4 . 22
4.8 Processes remaining in Q5 . 22

v

Abstract

CPU time-share process schedulers for computer operating systems have existed since

Corbato published his paper on the Compatible Time Sharing System in 1962 [8]. With this new

type of scheduler came the need to effectively divide CPU time between N processes, where N

could be 2 or more processes. Modern time-sharing process schedulers which have been developed

in the decades since have been designed to favor shorter, interactive processes over long-running

processes, especially when incoming demand for CPU time exceeds supply and process starvation

is inevitable. These schedulers, including Linux CFS, FreeBSD Ule, and the Solaris Fair Share

Scheduler, are all effective at favoring interactive processes under starvation conditions.

Sometimes it’s not desirable that long-running processes be sacrificed altogether, but none

of these schedulers have safeguards under starvation conditions. This thesis revisits and extends the

research conducted in [13], in which it was demonstrated that starvation of long-running processes

could be safely and effectively mitigated without adversely affecting the performance of shorter,

interactive processes.

The questions this thesis will answer are:

1. Can MLFQ-NS, proposed in [13], be compared to other modern process schedulers?

2. Can MLFQ-NS be improved?

To answer the first question, a scheduler must be found which is similar enough to MFLQ for a

direct comparison. This will require a survey of current schedulers. To answer the second question,

the research conducted in [13] must be duplicated MLFQ-NS to ascertain the following:

1. How much diverted time is actually used?

2. Why does MLFQ-NS become ineffective past a certain system-load threshold, i.e. stop real-

locating time to long-runnning processes?

vi

In this research, the original work was duplicated in simulations to validate previous re-

sults, and determine why MLFQ-NS became ineffective after incoming CPU time demand exceeds

a threshold. Research was conducted in order to determine if starvation mitigation in MLFQ-NS

could be compared to other process schedulers used in production, with the conclusion that recent

emphasis on priority scheduling and heurstic interactivity determination makes such a comparison

impossible. Research then continued with simulations in which MLFQ-NS was given different run-

time arguments than original simulations. Investigations into those results led to an algorithmic

modification to MLFQ-NS called MLFQ-IM and analysis of simulations of MLFQ-IM. Conclu-

sions about the effectiveness of MLFQ-IM will be explored. Finally, ideas for future research are

offered.

vii

Contents

Acknowledgments iii

List of Tables iv

List of Figures v

Abstract vi

List of Acronyms x

1 Previously Published MLFQ Redirection Results 2
1.1 MLFQ . 2

1.1.1 Starvation in MLFQ . 4
1.1.2 Requirements for Starvation Mitigation in MLFQ 4

1.2 Literature Search . 4
1.2.1 Scheduler Review . 5

1.3 MLFQ-NS . 8
1.3.1 Reallocating Time . 8
1.3.2 Original Simulations . 9
1.3.3 Original Results . 11
1.3.4 Starvation Detection . 11

2 Simulation Validation and Comparisons 13
2.1 Validation Methodology . 13
2.2 Simulation Results . 14

3 Simulation Results 16
3.1 Varying Weight-factor α . 16
3.2 Varying Reallocation Percentage . 16

3.2.1 The Reallocation Anomaly . 17

4 Intelligent Mitigation 19
4.1 Burst Performance . 20
4.2 Q1 wait-times . 21

viii

4.3 Considering The Side Effects of MLFQ-IM . 21

5 Conclusion 23

6 Future Work 24
6.1 Additional Comments Regarding MLFQ-NS . 24

6.1.1 Q1 Wait-Time Heuristic . 24
6.1.2 Q1 CPU Usage Tracking . 25

References 26

ix

List of Acronyms

CFS Complete Fair Scheduler. The default Linux kernel process scheduler, as of Linux kernel
version 2.6.27.

CTSS Compatible Time Sharing System. One of the original CPU time-share schedulers.

FCFS First Come First Serve. Is a service policy which dictates that clients are served in order in
which they arrived.

FIFO First In First Out. Is a data buffer insertion and removal policy that dictates data are removed
in the order in which they were inserted in a data structure.

MLFQ Multilevel Feedback Queue. Process scheduler and ready queue consisting of multiple pri-
oritized internal PCB queues. MLFQ is implemented in various computer operating systems.

MLFQ-IM MLFQ-Intelligent Mitigation. An extension of MLFQ-NS.

MLFQ-NS MLFQ-No Starvation. An extension of MLFQ which mitigates starvation of long-
running, low-priority processes during periods of incoming high CPU demand.

PCB Process Control Block. Ready queues store PCBs, which represent processes to an operating
system. PCB contain process state information.

ULE FreeBSD SCHED_ULE Scheduler. The default FreeBSD kernel process scheduler, as of
FreeBSD 5.2.

x

Introduction

Since the introduction of CPU time-share process schedulers in 1962 for the IBM 7090 com-

puter system [8], there has been a long evolution of CPU time-sharing schedulers for computer

operating systems. This has culminated in the development of several modern schedulers, including

FreeBSD ULE [16], Linux CFS [14], and the Solaris Fair Share scheduler [17] [1] which is based

on the Multilevel Feedback Queue (MLFQ) scheduler [21].

With the advent of CPU time-sharing came the need to effectively divide and allocate CPU

time between a potentially large number of processes. As one process receives time to execute

on a CPU core, other processes wait for their turn in a ready-queue [11]. So that processes may

complete in a reasonable amount of time, incoming CPU time demand must not exceed compute

system capacity. If there are K units of CPU time available in some time period T , then incoming

demand CPU time demand D must not exceed K during T , i.e., D ≤ K. This assures that all

processes will be allowed to execute and complete within a reasonable amount of time.

When incoming compute demand does exceed capacity, the compute system is considered to

be overloaded. If overload occurs, starvation of some processes is possible, such that they may not

complete within a reasonable time. Because of this, starvation should be addressed.

All of the schedulers mentioned have mechanisms which favor shorter, interactive processes

in case overload occurs. ULE and CFS heuristically identify and schedule interactive processes

ahead of lower priority processes, and dynamically adjust CPU burst times when incoming demand

exceeds a threshhold. MLFQ naturally favors shorter, interactive processes by internal ordering.

However, they don’t address starvation of lower priority, long-running processes during overload.

Whereas starvation mitigation under prolonged overload is impossible, it’s been shown that it can

be mitigated in MLFQ for limited duration overload [13].

1

Chapter 1

Previously Published MLFQ Redirection

Results

This chapter briefly reviews MLFQ, including its history and evolution. It discusses previous

research and simulations conducted with MLFQ. It discusses process starvation, and how it may be

identified. Finally it’ll review recent research on starvation mitigation.

1.1 MLFQ

Multilevel Feedback Queue scheduling is an evolution of the Compatible Time-Share System,

which was first described in [8] as a multiuser CPU timeshare scheduling system, utilizing a mul-

tilevel process queue. CTSS was designed to coordinate multiple users running one process each,

and was one of the first CPU timeshare scheduler implemented. It was designed to favor shorter,

interactive processes over longer, lower-priority processes, and to gradually degrade latency in case

of high CPU demand while still favoring interactive processes. MLFQ is an enhancement to CTSS

which changed where processes are placed in the multilevel queue when they first arrive, and the

number of users is largely irrelevant.

As suggested by the name, an MLFQ scheduler consists of a set of two or more FIFO process

queues, and a scheduling policy. Associated with each level in the MLFQ is a maximum time

quantum that each process is limited to running within before it must release the CPU. Queues store

Process Control Blocks (PCB), each of which represents a process to the operating system, keeping

state data about the associated process and maintaining references to memory locations. From this

2

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

point on, descriptions of processes in the context of entering and leaving queues are with respect to

their associated PCB.

Process Pi

Queue 1:FIFO

Queue 2:FIFO

IntQueues
...FIFO

QN :Round Robin

CPU Complete

IO

Figure 1.1: An MLFQ Implementation

The set of process queues may be visualized in

a vertical arrangement, as shown in Figure 1.1. The

queue on top is called Q1 , and the bottom queue

is called QN . All incoming processes are first en-

queued into Q1 while they wait for their turn to

consume CPU time in FCFS order. The process is

dequeued when its turn comes, and executes for a

time no greater than the quantum associated with

its queue. If the process has not completed, it’s re-

enqueued into the next lower queue to wait for the

next CPU time quantum to be granted. Otherwise

it may release the CPU prior to quantum expiration

because it requires IO service. In this case, it enters

a wait-queue for IO, and will return to Q1 once that service is finished. Once the process reaches

QN it’s re-enqueued into QN as many times as necessary, with the exception that IO is requested.

This sequence of enqueue, dequeue, execute, re-enqueue or request IO continues until the process

has finished.

The MLFQ scheduling policy is straightforward. To dequeue the next available process, the

set of queues is checked in a top-down strategy, starting at Q1 . If there are no waiting processes in

Q1 , then Q2 is checked. If there are no waiting processes in Q2 , then the next queue is checked.

To summarize, a process waiting in Qj≥2 cannot be selected unless Q{1...i} are all empty.

MLFQ doesn’t differentiate between different types of processes, and processes aren’t inher-

ently prioritized; they naturally find their way to the queue appropriate for their behavior [23].

MLFQ is a nonclairvoyant scheduler, as scheduler decisions are made independent of the character-

istics of the schedulable candidates [20]. MFLQ can be modeled as an advanced case of a Tandem

Queue with Sequential Service Switching independent interarrival and service times, and a single

server (CPU) [15].

3

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

1.1.1 Starvation in MLFQ

Under heavy load, while the MLFQ still prioritizes CPU bursts of short duration in Q1 , the

MLFQ can disfavor processes that are enqueued in the lowest priority queue. Under extreme cir-

cumstances of very heavy processing load, CPU-intensive processes can be temporarily starved,

for a short or potentially long-term period, since the scheduler always selects processes from the

higher priority queues. These processes may be unable to complete within a reasonable amount of

time. Ideally, while favoring shortest CPU burst processes first, an operating system process sched-

uler must ensure that all processes may make progress. Mathematically, this can be described as

follows, where

λ ∗ Tburst > TPeriod (1.1)

Incoming load may exceed compute capacity for brief, significant, or extended periods of time.

This research is concerned with the second case, when the system could self-correct but starvation

of low-priority processes would be undesirable for the period of time required.

In a system with infinite computing capacity, i.e., possessing unlimited CPU cores, each queue

would have at most one waiting process at any moment in time. Since processing capacity is never

infinite, starvation can be identified by a build-up of processes in one or more queues, and a decline

of CPU quanta given to processes in those queues. Usually starvation will occur in QN , because all

other queues must be empty before processes in QN may receive CPU time.

1.1.2 Requirements for Starvation Mitigation in MLFQ

Starvation is most likely to occur in low-priority queues, or QN , which are serviced the least

frequently. To mitigate starvation in QN , time must be redirected from other queues, without

compromising performance in Q1 and thrashing from excessive context switching.

Q1 performance is observed via mean process wait-time, which is the intervening period of

time between enqueuement in Q1 and the first CPU burst given to the process. Mean wait-times

mustn’t increase significantly, or mitigation comes at the price of interactivity and high priority

processes.

1.2 Literature Search

Significant research has been conducted to minimize Q1 latency and maximize overall through-

put in MLFQ. Duda experimented with allowing known-interactive threads to borrow against future

4

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

CPU allocation time to be scheduled sooner than they otherwise would be [9] 1. Behera proposed

dynamic CPU allocation per process according to system load [5], and similarly Parvar proposed

IMLFQ, which changes the number of queues and associated quanta in MLFQ as system load

varies [10]. Thombare proposed replacing FCFS algorithm in Q2, . . . , QN−1 with SJF to increase

throughput of the processes with the shortest runtime [22] 1.

Less research has been conducted to address process starvation in QN under high system load.

Bhunia proposed a variation to re-enqueue processes from QN in higher priority queues according

to the amount of CPU time still required by those processes [6] 1. Raheja, Dadhich and Rajpal

claimed to have resolved the issue of starvation in QN altogether with VMLFQ, similar to IMLFQ,

using vague set theory to calculate the optimum number of queues and CPU burst quanta sizes

[19] 1 2. Hoganson proposed reallocation of time from Q2, . . . , QN−1 to address starvation in QN

through the use of a moving average [13]. Of these two proposed variations, only the one proposed

in [13] is directly implementable in real-world systems. The proposed variation in [6] requires a

clairvoyant scheduler, which doesn’t exist outside of simulation systems.

1.2.1 Scheduler Review

Part of the purpose of this research is to compare MLFQ-NS with other schedulers, with respect

to starvation mitigation. In order to compare the performance of schedulers, they must be similar

enough. In this case, we’re measuring bursts given to processes in Q5. The sections that follow

describe various schedulers, and vet them for comparison.

1.2.1.1 Solaris Heuristic MLFQ Scheduler

Sun Solaris used MLFQ scheduling since version 2.5 [17] [2] 3. MLFQ is used for its Time

Share class of processes, and it uses 60 queues (0-59). It mitigates starvation in lower queues by

using a timer to boost the priorities of processes in queues 1-59 approximately once per second 4.

A process in Q59 would be moved to Q58, where theoretically it has a better chance of receiving a

CPU quantum. CPU usage history is tracked per process in 1 second intervals, without past intervals

contributing to present data [1].
1 A priori knowledge of process requirements and characteristics is required, which isn’t available in real-world

systems [12] [4].
2Starvation is mathematically impossible to eliminate where Equation 1.1 is true.
3Dr. Arpaci’s CV may be found here: http://pages.cs.wisc.edu/~remzi/cv.pdf
4There is no higher priority queue than 0

5

http://pages.cs.wisc.edu/~remzi/cv.pdf

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

Process priority is implemented as a property of the process itself, and not tracked by the

scheduler. Thus the priority of a process is retrieved from the process itself, and the process moves

between the queues upon enqueuement, depending on its CPU usage history. A process which

voluntarily relinquishes the CPU and sleeps frequently is considered interactive, and its priority is

heuristically calculated. For that reason, the process may move up or down in the queue hierarchy.

Whereas the Solaris scheduler bears some striking resemblance to the MLFQ studied in this

research, there are some differences which prevent a proper comparison.

1. Solaris uses heuristics to mark processes as interactive, whereas the MLFQ variant being

studied doesn’t differentiate interactive processes.

2. Solaris processes are explicitly assigned priorities, which can then change. Our processes

aren’t assigned priorities at all; priority is implicitly associated with the queue.

1.2.1.2 FreeBSD ULE Scheduler

The FreeBSD ULE scheduler is an example that uses multiple scheduling policies and process

classes. Classes include real-time, system, timeshare (user), and idle5. Real-time, system and

interactive timeshare processes are considered high priority, timeshare are mid-priority, and idle

processes are low priority.

It uses three sets of process queues, and each set of queues has its own scheduling policy. High

priority processes are stored and retrieved via MLFQ, mid-priority via CalendarQ6, and low via

MLFQ as well. When the ULE scheduler is called to retrieve the next process PCB to load, the

queue sets are searched in this order [18] [16]:

1. High-priority from MLFQHigh , 7

2. Timeshare from CalendarMid ,

3. Idle from MLFQLow .

Similarly to the Solaris OS, priority is an inherent property of a process and therefore not

implicit to the queue level in which the process is waiting. Depending on the class and behavior of
5"Idle" processes are those which are run when there are no high priority processes to run. Idle processes perform

various OS chores, such as "zeroing-out" pages of memory which have be deallocated after some process finished with
them.

6More informatin about calendar, also known as circular queueing, can be found in [7]
7The terms MLFQHigh , CalendarMid , CalendarMid , and MLFQLow DO NOT appear in ULE literature. They are used

here to delineate and simplify organization.

6

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

the process, that priority can be dynamically adjusted higher or lower. In the case of a timeshare

process, that priority is heuristically adjusted when as necessary, based on a ratio of voluntary sleep

time to runtime.

Whereas both internal MLFQ schedulers in ULE resemble the MLFQ studied in this research,

the same differences prevent a proper comparison.

1. ULE uses heuristics to mark timeshare processes as interactive, whereas the MLFQ variant

being studied doesn’t differentiate interactive processes.

2. FreeBSD processes are explicitly assigned priorities, which can then change. Our processes

aren’t assigned priorities at all; priority is implicitly associated with the queue.

3. The MLFQ in this research has all processes,regardless of priority, entering a single MLFQ

structure at the same place: Q1. The ULE scheduler has multiple structures, each for a

different set of priorities. Processes are enqueued according to their priority, not necessarily

in Q1.

1.2.1.3 The Linux Completely Fair Scheduler

The Linux process scheduler has taken several different forms over the course of its evolu-

tion[14], a couple of which use a dual run queue variant[24]. The most recent scheduler 8, called

the Completely Fair Scheduler, or "CFS", was designed with focus on CPU timesharing fairness

and interactivity. This is accomplished, in part, by using nanosecond CPU time accounting, and

dividing CPU time between processes as evenly as possible.

CFS is a departure from traditional schedulers in that process PCBs are not stored in FIFO

queues, but a red-black sorted 9 binary search tree (BST) of "schedulables". Schedulables may be

processes, groups of processes, or even "nested" run queues [25]. An interesting feature enabled by

such organization is the ability to group processes and treat them similarly, thus allowing processes

to spawn groups of processes with equivalent priorities. This tree of schedulables is sorted by CPU

time previously granted to schedulables.

As with Solaris and FreeBSD, priority is a property of a linux process. It may be heuristically

adjusted to reflect the interactivity of a process. That is where the similarity ends. Using priori-
8only fully SMP-compliant schedulers are considered here. There are others which shall remain unnamed, with are

not scalable to an arbitrary number of CPU cores.
9Information about Red-Black Binary Search Trees may be found in [3]

7

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

ties in a BST that is sorted by CPU time received per-process would seem counterintuitive. The

explanation cannot be more elegantly stated than this:

CFS doesn’t use priorities directly but instead uses them as a decay factor for the time
a task is permitted to execute. Lower-priority tasks have higher factors of decay, where
higher-priority tasks have lower factors of delay. This means that the time a task is
permitted to execute dissipates more quickly for a lower-priority task than for a higher-
priority task. That’s an elegant solution to avoid maintaining run queues per priority.
[14]

Torrey, Coleman and Miller[23] compared interactivity performance between CFS and MLFQ

by re-implementing MLFQ in a linux kernel. In those experiments interactive processes were

heurstically identified, and their initial wait-times were recorded. Their results indicated MLFQ

and CFS have comparable performance.

The binary search tree structure of the CFS scheduler is structurally different from the MLFQ

scheduler, and has no equivalent to Q1 or Q5 . Because of this, there can be no comparison of Q1

latencies, or bursts in Q5 . Thus CFS isn’t suitable for comparison with MLFQ-NS in this research.

1.3 MLFQ-NS

In [13] simulations were used to study process starvation in 5-level Multilevel Feedback Queue

(MLFQ) schedulers, and an extension to MLFQ was developed to mitigate starvation under certain

conditions. This extension to was called MLFQ-NS, where "NS" means "No Starvation". The goal

of MLFQ-NS is to divert time from intermediate queues Q2...N−1 to QN without compromising

performance (or increasing wait-time latency) for high-priority and interactive processes. This is

explained in the following sections.

1.3.1 Reallocating Time

The goal of MLFQ-NS is to mitigate starvation in QN without compromising performance

of interactive and high-priority processes in Q1 . Time is reallocated from Q2...Qn−1 to QN to

mitigate starvation. This is accomplished by leveraging exponential averaging with time-tracking

for CPU bursts given to processes in Q1 over some period of time Tperiod. Let

• tracked time given to processes in Q1 be TQ1

• time given to process in Qn be TQn

8

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

• time given to processes in the intermediate Q2...n−1 be Tavail

• reallocation percentage of Tavail be T%

• time reallocated to Qn be TQn

• weight-factor be α ≤ 1

Under starvation conditions, TQN
= 0, which means that

Tavail = Tperiod − TQ1 (1.2)

Tavail is used to calculate an exponential moving average for period TM by combining the previous

average with new data, as shown in the function from [13]:

Tave(m) = TAve(m−1) ∗ α+ TQ1(M) ∗ (1− α) (1.3)

and reallocated time is then calculated as

TQn = T% ∗ Tave(m) (1.4)

It should be noted that no heuristics are used to determine that starvation should be mitigated. This is

because at less than full CPU utilization, there should be nothing waiting in QN
10 At the transition

of time periods from Tm-TN , the new TQN
is calculated, and that time is granted to processes

waiting in QN the next time the scheduler is called to dequeue a process.

1.3.2 Original Simulations

The operational parameters and results of the original simulations from [13] are shown in

Table 1.1. The CPU time requirements for jobs were generated from the statistical information in it.

Processes in queues 1-5 were allotted maximum CPU time quanta shown in Table 1.2 , respectively.

After each CPU burst granted to a process, a millisecond of CPU time was consumed for context

switching.

IO activity was not simulated. The research goal was to focus on CPU time reallocation to

QN and its affects on Q1 latency in isolation, with intent to extend simulations with IO, or even

experiment with MLFQ-NS in a live operating system. The simplified MLFQ without IO can be

seen in Figure 1.2.
10There are exceptions to this which will be discussed later in this work.

9

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

Pn Req.:mS Dist.
n=55 1-16 ∪(1, 16)
n=44 16-256 ∪(16, 256)
n=1 265-1256 ∪(256, 1256)

Table 1.1: Simulated Processes CPU

burst requirement distributions.

Q 1 2 3 4 5
Burst 16 32 64 128 256

Table 1.2: CPU quanta by queue.

Process Pi

Queue 1:FIFO

Queue 2:FIFO

IntQueues
...FIFO

QN :Round Robin

CPU Complete

Figure 1.2: Simulated MLFQ

Without IO

The above information is used to determine the mean

CPU burst time requirement of all processes generated by the

simulation, P̄ . For an example scenario, a set P of 100 pro-

cesses will be generated for a simulation, according to the dis-

tributions specified in Table 1.2. Given that schedulers use in-

teger precision, the calculations presented here shall also use

the same precision, rounding down where necessary.

Since µ∪(a,b) =
a+ b

2
, A = ∪(1, 16), B = ∪(16, 256),

C = ∪(256, 1256), P = {A,B,C}, ⌊Ā⌋ = 8,

B̄ = 136, C̄ = 756, P̄ =
55 ∗ Ā+ 44 ∗ B̄ + 1 ∗ C̄

100

=
55 ∗ 8 + 44 ∗ 136 + 756

100
= 72 (1.5)

Thus the mean time required by incoming processes is 72ms. The mean context switching time

needed for each process is computed by tallying:

µ -16ms -32ms -64ms -128ms -256ms Ctx.
8 0 0 0 0 0 1
136 120 88 24 0 0 4
756 740 708 644 516 260,4,0 7

The overall mean number of context switches is then calculated:

µCtxSw =

⌊
55 ∗ 1 + 44 ∗ 4 + 1 ∗ 7)

100

⌋
= 2 (1.6)

Thus, the mean total time needed by processes is P̄ + µCtxSw = 74ms Because CPU time is

10

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

consumed for context switching between process bursts, the CPU will be fully utilized at less than

100% of capacity. Full utilization is forecast as P̄
P̄+µCtxSw

= 72
74 ≈ 97%. This is confirmed by the

original results.

Finally, system load was manipulated by varying the inter-arrival rate λIA. Since the average

process requires 74ms to complete, then full system load will occur at λIA = 74ms. When λIA <

74ms, system load>100% and when λIA > 74ms then system load < 100%. λIA was not held

constant; it was allowed to vary below and above the mean, so that brief "spikes and lulls" in

processing demand could be simulated.

1.3.3 Original Results

Simulations results for MLFQ and MLFQ-NS were collected and averaged to produce the

graphs in Figures 1.3 and 1.4. The results were compared side-by-side. For a comparison of bursts

completed in Q5, refer to Figure 1.3. With MLFQ scheduling, bursts in Q5 stopped at about 107%

of system capacity. With MLFQ-NS, bursts in Q5 stopped at about 120%. Bursts in Q5 ceased

because there were no processes in Q5, directly resulting from starvation in Q4. T% doesn’t go to

0 until Tavail < 10. This condition wasn’t encountered during simulations, even when system load

exceeded 300% of capacity. For a comparison of mean and maximum Q1 wait-times, refer to Figure

1.4. This shows that MLFQ-NS didn’t significantly impact mean Q1 wait-times. Whereas there

is some variation in maximum wait-times, it clearly shows that MLFQ and MLFQ-NS alternated

outperforming each other at various system load levels.

1.3.4 Starvation Detection

Starvation is detected in simulations by a decrease in bursts completed in Qn as workload

increases. As shown in 1.3, MLFQ starvation starts to occur around 97%, and complete starvation

at 107%. In MLFQ-NS, starvation begins around 97%, and complete starvation at 120%.

11

CHAPTER 1. PREVIOUSLY PUBLISHED MLFQ REDIRECTION RESULTS

Figure 1.3: Bursts in Q5, MLFQ and

MLFQ-NS side-by-side

Figure 1.4: Q1 mean and max wait-

times, MLFQ and MLFQ-NS side-by-

side.

12

Chapter 2

Simulation Validation and Comparisons

In order to further study MLFQ-NS, compare it to starvation mitigation strategies in other

schedulers, and extend it further, a simulation system was needed. PSimJEB 1 was developed as a

fork of PSimJ22, and is considered a discrete simulation system. PSimJEB was used to duplicate

the research conducted in [13]. The results serve to validate the results in [13], and the usage of

PSimJEB for conducting further research.

2.1 Validation Methodology

PRn Req.:ms Dist.
n=55 1-16 ∪(1, 16)
n=44 17-256 ∪(17, 256)
n=1 257-1256 ∪(257, 1256)

Table 2.1: Simulated Process CPU

burst requirements.

Since the code used to produce original results

wasn’t available, the validation strategy was to duplicate

the original simulation results by running new simula-

tions on different software. They would be conducted

with the same operational conditions as described in [13],

or as close as possible, while maintaining optimal result

collection integrity.

CPU demand was simulated via incoming processes, whose CPU time requirements are shown

in Table 2.1. In distinction to Table 1.1, there are no overlaps in burst requirements between the

precentile ranks, for more accurate process distribution tracking. The possible effects on differing

simulation results were considered negligible and acceptable.

Simulations were run in batches of 40, each for a duration of 10 kiloseconds3, to produce data-
1Named for the author
2http://ksuweb.kennesaw.edu/~jgarrido/psimj.html
3A kilosecond is 1,000 seconds

13

http://ksuweb.kennesaw.edu/~jgarrido/psimj.html

CHAPTER 2. SIMULATION VALIDATION AND COMPARISONS

points for system-loads between 97% and 150% of capacity. The duration was longer by an order

of magnitude than in [13] because 1 kilosecond simulations produced erratic, inconsistent results

in PSimJEB. The plotted data-points shown in Figures 2.1 and 2.2 were produced by averaging

data-points from 50 batches.

Figure 2.1: Bursts in Q5, MLFQ and MLFQ-NS,

using PSimJEB

Figure 2.2: Q1 wait-times, MLFQ and MLFQ-

NS, using PSimJEB

Mean interarrival periods λIA were varied

to simulate different system-loads. Simulation

started with λIA = 80ms, and with each suc-

cessive simulation it was decremented by 1ms.

The minimum interarrival period was always 1

ms, and the maximum was calculated thus:

λIA =
minλIA +maxλIA

2

=⇒ maxλIA = 2× λIA −minλIA

(2.1)

2.2 Simulation Results

Figure 2.1 shows complete starvation in

Q5 around 107% of system load using MLFQ

scheduling, and complete starvation in QN

around 150% of system-load using MLFQ-NS.

This result is different from what is found in

[13]. Since the reallaction and diversion algo-

rithms were copied exactly from [13], this is

likely due to a subtle variation in the incom-

ing compute demand distributions which results

in complete Q4 starvation occuring at a higher

system-load than in [13].

Figure 2.2 shows Q1 wait-times were es-

sentially unchanged from [13]. While there

was a significant impact to maximum Q1 wait-

times, impact to mean Q1 wait-times remained negligible. Furthermore, mean Q1 wait-times fol-

lowed the gradually decreasing trend shown in [13]. These observations reflect the original simula-

tion results.

14

CHAPTER 2. SIMULATION VALIDATION AND COMPARISONS

These results confirm that it’s safe and effective to divert CPU time to address starvation in

QN . The similarity to the results in [13] validate those results, and they confirm the viability of

PSimJEB to continue and extend research in mitigating starvation in MLFQ process scheduling.

15

Chapter 3

Simulation Results

Chapter 1 surveyed several process schedulers in search of a similar scheduler to compare Q5

starvation mitigation effectiveness. That survey failed to identify a scheduler compatible for the

comparison. Chapter 3 will compare the results of experimenting with different values for runtime

arguments than were used to produce the results in [13].

Figure 3.1: Bursts in Q5 :reallocation

constant, weights varied.

Specifically this chapter compares the results of

varying the weight-factor α and the reallocation percent-

age. The goal of these two experiments was to see if dif-

ferent run-time arguments yielded better results with re-

spect to CPU bursts given to processes in Q5 than those

published in [13].

3.1 Varying Weight-factor α

Figure 3.1 shows that using different weight-factors

αi∈[.1,...,.9] has little long-term impact on bursts in Q5 .

Whereas α = 10% yields a marginal increase in bursts

over α = 90% , the difference isn’t sufficient to indicate

a discovery. Thus varying α has no significant long-term

impact on starvation mitigation in Q5 .

3.2 Varying Reallocation Percentage

16

CHAPTER 3. SIMULATION RESULTS

Figure 3.2: Mean Reallocated Re-

turned Times

In [13] it’s stated that reallocation of Tavail was

capped at T% = 10. This gives rise to the question, "How

much of that reallocated time was diverted to processes

in Q5 , and how much was returned 1 for lack of pro-

cesses therein?" This question is answered in Figure 3.2.

For 10% reallocation, the mean time returned per Tperiod

was approximately 4ms at about 97% system load, and

peaks in the graph at more than 70ms just short of 150%

system load. For 1% reallocation, returned time doesn’t

get above 1ms per Tperiod till after system load exceeds

140%, and at 150% of system loads reaches approxi-

mately 7ms per Tperiod . There is a strong implication

that that as system load increases far past 100%, reallocation becomes less effective in Q5 .

Figure 3.3 shows measureable differences between T% = 1% and T% = 10%. With respect

to the number of bursts in QN , T% = 1% outperforms T% = 10%. This shall be referred to as the

reallocation anomaly, and will be analyzed in the next section.

3.2.1 The Reallocation Anomaly

The following came from direct observation of a simulation in progress2. These are the runtime

arguments for that simulation:

• λIA = 60ms ≈ 120% compute capacity

• simulation duration=10,000s

• |Tperiod| = 1000ms

• T% = 10

Whereas more time is reallocated for QN starvation by diverting 10% of Tavail than 1%, a

lack of waiting jobs in QN resulted in diverted time being returned to Q2 . . . Q4 . A buildup of jobs

in Q4 was observed, such that very few jobs entered Q5 . From one period T to the next, between

0 and 5 jobs were observed in Q5 . Most frequently, there was at most 1 job in Q5 . This indicates
1"returned" diverted time means that reallocated time is reset to 0ms and the scheduling decision is made via standard

MLFQ algorithm.
2Debugging running software in an IDE

17

CHAPTER 3. SIMULATION RESULTS

starvation in Q4 at 150% of system load, similar to the starvation described in [13].The following

scenario is presented to explain the reallocation anomaly.

Figure 3.3: Bursts in Q5 :reallocation

varied, weights constant.

Suppose that have one job arrive in Q5 needing

80ms of CPU time to complete, and the system load is

150%. Because of the severe starvation occurring in Q4 ,

no other jobs move down to Q5 for a significant period

of time, say ten Tperiod =1,000ms periods. Two cases

are presented, one in which T% = 1, and one in which

T% = 10.

1. 10% reallocation of Tavail : The single job in Q5

will receive 72ms during period Ti, and 70ms dur-

ing the next period Tj . This process therefore com-

pletes in Tj , and the simulation counter registers 2

bursts given to Q5 between the beginning of Ti and

the end of Tj . There are also 62ms of time that are

returned to Q2 . . . Q4 .

2. 1% reallocation of Tavail : The single job in Q5

will receive 7ms during period Ti, and similar time

for the next 9 1,000ms periods. After the ten 1,000ms periods have completed, the simulation

counter registers 10 bursts for processes in Q5 . The job has not yet completed, but will likely

do so after 2 more 1,000ms periods. By that time, another job may have been enqueued into

Q5 .

This analysis illustrates that while there may be more bursts in Q5 at system load ≫ 100%

with T% < 10%, those bursts are of shorter duration and the processes in Q5 remain in the system

longer because of it. Furthermore, measuring performance in Q5 past 120% may not be meaningful

because of the starvation problem in Q4 being such that processes aren’t making it to Q5 . Finally,

it’s evident that most of the time reallocated to Q5 will be returned to Q2 . . . Q4 at system loads

where Q4 is experiencing starvation.

With this explanation for the reallocation anomaly, the idea was introduced to mitigate starva-

tion not just in Q5 , but also in Q4 . This would lead to an extension of MLFQ-NS, and increased

mitigation in Q5 and Q4 , as well as introducing new complications. This will be discussed in the

next chapter.

18

Chapter 4

Intelligent Mitigation

Chapter 3 explored the effects of experimenting with simulation run-time arguments, and re-

vealed a case in which MLFQ-NS becomes ineffective. This is listed below, in addition to another

case in which MLFQ-NS might become ineffective:

1. Starvation in Q4 prevents almost all long-running processes from making it to QN ,

2. λIA is small enough that T%=10 ∗ Tavail = 0 1

Time is still available for diversion even at high system load, since it’s starvation in higher queues

which prevents processes from being enqueued into QN .

This chapter introduces and explores MLFQ-IM, or Intelligent Mitigation. MLFQ-IM is an

extension to MFLQ-NS, and it’s mechanics are described:

• Time is still never diverted from Q1 ,

• IM has a set of last queues, Q[M,...,N], such that N doesn’t necessarily equal M+1,

• IM has a set of intermediate queues numbered Q[2,...,M−1],

• It uses the same mathematical functions–equations 1.2,1.3,1.4–to determine the amount of

time to divert to Q[M,...,N],

• For puposes of redirecting time, the scheduler will check backward, from QN to QM , till it

finds a waiting process. If none are found, reallocated time is returned to Q2, . . . , QM−1 .

1None of the simulations run in this research ever reached λIA small enough to induce T%=10 ∗ Tavail = 0 . Miti-
gating starvation under such circumstances is futile, and so wasn’t simulated.

19

CHAPTER 4. INTELLIGENT MITIGATION

This chapter will explore the results of simulating MLFQ-IM. To maintain direct comparabil-

ity to [13], simulations were run with 5-level MLFQ. Burst performance in Q5 and Q4 will be

analyzed, and then mean wait-times in Q1 . Recall that mean wait-times must not be significantly

impacted, and maximum Q1 wait-times shouldn’t be impacted more than was the case with MLFQ-

NS. Then the impact that MLFQ-IM has on scheduling in intermediate queues will be analyzed.

4.1 Burst Performance

Figure 4.1: MLFQ-IM bursts in Q5

Figure 4.2: MLFQ-IM bursts in Q4

Shown in Figure 4.1 are the CPU bursts granted

to processes dequeued from Q5 . There is an apparent

performance boost in Q5 . Whereas bursts in Q5 cease

altogether at approximately 150% of compute capacity

with MLFQ-NS, MLFQ-IM plateaus at about 140% with

10,000 bursts per simulation2, and extends beyond 150%

compute capacity. Extended duration simulations showed

that bursts in Q5 continued till approximately 300% of

compute capacity. However, at 300% of capacity the very

concept of mitigation is questionable. In this scenario one

is compelled to consider upgrading compute capabilities.

The impact of mitigating starvation at 300% overload will

be explored in a subsequent section.

Shown in Figure 4.2 are the CPU bursts granted to

processes dequeued from Q4 . It shows that with re-

spect to bursts in Q4 , MFLQ outperforms MLFQ-NS and

MLFQ-IM till approximately 140% of compute capac-

ity. MLFQ-NS and IM are comparable till between 95%

and 140% capacity. Similarly to bursts in Q5 , Q4 bursts

plateau at 140%. There is a strong implication here that

starvation in Q4 resulting in starvation in Q5 really be-

gins at 140% of capacity.

With Q5 and Q4 burst plateaus comes the implica-

tion of constant performance in those two queues. This then implies that performance in other
2Since simulations are 10k-seconds long, 10k bursts in Q5 per simulation implies 1 burst in Q5 per second.

20

CHAPTER 4. INTELLIGENT MITIGATION

queues would likely suffer. At System-load ≫ 95% there is more work in some period of time

T than there is compute capacity to process demand in T. This will be addressed in a subsequent

section.

4.2 Q1 wait-times

Figure 4.3: MLFQ-IM bursts in Q4

Figure 4.4: Processes remaining in Q1

Figure 4.5: Processes remaining in Q2

Shown in Figure 4.3 are the mean and maximum

wait-times in Q1 for MLFQ, NS and IM. It shows

a similar pattern as before, that mitigating schedulers

hold a slight lead over MLFQ at about 100% ≤
System-Load ≤ 107% with respect to maximum Q1

wait-times, and MLFQ outperforms NS and IM beyond

107%. Interestingly, IM outperforms NS w.r.t. maximum

wait-times. Finally, mean wait-times are largely unaf-

fected by any mitigation techniques.

4.3 Considering The Side Effects of

MLFQ-IM

As discussed in the preceding sections, starvation

mitigation in Q5...4 with MLFQ-IM must have an impact

w.r.t. to the intermediate queues, especially where bursts

plauteau, granting constant performance through some

system load percentil range. When System-load ≫
97%, there simply isn’t enough computing capacity to

serve all processes in the ready queue. Diversion of time

to Q5...4 , with little or no return of reallocated time, must

have a measureable impact in other queues.

Inspection of Figure 4.3 indicates that Q1 is not ad-

versely affected by mitigation strategies, at least up to

150% capacity. A "pile-up" of processes in Q1 would

cause the mean wait to increase. For this reason, the in-

21

CHAPTER 4. INTELLIGENT MITIGATION

termediate queues are likely affected. We’ll now inspect five figures which show the quantity of

processes left in Q1 . . . Q5.

Figure 4.6: Processes remaining in Q3

Figure 4.7: Processes remaining in Q4

Figure 4.8: Processes remaining in Q5

Figure 4.4 shows that at most 1 process is remain-

ing in Q5 at the end of a simulation. Whereas the graph

seems to vary widely between the minimum and maxi-

mum values, bear in mind that those values are 0 and 1,

respectively. Figure 4.5 shows much the same, except that

more frequently Q2 has no processes remaining.

Figure 4.6 shows a different outcome, however. Just

before the system load reaches 140%, the number of pro-

cesses remaining in Q3 rises dramatically, cresting past

10,000 just before system load reaches 150%. This im-

plies the possibility that starvation has been artificially

induced in a higher queue than otherwise might have oc-

curred.

Figure 4.7 definitely shows the impact of starva-

tion in Q4 . The number of processes remaining in Q4

steadily rises from around 0 at approximately 95% system

load to 45,000 remaining at 140% system load. It pre-

dictably starts to decrease after 140% systeload load be-

cause MLFQ-IM has at that point begun mitigating star-

vation in Q4 .

Figure 4.8 shows the affect of concentrating on Q5

for starvation mitigation. Q5 is always checked first for

time diversion, and then Q4 . Starvation in Q5 peaks at about 800 processes at just past 100%

system load, then quickly descends to almost 0 just past 110%.

22

Chapter 5

Conclusion

In this thesis we’ve reviewed the origins1 and evolution of MLFQ. After a survey of modern

schedulers it was concluded that a direct comparison with another scheduler was not possible. We’ve

explored recent extensions to MLFQ with respect to starvation mitigation[13], Q1 latency, and

overall throughput. We’ve reviewed MLFQ-NS, duplicated the research in [13], and discovered that

MLFQ-NS can be improved. We’ve explored a possible extension of MLFQ-NS, which is MLFQ-

IM, and concluded that there is a range of system load percentiles in which uage of MLFQ-IM is

appropriate.

While research on MLFQ-IM was ongoing, it appeared to produce remarkable results. Bursts

in Q4 and Q5 increased substantially, with no apparent effects in Q1 . This exploration leads us to

conclude that MLFQ-IM is effective to a point.

It counteracts the very nature of MLFQ in general to mitigate starvation in Q5...4 only to

induce starvation in Q3 and perhaps even higher than that. Past 140% system load it essentially

reprioritizes low priority processes over higher priority processes, when the original goal stated in

[13] was to prevent starvation of some low priority processes in cases where it was safe to divert

time from higher priority processes, under certain conditions.

Given the tendency of MLFQ-IM to induce starvation in higher priority queues when system-load ≥
140% it’s our conclusion that MFLQ-IM should not be used past 140%. The range of system loads

in which it’s appropriate to use MLFQ-IM should be stated as [97% . . . 140%]. This has the min-

imum impact on higher priority processes, and maximizes the usage of time diversion to starving

processes. Diverted time which may be been "returned" in MLFQ-NS may be diverted by MLFQ-

IM to mitigate starvation in QM .
1Compatible Time Sharing System [8]

23

Chapter 6

Future Work

This section offers two possible heuristics to more finely control when time is diverted from

Q2 . . . QN−1 to QN .

6.1 Additional Comments Regarding MLFQ-NS

There is no mechanism by which MLFQ-NS is activated or deactived; it is an enhanced MLFQ

and is always in operation. Ideally unless starvation is occuring in QN there won’t be any processes

in QN to divert time to. However, a scenario exists in which it’s possible that diverted time may be

granted to a process in QN inappropriately. In this scenario, one or more processes are enqueued

into QN a short time before time period Ti progresses to Tj . These processes then don’t have a long

wait before receiving diverted time via MLFQ-NS. The following two heuristic methods proposed

to account for this scenario.

6.1.1 Q1 Wait-Time Heuristic

It is proposed that the next scheduled process waiting in QN shall be required to have waited

for some period of time TQNWait before receiving diverted time. This introduces a new but minor

datum which must be tracked–the last time that a process was enqueued. This datum must be tracked

per process; this could be tracked as an attribute of the process itself, or as something the sheduling

mechanism tracks1. This could be a subject for further research.
1scheduler based tracking makes little sense, as the data structure used by the scheduler must be able to scale to very

large numbers.

24

CHAPTER 6. FUTURE WORK

6.1.2 Q1 CPU Usage Tracking

It is proposed that CPU usage by processes in Q1 must reach a certain point before time

diversion to QM...N is used. This requires tracking of CPU time in Q1 , TQ1 . However, this is

already done in MLFQ-NS and MLFQ-IM, and so only requires additional evaluation of TQ1 with

respect to some other value. TQ1 would have to reach some percentage of Tperiod :

Pactivation =
|TQ1 |

|Tperiod |
(6.1)

Currently Pactivation is unknown. It’s existence is certain because TQ1 increases as system load

increases. This heuristic requires very little additional effort, considering it’s a comparison of data

already known and a division operation. This could be the subject of further research.

25

References

[1] Andrea. Arpaci-Dusseau. Multilevel Feedback Queue Schedulers. 2000 (accessed October

6,2016. URL: http://pages.cs.wisc.edu/~eli/537/lectures/Solaris.

pdf.

[2] R.H. Arpaci-Dusseau and A.C. Arpaci-Dusseau. Operating Systems: Three Easy Pieces.

2012. ISBN: 9781105979125. URL: https://books.google.com/books?id=

orxwMwEACAAJ.

[3] Rudolf Bayer. “Symmetric binary B-Trees: Data structure and maintenance algorithms”. In:

Acta Informatica 1.4 (1972), pp. 290–306. ISSN: 1432-0525. DOI: 10.1007/BF00289509.

URL: http://dx.doi.org/10.1007/BF00289509.

[4] Luca Becchetti and Stefano Leonardi. “Nonclairvoyant Scheduling to Minimize the Total

Flow Time on Single and Parallel Machines”. In: J. ACM 51.4 (July 2004), pp. 517–539.

ISSN: 0004-5411. DOI: 10.1145/1008731.1008732. URL: http://doi.acm.

org.proxy.kennesaw.edu/10.1145/1008731.1008732.

[5] HS Behera, Reena Kumari Naik, and Suchilagna Parida. “Improved multilevel feedback

queue scheduling using dynamic time quantum and its performance analysis”. In: Interna-

tional Journal of Computer Science and Information Technologies 3 (2012), pp. 3801–3807.

[6] Ayan Bhunia. “Enhancing the performance of feedback scheduling”. In: Int. J. Comput. Appl.,

vol 18 (2011).

[7] R. Brown. “Calendar Queues: A Fast 0(1) Priority Queue Implementation for the Simulation

Event Set Problem”. In: Commun. ACM 31.10 (Oct. 1988), pp. 1220–1227. ISSN: 0001-0782.

DOI: 10.1145/63039.63045. URL: http://doi.acm.org/10.1145/63039.

63045.

26

http://pages.cs.wisc.edu/~eli/537/lectures/Solaris.pdf
http://pages.cs.wisc.edu/~eli/537/lectures/Solaris.pdf
https://books.google.com/books?id=orxwMwEACAAJ
https://books.google.com/books?id=orxwMwEACAAJ
http://dx.doi.org/10.1007/BF00289509
http://dx.doi.org/10.1007/BF00289509
http://dx.doi.org/10.1145/1008731.1008732
http://doi.acm.org.proxy.kennesaw.edu/10.1145/1008731.1008732
http://doi.acm.org.proxy.kennesaw.edu/10.1145/1008731.1008732
http://dx.doi.org/10.1145/63039.63045
http://doi.acm.org/10.1145/63039.63045
http://doi.acm.org/10.1145/63039.63045

REFERENCES

[8] Fernando J. Corbató, Marjorie Merwin-Daggett, and Robert C. Daley. “An Experimental

Time-sharing System”. In: Proceedings of the May 1-3, 1962, Spring Joint Computer Con-

ference. AIEE-IRE ’62 (Spring). San Francisco, California: ACM, 1962, pp. 335–344. DOI:

10.1145/1460833.1460871. URL: http://doi.acm.org.proxy.kennesaw.

edu/10.1145/1460833.1460871.

[9] Kenneth J. Duda and David R. Cheriton. “Borrowed-virtual-time (BVT) Scheduling: Sup-

porting Latency-sensitive Threads in a General-purpose Scheduler”. In: Proceedings of the

Seventeenth ACM Symposium on Operating Systems Principles. SOSP ’99. Charleston, South

Carolina, USA: ACM, 1999, pp. 261–276. ISBN: 1-58113-140-2. DOI: 10.1145/319151.

319169. URL: http://doi.acm.org.proxy.kennesaw.edu/10.1145/

319151.319169.

[10] M. EffatParvar et al. “An Intelligent MLFQ Scheduling Algorithm (IMLFQ) with Fault Tol-

erant Mechanism”. In: Sixth International Conference on Intelligent Systems Design and Ap-

plications. Vol. 3. 2006, pp. 80–85. DOI: 10.1109/ISDA.2006.10.

[11] Jose M Garrido, Richard Schlesinger, and Kenneth Hoganson. Principles Of Modern Oper-

ating Systems. Jones & Bartlett Learning, 2011. ISBN: 1449626343.

[12] Liang Guo and Ibrahim Matta. “Scheduling Flows with Unknown Sizes: Approximate Anal-

ysis”. In: Proceedings of the 2002 ACM SIGMETRICS International Conference on Measure-

ment and Modeling of Computer Systems. SIGMETRICS ’02. Marina Del Rey, California:

ACM, 2002, pp. 276–277. ISBN: 1-58113-531-9. DOI: 10.1145/511334.511378. URL:

http://doi.acm.org.proxy.kennesaw.edu/10.1145/511334.511378.

[13] Kenneth Hoganson. “Reducing MLFQ Scheduling Starvation with Feedback and Exponential

Averaging”. In: J. Comput. Sci. Coll. 25.2 (Dec. 2009), pp. 196–202. ISSN: 1937-4771. URL:

http://dl.acm.org.proxy.kennesaw.edu/citation.cfm?id=1629036.

1629067.

[14] Tim Jones. Inside the Linux 2.6 Completely Fair Scheduler. 2009. URL: http://www.

ibm.com/developerworks/linux/library/l-completely-fair-scheduler/.

[15] Tsuyoshi Katayama. “Mean sojourn times in a multi-stage tandem queue served by a single

server.” In: J. OPER. RES. SOC. JAPAN. 31.2 (1988), pp. 233–247.

[16] Jeff Roberson Kirk McKusick. “The Freebsd ULE Scheduler”. In: Freebsd Journal (2014).

27

http://dx.doi.org/10.1145/1460833.1460871
http://doi.acm.org.proxy.kennesaw.edu/10.1145/1460833.1460871
http://doi.acm.org.proxy.kennesaw.edu/10.1145/1460833.1460871
http://dx.doi.org/10.1145/319151.319169
http://dx.doi.org/10.1145/319151.319169
http://doi.acm.org.proxy.kennesaw.edu/10.1145/319151.319169
http://doi.acm.org.proxy.kennesaw.edu/10.1145/319151.319169
http://dx.doi.org/10.1109/ISDA.2006.10
http://dx.doi.org/10.1145/511334.511378
http://doi.acm.org.proxy.kennesaw.edu/10.1145/511334.511378
http://dl.acm.org.proxy.kennesaw.edu/citation.cfm?id=1629036.1629067
http://dl.acm.org.proxy.kennesaw.edu/citation.cfm?id=1629036.1629067
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/

REFERENCES

[17] Jim Mauro. Solaris internals : core kernel components. Palo Alto, CA: Sun Microsystems,

Inc, 2001. ISBN: 0-13-022496-0.

[18] Marshall Kirk McKusick and George V. Neville-Neil. “Thread Scheduling in FreeBSD 5.2”.

In: Queue 2.7 (Oct. 2004), pp. 58–64. ISSN: 1542-7730. DOI: 10 . 1145 / 1035594 .

1035622. URL: http://doi.acm.org/10.1145/1035594.1035622.

[19] Supriya Raheja, Reena Dadhich, and Smita Rajpal. “Designing of vague logic based mul-

tilevel feedback queue scheduler”. In: Egyptian Informatics Journal 17.1 (2016), pp. 125

–137. ISSN: 1110-8665. DOI: http://dx.doi.org/10.1016/j.eij.2015.

09.003. URL: http://www.sciencedirect.com/science/article/pii/

S1110866515000481.

[20] Guido Schafer et al. “Average case and smoothed competitive analysis of the multi-level

feedback algorithm”. In: IEEE FOCS03 (2003), p. 462.

[21] L. E. Schrage. “The Queue M/G/1 with Feedback to Lower Priority Queues”. In: Manage-

ment Science 13.7 (1967), pp. 466–474. ISSN: 00251909, 15265501. URL: http://www.

jstor.org/stable/2627689.

[22] M. Thombare et al. “Efficient implementation of Multilevel Feedback Queue Scheduling”.

In: 2016 International Conference on Wireless Communications, Signal Processing and Net-

working (WiSPNET). 2016, pp. 1950–1954. DOI: 10.1109/WiSPNET.2016.7566483.

[23] Lisa A Torrey, Joyce Coleman, and Barton P Miller. “A comparison of interactivity in the

Linux 2.6 scheduler and an MLFQ scheduler”. In: Software: Practice and Experience 37.4

(2007), pp. 347–364.

[24] S. Wang et al. “Fairness and Interactivity of Three CPU Schedulers in Linux”. In: 2009

15th IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications. 2009, pp. 172–177. DOI: 10.1109/RTCSA.2009.26.

[25] Chee Siang Wong et al. “Towards Achieving Fairness in the Linux Scheduler”. In: SIGOPS

Oper. Syst. Rev. 42.5 (July 2008), pp. 34–43. ISSN: 0163-5980. DOI: 10.1145/1400097.

1400102. URL: http://doi.acm.org.proxy.kennesaw.edu/10.1145/

1400097.1400102.

28

http://dx.doi.org/10.1145/1035594.1035622
http://dx.doi.org/10.1145/1035594.1035622
http://doi.acm.org/10.1145/1035594.1035622
http://dx.doi.org/http://dx.doi.org/10.1016/j.eij.2015.09.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.eij.2015.09.003
http://www.sciencedirect.com/science/article/pii/S1110866515000481
http://www.sciencedirect.com/science/article/pii/S1110866515000481
http://www.jstor.org/stable/2627689
http://www.jstor.org/stable/2627689
http://dx.doi.org/10.1109/WiSPNET.2016.7566483
http://dx.doi.org/10.1109/RTCSA.2009.26
http://dx.doi.org/10.1145/1400097.1400102
http://dx.doi.org/10.1145/1400097.1400102
http://doi.acm.org.proxy.kennesaw.edu/10.1145/1400097.1400102
http://doi.acm.org.proxy.kennesaw.edu/10.1145/1400097.1400102

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Spring 4-20-2017

	On Intelligent Mitigation of Process Starvation In Multilevel Feedback Queue Scheduling
	Joseph E. Brown
	Recommended Citation

	Cover
	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Table of Contents

	List of Acronyms
	Previously Published MLFQ Redirection Results
	MLFQ
	Starvation in MLFQ
	Requirements for Starvation Mitigation in MLFQ

	Literature Search
	Scheduler Review

	MLFQ-NS
	Reallocating Time
	Original Simulations
	Original Results
	Starvation Detection

	Simulation Validation and Comparisons
	Validation Methodology
	Simulation Results

	Simulation Results
	Varying Weight-factor
	Varying Reallocation Percentage
	The Reallocation Anomaly

	Intelligent Mitigation
	Burst Performance
	Q1 wait-times
	Considering The Side Effects of MLFQ-IM

	Conclusion
	Future Work
	Additional Comments Regarding MLFQ-NS
	Q1 Wait-Time Heuristic
	Q1 CPU Usage Tracking

	References

