
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Fall 12-8-2016

Improving the Prediction Accuracy of Text Data
and Attribute Data Mining with Data Preprocessing
PRIYANGA CHANDRASEKAR
Kennesaw State University

Follow this and additional works at: http://digitalcommons.kennesaw.edu/cs_etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
CHANDRASEKAR, PRIYANGA, "Improving the Prediction Accuracy of Text Data and Attribute Data Mining with Data
Preprocessing" (2016). Master of Science in Computer Science Theses. 7.
http://digitalcommons.kennesaw.edu/cs_etd/7

http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd/7?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu


 
 

IMPROVING THE PREDICTION ACCURACY OF 
TEXT DATA AND ATTRIBUTE DATA MINING WITH 

DATA PREPROCESSSING  
 
 
 
 
 
 
 

 
A Thesis Presented to 

 
The Faculty of the Computer Science Department 

 
 
 
 

by 
 
 
 

Priyanga Chandrasekar 
 
 
 
 
 
 

In Partial Fulfillment 
 

of Requirements for the Degree 
 

Masters in Computer Science 
 
 
 
 
 
 
 
 
 

Kennesaw State University 
 

Fall 2016 
 



 
 

IMPROVING THE PREDICTION ACCURACY OF 
TEXT DATA AND ATTRIBUTE DATA MINING 

WITH DATA PREPROCESSSING  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved: 
 
 
 
 

Professor Dr. Chia-Tien Dan Lo, Committee Chair 
Department of Computer Science 
Kennesaw State University 

 

 
 
 

Professor Dr. Kai Qian, Advisor 
Department of Computer Science 
Kennesaw State University 

 

 

Professor Dr. Yong Shi, 
Department of Computer Science 
Kennesaw State University 

 

 
 



 
 

 

 

 

 

 

 

 

 

 

In presenting this thesis as a partial fulfillment of the requirements for an 
advanced degree from Kennesaw State University, I agree that the university 
library shall make it available for inspection and circulation in accordance with its 
regulations governing materials of this type. I agree that permission to copy 
from, or to publish, this thesis may be granted by the professor under whose 
direction it was written, or, in his absence, by the dean of the appropriate school 
when such copying or publication is solely for scholarly purposes and does not 
involve potential financial gain. It is understood that any copying from or 
publication of, this thesis which involves potential financial gain will not be 
allowed without written permission. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Priyanga Chandrasekar  



 
 

 
 
 

Notice To Borrowers 
 
 
 
 
Unpublished theses deposited in the Library of Kennesaw State University must 
be used only in accordance with the stipulations prescribed by the author in 
the preceding statement. 
 
 
 
The author of this thesis is: 
 
 
 
 

Priyanga Chandrasekar 
 

1100 South Marietta Pkwy, 
Marietta, GA 30060 

 
 
 
 
The director of this thesis is: 
 
 
 

 
Dr. Chia-Tien Dan Lo  

 
1100 South Marietta Pkwy, 

Marietta, GA 30060 
 
 
Users of this thesis not regularly enrolled as students at Kennesaw State 
University are required to attest acceptance of the preceding stipulations by 
signing below.  Libraries borrowing this thesis for the use of their patrons are 
required to see that each user records here the information requested. 
 
 
 

 
  



 
 

IMPROVING THE PREDICTION ACCURACY OF 
TEXT DATA AND ATTRIBUTE DATA MINING WITH 

DATA PREPROCESSSING  
 
 
 
 
 
 

An Abstract of 
 

A Thesis Presented to 
 

The Faculty of the Computer Science Department 
 
 
 
 

by 
 
 
 

Priyanga Chandrasekar 
 

Bachelor of Technology, SASTRA University, 2010 
 
 
 
 
 
 

In Partial Fulfillment 
 

of Requirements for the Degree 
 

Masters in the Computer Science 
 
 
 
 
 
 
 

Kennesaw State University  
 

Fall 2016 



vi 
 

ABSTRACT 

Data Mining is the extraction of valuable information from the patterns of 

data and turning it into useful knowledge. Data preprocessing is an important 

step in the data mining process. The quality of the data affects the result and 

accuracy of the data mining results. Hence, Data preprocessing becomes one of 

the critical steps in a data mining process.  

In the research of text mining, document classification is a growing field. 

Even though we have many existing classifying approaches, Naïve Bayes 

Classifier is good at classification because of its simplicity and effectiveness. The 

aim of this paper is to identify the impact of preprocessing the dataset on the 

performance of a Naïve Bayes Classifier.  Naïve Bayes Classifier is suggested as 

the best method to identify the spam emails. The Impact of preprocessing phase 

on the performance of the Naïve Bayes classifier is analyzed by comparing the 

output of both the preprocessed dataset result and non-preprocessed dataset 

result. The test results show that combining Naïve Bayes classification with the 

proper data preprocessing can improve the prediction accuracy. 

In the research of Attributed data mining, a decision tree is an important 

classification technique. Decision trees have proved to be valuable tools for the 

classification, description, and generalization of data. J48 is a decision tree 

algorithm which is used to create classification model. J48 is an open source Java 

implementation of the C4.5 algorithm in the Weka data mining tool. In this 

paper, we present the method of improving accuracy for decision tree mining 

with data preprocessing. We applied the supervised filter discretization on J48 

algorithm to construct a decision tree. We compared the results with the J48 

without discretization. The results obtained from experiments show that accuracy 

of J48 after discretization is better than J48 before discretization. 
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CHAPTER I 

 

INTRODUCTION 
 

Because of large amount of features in the dataset, properly identifying the 

documents into specific category poses various challenges. Being a popular way 

for communication, Email is more prone to misuse. In the electronic messaging 

systems, spam is used to send unsolicited bulk messages to many recipients. The 

amount of incoming spam increases every day. The spammer spread harmful 

message and even virus. The spammer creates spam in such a way that it looks 

like a normal message in order to avoid being detected. Sometimes the spam is 

nothing but a simple plain text with a malicious URL or some is clustered with 

attachments and/or unwanted images. Text based classifiers are used to find and 

also to filter spam emails. 

Text classification is one of the main cores of our work. We used the supervised 

learning method called Naïve Bayes classifier. It can be programmed in the map 

reduce model. The separation of spam email from the ham email can be done 

more efficiently with the help of the data mining. With the knowledge gained 

from training phase, Bayesian classifier identifies the spam email from ham 

email. In the training phase, the emails are manually classified as spam or ham 

and the required features are set here.  

Proposed by the Songtao [1], Map reduce model of the Naïve Bayes classifier 

proved to be effective when dealing with the huge data. Naïve Bayes Classifier is a 

Probabilistic classifier. In the machine learning, Naïve Bayes classifiers are highly 

scalable and it is also a popular method for text categorization with the word 

frequencies as the features. It assumes that features are independent. This 

content based classifier was proved to be efficient by Sahami [2]. 
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Hadoop, an open source software framework is used in our paper. Hadoop is a 

scalable, distributed computing system which is capable of handling large 

amount of data. It consists of two main elements: MapReduce and Hadoop 

Distributed File System (HDFS). Hadoop breaks down the large dataset into 

multiple partitions and process them in parallel. 

Data mining is the process of extracting useful information and knowledge 

from the incomplete, noisy and inconsistent raw data. Data mining extracts 

information from large dataset and converts it to an understandable form. Data 

mining is a part of knowledge discovery process. Classification is a form of data 

analysis that extracts model describing important data classes. Those models are 

called classifiers; predict categorical class labels. For example, a classification 

model can be built to categorize bank loan applications as either safe or risky [3].  

 Decision tree induction is the process of learning of decision trees from class 

labeled training tuples. Decision tree is an algorithm which is commonly used to 

predict model, and also to find out the valuable information through the huge 

amounts of data classification. A decision tree is a simple flowchart like tree 

structure, where the topmost node in a tree is the root node [4]. Each leaf node 

(or terminal node) holds a class label, each internal node (non-leaf node) denotes 

a test on an attribute, and each branch represents an outcome of the test. J48 is 

an extension of ID3. The additional features of J48 are accounting for missing 

values, decision trees pruning, continuous attribute value ranges, derivation of 

rules, etc. 

The remaining of this paper is organized as follows. Section 2 gives a brief note 

about the related works. Section 3 presents and discusses our research 

methodology followed by the description of the Enron and microarray dataset we 

have used in our experiments as well as the experimental setup. In Section 4, the 

evaluation of results along with the performance analysis is presented. Finally, in 
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Section 5 our conclusions are presented followed by the references.
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CHAPTER II 
 

RELATED WORK 
 
 

In this section we summarize the previous related research work on data 

preprocessing of both text data and attribute data. 

Since 1993, Electronic mail is commonly known as email or e-mail.  A way of 

exchanging messages from an individual to one or more recipients is called E-

mail. Email operates across the Internet or other computer networks . In 2013, 

Total email sent and received per day was 182.9 billion. In that, the number of 

business emails sent and received per day was nearly 100.5 billion and the 

number of consumer/personal emails sent and received per day were 82.4 billion. 

[5] 

Naive Bayes classifiers use Bayes' theorem to calculate a probability that an 

email is or is not spam. The Spam message usually consists of plain text. But in 

order to avoid being detected by the spam filter, the spammers make it more 

complicated with image and other attachments. There are different algorithms 

exist to find the different styles in the spam. To find the spam message with the 

images, NDD, SIFT and TR-FILTER is available. Ketari propose the major image 

spam filtering techniques [6]. The survey of the various kinds of algorithms is 

explained by Deshmukh [7]. 

Being one of the hottest internet issues, Spam email issue has been already 

addressed by many researchers. They have proposed a number of methods to 

deal with spam detection based on machine learning algorithms. Among them, 

Naïve Bayes classifier is suggested as a more effective method, which is a text-

based classifier. Our study focuses mainly on the importance of preprocessing the 

dataset and also on how preprocessing helps to improve the accuracy.  

https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Bayes%27_theorem
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For surveying the problem of improving decision tree classification algorithm 

for large attribute data sets, several algorithms have been developed for building 

DTs of large data sets. Kohavi & John 1995 [8], searched for parameter settings of 

C4.5 decision trees that would result in optimal performance on a particular data 

set. The optimization objective was “optimal performance” of the tree, i.e., the 

accuracy measured using 10-fold cross-validation. J48, Random Forest, Naive 

Bayes etc. algorithms [9] are used for disease diagnosis as they led to good 

accuracy. They were used to make predictions. The dynamic interface can also 

use the constructed models that mean the application worked properly in each 

considered case.  

The classification algorithms [10] Naive Bayes, decision tree (J48), Sequential 

Minimal Optimization (SMO), Instance Based for K-Nearest neighbor (IBK) and 

Multi-Layer Perception are compared by using matrix and classification accuracy. 

Three different breast cancer databases have been used and classification 

accuracy is presented on the basis of 10-fold cross validation method. A 

combination at classification level is accomplished between these classifiers to get 

the best multi-classifier approach and accuracy for each data set. Diabetes and 

cardiac diseases [11] are predicted using Decision Tree and Incremental Learning 

at the early stage.  

Liu X.H 1998 [12], proposed a new optimized algorithm of decision trees. On 

the basis of ID3, this algorithm considered attribute selection in two levels of the 

decision tree and the classification accuracy of the improved algorithm had been 

proved higher than ID3. Liu Yuxun & Xie Niuniu 2010 [13], solving the problem 

of a decision tree algorithm based on attribute importance is proposed. The 

improved algorithm uses attribute-importance to increase the information gain of 

attributes which has fewer attributions and compares ID3 with improved ID3 by 

an example. The experimental analysis of the data shows that the improved ID3 
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algorithm can get more reasonable and more effective rules. Gaurav & Hitesh 

2013 [14], propose C4.5 algorithm which is improved by the use of L‟Hospital 

Rule, this simplifies the calculation process and improves the efficiency of 

decision making algorithms. 

Though many researchers already studied the J48 classifier, we focused on 

improving the accuracy of the results. In our study, we applied the preprocessing- 

discretization on the J48 algorithm. 
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CHAPTER III 
 

RESEARCH METHODOLOGY 
 
 

3.1. Text Data Methodology 
 

In our experiment, text dataset methodology has two phases: training and 

classification. The dataset is a known corpus. The count of occurrence of tokens 

was taken by map reduce model of Hadoop. With this count, knowledge about the 

dataset is learned. This knowledge is used in the classification phase to identify 

the spam probability in the new email set. 

 

3.1.1 Dataset 
 

Enron’s dataset [15] which consists of 4500 spam emails and 1500 ham emails 

is used as training dataset. The dataset is manually labeled as ham or spam and it 

does not have encoding in it. Testing dataset which consists of 270 ham emails 

and 330 spam emails is used to test. In order to have better accuracy in the result, 

the test dataset was not included in the training dataset and it acts as “unknown” 

data. A sample message in the training dataset is shown in the figure 1. 

 
 

Figure 1: Sample Email content 
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3.1.2. Preprocessing 

 
Real world data are generally incomplete, noisy and inconsistent. Data 

preprocessing is a first step of the Knowledge discovery in databases (KDD) 

process. Data preprocessing is a challenging and tedious task. There are number 

of different tools and methods available for data preprocessing.  The tasks in the 

data preprocessing are: Data Cleaning, Data Integration, Data Transformation, 

Data Reduction, and Data Discretization.  

Among those methods, we have used Data cleaning and Data reduction on the 

Naïve Bayes classifier. The following Preprocessing methods will make the 

dataset more precise. Hence the performance of the Naïve Bayes classifier will be 

more accurate and also the processing time will be reduced. Those data 

preprocessing methods are noisy removal, feature extraction and attribute 

reduction.  

Noisy Removal: Some words contribute less in determining the email as 

spam or legitimate. Those words can be excluded in this step which will improve 

the efficiency of the classifier. 

Feature Extraction: Feature extraction is one of the most important 

preprocessing steps. In this step, we found out all emails from dataset and 

replaced it with the term “EmailC”. In this way, the possible combination of 

attributes will be combined into the single subset. Similarly, all links from the 

dataset will be found and replaced with the term “URLC”. Hence the data will 

become more precise.      

Stemmer: By using Stanford’s API [16] for English words lemmatization will 

reduce size of features and also processing time. For example, “earn”, “earned” 

and “earning” should be considered as single feature “earn”.  
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3.1.3. Training 
 

The general processing of Naïve Bayes classifier can be described as follows: 

get a labeled sample and train it to build up the probabilities of each token in 

corpus, then the word probability obtained in the previous step would be used to 

compute the probability that an email with a particular set of words in it belongs 

to either category. 

 

Figure 2: Map reduce Framework 

In the Training Phase, the word count of the sample dataset is taken. The 

training dataset is already classified as ham and spam emails. In order to process 

huge dataset, Hadoop Map reduce framework is used in our work. The sample 

dataset is first being uploaded to HDFS, then split into independent chunks being 

processed by different map tasks, which would emit <key, value> pairs as output. 

The output here becomes the input of reduce task and the result would be stored 

in HDFS. The Hadoop map reduce processing flow is shown in the figure 2. Part 

of the training result is shown in figure 3, the first column represents the word in 

the dataset and the second column is the number of occurrences of that word. 
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Figure 3: Word count from the dataset 

3.1.4. Classification 
 

The formula used to calculate the spamicity of a word is  

P(S/W) = P(W/S)*P(S)/(P(W/S)*P(S)+P(W/H)*P(H)) 

where P(S/W) denotes the probability that a message is spam with the word W 

in it; P(S) is the overall probability that any given message is spam; P(W/S) is the 

probability that a particular word appears in spam messages; P(H) is the overall 

probability that any given message is ham; and P(W/H) is the probability that a 

particular word appears in ham messages. 

Most Bayesian spam filtering algorithms are based on formulas that hold 

strictly only if the words present in the message are independent of each other, 

which is not always satisfied (for example, in natural languages like English the 

probability of finding an adjective is affected by the probability of having a noun), 

but it is a useful idealization, especially since the statistical correlations between 

the individual words are usually not known. On this basis, one can apply the 

Bayes' theorem to calculate the probability that a message is a spam with the bag 

of words in it. 

P = P1P2 … PN / (P1P2 … PN + (1-P1)(1-P2)…(1-PN)) 

Where, P1, P2 … PN   are the probabilities that a message is spam-knowing 

words.  
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3.2 Attribute Data Methodology 
 

Our methodology is to learn about the dataset, apply J48 decision tree 

classification algorithms and get the accuracy of the algorithm. In preprocessing 

step, apply the supervised discretization filter on the dataset along with the J48 

classification algorithm and find the accuracy. Finally comparing both accuracy 

and find out which one is better. 

3.2.1 Leukemia Dataset 
 

 In our study we have used a real world leukemia microarray experiment 

performed by [Golub et al. 1999]. Leukemia is a cancer of bone marrow or blood 

cells. In general, leukemia’s can be grouped into four categories. Myeloid and 

lymphoid leukemia’s can be acute or chronicle whereas myeloid and lymphoid 

both denote cell types involved. Thus, four main types of leukemia’s are: Acute 

Myeloid Leukemia (AML), Chronic Myeloid Leukemia (CML), Acute 

Lymphoblastic Leukemia (ALL) and Chronic Lymphoblastic Leukemia (CLL). 

 In the dataset provided by [Golub et al. 1999], each microarray 

experiment corresponds to a patient (example); each example consists 7129 genes 

expression values (features). Each patient has a specific disease (class label), 

corresponding to two kinds of leukemia (ALL and AML). There are 72 patients 

(47 ALL and 25 AML). The original study of [Golub et al. 1999] split patients into 

two disjoint sets: the training set contains 38 examples (27 ALL and 11 AML) and 

the test set contains 34 examples (20 ALL and 14 AML). Considering the shortage 

of examples it is a common technique in machine learning to use cross-validation 

or bootstrap [Kohavi 1995, Hastie et al. 2001] rather than isolating training and 

test sets.  

 In our study, training dataset participates in the test dataset. Hence our 

study uses the training set which contains 38 examples (27 ALL and 11 AML) and 

the test set which contains 38 examples (27 ALL and 11 AML).  
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3.2.2 WEKA 
 

Weka is open-source software developed at the University of Waikato and the 

programming language is based on Java. Weka has 4 different applications, 

Explorer, Experimenter, KnowledgeFlow and Simple CLI. Knowledge Flow is a 

node and linked based interface and Simple CLI is the command line prompt 

version where each algorithm is run by hand. In our study, we used Explorer 

applications of the Weka. 

WEKA is an innovatory tool in the history of the data mining and machine 

learning research communities. By putting efforts since 1994 this tool was 

developed by WEKA team. WEKA contains many inbuilt algorithms for data 

mining and machine learning. Weka implements algorithms for data 

preprocessing, classification, regression, clustering, association rules; it also 

includes a visualization tools. 

 

3.2.3 J48 Classifier 
 

Classification is the process of assigning an appropriate class label to an 

instance (record) in the dataset. Classification is generally used in supervised 

datasets where there is a class label for each instance. In our study we applied 

J48 classifier in the dataset. J48 Classifier uses the normalized version of 

Information Gain which is the Gain Ratio for building trees as the splitting 

criteria. It has both reduced error pruning and normal C4.5 pruning option. In 

our experiments we have used the algorithm J48 (with default parameters) from 

Weka [Witten and Frank 2005], a library of several machine learning algorithms. 

J48 is a Java implementation of the well-known C4.5 algorithm [Quinlan 1993]. 

J48 uses a modified version of the entropy measure from information theory. 
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3.2.4 Pre-processing 
 

Data usually comes in mixed format: nominal, discrete, and/or continuous . 

Discrete and continuous data are ordinal data types having orders among values, 

while nominal values do not possess any order amongst them. Discrete data are 

spaced out with intervals in a continuous spectrum of values. We used 

discretization as data preprocessing method. 

Discretization: Discretization process will easily interpret numerical 

attributes turning into nominal (categorical) ones. This process is done by 

dividing a continuous range into subgroups. Suppose there are 200 people in a 

group that want to apply for a bank loan and their ages are between 20 and 80. If 

the bank workers want to categorize them, they have to put them into some 

groups. For example one can categorize people between 20 and 40 as young, 

people between 40 and 65 as middle aged and 65 to 80 as old. So there will be 

three subgroups, which are; young, middle-aged and old. These subgroups can be 

increased depending on the choice of the field expert. This makes it easy to 

understand and easy to standardize. 

Discretization of continuous attributes is both a requirement and a way of 

performance improvement for many machine learning algorithms. The main 

benefit of discretization is that some classifiers can only work on the nominal 

attributes, but not numeric attributes. Another advantage is that it will increase 

the classification accuracy of tree and rule based algorithms that depend on 

nominal data. 

Discretization can be grouped into two categories, Unsupervised Discretization 

and Supervised Discretization. As the name implies Unsupervised Discretization 

is generally applied to datasets having no class information. The types of 

Unsupervised Discretization are: Equal Width Binning, Equal Frequency Binning 

mainly but more complex ones are based on clustering methods [17]. Supervised 
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Discretization techniques as the name suggests takes the class information into 

account before making subgroups. Supervised methods are mainly based on 

Fayyad-Irani [18] or Kononenko [19] algorithms. 

Weka uses Fayyad-Irani method as default, so in our study we used Fayyad-

Irani Discretization method. Weka has the Discretization algorithm under the 

preprocessing tab. As shown in Figure 4, it is embedded right under supervised 

and attribute options. Fayyad-Irani Discretization method is a supervised 

hierarchical split method, which will use the class information entropy of 

candidate partitions to select boundaries for discretization. 

 
Figure 4: Selecting Discretization from Preprocess Tab 

Class information entropy is a measure of purity and it measures the amount 

of information which would be needed to specify to which class an instance 

belongs. It considers one big interval containing all known values of a feature and 

then recursively partitions this interval into smaller subintervals until an optimal 

number of intervals are achieved.  
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One of the supervised discretization methods, introduced by Fayyad and Irani, 

is called entropy based discretization. The supervised discretization methods 

handle sorted feature values to determine the potential cut points such that the 

resulting cut point has the strong majority of one particular class. The cut point 

for discretization is selected by evaluating the favorite disparity measure (i.e., 

class entropies) of candidate partitions. In entropy based discretization, the cut-

point is selected according to the entropy of the candidate cut-points. Entropy is 

defined as follows:  

                      
 

The Entropy Gain refers to how much entropy you gain by splitting a data set 

into two bins. Entropy Gain performs splits that maximize the improvement to 

the information we get from our data. Gain is defined as 
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CHAPTER IV 
 

EVALUATION 

 

4.1 Text Data Evaluation 

 

While Evaluating the Naïve Bayes Classifier, We need to concentrate on four 

states for any data. Those states are true positive, true negative, false positive and 

false negative. A false positive means identifying legitimate email as spam. A false 

negative means identifying the spam as legitimate email. A false positive can have 

more impact than the false negative, since the users will miss the legitimate email 

content. The Environment used in our work is shown in the table 1. 

Table 1: Environment Setup 

 
Name Version 

Operating System Ubuntu 14.04 

Java Java SDK 7.0 

IDE Eclipse For Linux 

Big Data Analysis 
Framework 

Hadoop 2.3.1 

 

 

The Test dataset which consists of 270 ham emails and 330 spam emails was 

tested. In order to better accuracy in the result, the test dataset was not included 

in the training dataset and it act as “unknown” data. The evaluation of the result 

with the preprocessing of the dataset is shown in table 2. 
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Table 2: Evaluation Result with preprocessing 

  

Result 

Result of 
spam test data 

Result of ham 
test data 

Total 330 270 

Classified as spam 298 47 

Precision 90.30% 82.59% 

False positive N/A 17.41% 

False negative 9.69% N/A 

 

The evaluation of the result without preprocessing of the dataset is shown in 

table 3. 

Table 3: Evaluation result without preprocessing 

  

Result 

Result of 
spam test 

data 

Result of 
ham test 

data 

Total 330 270 

Classified as spam 300 63 

Precision 90.90% 76.67% 

False positive N/A 23.33% 

False negative 9.09% N/A 

 

The comparison of both output shows improved precision and also false 

positives were greatly reduced for the preprocessed dataset. Thus the above test 

results shows that combining Naïve Bayes classification with the proper data pre-

processing can improve the prediction accuracy and also proves that the 

preprocessing phase has a larger impact in the performance of the Naïve Bayes 

classifier especially with the reduced number of false positives. 
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4.2 Attribute Data Evaluation 
 

While Evaluating the J48 classifier, we need to concentrate on false positive 

and false negative. A false positive means positive instances that are incorrectly 

assigned to the negative class. A false negative means negative instances that are 

incorrectly assigned to the positive class. A false positive can have more impact 

than the false negative. Initial experiment was to investigate the effect of 

discretization to the learning time and prediction accuracy of the J48 classifier. 

To figure that out, we need to run the algorithm on the dataset without 

discretization. Then we need to apply discretization and find out the results and 

compare the accuracy of the both. 

A confusion matrix contains information about actual and predicted 

classifications done by a classification system. The Confusion matrix for training 

dataset without/with preprocessing is shown in Figure 5 and the confusion 

matrix for test dataset without/with preprocessing is shown in Figure 6.  

 
 

Figure 5: Confusion matrix for training dataset without/with preprocessing 

 

 

Figure 6: Confusion matrix for test dataset without/with preprocessing 
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Evaluation was carried out in the test dataset, which consists of 38 examples 

(27 ALL and 11 AML). The result shows that for the preprocessed dataset, 

accuracy of the decision tree was increased. The screenshots of the Weka result 

(Figure 5 and Figure 6) for the training and test dataset without/with 

discretization clearly shows that the accuracy of the J48 classifier improved when 

data was discretized.  

 

Performance Analysis of J48 Classifier: The accuracies obtained by 

combining J48 Classification without discretization and with discretization were 

carried in both training and test dataset. The accuracies obtained were charted in 

Figure 7 for analysis. 

 

 
 

Figure 7 : Performance Analysis 
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CHAPTER V 
 

CONCLUSION 
 

In this paper, we added a pre-processing phase while training, which does 

noisy removal, extracts some typical features, and help improve the accuracy of 

email classification. With the training result, we achieved a moderate prediction 

when encountering a new incoming email. On the other hand, we did not 

preprocess the dataset and get the output. The comparison of both output shows 

improved precision and also false positives were greatly reduced by 25.39% for 

the preprocessed dataset. Thus the test results shows that combining Naïve Bayes 

classification with the proper data pre-processing can improve the prediction 

accuracy and also proves that the preprocessing phase has a larger impact in the 

performance of the Naïve Bayes classifier especially with the reduced number of 

false positives. 

The first step of Data Mining, preprocessing process showed its benefits during 

the classification accuracy performance tests. In this paper, entropy-based 

discretization method is used for improving the classification accuracy for 

datasets including continuous valued features. In the first phase, the continuous 

valued features of the given dataset are discretized. Second phase, we tested the 

performance of this approach with the J48 classifier and compared with 

performance of J48 classifier without discretization. 

Discretization of the numerical attributes increased the performance of J48 by 

approximately 2.63% for training dataset and 10.53% for test dataset. The result 

proves that the optimal level of discretization improves both the model 

construction time and prediction accuracy of the J48 classifier. Other benefit of 

discretization came after the visualization of J48, making the tree easy to 
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interpret, because of the cutting-points it assigned after the discretization of 

numerical attributes. Thus the test results shows that combining J48 classifier 

with the proper data pre-processing can improve the prediction accuracy and also 

proves that the preprocessing phase has a larger impact in the performance of the 

J48 classifier.  
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APPENDIX A 
 
 

SOME ANCILLARY STUFF 
 
 
 

If you would like to learn more about this research project, you can examine the 

following references in the next page that are referred in this work. 
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