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ABSTRACT 

 The study of the surface of a meteoritic mineral, schreibersite (Fe,Ni)3P, was 

investigated to provide insight into the role of the mineral’s surface in aqueousphase 

phosphorylation reactions. The optimization of a customdesigned ultrahigh vacuum 

(UHV) apparatus and Fe2NiP (schreibersite) surface was performed to permit surface 

science analysis. The bare surface was characterized by scanning electron microscopy 

(SEM) coupled with energy dispersive Xray spectroscopy (EDS) and Xray 

photoelectron spectroscopy (XPS), which showed some oxidation and segregation of 

phosphorous within the nearsurface region. The interaction and/or reaction of water 

(H2O), methanol (CH3OH), formic acid (HCO2H) and other molecules with the 

schreibersite surface at varying surface temperatures was probed by reflection absorption 

infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). At 

surface temperatures of approximately 130 K, H2O interacts with FeP bridge sites while 

CH3OH does not appear to interact with surficial phosphorus. The interaction between 

HCO2H and surficial phosphorus is still under investigation. At 295 K, it is demonstrated 

that H2O dissociatively chemisorbs as OHand lattice phosphorus undergoes oxidation. 

An increase in the surface temperature to about 500 K results in the recombinative 

desorption of OH as H2O. Adsorption of other probe molecules such as H2 and CO were 

not detected in the RAIRS experiments, and low dosages of pyridine (C5H5N) on the 

Fe2NiP surface showed the presence of both Lewis and Brønsted acid sites.           
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CHAPTER 1. INTRODUCTION 

1.1 Metal Phosphides: Applications, Synthesis and Analysis 

 Metal phosphides have been prepared as nanoparticles and in bulk form for 

applications in technology and catalysis. Nanoparticles have been synthesized using 

phosphorous sources such as elemental phosphorous,1,2 P(SiMe3)3,
1,2 

trinoctylphosphine,1,2,3 alkyl and arylphosphines,1PCl3
1,2

 and Na3P.1,2,3,4 By changing 

the properties of the nanoparticles (e.g. size, shape, etc.), nanoparticles can be used to 

dictate the surface states of materials.1,2,5 The growth of singlecrystals and other bulk 

materials have been performed to investigate how the behavior of the material is 

influenced by the orientation of the surface as well as to develop new materials.1,6,7,8,9,10  

 The analysis of metal phosphides has been carried out using a variety of tools. 

Xray Absorption Near Edge Structure (XANES),1,11 Extended Xray Absorption Fine 

Structure (EXAFS),1,12 Infrared Spectroscopy (IR),12,13 Xray Photoelectron 

Spectroscopy (XPS)1,11,14 and Density Functional Theory (DFT)1,15 were utilized to probe 

oxidation states, behavior of active sites on the surface, surface composition and density 

of states. It was illustrated that Fe and Ni each have unique properties that were apparent 

by chemistry observed at the surface. Compared to the NiNi distance, a study has shown 

that the FeFe distance in Fe2P is relatively large and allows for multiple molecules to 

adsorb to one site, although Ni is much more susceptible to interacting with CO than Fe 
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is.12 The same study also demonstrated that the change in the Ni:Fe molar ratio in a 

NiFeP/SiO2 catalyst affects the type of catalytic process that occurs. Particularly, Ni sites 

are active for hydrodesulfurization but Fe sites are not. It is interesting to note that 

although Fe and Ni behave differently, the oxidation state of phosphorus in M2P and M3P 

(M = metal) samples has been suggested to be the same and is approximately 1.1   

 Crystal structures have been evaluated by solidstate Nuclear Magnetic 

Resonance (NMR),1,16 Xray Diffraction (XRD)1,14,17,18 and HighResolution 

Transmission Electron Microscopy (HRTEM).1,18,19 As mentioned previously, the 

incorporation of Fe versus Ni into a sample results in unique outcomes. It has been shown 

that the particle size of Fe2P is greater than the particle size of Ni2P.17 The synthesis of 

Ni2P microspheres has been performed by the reduction of NiO by PH3.
18 However, the 

synthesis of Fe2P does not undergo the same procedure due to the nature of Fe versus Ni. 

In addition to Fe and Ni phosphides, it has been suggested that a surface of indium 

phosphide (InP) nanoparticles can be oxidized by H2O to yield indium phosphate.1 

Limited studies have been performed with Scanning Electron Microscopy (SEM) to 

examine the morphology of metal phosphide samples, which have shown that InP 

nanowires can assemble into an intricate structure by applying an electric field.20  

1.2 Schreibersite: A Metal Phosphide Mineral as a Likely Prebiotic Catalyst 

 As mentioned, metal phosphides exhibit a myriad of interesting properties that 

have applications in technology and heterogeneous catalysis. Regarding technological 

applications, metal phosphides have been exploited in battery research,21,22 as magnetic 

refrigerants23 and superconductors.24 Their high catalytic activity in hydrotreating 
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processes such as hydrodesulfurization (HDS),16,25,26,27,28 hydrodenitrogenation 

(HDN),16,25,26,27,28 hydrodeoxygenation (HDO),28,29,30 and hydrodechlorination 

(HDCl),14,31,32,33 as well as their electrocatalytic activity in cleanenergy science34,35,36,37 

have made them impactful catalysts in today’s industries. 

 Due to the promising applications that metal phosphides have brought to the 

heterogeneous catalysis community, it is not surprising that metal phosphide minerals are 

currently under speculation for catalyzing chemical reactions on the early Earth that may 

have contributed to the origin of life. One way to bridge metal phosphide mineral 

catalysis and the formation of basic biomolecules is to address the phosphorous problem 

that is prevalent in the origin of life research.     

 Phosphorous is a fundamental element in biochemistry and is commonly found as 

part of an orthophosphate group (i.e., PO4
3). Such groups are prevalent in the backbone 

of nucleic acids (such as RNA and DNA), energy transport molecules (such as ATP and 

ADP), and structure molecules (such as phospholipids).38 These orthophosphate groups 

also have poor chemical reactivity and water solubility,39 which is paradoxical since 

water is where most metabolic reactions take place. This raises the question “How did 

orthophosphate become prevalent in life systems?”  

 A number of recent studies have been performed on the meteoritic mineral, 

schreibersite (Fe,Ni)3P, as the mineral is proposed to be the ultimate source of 

phosphorus in life systems.40,41,42,43,44,45,46,47,48,49 Schreibersite has a tetragonal crystal 

system and is typically found in a matrix consisting of metallic iron minerals.50 It has a 

range of compositions (e.g. Fe3P, Fe2NiP, Ni3P, etc.) with the constraint that the 
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empirical formula contains a metal to phosphide ratio of 3 to 1. Because schreibersite is 

isomorphic,51,52 the space group will be the same regardless of the metal (iron or nickel) 

in the lattice, however, the unit cell dimensions will be different due to the difference in 

atomic size. It is very brittle, with a mineral hardness of 6.57 and a density of 7.07.3 

g/cm3.50 The phosphorous in schreibersite has an oxidation state between 0 and 1.42,53 In 

the Ni3P form, the surface energy ranges from 7.1 eV (nickel rich termination) to 5.36 

eV (phosphorous rich termination). It also has virtually no band gap at the Fermi level, 

making schreibersite a conductive mineral.15    

 Due to the estimates of the abundance of schreibersitecontaining meteorites 

delivered to the Earth’s surface during the late heavy bombardment,54 it is plausible that 

schreibersite was a source of reactive phosphorous on the early Earth. It was also 

discovered that the reactive phosphorous species, phosphite, existed in the early Archean 

ocean, which was likely a result of meteor impacts.48 Schreibersite is known to 

phosphorylate biomolecules such as glycerol and choline,49 and has been shown to react 

under anoxic atmospheres,46 which mimic the reducing atmosphere that is believed to 

have existed during the period that life evolved on Earth.39 These scenarios illustrate the 

likelihood of schreibersite as a prebiotic source of phosphorous. Further investigations on 

the formation pathways of phosphoruscontaining molecules by schreibersite could aid in 

resolving the phosphorus issue.  

 Most of the recent studies on schreibersite analyze the corrosion and 

phosphorylation products in aqueous solution, yet there is little information on how these 

products are formed. Because these reactions occur in the presence of schreibersite, it is 
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hypothesized that the mineral surface has a role in product formation. In particular, 

phosphorylation of nucleosides such as adenosine and uracil has only been successfully 

performed in the presence of the mineral,49 suggesting a surfacemediated process. By 

observing the chemical kinetics and reaction dynamics at the mineral interface, the 

conditions that govern the production of these phosphoruscontaining species may be 

better understood.              

1.3 Influence of the Mineral Surface in Molecular Adsorption Behavior  

 How mineral surfaces impact the chemistry at the interface is discussed in this 

section. Before examining the complex features of a mineral surface, it is helpful to 

review the formation of the simple idealized crystalline surface. A solid structure is 

typically viewed as consisting of two parts: the bulk structure and the near surface region 

called the selvedge.55 By observing the bulk structure and how it intersects with the near 

surface region, the type of surface can be predicted. For a perfect metallic crystal, the 

most common structures are the facecentered cubic (fcc), bodycentered cubic (bcc) 

and hexagonal closepacked (hcp) structures and are illustrated in Figure 1. The ideal 

surface has a twodimensional periodic arrangement of atoms, and the bulk structure is a 

collection of replicating threedimensional unit cells. 
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  Another way to describe an ideal surface is that it is essentially composed of 

replicating lattice planes. The orientation of these planes is indicated by the Miller 

indices.55 Depending on the angle at which the crystal is cut, an infinite number of 

surfaces can be studied. Idealized (i.e., simple and flat) surfaces consist of the lowindex 

planes (e.g. (100), (111), and (110)). These lowindex planes provide sites for adsorbates 

to bond to due to the presence of unsaturated coordination upon cutting the crystal. Sites 

include onefold coordination (terminal bonding), twofold coordination (bridging), 

threefold coordination (threefold hollow), and other coordinations.55 Although there is 

a large library of references that illustrate that flat surfaces can induce chemical reactions, 

it has been experimentally determined that defect sites (steps, kinks, terraces, etc.), which 

are features found on real crystal surfaces, drive some catalytic processes.55,56 

 Mineral surfaces carry features of real crystal surfaces as well as additional 

intricacies.57,58,59 Most mineral surfaces are irregular (not periodic)57 and contain a 

relatively high amount of defect sites, which can provide docking sites for 

adsorbates.59,60,61,62,63 To better understand how and why certain sites on mineral surfaces 

govern the chemistry that occurs on mineral surfaces, a background on the fundamental 

 
Figure 1. (to right) A top view of fcc, bcc and hcp structures. 
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principles that dictate the geometric and electronic structure of mineral surface atoms is 

essential.64  

 There are three main principles that govern the structure of atoms on mineral 

surfaces.64 The first principle is based on autocompensation of the surface. If the surface 

is autocompensated, then the material is said to have a neutral charge and is, therefore, 

stable. A surface that is not autocompensated will relax and even reconstruct, which can 

lead to a growth of defect sites on the surface.  

 The second principle is based on the rise in energy on the surface when dangling 

bonds rehybridize in order for the surface atoms to become more stable.64 

Rehybridization can occur by charge transfer between surface atoms, bond formation 

between surface atoms, or bond formation between surface atoms and adsorbates (i.e. 

adatoms). All these processes lead to a change in the properties of the surface.  

 The last principle that influences the geometric structure of surfaces is the 

conditions that the surface is exposed to.64 Surface atoms want to stay thermodynamically 

stable, but the environmental conditions may force the surface atoms to maintain a 

thermodynamically less favorable structure. Therefore, the surfaceprocessing conditions 

are significant in the formation of the surface geometry.  

1.4 Common Molecules on the early Earth 

 The molecules chosen in this thesis to potentially react with the schreibersite 

surface are regarded as common molecules on the early Earth. Additionally, some of the 

listed molecules have been exploited in related experiments to probe different surface 

sites.  
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 Water (H2O), colloquially deemed the elixir of life, has been detected in all stages 

of matter in space, from jets emanating from stars,65 molecular clouds in the interstellar 

medium66 and protoplanetary disks far from our Solar System,67 to nearby comets, 

asteroids and the terrestrial planets such as Earth, Mercury and Mars. Consequently, 

many of the solutionbased schreibersite experiments occurred in an aqueous solvent, 

which is why H2O was selected as an adsorbate for the surface science experiments 

presented in this work. The adsorption of H2O on Fe and Ni terminated surfaces has been 

investigated in the literature68,69,70,71,72 and the experimental vibrational frequencies were 

used to aid in assignment of the bands found in the experiments presented in this thesis. 

(These references contained High Resolution Electron Energy Loss Spectroscopy 

(HREELS) data versus Reflection Absorption Infrared (RAIRS) data since HREELS 

experiments were more abundant in the literature. It is important to note that unlike 

RAIRS, HREELS is sensitive to many sources of vibrational excitation.73 Yet RAIRS, 

unlike HREELS, has the ability to operate at a variety of pressures (i.e., not limited to 

UHV) and has much higher resolution (4 cm1) than is typically found in HREELS 

experiments.73 For these reasons, RAIRS and HREELS are often used to complement one 

another). The majority of the referenced experiments show that H2O forms clusters on 

iron and nickel surfaces at cold temperatures and breaks apart into hydroxyls at surface 

temperatures between 200 – 300 K. The dissociation of H2O and subsequent formation of 

a hydroxylated surface can happen at cold surface temperatures, if the surface is covered 

with less than a monolayer of oxygen.70    

 To help constrain the corrosion reaction mechanism, an oxidizing molecule, 

hydrogen peroxide (H2O2), was chosen as an adsorbate. H2O2 has also been generated by 
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pyrite (a mineral wellknown in the origin of life community) reacting with H2O under 

an anoxic environment,74 which suggests H2O2 is potentially important in early Earth 

chemistry. An infrared study of H2O2 in a titanium silicate sieve 75 was used as a 

reference in this thesis. That work showed that the oxidizing agent, TiOOH, is formed 

and able to oxidize small hydrocarbon chains.     

 Methanol (CH3OH) and formic acid (HCO2H) are simple organic molecules and 

are prebiotically relevant,76,77 making them candidates for the analysis of plausible 

surfaceinduced phosphorylation chemistry. Moreover, they each contain an OH group, 

which is the typical functional group that is phosphorylated in biochemical systems. The 

adsorption of CH3OH78,79,80,81,82 and HCO2H
79,83 on iron and nickel based surfaces has 

been studied and the vibrational signatures are used as references. Most of the 

experiments for CH3OH adsorption suggest that CH3OH dissociates into methoxy 

(CH3O at low coverages and at low and high surface temperatures, whereas one 

experiment suggests that the missing OH vibrational frequency is due to a hydroxyl 

hydrogen interacting with a lattice oxygen.84 HCO2H adsorption studies illustrate that 

HCO2H is able to physisorb via hydrogenbonding and dissociatively chemisorb as 

HCOO and CO at low and high surface temperatures.81,85       

 Pyridine has been widely used to probe Lewis acid and Brønsted acid sites 

particularly because the vibrational frequencies have been characterized and the line 

profiles are wellresolved.86 Vibrational studies of pyridine adsorption on iron and nickel 

terminated surfaces have been well investigated.87,88,89,90,91,92  It has been shown that 

Lewis acid sites dominate mesoporoussupported Ni2P catalysts as well as goethite and 
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phosphated goethite,89,91 and that Brønsted acidity is predominately found in 

SiO2supported Ni2P samples.88 These findings help characterize the complex nature of 

the schreibersite surface.       

 This thesis describes the characterization of the Fe2NiP surface as well as the 

interaction of H2O, CH3OH, HCO2H and other small molecules with the Fe2NiP surface. 

Chapter 2 is a review of the methods that are used to characterize the surface and probe 

surface reactions. Additionally, Chapter 2 contains details on the development of a metal 

phosphide mineral that is conducive to RAIRS and the design of a custombuilt UHV 

apparatus that is dedicated to analyzing mineral surfaces. The focus in Chapter 3 is on the 

interaction of H2O with Fe2NiP and FeNi at various surface temperatures. Lastly, Chapter 

4 contains a discussion primarily on the interaction of organics with Fe2NiP and FeNi at 

low surface temperatures.         
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CHAPTER 2. EXPERIMENTAL METHODS 

2.1 The Ultrahigh Vacuum Experimental Setup 

 The ultrahigh vacuum (UHV) chamber reaches a base pressure of ~3.0 x 1010 torr 

and is designed to conduct surface science experiments. The chamber contains a 

turbomolecular pump (Pfeiffer TPU 170) backed by a rotaryvane mechanical pump 

(Oerlikon Leybold NT16), a rotaryvane mechanical pump connected to the gas manifold 

(Oerlikon Leybold NT5), two Convectron gauges that read a minimum pressure of 1x104 

torr (GranvillePhillips 275), an ionization gauge that reads a minimum pressure of 

3x1011 torr (Nude BayardAlpert Hot Cathode), a quadrupole mass spectrometer (Hiden 

HALO 201RC), a Fourier transform infrared spectrometer (Nicolet 6700), and an 

electron gun with energies from 52000 eV (Kimball Physics ELG2).        

Solid and pressed/powder samples are attached to a sample manipulator that 

rotates via a differentially pumped rotational stage (McAllister DPRF 275), which is 

pumped by a rotaryvane mechanical pump (Edwards RV12 H.P.). Surface temperatures 

ranging from 100 to 680 K are achieved using liquid nitrogen cooling and by heating 

radiatively. A tantalum plate is spotwelded to the back of the sample to improve the 

cooling, and tungsten wires with a diameter of 0.01” are wrapped around the tantalum to 

radiatively heat the sample. Ices are deposited by dosing gases and vapors onto mineral 

samples via a variable leak valve attached to a gas manifold. Ice thicknesses are reported 

by dosage where 1 Langmuir (L) is equivalent to 1 x 106 torr*s of exposure to an 
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ambient gas. Assuming the molecular sticking coefficient is unity when the surface 

temperature is very low (< 135 K), a 1.0 L dose will result in one monolayer of adsorbed 

molecules on the surface.  

Schematics of the experimental setup in the AbbottLyon Laboratory are shown 

in the Figures 2.1 and 2.2 below. 

 

 

 

 
Figure 2.1 A side view rendering of the experimental apparatus used in this 

thesis. Drawing produced in the software Blender. 
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2.2 Improvements to the Experimental Apparatus 

 A significant portion of this thesis study was dedicated to optimizing the 

experimental apparatus, in particular, to improve the RAIRS experiments. Therefore, 

these topics will be discussed. Bigger optical breadboards were installed so that the 

mirrors could be positioned around the chamber to aim the light at 80˚ to surface normal. 

To reduce gasphase peaks in the infrared data, new purge boxes were designed and 

nitrogen gas replaced filtered compressed air as the purge gas in the FTIR. The resulting 

infrared background scan is presented in Figure 2.3. The time required to align the 

 
Figure 2.2 A top view schematic of the experimental apparatus used in this thesis.  

The red lines represent infrared light. Drawing produced in the software DraftSight. 



14 
 

infrared light for RAIRS experiments was greatly reduced (from days to minutes) by 

employment of a white light source and calcium fluoride beamsplitter.  

 

Additionally, the range and control of the surface temperature was improved. A 

cartridge heater was replaced by resistive heating with tungsten wire and tantalum foil in 

order to reduce outgassing by the cartridge heater. A high temperature of 680 K was 

achieved through radiative heating, which was high enough to remove contaminants from 

the surface and subsequently lead to improved signal in the infrared data. Figure 2.4 

shows that the infrared signal intensity for a 10.0 L dose of H2O after annealing the 

 

Figure 2.3 Comparison of Infrared background spectra. The red line is a background 

scan that represents the background when nitrogen gas is used to purge the FTIR. The 

black line is a background scan that represents the background when filtered 

compressed air is used to purge the FTIR.    
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sample (Fig. 2.4a) is comparable to the signal intensity for a 100.0 L dose prior to 

annealing the sample to remove contaminants (Fig 2.4b). 

 

 

 

Figure 2.4 (a) RAIRS of D2O dosed on polished schreibersite before annealing 

the surface and (b) after annealing the surface. The response of the system to 

10.0 L of D2O was improved by a factor of 10 as seen by comparison of the 

intensity of the peaks before and after annealing. 
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 The removal of contaminants from the mineral surface was further enhanced by 

use of an argon ion (i.e., Ar+) bombardment and flashing procedure. The procedure 

required three cycles of argon ion bombardment and flashing the day before an 

experiment. To bombard the sample with argon ions, the sample was negatively biased to 

2000 V, 5 x 105 torr of argon was used to fill the chamber and an electron gun acted as 

the argon ionization source. After bombardment for thirty minutes, the sample was 

flashed to 550 K. Figure 2.5 shows that the described procedure was robust enough to 

remove the species represented by the 12201240 cm1 peak.  

 

 

Figure 2.5 RAIRS spectra of 4.0 L of H2O dosed on Fe2NiP. The blue spectrum was 

taken without performing the argon ion bombardment and flashing procedure the 

day before the experiment, and the red spectrum was taken the day after performing 

the procedure.  
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Although the sample temperature was higher in the red spectrum experiment compared to 

the blue spectrum experiment, as shown in Figure 2.4b, the 12201240 cm1 peak has 

been observed at temperatures above 133 K and, therefore, was not expected to vanish at 

133 K.  

 Cooling of the sample was optimized by incorporation of a new sample holder, 

which was designed and constructed by T. Beckman from the AbbottLyon Laboratory. 

A comparison of the old and new sample holders are illustrated in Figure 2.6. The new 

sample holder improved the cooling by decreasing the number of junctions between 

separate pieces of copper. (Note that the new sample holder is machined from a single 

block of oxygenfree copper.) Additionally, having a single post positioned behind the 

sample made alignment for RAIRS easier and decreased the opportunity for desorption 

from the face of the posts during temperature programmed desorption (TPD) 

experiments.  

 

 

Figure 2.6 (a) old sample holder and (b) new sample holder. 
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 Finally, a new LabVIEW program was written by A. Pital and T. Beckman from 

the AbbottLyon Laboratory to accurately correlate the mass of up to four desorbing 

species to the desorption temperatures. A maximum linear ramp rate of 1 K/sec was 

achieved through A. Pital’s portion of the LabVIEW code. These improvements to the 

temperature control and monitoring were necessary for TPD experiments.   

2.3 Reflection Absorption Infrared Spectroscopy 

2.3.1 Theory 

 Reflection absorption infrared spectroscopy produces an infrared spectrum of the 

light reflected from the surface that illustrates the absorption peaks characteristic to the 

adsorbed molecule. The measurement of the vibrational frequency of the functional group 

gives direct information on the binding sites as well as the binding geometry of the 

adsorbate.93,94 In order to understand how this process works, an understanding of how 

light interacts with the adsorbate is necessary. 

 The infrared spectroscopy selection rule states that in order for a vibration to be 

infrared active, the energy of the infrared light must match the energy difference between 

two vibrational states, and the transition between the vibrational states induces a change 

in the dipole moment of the vibration. Mathematically, this is described as:94  

 Intensity ∝ |ψf
*Eµfiψi|

2 (1) 

where E is the electric field vector and µfi is the transition dipole moment.  

Optimization of a RAIRS signal requires additional considerations. The first 

consideration is that only the pcomponent of the infrared light interacts with the 
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adsorbed species. The infrared light that hits the surface can be described as an 

electromagnetic wave that has magnitude and direction and, therefore, is composed of 

electric field vectors. The electric field vectors can be further branched into two 

components: scomponent (spolarized) and pcomponent (ppolarized). The 

scomponent is orthogonal to the plane of incidence and parallel to the plane of the 

surface, and the pcomponent is in the plane of incidence. An image of this reflection 

geometry is illustrated in Figure 2.7.  

 

 The electric field at the surface is defined as:95 

 𝐸 = 𝐸𝑖[𝑠𝑖𝑛𝜃 + 𝑟𝑠𝑖𝑛(𝜃 + 𝛿)] (2) 

   

where θ is the phase angle, r is the reflection coefficient, 𝑖 indicates incident, and δ is the 

phase of the reflected wave. The first term of the equation represents the amplitude of the 

incident electric field, and the second term of the equation represents the amplitude of the 

reflected electric field.95 In the above image, it can be seen that for all angles of 

 

Figure 2.7 A drawing of the reflection geometry of the electric field 

components of infrared light. E and E’ represent the incident and reflected 

electric fields, respectively, and s and p represent the s and p components of 

the electric field.  
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incidence, the field of the scomponent remains parallel to the surface, which results in 

an r value of ~1 for all angles of incidence. Also at all incidence angles, the δ value 

remains close to 180˚.95 As seen in the equation above, this leads to destructive 

interference of the reflected wave, therefore, illustrating that the scomponent does not 

interact with the adsorbate.  

 The pcomponent has radiation that is parallel and normal to the surface. The 

parallel and perpendicular electric fields of the pcomponent are:95 

 𝐸𝑝
= = 𝐸𝑝

𝑖 𝑐𝑜𝑠∅[𝑠𝑖𝑛∅ − 𝑟𝑝𝑠𝑖𝑛(𝜃 + 𝛿𝑝)] (3) 

  𝐸𝑝
⊥ = 𝐸𝑝

𝑖 𝑠𝑖𝑛∅[𝑠𝑖𝑛𝜃 + 𝑟𝑝𝑠𝑖𝑛(𝜃 + 𝛿𝑝)] (4) 

where 𝜙 is the grazing incidence angle. The parallel components will yield a relatively 

small electric field since these components are opposite in direction to the surface 

normal. As seen in equation (3), due to the 𝑐𝑜𝑠∅ term, the parallel components will be the 

greatest at small angles. The perpendicular or normal components will constructively 

interfere as seen in equation (4). Due to the 𝑠𝑖𝑛∅ term, the parallel components will 

decrease and the perpendicular components will increase as the grazing incidence angle 

increases. Hence, only the perpendicular component of the pcomponent contributes to 

the surface electric field. 

 The intensity of a RAIRS signal is described by the expression:95 

 
Intensity = ∆R =  (

𝐸𝑝
⊥

𝐸𝑝
𝑖

)

2

𝑠𝑒𝑐𝜙 (5) 

 

  

   



21 
 

where (
𝐸𝑝

⊥

𝐸𝑝
𝑖 ) is the amplitude of the electric field. This equation shows that only 

the perpendicular component of the p polarized light influences the RAIRS signal and 

that the larger the grazing incidence angle, 𝜙, the greater the produced signal. In addition, 

experiments have shown that RAIRS is more efficient at shorter wavelengths (e.g., 2100 

cm1) versus longer wavelengths (e.g., 500 cm1) and that ∆R has the greatest value when 

the sample is highly reflective.95 Another way to interpret the surface selection rule for 

RAIRS experiments is by using image dipole theory. A picture representing the general 

principle of image dipole theory is shown in Figure 2.8.  

 

When a dipole moment of vibration interacts with a conductive surface, electrons 

in the nearsurface region of the solid rearrange themselves so that they are directed 

towards the positive end of the dipole moment. The region that was previously occupied 

by the redirected electrons is now positively charged (i.e., a “hole”), creating a socalled 

image dipole. When the dipole of the molecular vibration is perpendicular to the plane of 

the surface, the image dipole vectors will also point perpendicular to the surface. By 

vector addition, this will give an enhanced signal for this type of vibrational motion. In 

 

 

Figure 2.8 A schematic of the dipole moments of the vibrational modes of a molecule 

and the image dipole. (Left) represents parallel dipole moments and (right) represents 

perpendicular dipole moments.  
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contrast, if the dipole moment of the molecular vibration is parallel to the plane of the 

surface, the image dipole vector will be equal in magnitude and opposite in direction. 

Thus, the vectors will cancel and no infrared signal will be detected in this case. This 

phenomenon explains why the net dipole moment increases when the dipole moment and 

the image dipole are perpendicular to the plane of the surface, and why the net dipole 

moment is zero when the dipole moment and image dipole are parallel to the plane of the 

surface. 

2.3.2 Vibrational Frequencies and Line Shapes 

It is useful to include a brief discussion on the shift in frequency that is seen in 

almost all the RAIRS data presented in this thesis. The change in the frequency as the 

dosage increases is attributed to dipole coupling, chemical shifts and/or hydrogen 

bonding.96,97,98 The phenomenon of dipole coupling occurs when oscillators are close to 

each other (e.g., on a surface). The dipoles become coupled and an inphase mode (with 

a frequency of ω0 + ∆ω) and an outofphase mode (with a frequency of ω0  ∆ω) are 

produced.96 Since only the inphase mode is dipole active, this provides an explanation 

for why the peaks tend to blueshift. Chemical shifts, which are a result of the change in 

the electronic environment at the interface, occur in conjunction with dipole coupling and 

are likely influencing the shift in frequency observed in the results presented here.  

 A variety of line shapes are also illustrated in the RAIRS data. Therefore, a 

discussion based on the work by Hoffmann 99 on the theory of RAIRS line profiles will 

be mentioned. Homogeneous and inhomogeneous line broadening are typically observed 

in experimental data. Homogeneous line broadening arises when the vibration at the 

interface is dampened by the coupling of phonons to vibrational modes and/or 
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electronhole pair creation. In electronhole pair creation, electronhole pairs get excited 

and subsequently relax, which is suggested to cause lifetime broadening. Inhomogeneous 

broadening provides more information on the adsorption site and intermolecular 

interactions and is sensitive to low coverage versus high coverage behavior. RAIRS data 

of low coverage experiments are dependent on the surface mobility (which is dependent 

on temperature) and repulsive/attractive intermolecular forces. A display of common line 

profiles appearing at low coverage is shown in Figure 35 of Hoffmann reference.99 High 

coverage behavior is mainly governed by intermolecular repulsion, and the magnitude of 

intermolecular repulsion is dependent on low and high surface diffusion barriers.  

2.4 Carbon Monoxide Adsorption Technique 

 Carbon monoxide (CO) has its Highest Occupied Molecular Orbital (HOMO) as 

the 5σ bonding orbital, and the orbital has its largest lobe on the backside of the carbon 

atom, making CO bond to a metal in an upright position. In the upright position, the 

principle axis of the molecule is perpendicular to the plane of the surface, with the C 

atom attached to the surface and the O atom extended in the vacuum. This 5σ orbital has 

electrons that are able to be donated in a sigma fashion to an orbital in the metal atom. 

The Lowest Unoccupied Molecular Orbital (LUMO) in CO is the 2π* antibonding 

orbital, and the orbital has lobes on carbon and oxygen. If the metal has electrons in a 

dorbital of appropriate symmetry to overlap with the antibonding orbital of CO (i.e., dπ 

orbitals), then the metal is able to donate electrons back to CO, in a socalled pi 

backbond.   

 The effect of CO being a strong sigma donator and a strong pi acceptor is 

synergistic. The more electron density CO donates to the metal, the more electron rich the 
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metal becomes, and the more electron density the metal is able to donate back to CO. 

This effect causes the metalcarbon bond to strengthen and the carbonoxygen bond to 

weaken. The weakening of the CO bond means it is lower in energy, which causes a 

redshift in the CO stretching frequency. Hence, the CO frequency can provide 

identification of the probed metal species.100  

 The sensitivity of the CO vibrational frequency makes it a popular probe molecule 

in surface analysis.94 The CO stretching frequency is dependent on a number of factors, 

including the nature of the metal, the adsorption geometry of CO and the CO 

coverage.94,100,101 

2.5 Temperature Programmed Desorption  

 Temperature programmed desorption (TPD) is a technique useful in determining 

the energy of desorption, the Arrhenius preexponential factor (A) and the desorption 

order.55,56,93 Additionally, TPD aids in identification of the desorbed products and helps 

in the interpretation of RAIRS data. Hence, qualitative and quantitative information can 

be extracted from TPD data.  

 The desorption order can be obtained by using the PolanyiWigner formula:93 

 𝑟
𝑑𝑒𝑠 = 

−𝑑𝜃
𝑑𝑡

 = 𝑣𝑛𝜃𝑛exp (
−𝐸𝑑𝑒𝑠

𝑅𝑇
)
 (6) 

where 𝑟𝑑𝑒𝑠 is the desorption rate, θ is the concentration of adsorbate molecules on the 

surface, υn is the desorption preexponential factor, n is the desorption order, Edes is the 

desorption energy, R is the gas constant, T is the temperature of the substrate and t is 
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time. In a temperature programmed desorption experiment, the temperature is raised 

linearly as a function of time from an initial temperature:102  

  𝑇 = 𝑇0 + 𝛽𝑡  and  𝑑𝑇 = 𝛽𝑑𝑡 (7) 

where T is the temperature of the substrate, T0 is the temperature at t = 0 and 𝛽 is the 

heating rate. The PolanyiWigner formula can then be written as a function of the 

heating rate by substituting 
𝑑𝑇

𝛽
 for 𝑑𝑡 in (6):93 

 
−𝑑𝜃

𝑑𝑇
=

𝑣𝑛𝜃𝑛exp (
−𝐸𝑑𝑒𝑠

𝑅𝑇 )

𝛽
  (8) 

 

 To study the relationship between temperature and the other variables, it is useful 

to remember that the maximum value for 𝑟𝑑𝑒𝑠 is found when the gradient of the TPD 

curve is equal to zero. In that regard, the derivative of Equation (8) with respect to 

temperature can be set to zero. After rearrangement of the variables, a new equation is 

derived: 

 𝐸𝑑𝑒𝑠

𝑅𝑇2
=  

𝑣𝑛

𝛽
 exp (

−𝐸𝑑𝑒𝑠

𝑅𝑇
) (9) 

Equation (9) shows that the temperature corresponding to the maximum value of the TPD 

curve is proportional to 𝐸𝑑𝑒𝑠 and 𝛽, and inversely proportional to 𝑣𝑛. In other words, 

when 𝐸𝑑𝑒𝑠 is shifted to a higher energy, the TPD peak will be shifted to a higher 

temperature.  

 To determine 𝐸𝑑𝑒𝑠, incorporation of the natural log into Equation (6) will result in 

Equation (10):  
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ln(𝑟𝑑𝑒𝑠) = 𝑛 ln(𝑣𝑛𝜃𝑛) −

𝐸𝑑𝑒𝑠

𝑅

1

𝑇
 (10) 

 

An Arrhenius plot can be made to determine the activation energy, where the xaxis is 
1

𝑇
, 

the yaxis is ln (𝑟𝑑𝑒𝑠), the yintercept (b) is 𝑛 ln(𝑣𝑛𝜃𝑛)  and  the slope (m) is −
𝐸𝑑𝑒𝑠

𝑅
.  

 When performing a TPD experiment, it is important to know that the desorption 

temperature can provide information about the adsorbatesurface interaction. Adsorbates 

can chemisorb (bind through a covalent interaction), physisorb (bind through 

intermolecular forces such as a van der Waals interaction), desorb, readsorb, decompose 

before desorption, desorb from various binding sites and/or be formed by 

recombination.56 For example, low temperature desorption usually indicates 

physisorption. Desorption at higher temperatures typically suggests that the desorbing 

species results from a reaction (e.g., recombinative desorption) on the surface. 

2.6 Scanning Electron Microscopy and Energy Dispersive Xray Spectroscopy 

 A scanning electron microscope (SEM) coupled with an energydispersive Xray 

spectrometer (EDS) can provide information on the geometric structure of the surface as 

well as the elemental composition. Depending on the type of electron gun used, relatively 

large defect sites to individual surface atoms can be observed,103 which makes SEM/EDS 

ideal to observe the complex structure of mineral surfaces. The instrument used to 

measure the spectra reported in this thesis has a resolution of approximately 1 nm at 1.0 

kV. 
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 The scanning electron microscope can detect secondary electrons, and that 

detection provides information on the morphology of the surface.104 Secondary electrons 

are lowenergy electrons that are a few nanometers away from the surface, therefore, 

detection of secondary electrons results in an image of the surface of the sample. The 

process of yielding secondary electrons begins with using an electron gun, which 

irradiates the sample via electrons at a chosen accelerating voltage. This causes valence 

electrons from the sample to be emitted into vacuum and eventually guided to an 

EverhartThornley detector (n.b., that only valence electrons near the surface can be 

emitted due to the low energy of secondary electrons). A bright spot in the image 

indicates that relatively more secondary electrons have escaped from that region, and a 

dark spot in the image indicates that relatively fewer secondary electrons have escaped 

from that region. Not only does this phenomenon result in a perceptibly defined 

geometric structure of the surface, but it also illustrates which regions are flat versus 

composed of edges, since edges tend to emit more electrons and appear brighter.   

 Energydispersive Xray spectroscopy (EDS) allows identification of chemical 

species, at the surface and below, to around 1 micrometer. Unlike secondary electron 

imaging, the EDS technique utilizes highenergy electrons to eject an electron from an 

inner shell of each atom. After this occurs, an outer shell electron fills the vacancy, which 

causes the release of an Xray with energy that is unique to the atomic structure of the 

targeted atom. Due to matrix effects, the values of the atomic percentages must be 

examined closely. The intensity ratio for each characteristic energy is influenced by 

factors such as Xray absorption, Xray fluorescence and electron backscattering. In 
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addition, EDS is not sensitive enough to probe trace elements or light elements (typically 

elements lighter than sodium), making EDS a semiquantitative technique.104 

 An advantage of EDS is that it can map the distribution of elements on a sample, 

also known as elemental mapping. In elemental mapping, a selected region is raster 

scanned by a highenergy beam to identify the elements in that region. Since Xray 

counts are measured per image pixel,105 the map is essentially a pixelated image with 

colors that correspond to each Xray line. Since each Xray line corresponds to a unique 

atomic structure, the map subsequently illustrates the spatial distribution of elements 

across a region. This technique allows the user to identify the location of the binding sites 

relative to the geometric structure of the sample, as well as identify diffusion of the 

elements.    

2.7 Xray Photoelectron Spectroscopy 

 Xray photoelectron spectroscopy (XPS) can identify oxidation states and 

quantitate the composition of the sample with a sampling depth of approximately 10 

nm.106,107 These traits illustrate that XPS provides direct information on the identification 

and quantification on the composition of the surface.  

 When an incoming photon is absorbed by a surface atom, a photoelectron is 

emitted if the incoming photon has an energy greater than the binding energy of the 

emitted electron (i.e., photoelectron). This can be described mathematically: 

 𝐸𝐵 = ℎ𝑣 − 𝐸𝑘 (11) 

 

where 𝐸𝐵 is the electron binding energy (also referred to as the work function and 
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designated by the symbol ), ℎ𝑣 is the energy of the incoming photon and 𝐸𝑘 is the 

electron kinetic energy. Deepcore electrons need Xray energies in order to be emitted 

from the solid and into vacuum due to their relatively high binding energies.  

 Depending on the oxidation state of the atom and the substituents bound to the 

atom, 𝐸𝐵 will shift. This shift is called a chemical shift and is symbolized as ∆𝐸𝐵. If the 

oxidation state increases, the binding energy will increase. If there are electron 

withdrawing substituents, the binding energy will increase as well. Essentially, the more 

electronegative the atom is, the greater the increase in the chemical shift.  

 The width of XPS peaks is governed primarily by lifetime broadening, which 

produces a Lorentzian profile. According to the Heisenberg uncertainty relation: 

 
Г =  

ℎ

𝜏
 

 

(12) 

where ℎ is Planck’s constant, 𝜏 is the lifetime of the core hole and Г is the peak width. 

The lifetime of the core hole decreases as the core hole gets deeper (i.e., as the core hole 

gets closer to the nucleus) since there are more electrons available to fill the hole. 

Therefore, at a given shell energy level, the greater the atomic number, the more 

electrons there are available to fill the hole, which consequently decreases the lifetime 

and increases the linewidth. Because deepcore electrons do not participate in bonding 

and have energies that are intrinsic to the atom, the peak area is proportional to the 

number of atoms.  
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2.8 Development of a Synthetic Schreibersite Sample and IronNickel Control for 

Surface Science Analysis 

 To our knowledge, this is the first RAIRS study of a metal phosphide. Because 

RAIRS requires a surface that is both reflective in the infrared region and also has 

sufficient conductivity to allow an image dipole to be created, it has typically been 

performed on singlecrystal metal surfaces or thin metaloxide films grown on metals. 

Although they are not metals, iron and nickel phosphides have been characterized as very 

low band gap materials (i.e., 0.50 eV or less)108,109,110 and they have a metallic luster 

when polished. Unfortunately, ironnickel phosphides are not available commercially 

and there is currently no procedure for growing singlecrystals. The procedure for 

creating the smooth solid samples necessary for a RAIRS measurement is outlined below.  

 The synthetic schreibersite sample had a composition of (Fe,Ni)3P. Powders of 

iron, nickel and red phosphorous (2:1:1) were heated under an argon atmosphere at 820˚C 

for 235 hours by N. La Cruz.111 The sample was then pulverized, sieved and pressed into 

an iron plate with a hydraulic press capable of applying 20 tons of pressure. To form a 

robust solid sample, the sample was sintered under an argon atmosphere at 950˚C for one 

hour. Pressing under high pressure and sintering was necessary because ironnickel 

phosphides are both very hard and very brittle. The history of the sample is shown in 

Figure 2.9. 
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 Characterization of the sample throughout the development procedure was 

conducted by XPS and SEM coupled with EDS in order to identify elements near the 

surface and observe the geometric arrangement of the surface. As seen in Figure 2.10, 

phosphorus was segregated across the sampling region. Xray diffraction data indicates 

that the phosphorus depleted areas were ironnickel alloys.111 This segregation was most 

likely caused by heating the sample to 950˚C during sintering.    

 

  

Figure 2.9 (Left to right) Schreibersite samples after (a) heating Ni, Fe and P 

powders under Ar in a tube furnace at 820˚C for 235 hours, (b) pressing 

pulverized and sieved FeNi2P into an iron plate, (c) polishing with a wirebrush 

attachment on a Dremel and using Pikal powder, (d) milling the surface, (e) same 

as (d) but under 100x magnification, and (f) polishing with a roll grinder and 

grinderpolisher.  

 

Figure 2.10 Elemental maps of the Lα lines of (a) iron, (b) nickel and 

(c) phosphorus superimposed on a secondary electron image of a 

region of the sample. Images were taken with the Hitachi SU8230 

Cold Field Emission SEM/EDS system. An accelerating voltage of 10 

kV was used.    
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 To flatten and polish the sample, the sample was first smoothed with 60grit 

sandpaper and then with 120grit sandpaper on a roll grinder (Buehler HandiMet 2). The 

sample was further flattened with 180grit sandpaper using a grinderpolisher (Buehler 

EcoMet 300). The grinderpolisher was set at 250 rpm and the sample was pressed 

against the sand paper with a pressure of 5 psi for 2 minutes. This step was repeated using 

320grit sandpaper. To polish the sample to a mirrorfinish, 9 μm diamond suspension 

was sprayed onto an ultrapad cloth and the sample was pressed against the cloth for 5 

minutes at 5 psi with the grinderpolisher set at 150 rpm. This step was repeated with 3 

μm and 1 μm diamond suspension sprayed on trident cloth, followed by a 0.05 μm 

alumina suspension sprayed on microcloth. Images of the sample before and after 

flattening and polishing are shown in Figure 2.11.  

 

 The lack of bright features in (b) is an indicator of the reduction of edges within 

the probed area because the probability that an electron will escape from an edge is 

higher than the probability that an electron will escape from a flat terrace. Yet, the 

 
Figure 2.11 (a) Secondary electron images of the surface before flattening and 

polishing the schreibersite surface and (b) after flattening and polishing the 

surface with Buehler products.  
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surface has numerous defect sites and, therefore, is similar to the mineral’s naturally 

rough topography.  

 The alumina suspension left cloudycolored contamination on the sample that 

was visible to the naked eye, as seen in Figure 2.12. In an effort to remove the 

contamination, the sample was polished again using the same procedure without the 

alumina suspension. The sample was then imaged by a scanning electron microscope 

(SEM) and the composition of the sample at a depth of 1μm below the surface was 

analyzed by an energy dispersive spectrometer (EDS) in order to verify whether the 

contaminant was present or no longer present. Table 2.1 lists the atomic percentages 

obtained by EDS. According to the SEM/EDS data, there were trace amounts of 

contamination.  

 An ironnickel sample was created as a control by T. Beckman. Beckman pressed 

FeNi powder in a brass bushing with steel anvils at 20 tons, sintered the pressed powder 

in a tube furnace that was initially under vacuum and then further purged with argon, and 

finally set the disk within a steel plate and polished the disk and plate with a rotary 

grinder until a mirror finish was achieved.   
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Figure 2.12 Representative Scanning Electron Microscope (SEM) image of the 

surface of the schreibersite sample after polishing with alumina suspension. 

Cloudycolored swirls can be seen on the surface at 21000x magnification.  

Table 2.1 Atomic percent of elements within the sample (+/ 0.5% uncertainty) 

obtained by EDS. 
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 After SEM/EDS analysis, XPS was performed to complement the EDS data as 

well as reveal the composition of the sample to a depth of 10 nm below the surface. 

Figure 2.13 shows an XPS spectrum of the Fe2NiP sample, and Table 2.2 lists the 

normalized atomic percentages representing that sampling region.  

 

 

 

Figure 2.13 XPS of the unpolished Fe2NiP sample. Image Credit: A. McKee,  

T. Orlando Group, Georgia Institute of Technology.   

Table 2.2 Normalized data of the atomic percent of 

elements within the sample (+/ 0.5% uncertainty)  

obtained by XPS. 
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Because the data in Table 2.1 is unnormalized and the data in Table 2.2 is normalized, it 

is difficult to compare the two. However, it is evident that more phosphorus was detected 

by the EDS than the XPS, suggesting that there is a higher abundance of phosphorus 

further below the surface. It is possible that the depletion of surficial phosphorus was 

caused by oxidation via exposure of the sample to air, which would, if true, demonstrate 

the reactive nature of phosphorus in schreibersite.   
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CHAPTER 3: WATER AND HYDROGEN PEROXIDE ON SCHREIBERSITE 

3.1 RAIRS Data and Analysis of Water on Fe2NiP and FeNi at Low Surface 

Temperatures (H2O, H2
18O and D2O)  

 Low temperature (Temperature (T) = 125 K) and high temperature (T = 295 K) 

studies of water (H2O) adsorbed to Fe2NiP were performed to observe the influence of 

the mineral surface temperature on the chemistry at the interface. To aid with peak 

assignment, several control experiments were conducted. For the low temperature 

experiments, these controls include D2O adsorbed to Fe2NiP, H2
18O adsorbed to Fe2NiP 

and H2O adsorbed to FeNi. 

 The proposed adsorption geometry of H2O on the schreibersite surface is shown 

in Figure 3.1 and is supported by the following discussion. Figure 3.2 shows the growth 

of vibrational bands as the exposure of H2O on a synthetic Fe2NiP surface is increased. 

The frequencies observed in Figure 3.2 were assigned by comparison to RAIRS data of 

other model systems that are relevant to our experiments, e.g., ices on nickel, iron, nickel 

oxide and iron oxide surfaces. This comparison is outlined in Table 3.1. Experimentally 

observed RAIRS frequencies and their relative intensities are: 34453425 cm1 (strong), 

892812 cm1 (medium) and 1226 cm1, 17101548 cm1, 22572170 cm1 (weak). The 

peak at ~3400 cm1 is assigned to the hydrogenbonded OH stretch of H2O since the 

free (non hydrogenbonded) OH stretch has a stretching frequency of ~3580 cm1 for 

H2O adsorbed on oxidized iron surfaces.69 Since hydrogen bonding lowers the potential 

energy of the OH potential well,112 the hydrogenbonded OH stretch has a lower 
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frequency than the free OH stretch. By comparison of the frequencies to the reference 

values listed in Table 3.1, the H2O is most likely bound to an iron site versus a nickel site. 

 Since the interaction of H2O with phosphorus is a main interest in this study, an 

ironnickel control sample was created. It is assumed that a distinction in the RAIRS 

frequencies and line profiles between the Fe2NiP experiments and the FeNi experiments 

is due to differences resulting from the incorporation of phosphorus. These differences 

could be the result of the adsorbate molecules interacting with P atoms in the surface or 

they could be the result of changes in the electronic structure of the solid as a result of P 

incorporation (i.e., synergistic effects). Figure 3.3 illustrates RAIRS data of H2O at 

various exposures on an FeNi sample. The shift of the OH stretching frequency to 

~3390 cm1 in Figure 3.3 from ~3450 cm1 in Figure 3.2 suggests that H2O is interacting 

with phosphorus at the interface. To determine if oxidation or reduction occurs at the 

Fe2NiP surface, H2
18O and D2O control experiments were conducted. Figure 3.4 shows 

the adsorption of H2
18O on Fe2NiP and Figure 3.5 shows the adsorption of D2O as probed 

by RAIRS. The isotopic shift of the OH stretching frequency can be seen by comparing 

the peak at ~3400 cm1 in Figure 3.4 to the peak at ~3450 cm1 in Figure 3.2. 

Unfortunately, this isotopic shift does not provide insight as to whether the oxygen atom 

or the hydrogen atoms interact with the surface. However, it is likely that the oxygen 

atom is bound to the surface and the hydrogens are extended into the vacuum due to the 

lone pair on the oxygen. The shoulders along the OH peak in Figures 3.2, 3.3 and 3.4 

indicate small island formation of amorphous H2O ice on the surface in all cases.99,113 

The libration mode for H2O observed at 892 – 812 cm1 also suggests that H2O ice is on 

the surface. Since the libration mode is a result of the molecule undergoing a “frustrated 
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rotation” due to being trapped in the ice, the mode is not highly sensitive to the 

interaction between the adsorbate and the mineral surface. Thus, the frequency shift of 

the libration mode when H2O is adsorbed on FeNi versus Fe2NiP is relatively low 

compared to the frequency shift observed for the OH stretching mode.   

 The H2O bend at ~17001500 cm1 and the peak at ~22002100 cm1 are weak 

transitions and, therefore, the isotopic and chemical shifts are difficult to distinguish. At 

0.6 L, two peaks for the H2O bend arise, and this phenomenon is suggested to be a result 

of inhomogeneous broadening caused by surface domains of different order.99 To our 

knowledge, there are no references for H2O adsorption on iron, iron oxides, nickel and 

nickel oxides that contain transitions at ~22002100 cm1. It is hypothesized that this 

peak is a combination band and/or overtone that is related to the interaction with iron 

and/or nickel since the peak appears in the FeNi control experiment. It is also possible 

that this feature is related to CO2, since the CO stretch for an unpurged system would be 

in this area. Because the intensity of the infrared beam was no less than the intensity of 

the infrared beam in the H2O experiments, this issue is not a function of the amount of 

light detected by the detector.  

 The transition at ~1220 cm1 in all the Fe2NiP experiments is not native to the 

infrared features of H2O adsorption on iron, iron oxides, nickel or nickel oxides and is 

commonly assigned to the P=O stretch.114,115,116,117,118 However, it could also represent 

the CO stretch or the OCO bend if organic contamination is present.83,119 A number 

of control experiments were performed to elucidate the nature of the band. As mentioned 

previously, the weak ~1220 cm1 feature in the H2
18O data made it difficult to observe the 
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isotopic shift and, therefore, was not helpful in understanding the origin of that peak in 

the H2O data. Unfortunately the DOD bend is at 1200 cm1,120 which also made the 

D2O experiment not useful for this situation. Future experiments using HDO could help 

with this assignment. The mystery peak did not show up in the H2O adsorption on FeNi 

data, but it did show up in the CH3OH adsorption on FeNi experiment discussed in 

Chapter 4. 

 

 

Figure 3.1 Proposed adsorption geometry of H2O on Fe2NiP  

at a surface temperature of about 130 K. 
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Figure 3.2 (a) A RAIRS spectra of H2O adsorbed to Fe2NiP with a 

H2O dosage of 0.2 L – 0.8 L and (b) 2.0 L  8.0 L. Experiments 

were run with a sample temperature of 125 K.     
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Figure 3.3 A RAIRS spectra of H2O adsorbed to FeNi control 

sample with a H2O dosage of 2.0 L – 8.0 L. Experiments were run 

with a sample temperature of 137 K.  

 

  

 
Figure 3.4 A RAIRS spectra of H2

18O control molecule adsorbed to Fe2NiP 

with a H2
18O dosage of 2.0 L – 8.0 L. Experiments were run with a sample 

temperature of 133 K.  
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 To eliminate the possibility that the peak is representative of organic 

contamination, a significant effort was made to clean the surface within the UHV 

chamber. Figure 3.6 shows RAIRS data of H2O on Fe2NiP after 3 cycles of argon ion 

bombardment (30 minutes at 5.0 x 105 torr) and flashing cycles (550 K setpoint 

 

 

Figure 3.5 (a) A RAIRS spectra of D2O control molecule adsorbed to 

Fe2NiP with a D2O dosage of 0.2 L – 0.8 L and (b) 2.0 L 8.0 L. 

Experiments were run with a sample temperature of 118 K.     
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temperature), which resulted in the disappearance of the ~1220 cm1 band. This supports 

a conclusion that the H2O source itself does not contain organic contamination.  

  

 The next day, one argon ion bombardment experiment was performed without 

flashing before H2O was dosed onto the surface, and that experiment is exhibited in 

Figure 3.7. The ~1220 cm1 band appeared, which suggests that the peak could be a result 

of corrosion by H2O or an increase the increase in the energy of the surface atoms due to 

argon ion bombardment alone (n.b., no heat addition or flashing was performed for the 

data shown in Fig. 3.7), which would have promoted surface relaxation to a 

thermodynamically more stable structure.       

 

 

Figure 3.6 A RAIRS spectra of H2O adsorbed to Fe2NiP 

with a H2O dosage of 2.0 L – 6.0 L. The experiment was 

performed one day after argon ion bombardment and 

flashing cycles.  
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 Figure 3.8 shows a H2O experiment conducted two days after argon ion 

bombardment and flashing cycles without performance of experiments in between to 

determine if the peak is due to a corrosion process. The disappearance of the ~1220 cm1 

peak suggests that the peak does not represent a product of corrosion.      

 
Figure 3.7 A RAIRS spectra of H2O adsorbed to Fe2NiP with a H2O 

dosage of ~2.0 L – 4.0 L. An estimate on the dosage is due to the 

malfunction of the leak valve during the experiment. The experiment was 

performed two days after argon ion bombardment and flashing cycles and 

one day after a H2O experiment.  
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 To investigate if argon ion bombardment has a role in the production of the 

puzzling ~1220 cm1 species, a H2O experiment was done the next day after one argon 

ion bombardment experiment without flashing, and that experiment is represented in 

Figure 3.9. As seen in the figure, the transition did not appear. Future work on clarifying 

the nature of this peak includes reducing the chamber pressure to eliminate the possibility 

of contamination within the chamber (e.g., from pump oil or other carbon deposits 

building up on the surface over time).   

 

 

Figure 3.8 A RAIRS spectra of H2O adsorbed to Fe2NiP with a 

H2O dosage of 2.0 L – 6.0 L. The experiment was performed two 

days after argon ion bombardment and flashing cycles with no 

experiments performed in between the two days.  
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3.2 RAIRS Data and Analysis of Water on Fe2NiP and FeNi at High Surface 

Temperatures (H2O) 

RAIRS spectra of the synthetic schreibersite surface before (black spectrum) and 

after (blue and red spectra) exposure to H2O are shown in Figure 3.10. H2O was dosed 

while the surface temperature (TDosed) was held at 130 K (blue spectrum) and 295 K (red 

spectrum).  All RAIRS spectra were collected at a surface temperature of 130 K or lower 

to produce a steady baseline. The experiment with TDosed = 295 K (red spectrum) required 

a higher dosage than the experiment with TDosed = 130 K (blue spectrum) because the 

molecular sticking coefficient of H2O in vacuum is lower at the higher surface 

temperature. For TDosed = 295 K (red spectrum), the peak at 3187 cm1 indicates 

dissociative chemisorption of H2O as hydroxyl (OH).121 The peak at 2423 cm1 could be 

 

 

Figure 3.9 A RAIRS spectra of H2O adsorbed to Fe2NiP with a H2O 

dosage of 2.0 L – 6.0 L. The experiment was performed two days after 

argon ion bombardment and flashing cycles with no experiments 

performed in between the two days, and one day after H2O was dosed 

on the surface.  
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a POH or a PH stretch, indicating an interaction of phosphorus with H2O on the 

surface of schreibersite.114,122,123,124 XPS analysis of the surface could help reveal which 

of the two types of phosphorus species are present since the P in POH would be in a 

positive oxidation state (binding energy of 2p electron in P greater than about 130 eV), 

while the P in PH would be in a negative oxidation state (binding energy less than about 

130 eV).125 Additionally, control experiments of H2O dosed onto an FeNi sample at 295 

K did not show this feature at 2400 cm1.  Both the features at 3187 and 2423 cm1 

suggest a strong chemical interaction between H2O vapor and schreibersite. The shoulder 

at ~3400 cm1 and the relatively weak feature at 1680 cm1 are indicative of molecular 

H2O bound to the surface (i.e., a hydrogen bonded OH stretch and a HOH scissors 

motion, respectively).68,70 The difference in features observed for H2O dosed at low 

temperature versus high temperature, in particular the appearance of peaks corresponding 

to dissociation of H2O, suggests that the surface temperature of the mineral is an 

important aspect of its reactivity. 
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3.3 TPD Data and Analysis of Water (D2O and H2O)  

The TPD spectra shown in Figure 3.11 provide further evidence of strong 

chemical interactions in addition to weaker intermolecular forces between schreibersite 

and H2O. In this experiment, 6.0 Langmuirs of H2O was dosed onto a 130 K Fe2NiP 

surface and the temperature was increased with a ramp rate of 0.2 K/s. Low temperature 

peaks (i.e., 177 and 195 K) correspond to physisorption of molecular H2O, while peaks at 

503, 535 and 560 K are indicative of OH groups recombining to form H2O and desorb 

after dissociative chemisorption on the surface. OH formation most likely happened 

during the TPD experiment. As the surface is heated, some of the H2O on the surface 

dissociates into OH, and these OH groups are more strongly bound to the surface than 

the original H2O. As the surface temperature is further increased, the H2O recombines 

 

Figure 3.10 RAIRS spectra of H2O dosed onto variable 

temperature surfaces of Fe2NiP and FeNi (TDosed = surface 

temperature when H2O was dosed). All spectra were acquired 

after cooling the sample to at least 130 K.  
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and desorbs. POx species are likely to form anions rather than cations and are not likely to 

be volatile under the conditions of these experiments, as compared to phosphate (PO4
3) 

desorption from an iron oxide surface.126 

 

 A challenging aspect of the TPD experiments was the difficulty of obtaining 

reproducible results. In particular, the chemisorption peaks shifted in temperature 

significantly between experiments, as observed by the comparison of Figure 3.11 to 

Figure 3.12. This shift is predicted to be a consequence of surface reconstruction due to 

different surface preparation procedures (e.g., flashing temperatures used during 

sputtering cycles).   

 

Figure 3.11 TPD spectrum of 6.0 L of H2O dosed onto Fe2NiP. A ramp 

rate of 0.2 K/s was used. 
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 In a separate TPD experiment, 5.0 L of H2O and D2O were compared to verify 

that the m/z = 18 detected by the QMS was H2O dosed from the manifold. Figures 3.13 

and 3.14 show the desorption of H2O and D2O after 5.0 L of each were dosed into the 

chamber, respectively. As expected, there is a shift in the TPD spectrum between the H2O 

and D2O experiments due to the difference in zeropoint energies of the molecules.127 

The “bumps” at 164 and 166 K are indicative of the transition from the amorphous to 

crystalline phase.127 These signatures of H2O desorption suggest that the detection of m/z 

= 18 is representative of H2O dosed from the manifold versus another species or 

background contamination. Unfortunately, the shape and temperature range of both 

chemisorption peaks have not been discovered in comparable model systems, and there 

are multiple sites at which the H2O could desorb from (e.g. tungsten wires, tantalum 

 

Figure 3.12 TPD spectrum of 6.0 L of H2O dosed onto Fe2NiP. 

A ramp rate of 0.2 K/s was used. Data was taken one day 

before the data illustrated in Figure 3.13.  
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plate, iron plate around schreibersite, etc.), which consequently makes it difficult to 

determine the origin of these peaks.  

 

 

 
Figure 3.13 TPD spectrum of 5.0 L of H2O dosed onto Fe2NiP. A ramp 

rate of 0.2 K/s was used.  

 

Figure 3.14 TPD spectrum of 5.0 L of D2O dosed onto Fe2NiP. A ramp 

rate of 0.2 K/s was used.  
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3.4 RAIRS Data and Analysis of H2O2 

 As mentioned previously, hydrogen peroxide 30 wt. % in H2O was used, and 

therefore, it was hypothesized that the RAIRS spectra would appear similar to that of 

H2O RAIRS spectra with the appearance of peaks representative of oxidation on the 

surface. Figure 3.15 illustrates RAIRS of H2O2 on a cold schreibersite surface. The peak 

that shifts to 857 cm1 at a dosage of 8.0 L is indicative of the OO stretch.75 Transitions 

at ~3400 cm1 and 1663 cm1 are very likely to indicate the OH stretch and HOH 

bend of H2O, respectively. The peak at 2478 cm1 is unknown and could possibly 

represent oxidation on the surface. It is unexpected to not observe the 1220 cm1 feature 

in this data. The disappearance of this band may indicate that the band is evidence of 

organic contamination rather than a P=O stretch.             

  

Figure 3.15 A RAIRS spectra of H2O2 adsorbed to Fe2NiP 

with a H2O2 dosage of 0.2 L – 8.0 L. Experiments were run 

with a sample temperature of 128 K. 
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CHAPTER 4: SMALL ORGANICS ON SCHREIBERSITE 

4.1 RAIRS Data and Analysis of CH3OH on FeNi and Fe2NiP 

 Similar to the analysis of the H2O experiments, the adsorption of methanol 

(CH3OH) on schreibersite was characterized by comparison of the vibrational bands in 

this experiment to band assignments in referenced experiments. The adsorption of 

CH3OH on an FeNi sample was additionally performed to investigate the possible 

interaction of CH3OH with lattice phosphorus atoms.  

 Figure 4.1 illustrates peaks that represent a Fe2NiP surface exposed to varying 

dosages of CH3OH. Similar to the analysis of H2O adsorption, the frequencies observed 

in Figure 4.1 were assigned by comparison to RAIRS data of other model systems that 

are relevant to our experiments, e.g., thick ices and ices on nickel, iron, nickel oxide and 

iron oxide surfaces. This comparison is outlined in Table 4.1. Experimentally derived 

RAIRS frequencies and their relative intensities are: 10461040 cm1 (sharp), 33373230 

cm1 (strong), 1462 cm1, 2836 cm1, 2957 cm1 (medium) and 1135 cm1, 1233 cm1 

(weak).  The band at 33373230 cm1 is assigned to the OH stretch of CH3OH in the 

condensed phase.128 This band shifts as the dosage increases, and this shift is most likely 

attributed to dipole coupling and/or changes in the electronic environment at the 

interface. Comparing the experimental values to the referenced values in Table 4.1 makes 
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it difficult to ascertain whether CH3OH is adsorbed to an iron/iron oxide or nickel/nickel 

oxide site. 

 At a dosage of 0.4 L (Figure 4.1), the only feature observable is the CO stretch 

at 1040 cm1. The OH stretch is clearly visible at 0.8 L, and the CH3 deformation band 

(1462 cm1), symmetric stretch (2836 cm1) and asymmetric stretch (2957 cm1) do not 

appear until 4.0 L. Because the OH stretch does not appear until 0.8 L, it is likely that 

below 0.8 L, CH3OH dissociatively adsorbs to the surface and decomposes into methoxy 

(CH3O and H+. This conclusion is supported by the fact that CH3OH dissociation at low 

temperature has been observed on nickel surfaces.83,129 The suggested orientation of 

CH3OH dissociation on the Fe2NiP surface is depicted in Figure 4.2. Although it has been 

calculated that more energy is required to dissociate CH3OH into CH3O + H+ versus 

CH3
+ + OH,130 the appearance of the CO stretch suggests that the OH bond breaks 

upon contact with the surface. It is plausible that CO and H could be dissociation 

products, however, it would not be energetically favorable to break the CH bonds.131 At 

0.8 L, the appearance of the OH stretch suggests the formation of CH3OH multilayer 

ice. The vibrational modes of the CH groups are then also expected to appear at 0.8 L. 

However, it has been observed in other RAIRS experiments that these modes do not 

appear until higher dosages,128,132 and that is most likely due to the angle of the dipole 

moment with respect to the plane of the surface. At 4.0 L, all the peaks intrinsic to 

CH3OH adsorption are observable in the data. Figure 4.3 shows the adsorption of CH3OH 

on the surface of the FeNi control sample. Because the peak at ~1240 cm1 appears in the 

FeNi control experiment (Figure 4.3), it is difficult to make an argument that the band 
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represents the interaction of phosphorus with CH3OH. In addition, comparison of the 

OH stretching frequency in Figure 4.1 to Figure 4.3 shows that the frequency remained 

near 3300 cm1, which further supports the idea that CH3OH does not interact with 

phosphorus at low surface temperatures.   

 

 

 

 

Figure 4.1 A RAIRS spectra of CH3OH and CH3OH dissociation products  

adsorbed to Fe2NiP with a CH3OH dosage of 0.4 L – 8.0 L Experiments were  

run with a sample temperature of 120 K.     

 

Figure 4.2 A drawing of the dissociation of CH3OH as CH3O and H+ on a cold 

Fe2NiP surface. 
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Figure 4.3 A RAIRS spectra of CH3OH adsorbed to FeNi with a CH3OH  

dosage of 2.0 L – 8.0 L Experiments were run with a sample temperature of 

138 K.  
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4.2 RAIRS Data and Analysis of HCO2H 

 Figure 4.4 displays the adsorption of formic acid (HCO2H) to the surface of the 

Fe2NiP synthetic mineral. Compared to H2O and CH3OH, the adsorption of HCO2H on 

model systems that are relevant to our experiments has not been well investigated. 

Therefore, the frequencies observed in Figure 4.5 were assigned by comparison to 

RAIRS data of ices on nickel and iron oxide terminated surfaces, as well as other metal 

surfaces such as copper and titanium dioxide. This comparison is outlined in Table 4.2. 

Experimentally derived RAIRS frequencies and their relative intensities are: 1733 cm1 

(sharp), 2696 cm1 (broad), 972959 cm1 (medium) and 1080 cm1, 1222 cm1 (weak).  

From the data and band assignments displayed in Figure 4.5 and Table 4.2, it is proposed 

that the adsorption geometry of HCO2H on the schreibersite surface is that shown in 

Figure 4.4.  

  

 Several reasons support this hypothesis. Because the COH bend at 972959 

cm1 is visible but the OH stretching frequency is missing, it is likely that the geometry 

of the OH dipole moment is the cause of the attenuation of the OH band intensity. If this 

        

 

Figure 4.4 Suggested adsorption 

geometry of HCO2H dosed on 

Fe2NiP.  
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is the case, then the CH stretching frequency should also not be detected. The transition 

at ~2700 cm1 could plausibly represent the CH stretch, however, the CH stretch is 

commonly found in the higher frequency range of ~29002800 cm1. 79,83,133,134 In 

addition, the spectra of HCO2H adsorption on the FeNi sample shown in Figure 4.6 do 

not show a peak at ~2700 cm1, which suggests that the peak is related to an interaction 

with phosphorus. Deuterated formic acid experiments will be performed in the future to 

help clarify the band assignment. Other supporting evidence for the adsorption geometry 

proposed in Figure 4.4 would be the observation of a metaloxide stretching frequency. 

Unfortunately, iron and nickel oxide stretching frequencies are below the detection limit 

of this experimental setup.   

 Unlike CH3OH, it is proposed that HCO2H remains in its molecular form upon 

contact with the surface. Due to the C=O stretching frequency at ~1730 cm1 and the lack 

of the strong CH bending transition found among formate species,83 HCO2H 

presumably does not dissociate upon contact with the surface. 
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Figure 4.5 A RAIRS spectra of HCO2H adsorbed to Fe2NiP with a HCO2H 

dosage of 0.2 L – 10.0 L Experiments were run with a sample temperature of 

127 K.     

 

Figure 4.6 A RAIRS spectra of HCO2H adsorbed to FeNi with a HCO2H 

dosage of 2.0 L – 10.0 L Experiments were run with a sample temperature of 

136 K.     
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4.3 RAIRS Data for Molecular Probes  

 Pyridine (C5H5N), carbon monoxide (CO) and hydrogen (H2) were exploited to 

probe the surface sites of schreibersite. Due to time, the C5H5N data was not reproduced 
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and will not be used for the upcoming publication (Qasim and AbbottLyon, in prep.). 

Figure 4.7 shows RAIRS spectra of Fe2NiP exposed to various dosages of C5H5N. 

 

 The peak at 1440 cm1 is representative of a weak Lewis acid site (or 

physisorption at the surface)135 and the peak at 1583 cm1 features a weak Brønsted acid 

site.136 The band at ~2500 cm1 may symbolize the protonation of C5H5N to the 

pyridinium ion. A plausible Brønsted acid source would be OH bound to the surface.      

 CO and H2 were also dosed onto the schreibersite surface as probe molecules, but 

the peak intensities were either not observed or were so weak they could not clearly be 

assigned. The RAIRS spectra of CO dosed onto the Fe2NiP surface shown in Figure 4.8 

has two weak transitions at ~3000 cm1 and ~2400 cm1, which could represent 

background H2O contamination and the oxidation of CO to CO2, respectively. The 

 

Figure 4.7 A RAIRS spectra of C5H5N adsorbed to Fe2NiP with a 

C5H5N dosage of 0.2 L – 0.8 L. Experiments were run with a sample 

temperature of 128 K.     
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RAIRS spectra of H2 dosed onto the Fe2NiP surface shown in Figure 4.9 appears to not 

have any transitions.  

 

 

 

Figure 4.8 A RAIRS spectra of CO adsorbed to Fe2NiP. Experiments were run with a sample 

temperature of 116 K.     

 

Figure 4.9 A RAIRS spectra of H2 adsorbed to Fe2NiP. Experiments were run with a sample 

temperature of 128 K.     
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CHAPTER 5: CONCLUSION 

 It is evident from this thesis that trying to understand the nature of the 

schreibersite surface is as complex as the surface itself and requires numerous 

experimental techniques. A custombuilt UHV apparatus and the schreibersite sample 

were optimized in order to perform RAIRS and TPD experiments on the schreibersite 

surface. Before studying the icemineral interface, the surface was characterized by 

SEM/EDS and XPS. These studies provided the atomic composition at multiple sample 

depths, which suggested that phosphorus in schreibersite is reactive with H2O vapor at 

standard temperature and pressure due to the higher abundance of phosphorus detected in 

the EDS data compared to the XPS data. An extensive RAIRS and TPD study was 

performed of H2O adsorption on Fe2NiP and FeNi and showed that the temperature of the 

surface influences surficial chemistry, the phosphorus in schreibersite is able to be 

oxidized under anoxic conditions in the presence of H2O, and H2O most likely interacts 

with lattice phosphorus at cold (< 130K) and high (~295 K) temperatures. H2O2 

adsorption was studied to compare to the H2O adsorption experiments, and it is possible 

that the peak at 2478 cm-1 in the H2O2 data represents oxidation of the surface. The 

interaction of organic molecules, CH3OH and HCO2H, with the cold schreibersite surface 

was additionally studied. It was illustrated that CH3Oand H is formed on the surface at 

low CH3OH dosages and most likely does not interact with lattice phosphorus. On the 

contrary, it is suggested that HCO2H does not dissociate upon contact with the surface, 
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but could be interacting with phosphorus in the sample. No evidence of adsorption of 

either H2 or CO on the Fe2NiP surface was apparent by RAIRS. This could be due to 

surface selection rules or because the molecules are not able to stick to the surface under 

the conditions investigated in this work. Even at low dosages of C5H5N, Lewis and 

Brønsted acid sites were apparent in the RAIRS spectra, which is another piece of 

evidence that illustrates how chemically active the schreibersite surface is.      

 The next phase in the investigation of the schreibersite surface will include 

performing a flashing series to try to uncover the origin of the ~1220 cm1 peak, dosing 

deuterated HCO2H to make an assignment of the ~2700 cm1 peak and constructing a 

new solidliquid cell for polarization modulation (PM)RAIRS experiments. The 

development of the liquidsolid cell will allow studies of the mineral surfaceliquid 

interface insitu, complementing the UHV studies and providing experimental conditions 

that parallel the aqueousphase experiments performed by our collaborators in the Center 

for Chemical Evolution.        
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