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Several years ago, we introduced the idea of item response curves (IRC), a simplistic form of item

response theory (IRT), to the physics education research community as a way to examine item

performance on diagnostic instruments such as the Force Concept Inventory (FCI). We noted that a

full-blown analysis using IRT would be a next logical step, which several authors have since taken.

In this paper, we show that our simple approach not only yields similar conclusions in the analysis

of the performance of items on the FCI to the more sophisticated and complex IRT analyses but

also permits additional insights by characterizing both the correct and incorrect answer choices.

Our IRC approach can be applied to a variety of multiple-choice assessments but, as applied to a

carefully designed instrument such as the FCI, allows us to probe student understanding as a

function of ability level through an examination of each answer choice. We imagine that physics

teachers could use IRC analysis to identify prominent misconceptions and tailor their instruction to

combat those misconceptions, fulfilling the FCI authors’ original intentions for its use. Furthermore,

the IRC analysis can assist test designers to improve their assessments by identifying nonfunctioning

distractors that can be replaced with distractors attractive to students at various ability levels.
VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4731618]

I. INTRODUCTION

One of the joys of physics is that, unlike many other fields
of inquiry, right and wrong answers are often unambiguous.
Because of this apparent objectivity, multiple-choice tests
remain an essential tool for assessment of physics teaching
and learning. In particular, the Force Concept Inventory
(FCI) (Ref. 1) is widely used in physics education research
(PER).

Tests are designed with specific models in mind. The FCI
was designed so that the raw score measures (in some sense)
the ability of “Newtonian thinking.” This article compares
two methods of test analysis based on different models of the
functionality of the FCI. These methods have the unfortu-
nately similar names of item response curves (IRC) (Ref. 2)
and item response theory (IRT) (e.g., Ref. 3). By comparing
these methods, we will show that the model behind the IRC
analysis is more consistent with that envisioned by the FCI
designers. Additionally, it is easier to use and its results are
easier to interpret in a meaningful way.

Any method of test analysis requires the construction of a
model to quantify the properties of the complex, interacting
“populationþ test” system. For example, in order to detect
correlations in the data, models often assume that each test-
taker has a true but unknown “ability.” In assessing students,
educators expect ability to be strongly correlated with raw

total score on the test. Weighing each question equally in
determining ability is a common model, but other methods,
such as factor analysis or IRT, use correlations in the test
response data to weigh the questions differently. Many
standardized tests subtract a fraction of a point from the raw
score to “penalize” guessing. This model assumes that the
probability of guessing the right answer to a question does
not depend on the specific question, that guessing any partic-
ular answer choice on a particular question is equally likely,
and that guessing works the same way at all ability levels.
Other, more sophisticated approaches, such as those in factor
analysis or item response theory,3 statistically define the
probability of response in order to estimate potentially differ-
ent weights for items. These approaches can be viewed as
drawing information from the correlations among items to
estimate appropriate weights. By the very nature of a
multiple-choice test, all models presume that there exists an
unambiguously correct answer choice for every item. But, a
key difference in models is associated with how they handle
the distractors.

IRC uses total score as a proxy for ability level, which
implies that all items are equally weighed. In order to imple-
ment IRC analysis, item-level data are necessary. IRC analy-
sis describes each item with trace lines for the proportion of
examinees who select each answer choice, including the dis-
tractors, at each ability level (see Fig. 1). To make an IRC

825 Am. J. Phys. 80 (9), September 2012 http://aapt.org/ajp VC 2012 American Association of Physics Teachers 825
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graph for a single item, we must separate the respondents by
ability level and then determine the fraction at each ability
level selecting each answer choice. For example, in our data
set, there were 116 students of ability level 20 who answered
Question 8. Of those, 81 selected Answer Choice 2, the cor-
rect answer. Thus, the trace line for the IRC of the correct
answer (asterisks in Fig. 1) passes through the point (20,
69%). When repeated for all ability levels, all questions, and
all answer choices, we arrive at the final product of IRC anal-
ysis: a set of traces for each item, such as those for the FCI
appearing in Fig. 1.

IRT analysis derives student ability by a statistical analy-
sis of item responses and does not necessarily weigh all
questions equally. In fact, IRT uses a probabilistic model
that is a convolution of examinee response patterns with a
specific model of item functionality. The IRT analysis of
Wang and Bao4 employs the three parameter logistic (3PL)
model to analyze the functionality of only the correct answer
choice. The final product of the 3PL IRT model is an esti-
mate for each item of three conceptually useful numbers:
difficulty, discrimination, and guessing probability. While
3PL is one example of an IRT model, a variety of models
with different algorithms and underlying assumptions have
appeared in the literature.5,6 One of the strengths of IRT
analysis is that these parameters should be robust with
respect to estimation from different populations.

We argue that, in the case of the FCI, IRC analysis yields
information overlooked or not easily obtained with other
methods and better reflects the intentions of the designers of
the FCI. The distractors in the FCI are tailored to specific
physical misconceptions that had been identified (by student
interviews and instructor experiences) to exist in the popula-
tion. That is, different distractors in an FCI item were

designed to function differently. The 3PL IRT analysis
assumes that all wrong answers for a given item are equiva-
lent. We will provide IRC analysis examples that show, in an
easy-to-interpret graphical form, how different distractors
appeal to students with varying abilities. If distractors are not
all equally “wrong,” we could estimate ability in a more sen-
sitive manner, effectively giving partial credit for some
wrong answers—those that suggest a deeper understanding—
than other wrong answers (cf. Bock7). Furthermore, we may
assess the effectiveness of items and alternative answer
choices as to how well they function in measuring student
understanding and misconceptions.2

The IRC analysis is particularly meaningful in the case of
the FCI because IRT analyses demonstrate the strong corre-
lation between ability and total score for this test.3 This qual-
ity justifies the use of raw score as a proxy for ability in the
model that underlies IRC analysis.

Below we illustrate the power of IRC analysis in probing
the performance of items on the FCI, with Sec. II comparing
results from Ref. 2 with subsequent publications. Section III
focuses on the differences between the 3PL IRT analysis and
IRC analysis for the FCI and argues that IRC analysis is the
more appropriate model for formative assessments like con-
cept tests in PER. Section IV provides an in-depth analysis
using the IRC approach for several FCI questions. We con-
clude in Sec. V.

II. INSIGHTS FROM RECENT ANALYSES

COMPARED WITH IRC ANALYSIS IN REF. 2

In Ref. 2, we outlined our IRC analysis approach to evalu-
ating the effectiveness of test questions and applied that tech-
nique to three sample questions from the FCI. Our technique

Fig. 1. The IRCs for all 30 questions on the FCI using the approach of Morris et al. (Ref. 2). This figure is analogous to Fig. 4 in Wang and Bao (Ref. 4). Each

graph shows the percentage of respondents (vertical axis) at each ability level (horizontal axis) on a given item selecting a given answer choice: þ¼ 1; ?¼ 2;

^¼ 3;4¼ 4; h¼ 5.
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provides a practical approach by which a broad cross-section
of physics teachers could engage in a more thorough under-
standing of the functionality of items on the FCI specifically
and multiple-choice tests more generally. Furthermore, our
approach allows test designers to evaluate not only the effi-
cacy of test items but also, within those items, the functional-
ity of specific answer choices, both correct answer choices
and distractors. Finally, we suggested the possibility for
evaluating student knowledge level based not only upon the
traditional dichotomous right/wrong scoring but also upon
the specific incorrect answer choices selected.

Since the publication of Ref. 2, several studies have used
IRT models to assess student performance and test item
functionality, though to date, ours remains the only paper to
examine the performance of the distractors within each item.
Ding and Beichner8 provide an overview of analysis techni-
ques used to probe measurement characteristics of multiple-
choice questions, including classical test theory, factor
analysis, cluster analysis, and IRT. Schurmeier et al.9 recently
described a 3PL IRT analysis of General Chemistry assess-
ments at the University of Georgia and found implications
for the impact of item wording on question difficulty and dis-
crimination. Marshall et al.10 applied full-information factor
analysis (FIFA) and a 3PL IRT model to 2003–2004 data
from the Texas Assessment of Knowledge and Skills
(TAKS) for science given to 10th and 11th grade students.
This analysis indicated that the test was more a measure of
generic testing ability and basic quantitative skills than spe-
cific proficiency in biology, chemistry, or physics and sug-
gested the utility of a 3PL analysis in the design process for
future assessments. (Marshall et al. also noted that Ref. 2
was similar to “item-observed score regression” described in
Lord.11 Indeed, we were unaware of this reference at the
time of our original publication.)

Most relevant to our original work are the papers by Pla-
ninic et al.12 and Wang and Bao.4 Planinic et al. used a Rasch
model (in effect, a one-parameter IRT model, distinguishing
items by difficulty) to evaluate the functionality of the FCI
for 1676 Croatian high school students and 141 Croatian col-
lege students. They identified problems with the functionality
of some items on the FCI and made suggestions for improve-
ment. Wang and Bao employed 3PL IRT analysis to the FCI.
As was the case with the study by Marshall et al., Wang and
Bao used a 3PL model. The strength of 3PL IRT is the
straightforward way in which it estimates difficulty and dis-
crimination parameters by fitting the response data to a curve
of probability of correct response plotted against ability. One
limitation of such an approach is that, although 3PL IRT can
model respondent guessing, it assumes that all distractors
within an item function equally. We have demonstrated this
not to be the case for the FCI. One way to overcome this
weakness is to use a full-blown nominal IRT model in which
response probabilities for each distractor are estimated, con-
ditional on student ability. For example, the nominal
response model7 of Bock can be fit in MULTILOG software, but
Bock’s parameters are not directly interpretable the way that
the parameters “a,” “b,” and “c” of the 3PL in Wang and Bao
are. Alternatively, the IRC approach can yield reasonably so-
phisticated analyses and is quite a bit easier to implement.
Other approaches include the nonparametric approach of
Ramsay’s TestGraf, a graphical approach to item analysis
that makes fewer assumptions than standard IRT.10

For comparison with the approach of Wang and Bao and
as an example to teachers and researchers looking for a prac-

tical approach to investigate item functionality, we applied
IRC analysis to all 30 questions on the FCI. We used total
score as a proxy for ability level, an approach supported by
the findings of Wang and Bao—see their Fig. 5 and analysis
that suggests a strong correlation between their IRT-based
estimate of student ability (h) and total test score: r2¼ 0.994.
The high correlation between the total score and model-
estimated ability does not mean that individual items are
equivalent or that wrong responses to specific items are
equivalent. We note that there may be value in the particular
wrong answers given: experienced teachers know that some
wrong answers are better (i.e., indicate a higher, though still
imperfect state of understanding) than others. Using that in-
formation could provide the next logical step in diagnosing
dysfunctional items or distractors and may lead to more reli-
able assessments of student ability levels (a benefit noted by
Bock7 in the nominal response model).

Figure 1 shows the IRCs for all 30 FCI questions from a
database of >4500 student responses compiled by Harvard
University, Mississippi State University, and Rice Univer-
sity, while Table I relates the percentage of students who
answered each question correctly. This figure provides an
analog to Fig. 4 in Wang and Bao. Some of the differences
between the sets of graphs in the figures may be attributed to
the fact that the data sets are independent of one another.
The IRC analysis graphs emphasize the information in the
distractors, which provides an instructor with an important
diagnostic tool for evaluating student misunderstandings and
item functionality, empowering instructors both to correct
the most troublesome student misconceptions and develop
more efficient test items.

In Ref. 2, we examined three questions from the FCI in
some detail. First, we identified Question 11 as a difficult
(25.7% correct) but an efficient question, with an IRC for the
correct answer choice showing a sharp slope near an ability
level/total score of 17 (out of a possible 30), allowing for a
clear discrimination between students above and below this
ability level, a result attainable with the 3PL IRT analysis as
well. However, using IRC, we also identified that Answer
Choice 2 was particularly popular among lower ability stu-
dents, while Answer Choice 3 was most popular among stu-
dents in the middle of the ability range. Interestingly,
Planinic et al. identify this question as problematic in that
their single-parameter Rasch model fails to predict the stu-
dents who will answer this question correctly.12 While their
sample is different from ours, their model assumes that the
low-ability students who get this question correct have done

Table I. The percentage of students who responded correctly to each

question on the FCI.

Question % Correct Question % Correct Question % Correct

1 71.6 11 25.7 21 32.9

2 34.6 12 65.2 22 42.1

3 51.5 13 26.3 23 39.6

4 37.1 14 39.5 24 66.6

5 19.2 15 29.0 25 21.4

6 73.6 16 59.2 26 13.2

7 66.4 17 17.6 27 59.4

8 50.4 18 22.2 28 36.7

9 45.9 19 45.6 29 50.8

10 54.0 20 32.3 30 25.8

827 Am. J. Phys., Vol. 80, No. 9, September 2012 Morris et al. 827
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so by guessing, yet our IRC analysis suggests a very low per-
centage of low-ability students are getting the correct an-
swer; they are much more likely to select one of two
alternative, yet attractive, incorrect answer choices. Like
Wang and Bao, the analysis by Planinic et al. does not exam-
ine or make use of the set of incorrect answer choices.

Next, we considered Question 9, which Wang and Bao
rated as the sixth hardest question on the FCI but the second
most likely question on which to guess correctly.4 IRC anal-
ysis reveals that this unlikely pairing occurs (at least in our
sample) because Answer Choices 1 and 4 do not function
very well, attracting few students of any ability level (the
curves are low and have shallow slopes). Our analysis is con-
sistent with that of Planinic et al., who placed this question
in the middle of their difficulty scale.12

Finally, we identified Question 4 as moderately difficult
(37.1% correct), but very inefficient, since three of the an-
swer choices were not functioning at all, each attracting less
than 2% of the students. Wang and Bao ranked this as the
ninth hardest question and tenth easiest to guess correctly.4

Planinic et al. rated the difficulty of this question in the
middle of the range.12 As we see in these examples, the addi-
tional information provided by IRC analysis (e.g., the func-
tionality of individual answer choices, the attractiveness of
individual answer choices to different subsets of the popula-
tion segregated by ability level, etc.) could lead to greater
insights into the actual ability levels of students taking the
test and the functionality of test items.

III. A COMPARISON OF IRC ANALYSIS

WITH 3PL IRT ANALYSIS FOR THE FCI

Let us now explore further a comparison between the 3PL
IRT model analysis by Wang and Bao and our approach for
the FCI. The 3PL IRT model of Wang and Bao naturally pro-
duces estimates of three different parameters, labeled a, b,
and c, which correspond to discrimination, difficulty, and
guessing, respectively.

First, Wang and Bao estimate the discrimination of an
item on the FCI from the 3PL model parameter a, which is
essentially the slope of the 3PL model fit for the correct an-
swer choice at the ability level corresponding to 50% correct
response. In the IRC analysis, we can qualitatively judge the
discrimination of an answer choice from the slope of our
curves: the steeper the slope, the more discriminating the an-
swer choice. Table I in Wang and Bao indicates that Ques-
tions 5, 13, and 18 are the most discriminating items on the
FCI. Examining our Fig. 1, we see that the IRCs for the cor-
rect answer choices in each of these cases are each character-
ized by a steep slope.

The IRC graphs in Fig. 1, however, illustrate the limitation
of the estimation of item discrimination from the 3PL IRT
analysis. In particular, the 3PL IRT model assumes that all
distractors function equally. This assumption was explicitly
not made in the design of the FCI, and Fig. 1 demonstrates
that this assumption is not supported by the data. The behav-
ior of the IRCs for the FCI answer choices indicates that a
more sophisticated model than the 3PL IRT is needed. For
example, Question 29 is rated by Wang and Bao as the least
discriminating item on the FCI.4 Yet, when we examine
the IRC for the correct answer choice, we find three regions
of ability level with different levels of attraction to this an-
swer choice: Below a total score of 12, the probability of a

student’s selecting the correct answer choice increases line-
arly with a moderate slope; for a total score of 12 to 27, the
probability is nearly constant, increasing only slightly with
ability level; and from 28 to 30, the probability rises rather
sharply. How to properly characterize the discrimination of
such an item remains an open question, but the behavior of
the IRC suggests that the 3PL model may overlook some in-
formation in that the performance of examinees may not be a
smoothly increasing function of ability level.

Furthermore, the content of Question 29 extends beyond
the Newtonian thinking dimension that the FCI is designed
to measure in that the influences of the forces of gravity, air
resistance, and buoyancy are included in the answer choices,
while instruction at the time of the administration of the FCI
may not have addressed the last two topics, even at the time
of the posttest.

In general, however, given the shape of the fitting func-
tions used in the 3PL model, only IRCs that monotonically
increase and have at most a single inflection point can be
modeled. From Fig. 1, we see that the 3PL IRT model likely
will have problems fitting the data not only from Question
29 but also from Questions 11 and 15. Questions 2, 5, 8, 14,
17, and 20 also may cause difficulties for 3PL IRT based on
our criteria. With our sample size, however, a local variation
in the shape of the IRC to a specific answer choice of less
than �5% may not be statistically significant. We need a
larger data set to investigate these questions more carefully.
In any case, 3PL IRT results for these items should be exam-
ined carefully in light of these observations.

Second, Wang and Bao describe item difficulty using pa-
rameter b. Figure 2 shows a scatter plot of percent correct
versus the difficulty parameter of Wang and Bao—the linear
fit has a correlation coefficient of 0.89. The good agreement
suggests that using percent correct on an item on the FCI
provides quite a good estimate of item difficulty. Wang and
Bao specifically identify Questions 1 and 6 as easy.4 We con-
cur, finding 71.6% and 73.6% of student examinees, respec-
tively, responded with the correct answer choices—these
being the two highest percentages of correct responses. The
IRCs also allow some insight as to why these questions are
at the easy end of the spectrum on the FCI. In both cases,
one answer choice is attractive to students at the low end of
the total score axis. In the case of Question 1, it appears that
students with low total scores show a slight preference for
Answer Choice 4 (which corresponds to the misconception
that heavier objects fall faster). In the case of Question 6,
two of the distractors are not functioning well at any ability
level (Answer Choices 4 and 5 appear as simply more
extreme and unlikely versions of Answer Choice 3 as related
to the subsequent path of an object freed from circular
motion). We discuss both of these examples in more detail in
Sec. IV below.

Wang and Bao identify Questions 25 and 26 as the most
difficult, although by the data in their Table I, the four most
difficult questions (in order) are Questions 17, 26, 15, and
25. Using our analysis, we found rates of correct responses
of 17.6%, 13.2%, 29.0%, and 21.4%, respectively. We also
found Question 5 to be very difficult with only 19.2% cor-
rect; Wang and Bao found this to be the sixth most difficult
question in their analysis. In the case of Question 15, the dif-
ficulty mainly results from one well-functioning and attrac-
tive distractor: Answer Choice 3 (if the car pushes the truck
forward, it must be exerting a greater force on the truck than
vice versa). The difficulty associated with Question 17, in
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fact, comes from the very same misconception. Here, An-
swer Choice 1 is attractive across ability levels and is associ-
ated with the misconception that, in order to move up, even
at constant speed, the force up must be greater. Thus, the
IRC analysis allows us to better characterize why questions
are relatively easy or difficult.

Third, Wang and Bao estimate the guessing probability or
parameter c. Estimates of the guessing parameter are notori-
ously noisy and difficult to make because the low end of the
ability scale is usually sparsely populated. If we examine the
3PL curves in Fig. 4 of Wang and Bao, we find that, when
their model and data disagree, the model systematically
overestimates the percent correct as compared to the data at
the low end of the scale (conversely, although less relevant
here, we note that at the high end of the scale, the model typ-
ically underestimates the percent correct at each ability
level). Part of the difficulty once again may be that the 3PL
IRT model assumes that all the incorrect answer choices are
functioning equally, an assumption that we are not required
to make with IRC analysis and that is not valid in the case of
the FCI. As an alternative, one might estimate the fraction
guessing from the IRC analysis by simply extrapolating the
correct IRC to a “0” ability level. We note, however, that if
someone with no knowledge in the content areas covered by
the FCI took the test, we would expect the guessing fraction
to be 20%, given that five answer choices appear with each
question. The fact that, in our Fig. 1, we never find an IRC
with greater than 12% correct at 0 ability level communi-
cates clearly that the distractors have been chosen carefully
to attract students with some knowledge of specific and com-
mon misconceptions. That said, all of these approaches suf-
fer from the limited data at the extremely low end of the
scale, so we have little confidence in any estimates of a
guessing parameter.

We provide a final point to further highlight the additional
information that is provided from our IRC analysis compared
to a dichotomous IRT analysis like 3PL, which examines only
the correct answer choices. Figure 3 shows a “dichotomously”
constructed IRC diagram for Question 13, with curves only
for “correct” and “incorrect,” the latter consisting of the sum
of the curves from all the incorrect IRCs as well as the no
response data. This figure is the analog to all of the graphs in
Fig. 4 from Wang and Bao. A comparison of our Fig. 3 with
the corresponding graph in our Fig. 1 reveals a substantial loss

of information content. This question has two well-
functioning distractors that attract students at distinct ranges
of ability. The effectiveness of these distractors is lost in the
analysis of Fig. 3, in which we can only see the discrimination
of the correct answer choice between students scoring above
and below a total score around 18.

IV. ADDITIONAL FCI INSIGHTS FROM IRC

ANALYSIS

As demonstrated above, the IRC analysis allows for a rich
investigation of the functionality of items and particular an-
swer choices within items on assessment instruments. Refer-
ence 2 provided a characterization of three items on the FCI
(reviewed in Sec. II above). Here, we demonstrate the capa-
bilities of the IRC approach more completely by examining
several additional items in further detail. The analysis below
is not meant to be definitive or conclusive; a still larger data
set and separation of pre- and postinstruction results would
be helpful in this regard. However, it is presented to give
the reader better insights into the kinds of analysis that the
IRC approach permits, especially if combined with student
interviews.

Question 1: This question (dropping two metal balls of
different masses from a roof top) allows the examiner to dis-
criminate at the lower end of the total score range, with the
IRC for the correct answer choice crossing 50% correct
rather steeply near a total score of 7. A student with even
minimal previous physics instruction will have had direct
engagement with this point and will select correct Answer
Choice 3 (both hit the ground at the same time). Perhaps
because it appeals to naı̈ve, Aristotelian intuition about
motion, Answer Choice 4 (heavier ball hits the ground first)
seems to attract students at the lowest end of the total score
range, while the other three answer choices do not seem to
attract students at a rate higher than guessing. Improvement
of this question could be made by changing one of the low-
appeal distractor choices (1, 2, or 5) so that it would be more
attractive to moderate ability students. Finding such an alter-
native answer choice might be accomplished by using FCI
scores to identify moderate ability students, interviewing
them to identify more subtle gradations of misconceptions
about weight and acceleration, and then reworking the entire
question. Further IRC analysis could allow an instructor to

Fig. 2. A comparison of the percent correct (this work, vertical axis) with

the difficulty parameter (“b,” horizontal axis) from Wang and Bao (Ref. 4).
Fig. 3. IRCs for a “dichotomously” scored Question 13 from the FCI.
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identify whether such an answer choice had been effectively
constructed.

Question 5: The IRCs for this item (forces acting on a ball
traveling around a horizontally oriented semicircular track)
indicate that all of the answer choices are functioning reason-
ably well. The IRC for the correct answer choice crosses
50% correct near a total score of 22, suggesting that the
correct answer discriminates between students in the high
and moderate ability ranges. As for the distractors, Answer
Choice 1 (only gravity acts) is attractive to students at the
very lowest end of the total score range (<2). Answer Choice
3 (gravity and a force in the direction of motion act) prefer-
entially attracts students at the low end of the range as well
(2–10). The IRC for Answer Choice 5 (gravity, a force in the
direction of motion, and a force pointing from the center of
the circle outward) shows a broad peak in the range of total
scores of 9–16, while the IRC for Answer Choice 4 (gravity,
a force exerted by the channel toward the center of the circle,
and a force in the direction of motion) shows a broad peak in
the total score range of 14–23. This item provides the only
example in this data set for which all five answer choices
seem to be functioning at some level, perhaps because stu-
dents must put together several concepts from Newton’s
laws and circular motion in order to select the correct answer
choice.

Question 6: Examining the content of this item, we see
this question probes student understanding of Newton’s first
law by asking what happens to the same ball traveling
around a horizontally oriented semicircular track as in Ques-
tion 5, but as the ball exits one end. This question ranked as
one of the easiest on the FCI by all analyses (Wang and Bao,
Planinic et al., and ours). Nevertheless, this item does pro-
vide some discrimination at the bottom end of the ability
scale, with Answer Choice 1 being the most attractive to
those of low ability. Answer Choice 1 corresponds to the ball
continuing to move in a circular path. Students who select
this answer choice do not understand that circular motion
requires the presence of a net force. Answer Choices 3, 4,
and 5 are all variants of the same misconception—an expres-
sion of the “centrifugal force” causing objects moving along
a circular path to feel a false force away from the center. The
IRCs indicate that these distractors are not functioning par-
ticularly well. Since the slight differences in the shapes of
the curves for these three answer choices have no motiva-
tion, a skilled test taker would understand that none of these
choices can be correct. This item, therefore, might better be
posed with three answer choices rather than 5, eliminating
two of Answer Choices 3 through 5.

Question 13: This question examines the forces present on
a ball thrown directly upward after it has been released but
before hitting the ground. The IRCs for three answer choices
on this item suggest that they could be used to characterize
the ability level of a student into one of three ranges. Answer
Choice 2 (varying magnitude force in the direction of
motion) is preferred by a plurality of students with total
scores <5 and by more than about half of respondents with
total scores <3. Students selecting this answer choice, there-
fore, have a high probability of being at the low end of the
ability range. Answer Choice 3 (gravity plus a decreasing
force in the direction of motion on the way up only) is pre-
ferred by a plurality of students with 7 < total score <17 and
by more than about half of respondents with 10 < total score
<16. Students selecting this answer choice, therefore,
are likely to be in the middle of the ability range. Finally,

Answer Choice 4, the correct answer, is preferred by stu-
dents with total scores >17. The sharp slope of this IRC
identifies this item as highly discriminating. Thus, by exam-
ining the response to this one item, it is possible to roughly
gauge the ability level of a student respondent. In conjunc-
tion with an analysis of other responses (correct and incor-
rect), the examiner increases his/her probability of correctly
identifying the respondent’s true ability level. We note that,
in general, this ability level may or may not match the stu-
dent’s total score; it is possible for a student with a lower
total score to be identified as having a higher ability level
based on the specific set of incorrect and correct answer
choices selected. Thus, we can develop a more accurate
assessment of student ability level using an IRC analysis.
Furthermore, the results related to this particular item on the
FCI suggest different instructional strategies may be needed
to address differing misconceptions students have regarding
the subject matter. In particular, students at the low end of
the ability scale need to learn why Answer Choice 2 is incor-
rect (perhaps the students are confusing the force of gravity
with velocity), while students of middle ability need to learn
why Answer Choice 3 is incorrect (perhaps these students
understand the force of gravity but also describe a fictional
upward force that closely correlates to momentum). We
would need to conduct student interviews to probe these mis-
conceptions more carefully. Nevertheless, in this case, IRC
analysis has revealed a possible strategy for tailored instruc-
tion (e.g., online or computer assisted learning activities).

Question 15: This question examines the forces as a car
pushes a truck while accelerating. The IRCs for this item indi-
cate that, as written, students are primarily attracted to incor-
rect Answer Choice 3 (force of car on truck is greater than
force of truck on car) across all ranges of ability. Experienced
teachers are not surprised by this result, even though Answer
Choice 1 is a nearly direct translation of Newton’s third law
into this scenario. The IRC for the correct Answer Choice 1
crosses 50% correct at a very high total score (ability) of 25,
making this a very difficult item. For the instructor, it would
seem that the primary duty in this case is to correct the mis-
conception students hold in responding with Answer Choice
3: Newton’s third law is not a “sometimes” law, it is an “all-
the-time” law (except when there is momentum transfer to a
field, but that exception only highlights its usefulness). Of
course, when the instructor succeeds in correcting this mis-
conception, the shapes of the other IRCs may well change,
forcing the instructor to target future class time in response to
those changes. As with the discussion of Question 13, we find
the prospects for customized instruction aided by IRC analy-
sis of assessment instruments to be exciting.

V. CONCLUSIONS

This paper presents an overview of the types of analysis
that are possible using IRCs and was inspired by the recent
paper by Wang and Bao, which uses IRT to evaluate the
FCI.4 In principle, the parameters extracted from IRT can be
useful for scoring tests on a more sensitive metric, but in the
case of the FCI, there is such strong correlation between abil-
ity and total score that this is not required for meaningful
analysis.

The purpose of the 3PL IRT model described in Wang and
Bao is to illustrate IRT and provide parameters to character-
ize the FCI test items. By contrast, the purpose of the IRC
approach is to illustrate item and distractor diagnostics in a

830 Am. J. Phys., Vol. 80, No. 9, September 2012 Morris et al. 830

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.218.13.44 On: Tue, 29 Nov 2016 16:13:11



way usable by classroom teachers and applicable to diagnos-
tic instruments beyond the FCI. In a qualitative comparison
of IRC analyses of the FCI with the 3PL IRT model results,
we find that we are able to characterize item difficulty by
using percent correct, which correlates strongly with Wang
and Bao’s difficulty parameter, b. However, we claim that
the discrimination parameter, a, and the guessing parameter,
c, as extracted by 3PL IRT model in Wang and Bao do not
capture the variable functionality of distractors with ability
level. Furthermore, we demonstrate using the IRC analysis
that there are several questions on the FCI for which the 3PL
IRT model is not likely to produce a good fit to the data.

The strength of the IRT model is that the parameters that
are derived are more reliably sample-independent. This
means that item parameters estimated from a high-
performing representative sample of students would match
those estimated from a low-performing representative sam-
ple of students. Another strength of IRT is that person and
item estimates are model-based and can therefore be eval-
uated for fit or validity.

The strength of the IRC analysis, on the other hand, is that
it provides a simple, descriptive, graphical approach to eval-
uating the performance of distractors and for defining student
ability levels in relation not only to dichotomous scoring but
also to the set of incorrect answers that they select. For the
current paper, we suggest that IRC can be informative to
classroom instructors. IRC does not require extensive psy-
chometric training or specialized software. However, we
look forward to future research in which the nominal
response model7 can be applied to take advantage of the
benefits of IRT while examining the potentially different

information that was designed into the distractors on the
FCI. While alternative models might not make a great differ-
ence in scoring the FCI, close examination of item perform-
ance will help instructors and researchers in physics.
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