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Abstract

A closed knight’s tour of a chessboard uses legal moves of the knight to visit

every square exactly once and return to its starting position. When the chessboard

is translated into graph theoretic terms the question is transformed into the existence

of a Hamiltonian cycle. There are two common tours to consider on the cube. One

is to tour the six exterior n × n boards that form the cube. The other is to tour

within the n stacked copies of the n × n board that form the cube. This paper is

concerned with the latter. In this paper necessary and sufficient conditions for the

existence of a closed knight’s tour for the cube are proven.

1 Introduction

The closed knight’s tour of a chessboard is a classic problem in mathematics. Can the
knight use legal moves to visit every square on the board and return to its starting
position? The unique movement of the knight makes its tour an intriguing problem which
is trivial for other chess pieces. The knight’s tour is an early example of the existence
problem of Hamiltonian cycles. So early in fact that it predates Kirkman’s [1] 1856 paper
which posed the general problem and Hamilton’s Icosian Game of the late 1850s [2]. Euler
presented solutions for the standard 8× 8 board [3] and the problem is easily generalized
to rectangular boards. In 1991 Schwenk [4] completely answered the question: Which
rectangular chessboards have a knight’s tour?

Schwenk’s Theorem: An m × n chessboard with m ≤ n has a closed knight’s tour
unless one or more of the following three conditions hold:

(a) m and n are both odd;
(b) m ∈ {1, 2, 4} ;
(c) m = 3 and n ∈ {4, 6, 8}.
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The problem of the closed knight’s tour has been further generalized to many three-
dimensional surfaces: the torus [5], the cylinder [6], the pillow [7], the Mobius strip, the
Klein bottle, the exterior of the cube [8], the interior levels of the cube, etc. Watkins pro-
vides excellent coverage of these variations of the knight’s tour in Across the Board: The
Mathematics of Chessboard Problems [9]. However, the general analysis of these three-
dimensional surfaces is to unfold them into the two-dimensional plane, apply Schwenk’s
Theorem as liberally as possible and tidy up any remaining cases as simply as possible.
While this technique is successful at obtaining complete characterizations in some set-
tings, it does not adequately tackle every surface and leaves the reader wondering what
could be accomplished with a true three-dimensional technique.

There are two common tours to consider on the cube. One is to tour the six exterior
n × n boards the form the cube. Qing and Watkins [8] recently showed that a knight’s
tour exists on the exterior of the cube for all n. The focus of this paper is the tour within
the n stacked copies of the n × n board that form the cube.

In Watkins book three examples of closed knight’s tours within the three-dimensional
chess board of the cube are provided. In two (the cubes of side 6 and 8) cases constructions
take the closed knight’s tour for square boards and then piece the boards back together
level by level to create a closed tour for the cube. Watkins does not provide a proof
for the general case and indicates that the work lays in deciding which tours of the two-
dimensional board to use and where to make the jumps from level to level. He thanks
Stewart [10] for having worked out the details for the cube of side 8. The technique of
touring the cube level by level does not adopt itself well to a general proof since deciding
which boards to use is one component of the construction.

As a problem, Watkins assigns the exercise of constructing a closed knight’s tour for
the cube of side 4. One possible solution is shown in Figure 1 [9]. Watkins notes that
“since there is not even an open tour of the 4 × 4 board ... this is perhaps a harder
problem than finding a tour for the 8× 8× 8 chessboard.” I agree with Watkins. As seen
with the closed tour of the cube of side 4, existence of a closed (or even open) tour of the
board is not a requirement for the existence of a tour for the cube of side n.
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Figure 1: KT1, A Closed Tour of a Cube of Side 4

Kumar [11] notes that “little attention has been paid” to the knight’s tour extension
“in three-dimensional space.” Kumar has constructed and investigated many closed and
open knight’s tours for parameters ≤ 8 but does not tackle the general case.

the electronic journal of combinatorics 14 (2007), #R32 2



As it turns out the characterization of cubes that admit a closed knight’s tour is very
easy to state. Furthermore, once you divest yourself of the notion of tackling the cube by
its two-dimensional levels, the proof falls out in a very natural inductive manner.

Theorem: For n ≥ 4, the cube of side n contains a closed knight’s tour if and only if
n is even.

First of all, note that the cubes of sides n = 1, 2, 3 are too small to allow a knight to
move from every square. For n = 1, 2 the knight cannot make a legal move. For n = 3,
the knight cannot move to or from the center cell.

2 The nonexistence of a closed knight’s tour within

the cube of side n ≡ 1 mod 2

There exists no closed knight’s tour within the cube of side n where n is odd. This is a
clear analogue of the fact that a closed knight’s tour does not exist on the n × m board
where both n and m are odd. It is not quite as immediate for the cube. Especially so as
one considers the extra freedom granted in the cube as the knight extends its reach from
8 moves to 24 moves. For boards on an odd numbered level start with a black square
in the upper left hand corner. For those boards on an even numbered level, start with a
white square in the upper left hand corner. Now all legal moves of the knight alternate
colors as demonstrated in Figure 2 with the a − b, c − d and e − f moves. The resulting
graph of legal moves of the knight on the cube is now bipartite. When considering the
cube as a whole, this coloring scheme seems very natural as all adjacent squares alternate
color.
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Figure 2

For the cube of side n there will exist
⌈

n
3

2

⌉

black squares and
⌊

n
3

2

⌋

white squares.

If n is odd then
⌈

n
3

2

⌉

6=
⌊

n
3

2

⌋

and the corresponding bipartite graph will not contain a
Hamiltonian cycle. Note that this argument easily extends to show that the n × m × k

board does not admit a closed knight’s tour where n, m and k are all odd.
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3 Construction of a closed knight’s tour within the

cube of side n ≡ 0 mod 4

For n = 4k, take k copies of KT1 of Figure 1 placed left to right. Any two copies of KT1

can be combined to create a closed tour on the 4× 8× 4 board by deleting the 2− 3 edge
on level 1 of the left KT1 and the 14 − 15 edge on level 2 of the right KT1. Next create
the 2− 15 and 3− 14 edges as shown in Figure 3. Repeat this process left to right for the
remaining copies of KT1 and the result is a closed knight’s tour for the 4 × n × 4 board
which we shall denote KT2.
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Figure 3

Now create k − 1 additional copies of KT2 placed below each other. On level 2 in the
leftmost KT1 of each KT2, delete the 5 − 6 edge on the back copy of KT2 and the 7 − 8
edge on the front copy of KT2 and create the 5 − 8 and 6 − 7 edges as shown in Figure
4. This creates a closed knight’s tour for the n × n × 4 board, denoted KT3.
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Figure 4

Finally take k − 1 copies of KT3 and stack them atop one another. To connect two
copies of KT3 delete the 46 − 47 edge of level 4 in the leftmost KT1 in the bottom copy
and the 10 − 11 edge of level 1 in the top copy of KT3 in the leftmost KT1. Now create
the 10 − 47 and 11 − 46 edges. This results in a closed knight’s tour for the cube of side
n = 4k for all positive integers k. Of course this method can be used to construct a
closed knight’s tour for the n × m × k board for n, m, k ≡ 0 mod 4.
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4 Construction of a closed knight’s tour within the

cube of side n ≡ 2 mod 4

First a base case of a closed knight’s tour of side n = 6 is provided from [11].
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Figure 5: A Closed Tour of a Cube of Side 6

Extending this cube of side 6 to a cube of side n ≡ 2 mod 4 will not be as simple
as extending the cube of side 4 to a cube of side n ≡ 0 mod 4. We cannot just take
copies of the cube of side 6 to use as an extension since the formal induction employed
is to show that the existence of a tour within the cube of side n ≡ 2 mod 4 implies the
existence of a tour within the cube of side n+4. Other closed tours of rectangular prisms
will be required.

Consider the closed tour on the 3× 6× 4 board of Figure 6. Take two copies of Figure
6 placed front to back. Now, delete the 37 − 38 edge on level 1 in the front copy and the
8 − 9 edge on level 2 in the back copy. Using those same vertices, create the 8 − 38 edge
and the 9− 37 edge. This provides us with a closed knight’s tour for the 6× 6× 4 board.

the electronic journal of combinatorics 14 (2007), #R32 5



1

5

46

47

43

4

6

2

57

28

32

37

38

34

31

33

29

12

66

70

61

60

62

69

63

65

50

21

25

16

15

17

24

18

20

41

55

45

68

67

59

44

58

56

3

10

36

23

22

14

35

13

11

30

52

54

71

72

48

53

49

51

64

7

9

26

27

39

8

40

42

19

1 2

3 4

Figure 6: A Closed Tour of the 3 × 6 × 4 Board

The first step in constructing a closed knight’s tour for the cube of side n = 4k + 2 is
to stack k−1 copies of the 6×6×4 board on top of the cube of side 6 of Figure 5. Delete
the 174− 175 edge of Figure 5 and the 5− 6 edge of the back copy of the 6× 6× 4 board.
Create the 5 − 174 and 6 − 175 edges to form a closed knight’s tour on the 6 × 6 × 10
board. Attach the remaining k − 2 Figure 6s by deleting in adjacent pairs (front or back,
but matching) of the 6 × 6 × 4 board, the 65 − 66 edge of level 4 of the bottom Figure 6
and the 5 − 6 edge of level 1 of the top Figure 6 and creating 5 − 66 and 6 − 65 edges,
thus creating the closed tour for the 6 × 6 × n box.

The second step is to extend this construction to width n. Consider the open tour of
Figure 7. Note that k copies of this open tour can be extended to an open 6× 4k tour by
deleting the 22 − 23 edge and creating the 1 − 22 and 23 − 24 edges in adjacent copies.
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Figure 7: An Open Tour of the 6 × 4 Board and Extension

Create six copies of a 6× (n − 6) open tour as indicated in Figure 7. In the base cube
of side 6 from Figure 5, delete the 41 − 42, 88 − 89, 2 − 3, 119 − 120, 187 − 188 and
150 − 151 edges on levels 1 though 6 and then using one copy of the 6 × (n − 6) open
tour per level create the 1− 42, 24− 41, 1− 89, 24− 88, 1− 2, 3− 24, 1− 119, 24− 120,
1 − 188, 24 − 187, 1 − 151 and 24 − 150 edges. Next create an additional n − 6 copies
of a 6 × (n − 6) open tour of Figure 7. These copies will be attached to the n − 6 copies
of Figure 6 that were stacked on top of the base cube of side 6 from Figure 5. To do so
delete the 33 − 34, 39 − 40, 13 − 14 and 17 − 18 edges on levels 1 through 4. Take four
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copies of a 6 × (n − 6) open tour of Figure 7 per Figure 6, delete the 33 − 34, 39 − 40,
13− 14 and 17− 18 edges and create the 1− 34, 24− 33, 1− 39, 24− 40, 1− 14, 13− 24,
1 − 17 and 18 − 24 edges.

This now forms a closed knight’s tour for the 6× n× n rectangular prism. This tour
will form the back wall of the cube of side n ≡ 2 mod 4. Now we play this game again to
create the left wall of the cube of side n ≡ 2 mod 4 as shown in Figure 8. Once the left
wall is completed, a cube of side n−6 ≡ 0 mod 4 and a board of size (n − 6)×(n − 6)×6
will be inserted to complete the cube of side n ≡ 2 mod 4.

(n-6) x (n-6) x (n-6)

6

6 n-6

n-6

n

(n-6) x (n-6) x 6

Figure 8: Construction of a Cube of Side n ≡ 2 mod 4

Once again, create six copies of a 6 × (n − 6) open tour as indicated in Figure 7. In
the base cube of side 6 from Figure 5, delete the 59 − 60, 77 − 78, 12 − 13, 125 − 126,
208 − 209 and 160 − 161 edges on levels 1 through 6. Next create the 1 − 59, 24 − 60,
1− 78, 24− 77, 1− 13, 12− 24, 1− 126, 24− 125, 1− 209, 24− 208, 1− 160 and 24− 161
edges. Take four copies of a 6 × (n − 6) open tour as indicated in Figure 7 per board,
delete the 31− 32, 8− 9, 35− 36 and 24− 25 edges in each copy of the 6× 6× 4 board of
Figure 6 and create the 1− 32, 24− 31, 1− 9, 8− 24, 1− 36, 24− 35, 1− 25 and 24− 24
edges.

This construction yields the left and back walls of our cube of length, height and
width n, going in 6 squares. Now use a cube of side n − 6. Since n ≡ 2 mod 4 then
n− 6 ≡ 0 mod 4 and we can take a cube from our previous construction. Take this cube
and note the 3 − 4 edge on level 1 in the very first KT1. Furthermore note the 9 − 10
edge in the open 6× 4 tour of Figure 7. Delete these two edges and create the 3− 9 and
4 − 10 edges. All that is left is to extend this cube up 6 squares. To do so construct a
closed tour of the (n − 6) × (n − 6) × 2 board.
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Figure 9: A Closed Tour of the 4 × 4 × 2 Board

Take Figure 9 and extend it widthwise by creating multiple copies. Delete the 2 − 3
edge on level 1 of the left copy and the 30−31 edge of level 2 of the right copy. Create the
2− 31 and 3− 30 edges. Now take multiple copies of this new construction and extend it
lengthwise by deleting on level 1 on the leftmost side of the back copy the 21 − 22 edge
and on level 1 on the leftmost side of the front copy the 23 − 24 edge. Now create the
21 − 24 and 22 − 23 edges. Finally stack 3 copies of this new construction by deleting in
adjacent copies the 10 − 11 edge on level 2 of the bottom copy and the 14 − 15 edge on
level 1 of the top copy and creating the 10 − 15 and 11 − 14 edges. Attach this closed
tour to the cube of side n− 6 by deleting any 15− 16 edge of level 1 of this construction.
Note that this level 1 is sitting atop a level 4 of a KT1 in the construction of the cube of
side n− 6. Delete the 51− 52 edge in this KT1 and create the 15− 51 and 16− 52 edges,
thus creating the closed knight’s tour on the cube of side n ≡ 2 mod 4.

5 Future Work

The next step in this work is to extend this characterization of the cubes which admit a
closed knight’s tour to a characterization of the general rectangular prism. My conjecture
is that like the cube, once the dimensions of the rectangular prism grow to be sufficiently
large only the prism with an odd number of squares will not admit a closed knight’s tour.
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