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Investigating hydrologic alteration as a mechanism of fish assemblage
shifts in urbanizing streams
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Abstract. Stream biota in urban and suburban settings are thought to be impaired by altered hydrol-
ogy; however, it is unknown what aspects of the hydrograph alter fish assemblage structure and which
fishes are most vulnerable to hydrologic alterations in small streams. We quantified hydrologic variables
and fish assemblages in 30 small streams and their subcatchments (area 8–20 km2) in the Etowah River
Catchment (Georgia, USA). We stratified streams and their subcatchments into 3 landcover categories
based on imperviousness (,10%, 10–20%, .20% of subcatchment), and then estimated the degree of
hydrologic alteration based on synoptic measurements of baseflow yield. We derived hydrologic variables
from stage gauges at each study site for 1 y (January 2003–2004). Increased imperviousness was positively
correlated with the frequency of storm events and rates of the rising and falling limb of the hydrograph
(i.e., storm ‘‘flashiness’’) during most seasons. Increased duration of low flows associated with impervi-
ousness only occurred during the autumn low-flow period, and this measure corresponded with increased
richness of lentic tolerant species. Altered storm flows in summer and autumn were related to decreased
richness of endemic, cosmopolitan, and sensitive fish species, and decreased abundance of lentic tolerant
species. Species predicted to be sensitive to urbanization, based on specific life-history or habitat require-
ments, also were related to stormflow variables and % fine bed sediment in riffles. Overall, hydrologic
variables explained 22 to 66% of the variation in fish assemblage richness and abundance. Linkages be-
tween hydrologic alteration and fish assemblages were potentially complicated by contrasting effects of
elevated flows on sediment delivery and scour, and mediating effects of high stream gradient on sediment
delivery from elevated flows. However, stormwater management practices promoting natural hydrologic
regimes are likely to reduce the impacts of catchment imperviousness on stream fish assemblages.

Key words: fishes, impervious surface cover, urbanization, hydrology, stormflow, baseflow, sedi-
ment, stormwater management.
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Urban development has become an increas-
ingly important disturbance in stream ecosys-
tems worldwide. Approximately 50% of the
world’s population now lives in cities (vs 12%
in 1900), which has increased both the area of
land and the number of streams impacted by
development (Cohen 2003). A primary mecha-
nism by which urbanization impacts stream
ecosystems is through altered hydrology. Ur-
banization modifies a catchment by clearing of
vegetation, compacting of soil, and ditching,
draining, piping, and ultimately covering land
with impermeable surfaces (Booth and Jackson
1997), which, in turn, may alter instream storm-
flow and baseflow hydrology (Shaw 1988). Ur-
banization may 1) increase the proportion of
precipitation as surface runoff (Arnold and Gib-
bons 1996), 2) decrease lag time between pre-
cipitation events and elevated stream flows
(Graf 1977), 3) increase magnitude of peak dis-
charges by up to 5 times (Hollis 1974), 4) in-
crease frequency of high flow events by $ 10
times (Booth 1991), and 5) decrease magnitude
of low flows because of reduced groundwater
recharge (Ferguson and Suckling 1990).

Changes in stream hydrology from urbani-
zation can affect water quality, geomorphology,
and biotic assemblages. Increased surface runoff
may accelerate channel erosion (Trimble 1997),
alter channel morphology (Doyle et al. 2000,
Pizzuto et al. 2000), and increase sediment, nu-
trient, and contaminant delivery to streams
(Wilber and Hunter 1977, Klein 1979, Herlihy et
al. 1998, Ometo et al. 2000, Koplin et al. 2002).
Fishes and invertebrates respond to urban land-
cover changes through changes in richness, di-
versity, density, and biotic integrity (reviewed
by Schueler 1994, Paul and Meyer 2001). Studies
also have reported changes in fish assemblage
composition (Scott and Helfman 2001, Walters
et al. 2003a) and feeding ecology (Weaver and
Garman 1994, Poff and Allan 1995), with altered
assemblages often occurring at relatively low
levels of urbanization (e.g., 10–15% impervious-
ness; Schueler 1994, Wang et al. 2000).

Much of the evidence linking impacts of al-
tered hydrology on fish assemblages is from
studies conducted downstream of hydropower
dams (Power et al. 1996, Pringle et al. 2000,
Freeman et al. 2001). However, theoretical rela-
tionships predict that altered hydrology from
urbanization also may impact fishes. Increases
in storm flow can directly affect assemblages by

washing out eggs, larvae, or young-of-year fish-
es and subsequently disrupting life cycles (Pow-
er et al. 1996, Poff et al. 1997, Freeman et al.
2001), and can indirectly affect fishes by increas-
ing suspended sediment, contaminant, and nu-
trient delivery to streams (Burkhead et al. 1997).
Increased storm flows also may impact fishes by
increasing channel erosion, which, in turn, may
alter pool/riffle sequences, bed texture, and
habitat quality (Meade et al. 1990, Waters 1995,
Burkhead et al. 1997, Sutherland et al. 2002). Re-
duced magnitude and increased duration of low
flows can reduce habitat availability and quality
(e.g., temperature) and subsequently alter food-
web dynamics (Power et al. 1996, Poff et al.
1997). Fish responses to altered hydrology are
expected to vary based on the timing of altered
flows in relation to their life histories (Power et
al. 1996, Poff et al. 1997, Freeman et al. 2001,
Bunn and Arthington 2002).

We investigated what aspects of hydrologic
alteration accounted for the negative relation-
ships between catchment imperviousness and
stream fish assemblages. Although impervious-
ness may integrate cumulative impacts to water
resources (Arnold and Gibbons 1996), various
landscape factors (e.g., stormwater connection,
impoundments, etc.) can result in variable and
nonlinear relations between imperviousness and
stream hydrology (Shaw 1988, Walsh et al.
2005a). Thus, we used continuous stream stage
data to quantify hydrologic alteration in streams
representing an urban gradient and to deter-
mine relationships between 1) catchment imper-
viousness and hydrologic alteration, and 2)
measures of hydrologic alteration and fish as-
semblage integrity.

Methods

Study sites

We studied tributaries of the Etowah River, a
4823-km2 catchment in north-central Georgia,
USA, on the outskirts of metropolitan Atlanta
(Fig. 1). The southeastern United States is a hot-
spot of stream fish diversity and endemism,
with 76 extant fish species native to the Etowah
River Catchment and 4 endemic species (Burk-
head et al. 1997). Seven species are state-pro-
tected and 3 species are federally protected un-
der the US Endangered Species Act. For most of
the 20th century, land use in the region was
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FIG. 1. The 30 study streams and their subcatchments (shaded areas) within the Etowah River Catchment
(Georgia, USA). Streams were classified by amount of imperviousness in the subcatchment (,10, 10–20, .20%),
based on 1998 landcover data used for site selection. Regions on map of Georgia correspond to physiographic
provinces: RV 5 Ridge and Valley, BR 5 Blue Ridge, P 5 Piedmont.

mostly forest (secondary growth) and agricul-
ture (row-crop and pasture); however, land use
has undergone rapid changes in the last 20 y.
Suburban development spreading north of met-
ropolitan Atlanta (population .4 million) has
increased residential and commercial land uses
along corridors of population growth. Thus,
subcatchments within the Etowah River Catch-
ment show a high range in urban, agricultural,
and forest land cover.

We selected streams of similar size and with
similar potential fish assemblages (Table 1).
Study streams and their subcatchments were
small (area 8–20 km2) and were within the Pied-
mont physiographic province (Fig. 1). Most
study sites were .1 km upstream of their junc-
tion with a larger river (e.g., mainstem of Eto-
wah River) or reservoir, and were not entirely

impounded across upstream tributaries. Our
initial criteria limited selection to 54 candidate
streams. From this set of candidates, we select-
ed a subset of streams encompassing an ex-
pected range of hydrologic alteration, based on
subcatchment imperviousness and baseflow
yield. First, we grouped streams into 3 classes
of subcatchment imperviousness: ,10, 10–20,
and .20%. We estimated imperviousness using
ArcViewq Geographic Information System
(GIS) by assigning random points within low-
density (410 points) and high-density (130
points) urban categories (according to 1998
Landsat TM satellite imagery; 30-m pixels), and
classifying each point as pervious or impervious
surface using 1999 US Geological Survey color-
infrared digital ortho quarter quads (DOQQs,
1-m resolution). We then multiplied impervious
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surface proportions by area of that landcover
category to estimate total subcatchment imper-
viousness. We measured baseflow yield (defined
as discharge/subcatchment area) one time at the
54 candidate streams on 18 and 19 June 2002
during baseflow conditions .1 wk after a rain
event. We randomly selected 5 streams above
and 5 streams below the median baseflow yield
within each of the 3 imperviousness classes for
a total of 30 streams. In the ,10% class, stream
discharge data revealed a geographic pattern of
higher yields in the northeast portion and lower
yields in the southwest portion of the Etowah
River Catchment (dividing the catchment at the
upper end of Allatoona Reservoir, Fig 1). These
differences in base flow likely resulted from dif-
ferences in soils or geology, so we randomly se-
lected 5 northeastern and 5 southwestern
streams in the catchment within the ,10% im-
perviousness class to account for this geograph-
ic variation. The final set of 30 streams (Table 1)
encompassed most of the range of baseflow
yield across the catchment (0.0006–0.0062 m3 s21

km22 for the final 30 streams vs 0.0005–0.0096
m3 s21 km22 for the 54 candidate streams), but
averaged higher mean imperviousness (15.7%;
1998 land cover) compared to a census of all
small streams in the catchment (11.6%; AHR,
unpublished data).

Landscape assessment

Subsequent to site selection, we re-estimated
imperviousness for the Etowah River Catchment
using an algorithm created by the Natural Re-
sources Spatial Analysis Laboratory (Institute of
Ecology, University of Georgia) based on pro-
tocol developed by the US Geological Survey
(Yang et al. 2003). A classification and regression
tree (CART) model was created to estimate im-
perviousness using Cubistt software. A training
data set was developed using 4 randomly se-
lected 1999 DOQQs (;300 km2 each, 1-m reso-
lution) in areas of low, medium, and high-den-
sity urban land cover north of the metro-Altanta
region, and partially overlapping with the study
subcatchments. Pixels (1-m) were classified as
either impervious or non-impervious surface,
and then these data were associated with Land-
sat ETM1 satellite imagery (30-m pixels, 17
landcover classes) taken in September 2000 (leaf
on), March 2001 (spring), and December 2001
(leaf off) to build regressions based on the train-

ing data set. Regressions were extrapolated for
regions outside the training set to determine im-
perviousness for the entire region, and assessed
accuracy of the CART model by comparing it
with a subset of data withheld from the training
set (SE 5 7.5%, r2 5 0.89). We assumed the
CART model produced more accurate impervi-
ousness estimates than methods used for site
selection because it calculated regressions for
each of the 17 landcover categories (vs only cat-
egories of low- and high-density urban cover
and transportation from the original classifica-
tion).

We quantified the number and area of im-
poundments in each subcatchment to assess the
importance of these hydrologic features in me-
diating hydrologic alteration effects on fish as-
semblages. We calculated the % of open water
for each subcatchment using 2001 Landsat TM
satellite imagery. In addition, we mapped im-
poundments from 1999 DOQQs and used these
data to calculate number of impoundments per
subcatchment area.

Hydrologic monitoring

We gauged streams at the outlet of each sub-
catchment using 2-m AquaRodt water-level sen-
sors (Advanced Measurements & Controls, Inc.,
Woodinville, Washington), which use capaci-
tance to measure stage height (distance from
water surface to bottom of rod). Sensors were
not all the same distance from the bed surface,
so we adjusted all hydrologic magnitude vari-
ables by the mean recorded stage height at each
stream. We set dataloggers (within sensors) to
record water level every hour and with every 6-
mm change in stage height, and downloaded
stage height data seasonally from 16 January
2003 to 28 January 2004.

We used steady flow analysis in HEC-RASt
(version 2.2, Hydrologic Engineering Center, US
Army Corps of Engineers) to estimate mean hy-
draulic depth for the 0.5-y recurrence interval
(RI) flood at each site. We did not use mean
depth of higher RI floods because very few
storms exceeded the mean depth of these mag-
nitude floods in 2003 (mean frequency .1-y RI
flood 5 2.4 storms/site; AHR, unpublished
data). Instead, we used the 0.5-y RI flood and
various proportions of this level (100, 75, and
50%) because these levels were inside the bank-
full cross-section and were the most appropriate
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levels for relating to multiple storms throughout
the year. We calculated discharges for the 0.5-y
RI flood based on subcatchment area at each site
using flood-frequency formulas derived for ru-
ral streams in the Georgia piedmont (Stamey
and Hess 1993). We determined Manning’s n,
stream slope, and bankfull cross-sectional area
(Gordon et al. 2004) at the sensor and incorpo-
rated these data into the HEC-RASt model for
each stream. We used a Topcont AT-F6 level and
stadia rod to obtain elevations for a channel
cross-section at the sensor, and for calculating
slope between riffle tops for a 150-m reach. The
hydraulic depth (as determined by HEC-RASt)
was adjusted by the minimum annual daily
stage at each site to account for differences in
sensor locations relative to the stream bed.

We also quantified % fine sediment in riffle
habitats; this aspect of habitat quality may be a
mechanism by which hydrologic alterations in-
directly impact fishes (Walters et al. 2003b). We
collected 3 L of bed sediment samples from 3
riffles within each stream reach, transported
samples to the laboratory, and dried, sieved, and
weighed sediment to determine mean % fine
sediment (,2 mm diam).

We calculated 9 baseflow and 18 stormflow
variables that were expected to respond to im-
perviousness and thus could affect fish assem-
blages (Table 2). We did not have accurate
stage–discharge rating curves for each site, so
we calculated hydrologic variables based on
stage, which is an acceptable measure of hydro-
logic alteration (McMahon et al. 2003). Baseflow
variables included daily low-stage measures,
and magnitude and duration of low-stage
events ,25, 10, and 5% of the median stage.
Stormflow variables included frequency (i.e.,
number of flow excursions above a certain
stage), magnitude, duration, and volume (stage
height 3 h) during events above a certain stage,
and rate of change (i.e., hydrograph line slope)
associated with ascending and descending
limbs of storm hydrographs (Table 2). We used
percentages (100, 75, and 50%) of the mean
stage height of the 0.5-y RI flood to calculate
stormflow variables. We divided all magnitude
variables by the mean daily stage to adjust for
differences in stream size (Table 2).

Fish sampling

We sampled fishes from August to October
2003 during baseflow conditions. Our main ob-

jective was to relate among-site differences in
resident fish assemblages to hydrologic pat-
terns. Fish assemblages may vary more among
locations within a reach than among dates (Pe-
terson and Rabeni 1995), so we sampled a rel-
atively long reach at each site at a single time of
the year. We sampled during late summer and
early autumn when young-of-year of most fish-
es were large enough to be captured and low
flows optimized our sampling efficiency. We
sampled fishes in a 150-m reach at each site,
with block nets set every 50 m. We randomly
selected 1 of the 3 adjacent 50-m reaches to sam-
ple with 3 consecutive passes, and sampled the
remaining 2 reaches in a single pass. During
each pass, we thoroughly sampled all habitats
using a backpack electroshocker (Model 12-B;
Smith-Roott Inc, Vancouver, Washington) com-
bined with kicking with a 2.4-m seine held
downstream (in areas with sufficient flow), dip
netting (in pool habitats), and seine hauling (in
sandy, shallow runs). We identified, measured,
and released fishes in the field, or euthanized
and preserved them with buffered MS-222 and
;8% formalin, respectively, for identification in
the laboratory.

We used CAPTUREt (White et al. 1978) to
calculate richness estimates using species de-
tectability based on species caught in single-
pass samples in 3 consecutive 50-m reaches. We
used model M(h), which assumes heterogeneity
of capture probabilities among species, to esti-
mate species richness (Williams et al. 2002). We
used the removal function in CAPTUREt to cal-
culate capture probabilities for each species that
declined in abundance among the 3 passes con-
ducted in one 50-m reach; we then used capture
probabilities to estimate species-specific abun-
dance at each site. We were unable to estimate
abundance for species that showed no depletion
among passes, so instead we used the total
number of individuals captured. Our abun-
dance estimates were potentially biased to an
unknown extent because, even for taxa exhibit-
ing depletion, we assumed individual capture
probabilities remained constant across passes.

We expressed fish assemblage structure based
on overall species richness, abundance, and rich-
ness and abundance of assemblage subsets, in-
cluding endemic species, cosmopolitan species,
fluvial specialists, lentic tolerants, and sensitive
species (Appendix). We defined cosmopolitan
species as those fishes native to at least 10 major
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catchments, and those that were expected to in-
crease with urbanization (Walters et al. 2003a).
We expected endemics, species primarily limit-
ed to the Coosa River Catchment (including the
Etowah River), to decrease with urbanization
(Walters et al. 2003a). In addition, we examined
the ratio of endemics to cosmopolitans, based
on species richness and abundance, which
should reflect a homogenization of assemblages
coincident with loss of endemic species (Scott
and Helfman 2001, Walters et al. 2003a). We de-
fined fluvial specialists as those species requir-
ing lotic environments for at least part of their
life cycle (Travnichek et al. 1995), determined
from Etnier and Starnes (1993) and Mettee et al.
(1996). We defined lentic tolerants as those fish-
es that were habitat generalists and capable of
completing their life cycle in lakes or reservoirs
(Travnichek et al. 1995). We expected lentic to-
lerants to increase and fluvial specialists to de-
crease with increased urbanization. Last, we de-
fined sensitive species as those fishes expected
to be sensitive to disturbance because of specific
life- history or habitat requirements, and that re-
sponded negatively to urbanization at other
sites (SJW, unpublished data).

Data analyses

Many of the water-level sensors (24 of 30) did
not function during certain months of the study.
To deal with the resulting incomplete data, we
divided analyses based on sensor downloading
dates. Data for each period of record (POR) in-
cluded different sets of study sites depending
on which had complete data records (Table 1).
For simplicity, PORs were denoted as seasons,
including early and late spring (16 Jan.–14 Apr.,
n 5 14, and 15 Apr.–14 May, n 5 12), summer
(15 May–7 Aug., n 5 17), autumn (15 Aug.–4
Nov., n 5 22), and winter (11 Nov.–28 Jan., n 5
20).

We tested all variables for normality using a
Shapiro–Wilk goodness-of-fit test and trans-
formed when necessary. We transformed fish
abundance variables using log10(x11) and per-
centage variables (converted to proportions) us-
ing arcsin square root. We used correlation anal-
ysis (Pearson’s r) to relate hydrologic variables
to imperviousness (n 5 12–22), and to relate fish
assemblages to imperviousness (n 5 30) and %
fine sediment (n 5 30). We used principal com-
ponents analysis (PCA) to reduce baseflow and

stormflow variables into a few metrics in each
season that described variation in hydrology
across sites. We then used multiple linear re-
gression analysis (stepwise regression, forward
selection, a 5 0.05) to predict fish assemblages
using % fine sediment and baseflow and storm-
flow PC axes scores, for summer and autumn.
We chose these 2 seasons because they reflected
high- (summer) and low- (autumn) flow periods
during 2003, had the most complete hydrologic
data (n 5 17 and n 5 22, respectively), and in-
cluded time periods most likely to impact fish
assemblages (i.e., highest abundances of spawn-
ing and young-of-year fishes). We also used cor-
relation to relate baseflow and stormflow PC
axes to % fine sediment, % open water in the
subcatchment, number of impoundments per
subcatchment area, and subcatchment impervi-
ousness. Last, we used multiple linear regres-
sion analysis to analyze slope vs mean % fine
sediment, imperviousness vs % open water in
the subcatchment, and imperviousness vs num-
ber of impoundments/subcatchment area. We
did analyses using JMPt version 4.0 statistical
software (SAS Institute Inc., Cary, North Caro-
lina).

Results

Hydrologic alteration from increased imperviousness

Mean annual daily discharge in the Etowah
River was below average (,70% of the 50-y
mean discharge) for the 4 y preceding the study
(1999–2002). In 2003, mean daily discharge was
20% higher than the 50-y mean and nearly dou-
ble the discharge of the previous 4 y. Study sites
showed a mean of 4.5 storms/y exceeding the
0.5-y RI flood mean stage over the POR (Table
3). Storms primarily occurred during late spring
(Apr.–May) and summer (May–Aug.), exceeding
the 0.5-y RI flood mean stage at rates equaling
26.4 and 17.4 storms/y, respectively. Storms
rarely occurred during autumn (Aug.–Nov.),
when sites showed #1 storm exceeding the 0.5-
y RI flood mean stage (Table 3).

Baseflow stage variables generally showed no
relationships with subcatchment impervious-
ness. For the 9 baseflow variables across 5 sea-
sons, there were only 2 relationships with r2 .
0.25 (Fig. 2). In late spring (Apr.–May), the time
of the year with the highest precipitation, min-
imum daily stage was highest at sites with low
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TABLE 3. Frequency of storm events .100, 75, and 50% of mean stage of the 0.5-y recurrence interval (RI)
flow for each season during the study. Seasonal storm rates (mean/d) were extrapolated to the number of
storms that would occur in the year (mean/y) for comparison. Means over the period of record (16 Jan. 2003–
28 Jan. 2004) were calculated by weighting seasonal means by the number of days in each season. N/A 5 not
applicable.

0.5-y RI flood Mean Mean/d
Mean/y

(at that rate) Range SD

Spring (16 Jan.–14 Apr.)
100%

75%
50%

1.43
2.00
2.71

0.016
0.022
0.030

5.9
8.2

11.1

1–3
1–4
1–5

0.76
0.88
1.33

Spring (15 Apr.–14 May)
100%

75%
50%

0.92
1.50
2.17

0.031
0.050
0.072

11.2
18.3
26.4

0–1
1–3
1–4

0.29
0.80
1.19

Summer (15 May–7 Aug.)
100%

75%
50%

0.88
2.81
4.06

0.010
0.033
0.048

3.8
12.1
17.4

0–10
0–11
0–13

1.02
2.32
2.69

Autumn (15 Aug.–4 Nov.)
100%

75%
50%

0.18
0.50
0.91

0.002
0.006
0.011

0.8
2.2
4.1

0–1
0–2
0–3

0.39
0.74
1.02

Winter (11 Nov.–28 Jan.)
100%

75%
50%

1.10
1.50
2.35

0.014
0.019
0.030

5.1
6.9

10.9

0–4
0–5
0–7

1.25
1.40
1.75

Mean (Jan. 2003–2004)
100%

75%
50%

0.91
1.70
2.50

0.012
0.023
0.033

4.5
8.3

12.2

N/A
N/A
N/A

0.80
1.29
1.66

imperviousness, although because of high vari-
ation the relationship between the 2 variables
was nonsignificant (p 5 0.079; Fig. 2A). In au-
tumn (Aug.–Nov.), there was a strong positive
relationship between the duration of low-flow
events ,25th percentile flow and imperviousness
(p , 0.001; Fig. 2B), although duration of lower
flows (i.e., ,10th and 5th percentiles) was not re-
lated to imperviousness. This relationship oc-
curred during the lowest-flow season, a time
when measurable reductions in base flows as-
sociated with urbanization would be expected.

Stormflow variables were strongly correlated
(r . 0.50) with imperviousness, primarily dur-
ing summer, autumn, and winter (Table 4). The
frequency of excursions above 50%, 75%, and
100% mean stage of the 0.5-y RI flood and the
rate of the rising and falling limbs of the storm

hydrograph consistently increased with increas-
ing imperviousness, with the greatest number
of high (r $ 0.50) correlations occurring in au-
tumn (Table 4, Fig. 3A–F). Magnitude, duration,
and volume of high-flow events were strongly
correlated with imperviousness only in autumn
(Aug.–Nov., Table 4), and these relationships
were driven by a few sites with storms exceeding
100% and 75% of the 0.5-y RI flood. Comparison
of 2 sample storm hydrographs with contrasting
imperviousness, Lower Noonday Creek (23.7%
imperviousness) and Hickory Log Creek (5% im-
perviousness) revealed that the high-impervious-
ness site experienced higher frequency and mag-
nitude of storm events relative to the 0.5-y RI
flood mean stage than the low-imperviousness
site, despite both sites showing similar stage
heights during the 6 largest storms (Fig. 4).
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FIG. 2. Linear regression models for the 2 baseflow variables showing the highest correlations with sub-
catchment imperviousness (r2 . 0.25). A.—Minimum daily stage/mean daily (MinDaily) stage during late
spring (Apr.–May). B.—Maximum duration of low stage ,25th percentile (DurLow,25) during autumn (Aug.–
Nov.).

Variation in fish assemblages

Based on field observations, fish species rich-
ness was 7 to 20 species/stream, with total es-
timated richness ranging from 8 to 25 species/
stream (Table 5). We collected a mean of 153
individuals per 50-m stream reach (range 37–
435 individuals), and estimated overall total
abundance as 37 to 512 individuals in one 50-m
stream reach based on the 3-pass removal (Table
5). We report all richness and abundance values
henceforth as estimated values based on calcu-
lated capture efficiencies.

There were no strong relationships between

subcatchment imperviousness and total fish
species richness or abundance (r 5 0.07–0.49).
As expected, richness and abundance of fluvial
specialists were low in sites with high imper-
viousness, and lentic tolerants were high in sites
with high imperviousness (Table 5). Abundance
of endemic species and ratio of endemic to cos-
mopolitan abundance also both varied inversely
with imperviousness. We also found negative
relationships between imperviousness and
abundance of fishes that were expected to be
sensitive to urbanization. All species groups ex-
cept cosmopolitan and lentic tolerant species
varied inversely with imperviousness (Table 5).



666 [Volume 24A. H. ROY ET AL.

TABLE 4. Pairwise correlations (Pearson’s r) between % imperviousness (based on 2001 land cover) and
stormflow stage variables for each season from January 2003 to 2004 (n 5 number of sites). Bold indicates r $

0.50. Hydrologic variables are defined in Table 2.

Code

Early spring
(Jan.–Apr.)
(n 5 14)

Late spring
(Apr.–May)

(n 5 12)

Summer
(May–Aug.)

(n 5 17)

Autumn
(Aug.–Nov.)

(n 5 22)

Winter
(Nov.–Jan.)
(n 5 20)

Freq.100%Q0.5
Freq.75%Q0.5
Freq.50%Q0.5
MeanHigh.100%Q0.5
MeanHigh.75%Q0.5

20.14
20.07
20.11

0.33
0.00

20.26
0.53
0.14

20.29
20.32

0.69
0.75
0.76

20.35
20.38

0.71
0.48
0.53
0.56
0.63

0.53
0.56
0.71
0.21
0.18

MeanHigh.50%Q0.5
Dur.100%Q0.5
Dur.75%Q0.5
Dur.50%Q0.5
Vol.100%Q0.5

20.01
0.00
0.07
0.06

20.24

20.26
20.13
20.03
20.15
20.32

20.40
0.34
0.40
0.21
0.08

0.55
0.57
0.47
0.44
0.61

0.14
0.47
0.39
0.07
0.34

Vol.75%Q0.5
Vol.50%Q0.5
RateRise5
RateRise10
RateRise20

20.15
20.04

0.57
0.26

20.24

20.20
20.06

0.15
0.37
0.52

0.22
0.29
0.69
0.73
0.66

0.60
0.50
0.57
0.65
0.47

0.38
0.16
0.65
0.60
0.59

RateFall5
RateFall10
RateFall20

0.34
0.14
0.11

0.49
0.49
0.31

0.71
0.63
0.37

0.61
0.57
0.37

0.66
0.61
0.58

Fish assemblages and hydrology

PCA reduced the set of baseflow and storm-
flow variables into a smaller, uncorrelated sub-
set of variables for summer (May–Aug.) and au-
tumn (Aug.–Nov.). For the 16 sites with hydro-
logic data in both seasons, 2 to 3 PCs accounted
for most variation in the 9 baseflow variables
($86% cumulative variance explained for each
season; Table 6). For both seasons, PC1 was re-
lated to baseflow magnitude variables and PC2

was related to duration of low-flow events. PCA
reduced the set of 18 stormflow variables to 3
to 4 principal components that explained $85%
of cumulative variance for each season. PC1 in-
cluded equal weightings of the 18 variables in
both seasons (except magnitude variables in
summer). In summer, PC2 was highly weighted
with stormflow magnitude variables, whereas
PC3 and PC4 were related to stormflow volume
and duration. In autumn, stormflow PC2 and
PC3 showed mixed variable loadings including
magnitude, volume, duration, and measures of
storm flashiness (Table 6).

Hydrologic variables (summarized by PC
axes) explained up to 67% of the variation in
fish richness and abundance measures (Table 7).
Endemic richness was predicted by decreased

stormflow alteration (frequency, magnitude, du-
ration, volume, and flashiness) in summer
months, whereas increased cosmopolitan rich-
ness was predicted by longer duration of au-
tumn base flows and lower summer stormflow
volume and duration (Table 7). The ratio of en-
demic to cosmopolitan richness also was pre-
dicted by summer stormflow variables. Base-
flow duration in autumn explained 67% of the
variation in lentic tolerant richness across sites,
with longer baseflow durations resulting in
more lentic species. Abundance of lentic toler-
ants was predicted by decreased magnitude of
summer storm flows and autumn base flows.
Richness and abundance of sensitive species
were best explained by stormflow alteration and
% fine sediment in riffles. Although stormflow
and baseflow PC axes were significantly related
to fish assemblages, these hydrologic variables
typically explained ,½ of the variation in fish
assemblages (Table 7).

Correlates of hydrologic alteration and fish
assemblages

Mean % fine sediment in riffles was negative-
ly correlated with abundance of endemic spe-
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FIG. 3. Linear regression models for stormflow variables and imperviousness in the catchment for variables
with the highest r2 in each category (Table 2) and seasons with the strongest relationships (Table 3). Models for
(A) frequency, (B) rate of rising stage, and (C) rate of falling stage are for summer (May–Aug., n 5 17). Models
for (D) magnitude, (E) duration, and (F) volume are for autumn (Aug.–Nov., n 5 22).

cies, the ratio of endemics to cosmopolitans, and
sensitive species (r . 0.40; Table 5). In multiple
regression analyses, % fine sediment also ex-
plained 18 and 46% of the variation in sensitive
species richness and abundance, respectively
(Table 7). Percent fine sediment was not strongly
related to stormflow or baseflow PC axes (all r
, 0.50; Table 8). However, mean % fine sedi-
ment was negatively related to stream slope (r2

5 0.24; p 5 0.006).
We also assessed whether imperviousness, %

open water in subcatchment, and number of im-
poundments/subcatchment area were strongly
related (i.e., r . 0.50) to hydrologic variables

summarized by PC axes. Imperviousness was
positively correlated with stormflow alteration
(PC1) in summer and autumn, negatively cor-
related with summer stormflow magnitude
(PC2), and positively correlated with autumn
baseflow duration (PC2, Table 8). The % open
water in the subcatchment was positively cor-
related with summer baseflow duration (PC2)
and negatively correlated with summer storm-
flow magnitude (PC2, Table 8). The number of
impoundments also was negatively correlated
with summer stormflow magnitude (PC2), but
positively correlated with increased autumn
stormflow alteration (PC1) and summer base-
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TABLE 5. Means (61 SD) and ranges for fish assemblage metrics and pairwise correlations (Pearson’s r)
between assemblage variables and catchment imperviousness (2001 data) and % fine sediment in riffles.

Metric Mean (SD) Range Imperviousnessa
% fine

sedimenta

Fish richness

Total
Endemic
Cosmopolitan
Endemic/cosmopolitanb

17.4 (4.1)
2.4 (1.6)

10.1 (3.0)
0.3 (0.2)

8–25
0–6
5–17
0–0.8

20.27
20.29
20.11
20.23

20.14
20.28
20.11
20.13

Fluvial specialist
Lentic tolerant
Fluvial/lentic
Sensitive

12.3 (4.2)
5.4 (2.0)
2.6 (1.2)
2.7 (1.9)

5–21
3–11

0.5–5.7
0–7

20.49
0.44

20.47
20.48

20.15
0.06

20.01
20.33

Fish abundance (no. of individuals)

Totalb

Endemicb

Cosmopolitanb

Endemic/cosmopolitanb

184.9 (123.8)
46.6 (70.4)
88.5 (80.1)
1.10 (2.5)

37–512
0–335

12–431
0–13.1

20.07
20.38

0.28
20.43

20.15
20.44

0.19
20.42

Fluvial specialistb

Lentic tolerantb

Fluvial/lenticb

Sensitiveb

128.5 (108.7)
56.9 (76.4)

7.0 (15.7)
16.7 (21.6)

10–469
2–412

0.5–87.5
0–103

20.42
0.45

20.47
20.39

20.34
0.08

20.23
20.46

a Transformed for analysis using arcsin square root
b Transformed for analysis using log10(x 1 1)

flow magnitude (PC1, Table 8). In separate anal-
yses (data not in tables), subcatchment imper-
viousness was not strongly correlated with %
open water (r 5 0.21) or the number of im-
poundments/subcatchment area (r 5 0.26).

Discussion

Impacts of catchment imperviousness on small
streams

Although previous studies have documented
predictable alterations to stormflow and base-
flow hydrology with increasing urbanization,
many of these results are based on data from
large streams and rivers with long-term gauge
records (Ferguson and Suckling 1990, Rose and
Peters 2001) or data extrapolated from other
gauged streams (Booth and Jackson 1997, but
see Utah sites in McMahon et al. 2003). For the
small streams in our study, our exploratory
analyses demonstrated a positive relationship
between subcatchment imperviousness and the
frequency of high storm flows across multiple
seasons (Table 4). There was also an indication
of increased flashiness in more urbanized
streams, as demonstrated by higher rates of the

rising and falling limbs of storm hydrographs
in streams with high (vs low) imperviousness
(Fig. 3). These results are consistent with studies
of urban effects on stream storm hydrology
(Hollis 1974, Shaw 1988, Booth 1991).

Interestingly, we did not find strong evidence
that increased urbanization resulted in reduced
base flows at our sites. Hydrologists have sug-
gested a decrease in magnitude of low flows as-
sociated with urbanization because of reduced
groundwater recharge (Shaw 1988, Ferguson
and Suckling 1990). One explanation for the lack
of response in our sites is that the groundwater
table remained high during 2003, a year with
higher than average precipitation. Further, there
is a high density of septic systems in the Etowah
River Catchment (74–94% of households have
on-site treatment systems; Evans et al. 1999),
which may provide sufficient enough ground-
water recharge in urban areas to offset losses
from reduced infiltration associated with high
imperviousness. However, we did observe in au-
tumn (during the lowest flow months) that du-
ration of low flows was positively correlated
with imperviousness (Fig. 2). The abnormally
high flows in 2003 (20% higher than the 50-y
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TABLE 7. Significant multiple linear regression models for fish assemblage metrics using stepwise regression
(n 5 16 sites, forward selection, p , 0.05). Predictor variables included in model for selection were % fine
sediment and baseflow and stormflow principal components analysis (PCA) axes for summer (su) and autumn
(au). Baseflow PC1 for summer was excluded in models because of autocorrelation with baseflow PC1 for autumn
(r 5 0.85). 1/2 indicates direction of relationship between response and predictor variables.

Adjusted
R2

Partial
R2 p Predictor variables

Fish richness

Endemic
Cosmopolitan

0.31
0.50

0.35
0.38
0.19

0.015
0.008
0.037

(2) Stormflow PC1 (su)
(1) Baseflow PC2 (au)
(2) Stormflow PC4 (su)

Endemic/cosmopolitan

Lentic tolerant

0.44

0.67

0.27
0.25
0.69

0.019
0.022

,0.001

(2) Stormflow PC1 (su)
(1) Stormflow PC2 (su)
(1) Baseflow PC2 (au)

Sensitive 0.63 0.39
0.18
0.14

0.007
0.005
0.033

(2) Stormflow PC1 (su)
(2) % fine sediment
(1) Stormflow PC3 (au)

Fish abundance (no. of individuals)
Cosmopolitan
Lentic tolerant

0.35
0.62

0.39
0.43
0.24

0.010
,0.001

0.008

(1) Baseflow PC3 (su)
(2) Stormflow PC2 (su)
(2) Baseflow PC1 (au)

Fluvial/lentic
Sensitive

0.22
0.74

0.27
0.46
0.25
0.12

0.005
,0.001

0.003
0.048

(1) Stormflow PC2 (su)
(2) % fine sediment
(2) Stormflow PC1 (au)
(1) Stormflow PC2 (au)

TABLE 8. Pairwise correlations (Pearson’s r) between summer and autumn hydrologic alteration variables
(principal component [PC] axes) and environmental variables. Bold indicates r $ 0.50.

Hydrology
% fine

sedimenta Imperviousnessa
% open water

in subcatchmenta
No. impoundments/
subcatchment area

Summer

Baseflow PC1

Baseflow PC2

Baseflow PC3

Stormflow PC1

20.46
20.02

0.37
0.16

0.04
20.02

0.44
0.64

0.01
0.55
0.01
0.01

0.52
0.01
0.04
0.03

Stormflow PC2

Stormflow PC3

Stormflow PC4

0.25
0.39
0.24

20.52
20.41

0.00

20.56
0.02
0.32

20.56
20.41
20.13

Autumn

Baseflow PC1

Baseflow PC2

Stormflow PC1

Stormflow PC2

Stormflow PC3

20.41
20.41
20.06

0.07
0.00

20.08
0.70
0.70

20.22
0.31

20.03
0.14
0.14
0.07
0.05

0.26
0.49
0.50

20.27
20.37

a Transformed for analysis using arcsin square root

mean) may have masked the response of base
flows to urbanization during other seasons. It is
also possible that reduced base flows may not
be a predictable result of altered hydrology

from urbanization, especially in geographic re-
gions with relatively high precipitation. McMa-
hon et al. (2003) also hypothesized that urban
streams would show reduced duration of low
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flows; however, McMahon et al. (2003) were un-
able to confirm this prediction from Alabama,
Massachusetts, or Utah streams. Low flows are
not only influenced by groundwater, but also
depend on topography, evapotranspiration, and
instream hyporheic processes (Nilsson et al.
2003). Further, groundwater recharge from
leaky pipes (Yang et al. 1999) and increased
lawn irrigation (Al-Rashed and Sherif 2001) may
offset any reductions in infiltration in urban ar-
eas. Cumulatively, these factors suggest that re-
duced base flows in urban settings of the south-
eastern US may not be a typical symptom of the
‘‘urban stream syndrome’’ characterized by
Meyer et al. (2005, see also Walsh et al. 2005b).

Low correspondence between stormflow hy-
drology and catchment imperviousness in
spring may have been related to seasonal vari-
ation in runoff patterns in relatively forested
catchments. During this season, flows often are
high, soils are saturated, and evapotranspiration
is low; hence, precipitation events in forested
catchments may behave similarly to catchments
with high imperviousness (Hollis 1974). In con-
trast, precipitation occurring during the rela-
tively drier summer and autumn seasons often
may infiltrate soils in forested catchments, thus
minimizing surface runoff and maximizing dif-
ferences in runoff between low- vs high- imper-
viousness catchments. Moreover, the high fre-
quency of large storms during 2003 likely lim-
ited relationships between imperviousness and
storm magnitude, volume, and duration. The
positive correlations between hydrology and
imperviousness observed in autumn were driv-
en only by a few storms, and thus did not dem-
onstrate a strong response to imperviousness
(Table 4, Fig. 3).

We recorded very few storms that exceeded
the mean depth of the 1-y RI flood (2.4 over ;1
y) and higher-stage thresholds, which forced us
to calculate stormflow variables using lower
thresholds (i.e., mean depth of the 0.5-y RI flood
and percentages thereof). Our data indicated
that these small, frequent storm events can im-
pact fish assemblages, explaining up to 43% of
the variation in assemblage structure. However,
larger storms may also be important, especially
because they are likely to affect stream geomor-
phology (e.g., 1- to 2.3-y RI flood determines
bankfull conditions, Williams 1978). A longer
data set encompassing both low- and high-flow
years and several large storm events (i.e., $ 2-y

RI floods) is necessary to determine the rela-
tions between imperviousness and larger storm
events, and also the importance of interannual
variation in storm hydrology, both of which may
be important influences on stream ecosystems.

Natural and anthropogenic drivers of fish
assemblages

Increasing urbanization across our study sites
was associated with an apparent shift toward
fish assemblages dominated by habitat gener-
alist species (tolerant of lentic conditions) and a
loss of stream-dependent species (i.e., fluvial
specialists). The putative shift toward lentic tol-
erant species, in turn, was associated with lower
and more prolonged low-flow conditions in
high-imperviousness streams during autumn.
We expect that low flows favor lentic tolerant
species because of 1) increased pool and back-
water habitats during low flows (e.g., preferred
by lentic tolerant species, Travnicek et al. 1995),
or 2) decreased competition from stream-depen-
dent species (Power et al. 1988). Conversely, we
observed low abundances of lentic tolerant spe-
cies in streams with higher summer stormflow
magnitude and autumn baseflow magnitude.
Elevated storm flows can depress juvenile sur-
vival of many fishes (Freeman et al. 2001); how-
ever, storm flows may have particularly strong
effects on species residing and/or spawning in
scour-prone habitats such as pools, the habitat
of lentic tolerant species.

We also observed that abundance of endemic
species and the ratio of endemic to cosmopoli-
tan species were low in urban streams (Table 5),
supporting geographic patterns described by
Burkhead et al. (1997) and results of Walters et
al. (2003a) in the region. Richness of endemic
species and richness and abundance of sensitive
species were predicted by altered storm flow
(Table 7); however, these variables also were
predicted by % fine sediment in riffles (Table 5).
Changes in streambed coarseness could be a
consequence of altered stormflow hydrology in
urban streams, but we did not find strong cor-
relations between % fines and stormflow vari-
ables (e.g., highest r 5 0.39 with summer storm-
flow PC3). Depending on the time since urban-
ization and the stability of the channel, storm
flows could have variable effects on sedimenta-
tion (Henshaw and Booth 2000) and, subse-
quently, fish assemblages. For example, in un-



2005] 673HYDROLOGIC ALTERATION AND FISH ASSEMBLAGES

stable urbanizing streams, high-flow events
may increase bank erosion and sediment inputs
to channels, or may mobilize historic bed sedi-
ment within the stream (Trimble 1997). In con-
trast, streams draining urban catchments for
several decades may experience bed coarsening
and scouring during high-flow events (Finken-
bine et al. 2000). We believe that both scenarios
likely occur within the study streams, and po-
tentially hamper the ability to predict fish as-
semblages based on stormflow variables.

Stream slope also is an important factor driv-
ing streambed coarseness and, consequently,
fish assemblages in the Etowah River Catch-
ment (Walters et al. 2003a, b). Specifically, Wal-
ters et al. (2003a) found that low-slope streams
had finer bed sediments and fishes dominated
by cosmopolitan species (relative to endemic
species) than higher-slope streams (r 5 0.70 and
0.67 for correlation between slope and endemic
to cosmopolitan ratios of richness and abun-
dance, respectively). In our study, although
slope was negatively correlated with % fine sed-
iment in riffles (r 5 0.51), this relationship was
slightly weaker than that reported by Walters et
al. (2003a, r 5 0.62), and there were also weaker
relationships between slope and fish assem-
blage variables than found by Walters et al.
(2003a) (e.g., in our study, highest correlations
with sensitive abundance, r 5 0.56, and sensi-
tive richness, r 5 0.46; all other fish variables r
, 0.24). Streams in Walters et al. (2003a) were
selected randomly within the Etowah River
Catchment, so they had lower mean % urban
land cover (15.0%) compared to our streams
(25.2%), and higher ratios of endemic to cos-
mopolitan richness (0.40) and abundance (1.27)
compared to our streams (0.26 and 1.11, respec-
tively). In urban streams, effects of altered hy-
drology on bed texture and fish assemblages
may mask the strong geomorphic control of
stream slope on fish assemblages.

There were two critical seasons when we ex-
pected altered hydrology to have the largest in-
fluence on fish assemblages: 1) in late spring
and summer during spawning, and 2) in au-
tumn during low-flow periods with limited
habitat availability. During spring spawning
events, high storm flows may increase mortality
of eggs and young-of-year fishes (Power et al.
1996, Poff et al. 1997, Freeman et al. 2001, Bunn
and Arthington 2002). We did not have a suffi-
ciently complete spring data set to test these hy-

potheses, but we did observe low richness of 3
assemblage groups in streams with high storm-
flow alteration during summer (May–Aug., Ta-
ble 7). The extent and magnitude of the effects
of storms during 2003 may be best reflected by
the relative abundance of fishes in future years.
We also saw evidence that prolonged, low base
flows in autumn were related to high richness
of cosmopolitan and lentic tolerant species. The
lack of relationships with other fishes, however,
suggests that reduced base flows are not a dom-
inant driver of fish assemblage alteration. The
few autumn storms that occurred, consequently
raising water levels in the urban streams, may
have been sufficient to offset effects of catch-
ment imperviousness on reduced base flows.

Studies have suggested that total impervious-
ness is not a useful measure of urban impacts
on streams because it does not account for con-
nections between impervious surfaces and the
stream network (Brabec et al. 2002, Walsh et al.
2005a). For example, precipitation falling on
roads in forested catchments (i.e., disconnected
from storm pipes) may infiltrate into bare
ground next to roads and not alter stream hy-
drology (e.g., noneffective impervious area; Al-
ley and Veenhuis 1983). By quantifying in-
stream hydrology, however, we directly mea-
sured the effectiveness of catchment impervi-
ousness (or catchment connection) at linking
surface runoff to streams. For the 16 sites with
hydrologic data across 2 seasons, variance ex-
plained by hydrologic alteration variables was 2
to 36% (mean 5 21%) higher than that ex-
plained by imperviousness alone. Effective im-
perviousness may be a good surrogate for al-
tered hydrology in catchments that are unaf-
fected by small impoundments and other water
detention ponds. However, instream hydrologic
measurements will provide the best picture of
direct physical impacts to stream ecosystems.

Management implications

Historically, stormwater management has in-
volved moving the water off streets and paved
parking lots as efficiently as possible to ensure
maximum public safety and convenience (Ar-
nold and Gibbons 1996), but has failed to ac-
count for maintenance of ecological function in
aquatic systems (Postel et al. 1996). Stormwater
management for instream needs requires a shift
in the way policymakers and public safety offi-
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cers think about precipitation. To minimize fish
assemblage alteration in urban streams, we be-
lieve that ordinances should be adopted to avoid
exacerbating the frequency and magnitude of
high-storm events, and to reduce stream flash-
iness during storm events. This strategy is es-
pecially important during seasons with medi-
um and low precipitation. Impervious cover also
may reduce groundwater recharge, so storm-
water detention/retention catchments might not
be the best tool for managing stormwater for
instream needs (Heitz et al. 2000, Booth et al.
2002). Alternative management tools include in-
creasing perviousness in urban areas through
porous road and parking lot materials, raingar-
dens, and/or drainage swales (Konrad and
Burges 2001, Booth et al. 2002). Increasing the
amount of infiltration within the catchment and
decreasing the connectedness of stormwater
pipes (Walsh et al. 2005a) in urban areas should
work best at mimicking natural landscapes and
minimizing alteration to stream ecosystems.
Hydrologic alteration is an important pathway
by which urban development may affect fishes,
but other urban stressors also must be ad-
dressed to evaluate the relative effectiveness of
hydrologic management at protecting fish integ-
rity.
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APPENDIX Fished collected and frequency (freq.) of occurrence within the 30 study streams. Habitat pref-
erence is either fluvial specialist (FLU) or lentic tolerant (LEN). Highland endemic species (END) and cosmo-
politan, widespread species (COS) are indicated (after Walters et al. 2003a). Determination of sensitive fishes
(SEN) was based on life-history traits (i.e., expected sensitivity) and negative relationships with % urban land
cover from previous fish collection data (SJW, unpublished data). N/A 5 not applicable.

Taxon Common name
Composition

categories
Freq. of

occurrence

Petromyzontidae

Ichthyomyzon sp. cf. gagei Southern brook lamprey FLU 12

Cyprinidae

Campostoma oligolepis
Cyprinella callistia
Cyprinella trichroistia
Cyprinella venusta
Hybopsis lineapunctata

Largescale stoneroller
Alabama shiner
Tricolor shiner
Blacktail shiner
Lined chub

FLU, COS
FLU, SEN
FLU, END, SEN
FLU
FLU, END

29
12

3
5
1

Hybopsis sp. cf. winchelli
Luxilus zonistius
Nocomis leptocephalus
Notemigonus crysoleucas
Notropis chrosomus

Clear chub
Banfin shiner
Bluehead chub
Golden shiner
Rainbow shiner

FLU, END
FLU
FLU
LEN, COS
FLU, END, SEN

2
2
5
1
2

Notropis longirostris
Notropis lutipinnis
Notropis stilbius
Notropis xaenocephalus
Phenacobius catostomus
Semotilus atromaculatus

Longnose shiner
Yellowfin shiner
Silverstripe shiner
Coosa shiner
Riffle minnow
Creek chub

FLU, COS
FLU
FLU, SEN
FLU, END
FLU, END
FLU, COS

3
3
4

15
1

23

Catastomidae

Hypenteluim etowanum
Minytrema melanops
Moxostoma duquesnei
Moxostoma erythrurum
Moxostoma poecilurum

Alabama hog sucker
Spotted sucker
Black redhorse
Golden redhorse
Blacktail redhorse

FLU
FLU, COS
FLU, COS, SEN
FLU, COS, SEN
FLU, COS

30
3

10
8
3

Ictaluridae

Ameiurus brunneus
Ameiurus natalis
Ameiurus nebulosus
Ictalurus punctatus
Noturus leptacanthus

Snail bullhead
Yellow bullhead
Brown bullhead
Channel catfish
Speckled madtom

FLU, COS, SEN
LEN, COS
LEN, COS
LEN, COS
FLU, COS, SEN

7
5
2
3
5

Salmonidae

Oncorhynchus mykiss Rainbow trout N/A 1

Fundulidae

Fundulus stellifer Southern studfish FLU 24

Poeciliidae

Gambusia affinis
Gambusia holbrooki
Gambusia holbrooki 3 affinis

Eastern mosquitofish
Western mosquitofish
Hybrid mosquitofish

LEN, COS
LEN, COS
LEN, COS

6
2
4

Cottidae

Cottus carolinae zopherus Coosa banded sculpin FLU, END 23

Centrarchidae

Ambloplites ariommus
Lepomis auritus

Shadow bass
Redbreast sunfish

FLU, COS
LEN, COS

1
30
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APPENDIX Continued.

Taxon Common name
Composition

categories
Freq. of

occurrence

Lepomis cyanellus
Lepomis gulosus
Lepomis macrochirus
Lepomis microlophus
Lepomis punctatus
Lepomis macrochirus 3 auritus

Green sunfish
Warmouth
Bluegill
Redear sunfish
Spotted sunfish
Hybrid sunfish

LEN, COS
LEN, COS
LEN, COS
LEN, COS
LEN, COS
LEN, COS

22
6

29
5
9
1

Micropterus coosae
Micropterus punctulatus
Micropterus salmoides
Pomoxis annularis
Pomoxis nigromaculatus

Coosa bass
Spotted bass
Largemouth bass
White crappie
Black crappie

FLU
FLU, COS
LEN, COS
LEN, COS
LEN, COS

23
4

22
1
2

Percidae

Etheostoma scotti
Etheostoma stigmaeum
Perca flavescens
Percina kathae
Percina nigrofasciata
Percina palmaris

Cherokee darter
Speckled darter
Yellow perch
Mobile logperch
Blackbanded darter
Bronze darter

FLU, END, SEN
FLU, COS, SEN
LEN, COS
FLU
FLU, COS
FLU, END, SEN

18
10

2
14
27

1
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