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area of the square is the magnitude of the momentum. We can 
use the same strategy for impulse.  

Impulse is defined as the change in momentum, thus an-
other vector quantity. Impulse can also be found by multiply-
ing the net force exerted on an object (a vector quantity) by 
the time of the interaction (a scalar quantity). We repeat the 
process from before and show that the direction of the force is 
shown by the direction of the arrow and the magnitude of the 
force is represented by the length of the arrow. The time inter-
val is shown by the thickness of the arrow. The diagram in Fig. 
3 shows a 30-N force being exerted on an object for 2 s. The 
area of the square is the magnitude of the impulse. 

The purpose of the representations is to help students de-
velop a fundamental qualitative understanding of momentum 
and impulse. Students are usually novice problem solvers 
and, unlike experts, see a verbal description of a scenario as 
abstract. This means that they cannot form a mental picture of 
the situation. They tend to think of the problem as just a list of 
variables that they identify and others they need to find.7 To 
them, the answer is typically a number devoid of any mean-
ing. Thus, the answer is also abstract. These representations 
act like free-body diagrams in that they serve as the link be-
tween an abstract verbal statement and an abstract mathemat-
ical answer by helping students visualize the situation. Thus, 
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Multiple representations are a valuable tool to help 
students learn and understand physics concepts.1  
Furthermore, representations help students learn 

how to think and act like real scientists.2 These representa-
tions include: pictures, free-body diagrams,3 energy bar 
charts,4 electrical circuits, and, more recently, computer sim-
ulations and animations.5 However, instructors have limited 
choices when they want to help their students understand 
impulse and momentum. One of the only available options is 
the impulse-momentum bar chart.6 The bar charts can effec-
tively show the magnitude of the momentum as well as help 
students understand conservation of momentum, but they do 
not easily show the actual direction. This paper highlights a 
new representation instructors can use to help their students 
with momentum and impulse—the impulse-momentum dia-
gram (IMD).  

What are they?
Momentum is the product of an object’s mass and its veloc-

ity, written mathematically as shown in Eq. (1):

p = mv.                (1)

Momentum is the product of a scalar quantity (mass) and a 
vector quantity (velocity). Thus, a representation for momen-
tum must take both of these quantities into account. Impulse-
momentum diagrams do this by combining motion diagrams 
with basic geometry.  

Physicists use motion diagrams, similar to the one in Fig. 1, 
to describe an object’s velocity. The motion diagram contains 
key pieces of information. The length of the arrow refers to the 
magnitude of the object’s velocity and the direction of the ar-
row refers to the direction of the object. The motion diagram 
in Fig. 1 shows that this object is initially moving to the right.  
Since the lengths of the arrows are decreasing, the object is 
slowing down to a stop. Next, the spacing of the dots shows the 
relative location of an object at equal points in time. Finally, 
the direction of the object’s acceleration is to the left.   

The key pieces of information needed from motion dia-
grams to construct an IMD are the direction and magnitude of 
the object’s velocity. To make this a representation for an ob-
ject’s momentum, we need to multiply the object’s velocity by 
a scalar, in this case, its mass. Thus, instead of using a straight 
line as in the motion diagram, we give the line a thickness. The 
thickness corresponds to the mass as shown in Fig. 2.  

The diagram in Fig. 2 contains some very important pieces 
of information. An object of 10 kg is moving to the right at a 
speed of 3 m/s. The magnitude of the velocity (3 m/s) is shown 
by the length of the arrow. The direction of the velocity is 
shown by the direction that the arrow points. The height or the 
thickness of the vector would represent the mass (10 kg). The 

v∆

initialv finalv

Fig. 1.  Example of a motion diagram.

3 m/s 

10 kg p = 30 kg m/s.

Fig. 2.  Example of a momentum diagram.

2 s 
I = 60 N s 

30 N 

.

Fig. 3.  Example of an impusle diagram.
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the problem. Since the second (40 kg) chunk is not moving 
initially, we will not construct a diagram for it. We see that the 
area (momentum) of the system initially is 12 blocks or  
1200 kg.m/s (20 kg * 60 m/s = 1200 kg.m/s).

Next, we focus on the final situation (Fig. 6). We increase 
the length of the arrow by four blocks to represent the addi-
tional mass. Since momentum is conserved, we need to have 
the 12 blocks (or an area of 1200 kg.m/s) in our final IMD. 
The six blocks on the vertical axis (the chunks of ice stuck 
together) multiplied by 2 will give the area of 12 blocks. This 2 
represents a speed of 20 m/s.  

Another popular type of momentum problem involves a 
collision of two vehicles from opposite directions. Problem 2 
is an example of this situation.  

Problem 2
A 1200-kg Chrysler Sebring is traveling west at 20 m/s and 
collides head on with an 800-kg Prius moving east (out of 
a parking lot) at 5 m/s. The two collide and stick together. 
What is the velocity of the mangled cars?

Initial inspection of Fig. 7 gives some information about 
the scenario. First, students can visually see that the magni-
tude of the momentum of the Sebring is much larger than that 
of the Prius. From this, the final velocity of the two will be 
to the west. To determine the magnitude of the velocity, you 
must calculate the area of the graph. Initially, the Sebring has 
24 blocks to the west and the Prius has four blocks to the east. 
Thus, the net momentum is 20 blocks to the west, as shown 

IMDs also serve to help develop a quantitative understanding 
of momentum and impulse.

When you introduce these representations for the first 
time, students should construct them on graph paper. As 
shown in Fig. 4, the side of each block is scaled depending on 
the problem. In this case, the one block on the horizontal axis 
is 1 m/s and one block on the vertical is 1 kg. Ultimately, you 
need to show a relationship between the area of the rectangu-
lar portion of the diagram and the magnitude of the momen-
tum or impulse of the object. The area of the diagram gives the 
students the ability to quickly gauge the relative magnitude of 
momentum of the object.

Students in introductory courses have found these 
diagrams very helpful when they begin to investigate one-
dimensional momentum situations. They found them useful 
because it helped them visualize momentum without having 
to use numbers.8 The students were able to see how the mass 
and velocity affected the momentum of the object while at 
the same time the arrows depicted the direction. The students 
showed no difficulty associating the magnitude of the mo-
mentum with the area of the diagram. The biggest detractor 
the students had with the diagrams was that they had never 
seen them before. Thus, if students have more practice with 
and exposure to these diagrams, then they will be more help-
ful. We present four example problems with a description of 
how a student could use an IMD to help solve the problem in 
the next section.  

Example problems

Problem 1
A block of ice of 20 kg is sliding on a sheet of ice, collides 
with and sticks to a stationary 40-kg chunk of ice. If the ice 
was initially moving at 60 m/s, what is the final speed of the 
two chunks of ice stuck together?

The first step in drawing a diagram is choosing a suitable 
scale. For this problem we chose 10 kg per square on the verti-
cal axis and 10 m/s per square on the horizontal axis (Fig. 5). 
Thus, each block has an area of 100 kg.m/s. The second step 
is to draw a diagram for each chunk of ice at the beginning of 

3 kg

p = 30 kg m/s

10 m/s 

.

Fig. 4. Momentum diagram on graph paper.

pi = 1200 kg m/s 

20 kg 

60 m/s 

.

Fig. 5. Example problem 1; initial situation.

v = ? 

60 kg 

pf = ? kg m/s .

Fig. 6. Example problem 1; final situation.
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in Fig. 8. The diagram must have a vertical height of 10 blocks 
(2000 kg), which means that the horizontal length must be 
two blocks. This corresponds to a velocity of 10 m/s westward.  

Instructors can also use these diagrams when combining 
impulse and momentum. However, the horizontal scale must 
have the same magnitude (i.e., 1 block equals 1 m/s and 1 N 
or 1 block equals 15 m/s and 15 N) as well as the vertical scale 
(i.e., 1 block equals 3 kg and 3 s). 

Problem 3
A 10-kg model rocket car is moving at 4.0 m/s after its first 
rocket has fired. The second rocket fires late. The rocket ex-
erts 10 N of thrust on the car over a time of 3 s. What is the 
final speed of the car?

The blue arrow in Fig. 9 represents the rocket’s impulse and 
is in the same direction as the rocket’s momentum. Since the 
mass of the rocket does not change, the height of the arrow 
will not change. Thus, we can only change the length of the 
arrow as seen in Fig. 10 to seven blocks, which corresponds to 
7 m/s.  

Problem 4
Two balls are released from rest at the top of a ramp and hit 
a plank. Ball A hits the plank and drops straight down. The 
plank remains standing. Ball B hits the plank and bounces 
straight off of the plank. The plank gets knocked over. Ball 
A has a slightly larger mass than B, yet it was not able to 
knock the plank over.  Why?9

There are many conceptual problems IMDs can be used 
with to help student understanding. In the above problem, the 
reason the plank is knocked over is a combination of Newton’s 
third law with impulse. Students may want to believe that 
since ball A has a larger mass, it will exert a larger force on 
the plank. However this is not the case. Figure 11 shows that 
the change in momentum for ball B (though a smaller mass) 
is much larger. If we assume that the times the balls are in 
contact with the plank are roughly equal, then the force the 
plank needs to exert on ball B is much greater. Thus, by New-

5 m/s 

800 kg

ppi = 4000 kg m/s 

1200 kg

20 m/s
psi = 24000 kg m/s 

.

.

..

Fig. 7. Example problem 2; initial situation.

Pf = 20000 kg m/s 

2000 kg

v = ? 

.

Fig. 8. Example problem 2; final situation.

pci = 40 kg m/s 

10 kg 
3 s 

10 N 

I = 30 N s 
4 m/s 

.

.

Fig. 9. Example problem 3; initial situation.

10 kg 

pci = 70 kg m/s 

v = ? m/s 

.

Fig. 10. Example problem 3; final situation.

Diagrams to help answer

Ball A

Ball B
Initial Momentum Final Momentum Change in Momentum

Change in MomentumFinal MomentumInitial Momentum

Fig. 11. Solution to example problem 4.
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ton’s third law the force that ball B exerts on the plank is much 
greater than the force that ball A exerts on the plank.

Conclusion
There are many different ways in which you can utilize 

these diagrams in the classroom. The main purpose for these 
diagrams is to help students qualitatively understand momen-
tum and impulse. Furthermore, they can act as a link between 
abstract verbal descriptions of a scenario and the abstract 
mathematical answer to the problem, thus acting in a quan-
titative fashion much the same way that free-body diagrams 
serve as a link to help students construct Newton’s second law 
in component form.6      

In addition to highlighting the positive aspects of this rep-
resentation, it is important to highlight the limitations. The 
largest limitation of these diagrams is that they cannot easily 
be applied to two-dimensional cases. They work well for one-
dimensional motion with simple addition and subtraction 
of the area of the arrow; however, a two-dimensional case 
would involve much more complicated geometry. Thus, IMDs 
should be used in the beginning to help lay the foundation for 
the students to understand momentum and impulse. Further-
more, some students may have difficulties in determining ap-
propriate scales when constructing the diagrams.
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