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Abstract

We show how Moore’s observation, in the context of toroidal compactifications in type IIB string
theory, concerning the complex multiplication structure of black hole attractor varieties, can be
generalized to Calabi—Yau compactifications with finite fundamental groups. This generalization
leads to an alternative general framework in terms of motives associated to a Calabi—Yau variety
in which it is possible to address the arithmetic nature of the attractor varieties in a universal way via
Deligne’s period conjecture.

0 2003 Elsevier B.V. All rights reserved.

PACS: 11.25.-w; 11.25.Hf; 11.25.Mj

1. Introduction

During the past few years number theoretic considerations have become useful in string
theory in addressing a variety of problems in string theory, such as the understanding of the
underlying conformal field theory of Calabi—Yau manifolds [1-4], the nature of black hole
attractor varieties [5,6], and the behavior of periods under reduction to finite fields [7]. Our
aim in the present paper is to further develop and generalize some of the observations made
by Moore in his analysis of the arithmetic nature of so-called black hole attractor varieties.
The attractor mechanism [8—13] describes the radial evolution of vector multiplet scalars
of spherical dyonic black hole solutions M = 2 supergravity coupled to Abelian vector
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multiplets. Under particular regularity conditions the vector scalars flow to a fixed point in
their target space. This fixed point is determined by the charge of a black hole, described
by a vectorw in the lattice A of electric and magnetic charges of the= 2 Abelian
gauge theory. If theV = 2 supergravity theory is derived from a type IIB string theory
compactified on a Calabi—Yau space, the vector multiplet moduli space is described by the
moduli spaceM of complex structures aof, and the dyonic charge vector takes values in
the latticeA = H3(X, Z).

Moore observed in the context of simple toroidal product varieties, such as the triple
product of elliptic curves & or the product KXE of a K3 surface and an elliptic curve,
that the attractor condition determines the complex moduwf the tori to be given by
algebraic numbers in a quadratic imaginary fi€lé«/D), obtained by adjoining to the
rational number€) an imaginary numbet/D, whereD < 0. This is of interest because
for particular points in the moduli space elliptic curves exhibit additional symmetries, they
admit so-called complex multiplication (CM). For compactifications with toroidal factors
Moore’s analysis then appears to indicate an interesting link between the ‘attractiveness’
of varieties in string theory and their complex multiplication properties.

Calabi—Yau varieties with elliptic factors are very special because they have infinite
fundamental group, a property not shared by Calabi—Yau manifolds in general. Other
special features of elliptic curves are not present in general either. In particular Calabi—
Yau spaces are not Abelian varieties, and they do not, in any obvious fashion, admit
complex multiplication symmetries. Hence, it is not clear how Moore’s observations can be
generalized. Itis this problem which we wish to address in the present paper. In order to do
so we adopt a cohomological approach and view the modular parameter of the elliptic curve
as part of the primitive cohomology. In the case of elliptic curves E this is simply a choice
of view because there exists an isomorphism between the curve itself and its Jacobian,
defined byJ (E) = HY(E, C)/HY(E, Z) described by the Abel-Jacobi mapE — J(E).

These varieties are Abelian.

The Jacobian variety of an elliptic (or more general) curve has a natural generalization
to higher-dimensional varieties, defined by the intermediate Jacobian of Griffiths. It would
be natural to use Griffiths’ construction in an attempt to generalize the elliptic results
described above. In general, however, the intermediate Jacobian is not an Abelian variety
and does not admit complex multiplication. For this and other reasons we will proceed
differently by constructing a decomposition of the intermediate cohomology of the Calabi—
Yau, and using this decomposition to formulate a generalization of the concept of complex
multiplication of black hole attractor varieties. To achieve this we formulate complex
multiplication in this more general context by analyzing in some detail the cohomology
group H(X) of weighted Fermat hypersurfaces.

The paper is organized as follows. In order to make the presentation more self-contained
we briefly review in Section 2 the physical setting of black hole attractors in type IIB
theories, as well as Moore’s solution of the KZE solution of the attractor equations. In
Section 3 we describe the necessary background of Abelian varieties, and in Section 4 we
show how Abelian varieties can be derived from Calabi—Yau hypersurfaces by showing
that the cohomology of such varieties can be constructed from the cohomology of curves
embedded in these higher-dimensional varieties. This leads us to Abelian varieties defined
by the Jacobians of curves. Such Abelian varieties do not, in general, admit complex
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multiplication. What can be shown, however, is that Jacobians of projective Fermat curves
split into Abelian factors whicldo admit complex multiplication. We briefly describe this
construction and generalize the discussion to curves of Brieskorn—Pham type. Combining
these results shows that we can define the complex multiplication type of Calabi-Yau
varieties with finite fundamental groups via the CM types of their underlying Jacobians. In
Section 5 we indicate some of the arithmetic consequences for Calabi—Yau varieties that
derive from the emergence of Abelian varieties with complex multiplication in the context
of black hole attractors.

Inthe process of our analysis we will recover the same fields which Moore uncovered by
considering the fields generated by periods of higher-dimensional varieties. Even though
our approach is very different from Moore’s, it is not completely unexpected that we should
be able to recover the field of periods by considering the complex multiplication type. The
reason for this is a conjecture of Deligne [14] which states that the field determined by the
periods of a critical motive is determined by its L-function. Because Deligne’s conjecture
is important for our general view of the issue at hand, we briefly describe this conjecture
in Section 6 in order to provide the appropriate perspective. Deligne’s conjecture is in fact
a theorem in the context of projective Fermat hypersurfaces [16], but has not been proven
in the context of weighted hypersurfaces. Mathematically, our results in essence can be
viewed as support of this conjecture even in this more general context. In Section 7 we
summarize our results and indicate possible generalizations.

2. Arithmetic of elliptic attractor varieties
2.1. Attractor varieties

In this paper we consider type 1IB string theory compactified on Calabi-Yau threefold
varieties. The field content of the string theory in 10D sp#é8 splits into two sectors
according to the boundary conditions on the world sheet. The Neveu—-Schwarz fields
are given by the metrig € I'(x19, T*Xx1° @ T*Xx10), an antisymmetric tensor field
B e I'(X10, 22) and the dilaton scalar € C*°(X1° R). The Ramond sector is spanned by
even antisymmetric forma? e I"'(X10, 27) of rank p zero, two, and four. Her@? — X
denotes the bundle gf-forms over the variety.

In the context of the black hole solutions considered in [8], the pertinent sectors
are given by the metric and the five-form field stren§ttof the Ramond—Ramond 4-
form A%. The metric is assumed to be a static spherically symmetric spacetime which
is asymptotically Minkowskian and describes an extremally charged black hole, leading to
the ansatz

ds?=—e?VDdr@dt +e VO (dr @ dr +r?0y), (1)

wherer is the spatial three-dimensional radius, is the 2D angular element, and the
asymptotic behavior is encoded vda’"”) — oo for r — oo. The expansion of the five-
form F leads to a number of different 4D fields, the most important in the present context
being the field strengthg’ of four-dimensional Abelian fields, the number of which
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depends on the dimension of the cohomology gro8gXHl via

AL @)=Y Aok, (). @)
L

.....

basis{oq, *},—o... p21, for which [, o A B2 = 6%, leading to an expansion of the field

ey

strength of the form
Flx,y) =F'(x) Aag — Gga(x) A B2 3)

Being a five-formin ten dimensions the field strengthdmits (anti)self-duality constraints
with respect to Hodge dualityi = +x10F. The ten-dimensional Hodge operateiy
factorizes into a 4D and a 6D parfg = *4%6. A solution to the anti-selfduality constraint
in 10D as well as the Bianchi identitiF = 0 can be obtained by considering [5]

F=Re(E A (0* + 0%3)), (4)
where [17]
eZU(r)

E=¢sinddd Adp —iq 3
,

dt Adr 5)

is a 2-form for which the four-dimensional Hodge duality operator leadgfo=iE.

Two standard maneuvers to derive the dynamics of a string background configuration
are provided by the reduced IIB effective action with a sort of small superspace ansatz [11],
and the supersymmetry variation constraints of the fermions in non-trivial backgrounds, in
particular the gravitino and gaugino variations. We adopt the notation of [18]. Defining an
inner product-, -) on H3(X) via

<w,n>:fwm, ®)
X

the gravitino equation involves the integrated version of the 5-form field strength defined
as [19,20]

T~ =eX2(2,F7) = X/%(G,F*~ (x) — 29G, (x)), 7)
with Kahler potential
K =i(2,2)=~i(z"Ga — 2Ga)- 8)
Here the second equation is written in terms of the periods
=259 = [ 2
Aa
6= (2. = [ 2, ©)
B,

.....

.....
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can be expanded as

2 =7 — Gup°. (10)

The supersymmetry transformation of the gravitint = 1/1;‘ dx" can then be written
in terms of the components &f as

sy = De? + dx* T;wy”(es)A, (11)
wherey# denotes the covariant Dirac matrices and
1
D =dx* D, =dx* <3u - szbl/ab +i Q,L> (12)

is a derivative covariant with respect to both the Lorentz and the Kéhler transformations
in terms of the spin connecti(mzb and the Kahler connectio@,,. The variation of the
gaugino of the Abelian multiplets takes the form

SAA =iyHy,glet + %Gi;)y“”(es)A. (13)
Plugging these ingredients into the supersymmetry transformation behavior of the gravitino

and the gaugino fields, and demanding that the vacuum remains fermion free, leads to the
following equations for the modutf and the spacetime functidi(r)

au

— =-¢"|2|,

dp

dZi U iji

A —2¢" 8" 957, (14)

wherep =1/r, 87 =0i0;K is the metric derived from the Kéahler potentidal and
Z(I') = eK/Z/ Q= eK/Z/ nroA 82 (15)
r X

is the central charge of the cyclé e Hz(X) with Poincaré dual; € H3(X). To make
the moduli and charge dependence of the central charge explicit one can alternatively view
Z(I') as the integral of the graviphoton form

Z(Za, P, Qa) :/T7 = eK/Z(gapa _ Zaqa) (16)
S2
in terms of the charges

v=[F a=e (a7)

52 52
The fixed point condition of the attractor equations can be written in a geometrical way
as the Hodge condition

H3(X,Z) 5 w =% + %3, (18)
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Writing 0% = —i C 2 this can be formulated as

ip'=C2"—CZ,  ige=Cy—CG, (19)

whereC = ¢X/27,

The system (19) describes a sebefX) chargesp?, q,) determined by the physical 4-
dimensional input, which in turn determines the complex periods of the Calabi—Yau variety.
Hence, the system should be solvable. The interesting structure of the fixed point which
emerges is that the central charges are determined completely in terms of the charges of the
four-dimensional theory. As a consequence the 4D geometry is such that the horizon is a
moduli independent quantity. This is precisely as expected because the black hole entropy
should not depend on adiabatic changes of the environment [21].

2.2. Arithmetic of attractor elliptic curves

In Ref. [5] Moore noted that two types of solutions of the attractor equations have
particularly interesting properties. The first of these is provided by the triple product
of a torus, while the second is a product of a K3 surface and a torus. Both solutions
are special in the sense that they involve elliptic curves. In the case of the product
threefold X = K3 x E the simplifying feature is that via Kinneth’s theorem one finds
H3(K3 x E) = H?(K3) ® HL(E), and therefore the cohomology group of the threefold
in the middle dimension is isomorphic to two copies of the cohomology grot(K3)
because IE) is two-dimensional. The attractor equations for such threefolds have been
considered in [22]. The resulting constraints determine the holomorphic form of both
factors in terms of the chargép, ¢) of the fields. The complex structuteof the elliptic
curve E =C/(Z + t7Z) is solved as

P-q+Dp,
=y P Ak (20)

T
pq
p

whereD,, , = (p - q)? — p?q? is the discriminant of a BPS state labelled by

w=(p,q) € H3(K3 x E, 7). (21)

The holomorphic two form on K3 is determined &% = C(q — 7p), whereC is a
constant.

Moore makes the interesting observation that this result is known to imply that
the elliptic curve determined by the attractor equation is distinguished by exhibiting a
particularly symmetric structure. Elliptic curves are groups and therefore one can consider
the endomorphism algebra Hifig). This algebra can take one of three forms. Generally,
End(E) is just the ringZ of rational integers. For special curves however there are two
other possibilities for which En@) is either an order of a quadratic imaginary figfg
i.e., itis a subring?r which generateg as aQ-vector space and is finitely generated as a
Z-module, or it is a maximal order in a quaternion algebra. The latter possibility can occur
only when the fieldK over which E is defined has positive characteristics. Elliptic curves
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are said to admit complex multiplication if the endomorphism algebra is strictly larger than
the ring of rational integers.

The point here is that the property of complex multiplication appears if and only if the
Jj-invariant; (t) of an elliptic curveE, = C/(Z + tZ) is an algebraic integer, i.e., it solves
a polynomial equation with rational coefficients such that the coefficient of the leading
term is unity. This happens if and only if the modutuis an imaginary quadratic number,
i.e., it solves an equatiahit?>+ Bt +C =0for A, B, C € Z. The j-invariant of the elliptic
curve E can be defined in terms of the Eisenstein series

1 1
E(t) = E mZnG:Z m (22)
m,n boprime
as
i = B0 (23)
A(T) ’

where 1728\(r) = E4(1)® — Eg(1)2. In generalj (r) does not take algebraic values, not

to mention values in an imaginary quadratic field. Even for algehr&g (t) in general a
transcendental number unlesg imaginary quadratic. Thus we see that in the framework

of toroidal compactification the solutions of the attractor equations can be characterized
as varieties which are unusually symmetric and which admit complex multiplication by a
quadratic imaginary field” = Q(i /| D]).

Once this is recognized several classical results about elliptic curves with complex
multiplication are available to illuminate the nature of the attractor variety. Exploring these
consequences is of interest because they provide tools that allow a characterization of
attractor varieties that involve elliptic factors. The nature of attractor varieties without
elliptic factors is at present not understood. Generalizations of the arithmetic results
obtained in the elliptic context provide a framework in which Calabi—Yau varieties with
finite fundamental groups (which may be trivial) can be explored.

One of the important number theoretic results associated to elliptic curves with complex
multiplication is that the extensiofi(j(t)) obtained by adjoining thg-value toF is the
maximal unramified extension d@f with an Abelian Galois group, i.e., the Hilbert class
field. Geometrically there is a Weierstrass model, i.e., a projective embedding of the elliptic
curve of the form

y2 4+ a1xy 4+ azy = x° + asx® + aax + ag (24)

that is defined over this extensidf(j (t)).

Even more interesting is that it is possible to construct from the geometry of the elliptic
curve the maximal Abelian extensidfy, of F by considering the torsion pointsgzon the
curve E, i.e., points of finite order with respect to the group law. The fi&lgi(t), Eior),
defined by thej-function and the torsion points, is in general not an Abelian extension of
F, but contains the maximal Abelian extensiB,. It is possible to isolaté sy, by mapping

1 A brief review of the arithmetic theory of elliptic curves can be found in [23]. A more extended source [24].
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the torsion points via the Weber function
P E— Py, (25)

of the curve E, whose definition depends on the automorphism group of the curve.
Assuming that the characteristic of the fididis different from 2 or 3, the elliptic curve
can be embedded via the simplified Weierstrass form

y2=x3+ Ax + B. (26)
If the discriminant
A =—16(443%+27B%) (27)

does not vanish the elliptic curve is smooth, and the automorphism groyfg)fean be
shown to take one of the following forms, depending on the value of {tnwariant

(£1} if j(Ey#£00r1728i.e, AB+#0
AUt(E) = { {£1, i} if j(Ey=1728 i.e, B=0 , (28)
{£1, &5, ££2) if j(E)=0, i.e, A=0

wheregs = ¢271/3 is a primitive third root of unity.
The Weber function can then be defined as

ABx(p) if j(E)#0o0r1728
Pe(p) =1 Lx2(p) if j(E)=1728 (29)
2x3(p) if j(E)=0

and the Hilbert class field (j (t)) can be extended to the maximal Abelian extendign
of F by adjoining the Weber values of the torsion points

Fap=F(j(x), {®e(®) |t € Etor}). (30)

We see from these results that the attractor equations pick out special elliptic curves with
an enhanced symmetry group. This is an infinite discrete group which in turn leads to a rich
arithmetic structure. It is this set of tools which we wish to generalize to the framework of
Calabi—-Yau varieties proper, i.e., those with finite fundamental group.

3. Abelian varietieswith complex multiplication

We first review some pertinent definitions of Abelian varieties. An Abelian variety over
some number fiel is a smooth, geometrically connected, projective variety which is
also an algebraic group with a group latvx A — A defined overK. A concrete way
to construct Abelian varieties is via complex t@if /A with respect to some latticd,
that is not necessarily integral, and admits a Riemann form. The latter is defined as an
R-bilinear form (,) on C" such that(x, y) takes integral values for akt, y € A, and
satisfies the relation&, y) = —(y, x). Furthermore(x, iy) is a positive symmetric form,
not necessarily non-degenerate. The result then is that a complex@byus has the
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structure of an Abelian variety if and only if there exists a non-degenerate Riemann form
onC"/A.

A special class of Abelian varieties are those of CM type, so-called complex
multiplication type. The reason these varieties are special is because, as in the lower-
dimensional case of elliptic curves, certain number theoretic question can be addressed
in a systematic fashion for this class. Consider a number fiebster the rational numbers
Q and denote byF : Q] the degree of the field overQ, i.e., the dimension of" over
the subfieldQ. An Abelian varietyA of dimensior is called a CM-variety if there exists
an algebraic number fiel&d@ of degree[F : Q] = 2n over the rational€) which can be
embedded into the endomorphism algebra@nd Q of the variety. More precisely, a
CM variety is a pair(A, ) with 6: F — EndA) ® Q an embedding ofF. It follows
from this that the fieldF necessarily is a CM field, i.e., a totally imaginary quadratic
extension of a totally real field. The important ingredient here is that restrictio /o C
EndA) ® Q is equivalent to the direct sum af isomorphismsps, ..., ¢, € I1so(F, C)
such that Is6F, C) = {¢1, ..., ¢u, pd1, ..., pdn}, Wherep denotes complex conjugation.
These considerations lead to the definition of calling the Q&if¢;}) a CM type, in the
present context, the CM type of a CM varigty, ).

The context in which these concepts will appear in this paper is provided by varieties
which have complex multiplication by a cyclotomic fiefkd= Q(u,,), whereu,, denotes
the cyclic group generated by a primitiweh root of unity&,. The field Q(u,) is the
imaginary quadratic extension of the totally real fi€lds, + &,) = Q(cog27/n)) and
therefore is a CM field. The degree @f(u,) is given by [Q(u,) : Q] = ¢(n), where
o) =#m e N|m < n, gcdm,n) = 1} is the Euler function. Hence, the Abelian
varieties we will encounter will have complex dimensipfx) /2. Standard references for
Abelian varieties with complex multiplication have been provided by Shimura [25-27].

In the following sections we first reduce the cohomology of the Brieskorn—Pham
varieties to that generated by curves and then analyze the structure of the resulting weighted
curve Jacobians.

4. Abélian varietiesfrom Brieskorn—Pham type hyper surfaces
4.1. Curves and the cohomology of threefolds

The difficulty of higher-dimensional varieties is that there is no immediate way to
recover Abelian varieties, thus making it non-obvious how to generalize the concept of
complex multiplication from one-dimensional Calabi—Yau varieties, which are Abelian
varieties, to K3 surfaces and higher-dimensional spaces. As a first step we need to
disentangle the Jacobian of the elliptic curve from the curve itself. This would lead us
to the concept of the middle-dimensional cohomology, more precisely the intermediate
(Griffiths) Jacobian which is the appropriate generalization of the Jacobian of complex
curves. The problem with this intermediate Jacobian is that it is not, in general, an Abelian
variety.

We will show now that it is possible nevertheless to recover Abelian varieties as the
basic building blocks of the intermediate cohomology in the case of weighted projective
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hypersurfaces. The basic reason for this is that the cohomol8gy)Hor these varieties
decomposes into the monomial part and the part coming from the resolution. The monomial
part of the intermediate cohomology can be obtained from the cohomology of a projective
hypersurface of the same degree by realizing the weighted projective space as a quotient
variety with respect to a product of discrete groups determined by the weights of the
coordinates. For projective varieties

X ={(z0. - 2n41) €Puy1| 2§+ + 20,1 =0} CPyi1 (31)

it was shown in [29] that the intermediate cohomology can be determined by lower-
dimensional varieties in combination with Tate twists by reconstructing the higher-
dimensional varietyX’; of degreed and dimensiom in terms of lower-dimensional
varieties X!, and X7, of the same degree with = r + 5. Briefly, this works as follows.

The decomposition oX7; is given as

XZH = Blezz((ngl(Xgl x Xfl))/“d)’ (32)

which involves the following ingredients.
1) n;l(Xfl x X3) denotes the blow-up of/, x X}, along the subvariety

Y =Xt X5 e X x X (33)

The varietyY is determined by the fact that the initial map which establishes the
relation between the three varieti&$**, X", X3 is defined on the ambient spaces
as

(X0, -+ s Xr42), (Y05 + o5 Ys42) B> (XOYs41s -+ s Xr Ys4+1s Xrd1Y0s « - -5 Xp1Ys)-

(34)

This map is not defined on the subvari&ty
(2) 7; 1 (X!, x X3)/1a denotes the quotient of the blow-ug (X7, x X%) with respect
to the action of

Md = g ((-x07 e axr,xr+1), ()’07 R ,VS, )’v+1))
= ((x09 .. ’xr’ sxVJrl)’ (y09 ey y.Ya SyA+l))7

3) le,zz((ngl(Xg x X))/ 1a) denotes the blow-down im;l(XZ x X3)/ma of the two
subvarieties

Zi=P. x X5t Zo=X'xP,.

This construction leads to an iterative decomposition of the cohomology which takes
the following form. Denote the Tate twist by

H (X)(j) == H' (X) ® W&/ (35)
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with W = H2(Py) and letX”"* be a Fermat variety of degreleand dimensiom + s.
Then

H7 s (eri—H) ® Z Hr+sf2j (eri_l) (J) ® Z Hr+sf2k (Xfl—l) (k)

j=1 k=1
= H(XG % X5 @ i 2 (X, x X5TH ). (36)
This allows us to trace the cohomology of higher-dimensional varieties to that of

curves.

Weighted projective hypersurfaces can be viewed as resolved quotients of hypersurfaces
embedded in ordinary projective space. The resulting cohomology has two components,
the invariant part coming from the projection of the quotient, and the resolution part.
As described in [30], the only singular sets on arbitrary weighted hypersurface Calabi—
Yau threefolds are either points or curves. The resolution of singular points contributes to
the even cohomology group?dx) of the variety, but does not contribute to the middle-
dimensional cohomology group3dx). Hence, we need to be concerned only with the
resolution of curves (see, e.g., [31]). This can be described for general CY hypersurface
threefolds as follows. If a discrete symmetry grédyfnZ of ordern acting on the threefold
leaves invariant a curve then the normal bundle has fiigend the discrete group induces
an action on these fibres which can be described by a matrix

a™ 0
(0" o) 37
where « is an nth root of unity and(g,n) have no common divisor. The quotient

Cz/(Z/nZ) by this action has an isolated singularity which can be described as the singular
set of the surface ifC3 given by the equation

S ={(z1.22.23) € C3| 24 = 2225 7} (38)

The resolution of such a singularity is completely determined by the typg) of the
action by computing the continued fraction q!bf

n

S —bhy— =[b1,...,bs]. (39)
q

by — 1
S
The numbers; specify completely the plumbing process that replaces the singularity
and in particular determine the additional generator to the cohomoldg¥ Hoecause
the number ofP1s introduced in this process is precisely the number of steps needed in
the evaluation o2 = [b1, ..., bs]. This can be traced to the fact that the singularity is
resolved by a bundle which is constructed out &f 1 patches withy transition functions
that are specified by the numbédrs Each of these glueing steps introduces a sphere,
which in turn supports &1, 1)-form. The intersection properties of these 2-spheres are
described by Hirzebruch-Jung trees, which f@/aZ action is just ar8J (n + 1) Dynkin
diagram, while the numbels describe the intersection numbers. We see from this that
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the resolution of a curve of genysthus introduces additional generators to the second
cohomology group A(X), andg x s generators to the intermediate cohomology ).

Hence, we have shown that the cohomology of weighted hypersurfaces is determined
completely by the cohomology of curves. Because the Jacobian, which we will describe in
the next subsection, is the only motivic invariant of a smooth projective curve this says that
for weighted hypersurfaces the main motivic structure is carried by their embedded curves.
We will come back to the motivic structure of Calabi—Yau varieties in Section 6.

4.2. Cohomology of weighted curves

For smooth algebraic curves of genusg the de Rham cohomology groupﬁgg(C)
decomposes (over the complex number fi€)cas

Higr(C) =HO(C, 2Y @ HY(C, 0). (40)
The Jacobiary (C) of a curveC of genusg can be identified with
J(C)=C8/A, (41)

whereA is the period lattice

aef(fon)

where thew; form a basis. Given a fixed poigy € C on the curve there is a canonical
map from the curve to the Jacobian, called the Abel-Jacobi map

a e Hi(C,Z), w; e H(C, 91)}, (42)

W C —s J(O), (43)

defined as

p
pl—)(...,/wi,..) mod A. (44)

Po
We are interested in curves of Brieskorn—Pham type, i.e., curves of the form

Cq= {Xd +y4 4 = 0} € P pldl, (45)

such that: = d/k andb = d /¢ are positive rational integers. Without loss of generality we
can assume thdk, ¢£) = 1. The genus of these curves is given by

1 d=Rd =0+ Kk —d)
g(Cd)—Z(2 X)= o, .

For non-degenerate curves in the configuratiBag ¢ [d] the set of forms

Har(Pk.0ld])

(46)

1<r<d—1,
=Ly =y""1 Ay | r+ks +r=0modd, [ 1<s<¢ -1, (47)
1<r<éd -1
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defines a basis for the de Rham cohomology groﬁg(ad) whose Hodge split is given
by

HO(Cy, 28) = {wy 0 | ¥ +ks + €t = d},

HY(Cy, Oc) = {wr.s.0 | F + ks + £t = 2d)}. (48)

In order to show this we view the weighted projective space as the quotient of projective
space with respect to the actidg: [0 1 0] andZ, : [0 O 1], where we use the abbreviation
Zix = 7/ kZ and for any groufZ, the notatior{a, b, c] indicates the action

la,b,cl: (x,y, 20+ (y*x, v"y, v<2), (49)

wherey is a generator of the group. This allows us to view the weighted curve as the
guotient of a projective Fermat type curve

0 1 o} . (50)

Pax.oldl =Pald]/Zk X Zy : |:0 0 1

These weighted curves are smooth and hence their cohomology is determined by
considering those forms on the projective cuigd] which are invariant with respect
to the group actions. A basis foréEl(]P’z[d]) is given by the set of forms

Hl(IP’z[d]) = {a)r,s,, = ys_lzt_d dy ! O<rs,t<d,
r+s+1t=0(modd), r,s,teN}. (51)

Denote the generator of ti# action bya and consider the induced action @p; ;

Ly wrs > @ 0p 5t (52)

It follows that the only forms that descend to the quotient with resp€eky tare those for
whichs = 0( mod k). Similarly we denote by the generator of the actidfy and consider
the induced action on the formas ; ;

Zyg SWr gt > ,Bt_dwr,s,t- (53)

Again we see that the only forms that descend to the quotient are those for which
t =0 (mod¥).

4.3. Abelian varieties from weighted Jacobians

Jacobian varieties in general are not Abelian varieties with complex multiplication.
The question we can ask, however, is whether the Jacobians of the curves that determine
the cohomology of the Calabi—Yau varieties can be decomposed such that the individual
factors admit complex multiplication by an order of a number field. In this section we show
that this is indeed the case and therefore we can define the complex multiplication type of
a Calabi—Yau variety in terms of the CM types induced by the Jacobians of its curves.
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It was shown by Faddeev [32}hat the Jacobian variety(C,;) of Fermat curves
Cy4 C P> splits into a product of Abelian factorsp,

eo= [ Ao (54)
O;€T/(Z)dZ)*

where the sef provides a parametrization of the cohomology@f and the set®); are
orbits inZ of the multiplicative subgrougZ/dZ)* of the groupZ/dZ. More precisely it
was shown that there is an isogeny

i:J(Cq) —> [T 4o (55)
O;€T/(Z)dT)*

where an isogeny:A — B between Abelian varieties is defined to be a surjective
homomorphism with finite kernel. In the parametrization used in the previous subsgction
is the set of tripletsr, s, #) in (51) and the periods of the Fermat curve have been computed
by Rohrlich [35] to be

1 st .
/ Wy st = EB<E’ E)(l_é-s)(l_é-l‘)sjs-ﬁ—kt7 (56)
AJ Bk
where¢ is a primitivedth root of unity, and

1
B(u, v) =/t"*1(1— V)V Ldr (57)
0
is the classical beta functiod., B are the two automorphism generators

Al y,2)=(1,&y,2), B(l,y,2)=(1,y,&2) (58)

and« is the generator of HC,) as a cyclic module ovef[A, B]. The period lattice of
the Fermat curve therefore is the span of

. (1 .
(et 0002052 ) YOS IES0

r+s+t=d
+s+t (59)

The Abelian factor |, 5.1)) associated to the orb@®, ; , = [(r, 5, )] can be obtained as the
guotient

A[(r,s,t)l = (C(p(dO)/z/Ar,s,ty (60)
wheredp =d/gcdr, s, t) and the latticed, s ; is generated by elements of the form

(as) (at)

O—a(Z)(l_EaS)(l_gat)33<77 7)7 (61)

2 More accessible are the references [33-35] on the subject.
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wherez € Z[ 4,1, 04 € Gal(Q(uq,/Q)) runs through subgroups of the Galois group of the
cyclotomic fieldQ(uq,) and(x) is the smallest integer€ x < 1 congruent toc modd.

We adapt this discussion to the weighted case. Denote the index set of triples
parametrizing the one-forms of the weighted cur¥gs P (1 1 ¢)[d] again byZ. The cyclic
group(Z/dZ7Z)* again acts off and produces a set of orbits

Orsi=[(r,s,0] €Z/(Z/aZ)>. (62)

Each of these orbits leads to an Abelian varigty. ; ;; of dimension

. 1
dImA[(”sSJ)]Z E(p(dO)’ (63)

and complex multiplication with respect to the field, s, = Q(uq,), Wheredo =
d/gcdr, ks, £r). This leads to an isogeny

i: J(P(l,k,g)[d]) — 1_[ A[(r,s,t)]- (64)
[(r.s.01€T /(Z/dZ)*
The complex multiplication type of the Abelian factots ; of the Jacobia (C) can be
identified with the set
Hs.i :={a € (Z/dZ)* | (ar) + (aks) + (alt) = d} (65)

via a homomorphism from H , to the Galois group. More precisely, the CM type is
determined by the subgrou@, ;. of the Galois group of the cyclotomic field that is
parametrized by K ;

Grs:= {Ua € Gal(@(ﬂdg)/@) | ae Hr,s,t} (66)
by considering
(F7 {¢a}) = (Q(Mdo)7 {aa | Oq € Gr,s,t})~ (67)

5. Arithmetic of Abelian varieties

Abelian varieties with complex multiplication have special properties because of their
particular symmetries. It turns out that even though the theory of CM fields associated to
higher-dimensional varieties is not as complete as the theory associated to elliptic curves
with complex multiplication, a humber of key results of the elliptic theory have been
generalized to Abelian varieties, mostly by Shimura.

Suppose that the Abelian variety of dimensiorm has complex multiplication by the
ring of integersOr of some CM fieldF (or by an order inF), and that the CM type
of the variety is given by(F, {¢;}i=1,...»). The arithmetic structure induced by higher-
dimensional varieties is concerned not wititself but the so-called reflex fielf, which
depends not only on the field, but also on the CM type af . F is defined as the extension
Q(>_'_;a?) of the field of rational numbers by adjoining the traces of elemertsF.

The higher-dimensional analog of the elliptic field of moduli then gives an unramified
Abelian extension of the field” [26]. Even though ramified class fields ovErcan be
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obtained as well, the theory leads to less complete results because it does not give all
Abelian extensions of’. For this reason Hilbert's twelfth problem is still not solved for
CM fields.

The basic question is whether there is a simple way to characterize the kind of subfield
of the maximal Abelian extensioR,, of a CM field F that can be obtained by adjoining
to the reflex field the moduli fields of Abelian varieties as well as the points of finite order.
A nice result in this direction has been obtained by Wei [36]. In brief, her theorem states
that given a CM fieldF with totally real subfieldFg, the field Fnog generated by the
moduli and torsion points of all polarized Abelian varieties of CM type whose reflex field
is contained inF, is the subfield offyy, that is fixed under the subgroup of the Galois
group Gal Fap/ F) generated by the verlagerungs map

Ver:GalQ/ Fr) ., —> Gal(Q/F). (68)

More concisely,

Frod= (Fab)H . (69)

The verlagerungs map Ver involved here is a general construction which assigns to a
subgroupH of a groupG a homomorphism between the Abelianizatiohg = G/(G, G)
andHap= H/(H, H) of the pair of groups

Ver:Gap—> Hap. (70)

Consider a system af of representatives for the left cosets®fin G. For eachg € G
decompose the translage: for anya € C asga = a’g,, with g, € H anda’ € C. The
verlagerungs map is then defined as

Ver(g mod(G, G)) = [ | g« mod(H, H). (71)
aeC

More details can be found in [37,38].

We see from this that, even though the results are weaker, the generalization from the
imaginary quadratic fields of one-dimensional Abelian varieties to the CM fields of higher
dimensions allows for a fairly nice characterization.

6. Deligne'speriod conjecture

Our focus in this paper is on the fields of complex multiplication that we derive from
the Abelian varieties which we construct from Calabi—Yau varieties. In Moore’s analysis of
higher-dimensional manifolds the focus is on fields derived from the periods of the variety.
In this section we describe how the period approach can be recovered from our higher-
dimensional complex multiplication point of view via Deligne’s conjecture formulated
in [14]. Precursors to Deligne’s formulation can be found in Shimura'’s work [39-41].

Deligne’s conjecture in its motivic formulation is also useful in the present context
because it allows us to provide a general perspective for our results which will furnish
what we expect to be a useful general framework in which to explore further the arithmetic
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nature of attractor varieties. Motives are somewhat complicated objects whose status is
reminiscent of string theory: different realizations are used to probe what is believed to
be some yet unknown unifying universal cohomology theory of varieties which satisfies
a number of expected functorial properties. More precisely, motives are characterized
by a triplet of different cohomology theories together with a pair of compatibility
homomorphisms. In terms of these ingredients a motive then can be described by the
quintuplet of objects

(MB7MdR7M67IB,O‘7IE,5‘)7 (72)

where the three first entries are cohomological objects constructed via Tate twists from
the Betti, de Rham, and étale cohomology, respectively. Furthermgrdescribes a map
between the Betti and de Rham cohomology, whilg Is a map between Betti and étale
cohomology? The focus in the present paper is mostly on motives derived from the first
(co)homology groups HA) and H.(A) of Abelian varietiesA, as well as the primitive
cohomology of Fermat hypersurfaces.

The second ingredient in Deligne’s conjecture is the concept of an L-function. This can
be described in a number of equivalent ways. Conceptually, the perhaps simplest approach
results when it can be derived via Artin’s zeta function as the Hasse—Weil L-function
induced by the underlying variety, i.e., by counting solutions of the variety over finite
fields? The complete L-function receives contributions from two fundamentally different
factors,A(M, s) = Loo(M, s)L(M, s). The infinity termL, (M, s) originates from those
fields over which the underlying variety has bad reduction, i.e., it is singular, while the
second ternl. (M, s) collects all the information obtained from the finite fields over which
the variety is smooth. The complete L-function is in general expected to satisfy a functional
equation, relating its values aind 1—s. A motive is called critical if neither of the infinity
factors in the functional equation has a pole at 0.

The final ingredient is the concept of the period of a motive, a generalization of ordinary
periods of varieties. Viewing the motive M as a generalized cohomology theory, Deligne
formulates the notion of a period™ (M) € C*/Q* by taking the determinant of the
compatibility homomorphism

Ig,c :Mp — Mgr (73)

between the Betti and the deRham realizations of the motive M. Deligne’s basic conjecture
then relates the period and the L-function \iaM, 0)/c* (M) € Q. Contact with the
Hasse—Weil L-function is made by noting that for motives of the type M(X)(m) with

Tate twists one hadé. (M, 0) = L(X,m). When applied to motives of Abelian varieties
c*t(M) leads to the determinant of the standard period matrix [15].

Important for us is a generalization of this conjecture which involves motives with
coefficients. Such motives can best be described via algebraic Hecke characters, which
are of particular interest for us because they come up in the L-function of projective
Fermat varieties. Algebraic Hecke characters were first introduced by Weil and called

3 Detailed reviews of motives can be found in [28].
4 Ref. [1] contains a brief description of this construction.
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Hecke characters of typg#g, which is what they are called in the older literature. The
beauty of algebraic Hecke characters is that one is immediately led to a clear distinction
between the defining field and the field in which a character lives, i.e., the figldf
values. In the context of motives constructed from these characters the fiddomes the

field of complex multiplication. Deligne’s conjecture emerges in the following way.

Deligne period conjecture:
L(M,0) c
ct (M)

This shows why the Deligne conjecture is of interest to us. The period and the L-function

determine the same field, which is the CM field of the motive. Deligne’s conjecture has
been proven by Blasius for Fermat hypersurfaces [16].

(74)

7. Summary and generalizations

We have shown that the concepts used to describe attractor varieties in the context
of elliptic compactifications can be generalized to Calabi—Yau varieties with finite
fundamental groups. We have mentioned above that the Abelian property is neither carried
by the variety itself nor the generalized intermediate Jacobian

J"(X) = H""Y(Xan, C)/H*" " (Xan, Z(n)) + F"H?"1(Xan, ©), (75)

but by the Jacobians of the curves that are the building blocks of the middle-dimensional
cohomology HMc X(X). These Jacobians themselves do not admit complex multiplica-
tion, unlike the situation in the elliptic case, but instead split into different factors which
admit different types of complex multiplication, in general. Furthermore the ring class field
can be generalized to be the field of moduli, and we can consider also points on the Abelian
variety that are of finite order, i.e., torsion points, and the field extensions they generate.

This allows us to answer a question posed in [5] which asked whether the absolute
Galois group Galk /K) could play a role in the context df = 2 compactifications of
type IIB strings. This is indeed the case. Suppose we have given an Abelian véariety
defined over a field& with complex multiplication by a field@. Then there is an action
of the absolute Galois group G&l/K) of the closurek of K on the torsion points of.
This action is described by a Hecke character which is associated to thg keld3 [26].

We have mentioned already that in general the (Griffiths) intermediate Jacobian is only
a torus, not an Abelian variety.

Even in those cases it is however possible to envision the existence of motives
via Abelian varieties associated to a variety Consider the Chow groups CKX)
of codimensionp cycles modulo rational equivalence and denote by” CHnom the
subgroup of cycles homologically equivalent to zero. Then there is a homomorphism, the
Abel-Jacobi homomorphism, which embedsfCK)nom into the intermediate Jacobian

W : CHP (X)hom —> JP(X). (76)
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The image o# on the subgroup!” (X) defined by cycles algebraically equivalent to zero
does in fact define an Abelian variety, eveif(X) is not an Abelian variety but only a
torus [42]. Hence we can ask whether attractor varieties are distinguished by Abel-Jacobi
images which admit complex multiplication.

Even more general, we can formulate this question in the framework of motives because
of Deligne’s conjecture. Thinking of motives as universal cohomology theories, it is
conceivable that attractor varieties lead to motives in the Abelian category with (potential)
complex multiplication. The standard cycle class map construction of (hhom is
replaced by the first term of a (conjectured) filtration in the resulting K-theory.

Combining the two threads of our analysis illustrates that the two separate discussions
in [5] characterizing toroidal attractor varieties via complex multiplication on the one
hand, and Calabi-Yau hypersurfaces via periods on the other, are two aspects of our
way of looking at this problem. This is the case precisely because of Deligne’s period
conjecture which relates the field of the periods to the field of complex multiplication via
the L-function of the variety (or motive). Thus a very pretty unified picture emerges.
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