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ABSTRACT

A STUDY OF THE RELATIONSHIPS BETWEEN EPISTEMOLOGICAL BELIEFS 

AND SELF-REGULATED LEARNING AMONG ADVANCED PLACEMENT 

CALCULUS STUDENTS IN THE CONTEXT OF 

MATHEMATICAL PROBLEM SOLVING

by

James Clinton Stockton 

Secondary mathematics educators advocating constructivist-oriented instruction face the 

dilemma of developing students’ problem-solving skills. Students’ epistemological 

beliefs and self-regulated learning (SRL) processing capacity influence mathematical 

problem-solving prowess. This multiple-case study explored the relationships between 

epistemological beliefs and SRL processing while advanced mathematics students 

engaged in problem-solving tasks and investigated students’ SRL strategy use, heuristic 

strategy use, and problem-solving performance. Data sources included think-aloud and 

interview transcriptions, student work, and classroom observation protocols. Validity and 

reliability were enhanced via member-checking interviews, triangulation, peer review, 

and completion of a case study database. Five major findings emerged from the data: (1) 

participants’ unique/arbitrary beliefs regarding problem solutions, procedural/conceptual 

beliefs in problem solving, and empirical/rational beliefs in problem solving were related 

to various facets of SRL processing; (2) differences in SRL strategy use were noted 

dependent upon cognitive load of problem-solving tasks; (3) heuristic strategy use was
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related to participants’ mathematical problem-solving beliefs; (4) problem-solving 

performance was related to participants’ mathematical problem-solving beliefs; (5) 

discrepancies were noted between espoused beliefs and manifested beliefs among

participants with non-availing beliefs. Recommendations for practicing mathematics 

educators include the assessment and development of students’ mathematical 

epistemological beliefs and SRL processing capacity, differentiation of cognitive load for 

tasks based on assessments of students’ cognitive capacity, and professional development 

training for teachers. Further research is needed which involves students of various 

achievement levels and extends methodologies to grounded theory or structural equation 

modeling. Additionally, a request is made for more research from classroom teachers.

Keywords: epistemological beliefs; gifted students; mathematics education; mathematical 

problem solving; self-regulated learning
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CHAPTER I

INTRODUCTION

This study investigated the relationships between epistemological beliefs and self-

regulated learning (SRL) processing while students engaged in mathematical problem-

solving tasks. Data collected from six students selected from an Advanced Placement 

(AP)* Calculus BC course provided detailed narratives and cross-case analysis explaining 

the phenomenon. Hopefully the results of this study will inform pedagogical practice for 

the purpose of fostering improved problem solving skills in secondary mathematics 

students. 

 This chapter initially addresses the background and context of the study. Then a 

statement of the problem and purpose of the study leads to the research questions that 

drove the inquiry. The chapter also includes a brief overview of the research design, 

assumptions inherent in the study, the rationale for conducting the study, and significance 

of the study. This chapter concludes with definitions of key terms and limitations and 

delimitations inherent in the study.

Background and Context 

 For the purposes of this study, problem solving was viewed as an activity that 

facilitates student learning of mathematics. The implication of this stance is that a study

relating self-regulation, epistemology, and problem solving may inform pedagogical 

practice for the purpose of fostering increased student learning of mathematics. Early
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mathematical problem-solving theorists and researchers suggested that issues of control 

and mathematical beliefs are connected to the successful completion of mathematical 

problems (e.g., Polya, 1957; Schoenfeld, 1982, 1983, 1985, 1988, 1989). More recently, 

theorists and researchers have infused contemporary self-regulated learning (SRL) theory 

and epistemological beliefs into the study of mathematical problem solving (Hofer, 1999;

Muis, 2004, 2008). This study extended the exploration of these constructs using a 

multiple-case study design in an advanced high school mathematics course. 

SRL was viewed as students’ autonomous control of learning experiences via the 

following phases: definition of the task, forethought, performance control, and self-

reflection (Winne & Hadwin, 1998; Zimmerman, 2000). Based on a review of literature, 

mathematical problem-solving-based epistemological beliefs were assumed to exist on a 

continuum and were identified as follows: rational/empirical approaches, nature of 

problem solutions, duration of problem-solving, procedural/conceptual approaches,

importance/usefulness of mathematics, and effort/inherent mathematical ability 

(Kloosterman & Stage, 1992; Muis, 2004; Royce & Mos, 1980; Schoenfeld, 1983, 1985, 

1992). To appropriately define the background and context of issues germane to the 

study, this section will present a summary of student learning issues relative to SRL,

epistemology, and problem solving. 

Philosophical Viewpoint of Student Learning 

Much debate has revolved around how students do and should learn mathematics. 

The camps range from back-to-basics rote learning to radical constructivism (Steffe & 

Kieren, 1994). The researcher’s philosophical perspective closely resembles von 

Glasersfeld’s trivial constructivism (as cited in Steffe & Kieren, 1994), which implies 
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that students can and do construct their own mathematical meanings, and carries the 

assumption that researchers and practitioners can identify, study, and enhance students’ 

mathematical ways of knowing. Based on its alignment with this philosophical 

perspective, the definition of student learning defined by the National Council of 

Teachers of Mathematics (NCTM) was used throughout this paper: “Students must learn 

mathematics with understanding, actively building new knowledge from experience and

prior knowledge” (NCTM, 2000, p. 20). 

This study utilized the definition of mathematical problem solving provided by 

Schoenfeld (1985), who stated, “By definition, problem situations are those in which the 

individual does not have ready access to a (more or less) prepackaged means of solution” 

(p. 54). Due to the novel student experiences inherent in a constructivist perspective, 

Schoenfeld’s definition implied that mathematical problem solving is at the heart of 

students’ learning of mathematics. Student learning will now be situated within the 

interrelated constructs of problem solving, epistemology, and SRL. 

Mathematical Problem Solving and SRL

“For mathematics education and for the world of problem solving [Polya’s works] 

marked a line of demarcation between two eras, problem solving before and after Polya” 

(Schoenfeld, 1987, p. 283). Polya (1957) developed a problem solving system, 

understand, plan, execute, and check, which remarkably foreshadowed every phase of the 

SRL model described above. The theoretical basis of Polya’s problem-solving system 

was an extensive list of heuristics, or problem-solving strategies. The main focuses of his 

problem-solving works were the application and adaptation of these heuristic strategies, 

teacher-student dialogues, and internal dialogues of students solving problems.  
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Drawing upon the works of Polya, Schoenfeld studied the problem solving 

practices of undergraduate and high school students. Schoenfeld’s (1985) mathematical 

problem solving framework included the aspect of control, which he further subdivided 

into reading, analyzing, exploring, planning, implementing, and verifying. Schoenfeld’s 

(1982, 1985) findings suggested that many students do not enter college with the 

appropriate control skills for problem solving, but usage and adaptation of heuristic skills 

can be taught to students. Specifically, many students who engaged in wild goose chases

involving empirical meanderings without curtail were unable to solve his problems 

(Schoenfeld, 1982, 1985). Schoenfeld’s (1988, 1989) suggested that the extensive focus 

on structure and standardized testing that pervades many high school classrooms is the 

cause of such ill preparation. It should be noted that these studies were conducted at a 

New York high school with an excellent track record for high student achievement on the 

standardized Regents exam. Thus, Schoenfeld’s findings suggested a significant 

disconnect between the learning implied by standardized exam results and the learning 

suggested by a constructivist perspective. In fact, Schoenfeld (1988) stated, “It is pretty 

clear what mathematical thinking is not: the rote memorization of facts and procedures as 

often practiced in our classrooms, and as reified by current texts and examinations” (p. 

164).  

In 2000, the NCTM published Principles and Standards for School Mathematics,

a culmination of over a decade of reform efforts. (It should be noted that Schoenfeld was 

a contributing author to the grades 9-12 chapters of the volume.) The suggestions in 

Principles and Standards reflected a constructivist, conceptually-oriented view of 

teaching and learning mathematics. For the problem solving standard, NCTM (2000) 
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suggested that “instructional programs from prekindergarten through grade 12 should 

enable all students to apply and adapt a variety of appropriate strategies to solve 

problems” and “monitor and reflect on the process of mathematical problem solving” (p. 

334). Adapting, monitoring, and reflecting are key cognitive actions inherent in the 

model of SRL used in this study. From a constructivist viewpoint, then, student learning 

that is fostered through mathematical problem solving may be partially dependent upon 

the attainment of self regulatory skills.

With respect to general educational psychology, the origins of SRL can be traced

to Vygotsky’s (1978) notions of self-talk and Bandura’s (1986, 1997) social cognitive 

theory. Briefly, “self regulation refers to self-generated thoughts, feelings, and actions 

that are planned and cyclically adapted to the attainment of personal goals” (Zimmerman, 

2000, p. 14). For the purposes of this study, SRL was viewed as a cyclic, recursive 

process that involves the following phases: definition of the task, forethought, 

performance control, and self-reflection (Winne & Hadwin, 1998; Zimmerman, 2000). 

Definition of the task and forethought are pre-action phases and include such activities as 

defining the problem-solving space, setting goals, and developing plans. Performance 

control is the action phase and includes application and monitoring of appropriate 

strategies, while applying self-control throughout the learning experience. Self-reflection

is the post-action phase and involves evaluation of performance and determination of 

causal attributions for both successful and unsuccessful aspects of the completed task. 

Typically, judgments are made assessing the effectiveness of the learning strategies used, 

which provides internal feedback affecting further action for the current learning task (if 

needed) and all other future learning tasks. Students’ actions may indicate structured 
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adherence to the model, recursive, cyclic patterns of behavior within the phases of the 

model, or very little adherence to the model. 

De Corte, Verschaffel, and Op ’T Eynde (2000) suggested a model for “self-

regulated mathematical learning and problem solving” to encompass more contemporary 

views of SRL (p. 693). A major component of the model was students’ mathematical 

dispositions, which included the application of heuristic strategies and self-regulatory 

skills. For the purposes of this study, heuristic strategies were viewed as domain-specific 

strategies that may be enacted during the performance control phase of SRL. Students’ 

mathematical beliefs are another major component of the dispositional perspective, which 

segues into the next section.  

Mathematical Problem Solving and Epistemology

 In addition to issues of control, students’ epistemological beliefs are important 

factors in the successful navigation of a problem space (Kloosterman & Stage, 1992; 

Muis, 2004, 2008; Schoenfeld, 1983, 1985, 1992). Polya’s (1957) contributions to 

problem solving dealt very little with issues of personal epistemology, instead focusing 

on teacher-student dialogue and heuristic strategy application and adaptation. This is 

consistent with historical reviews of mathematics education, which cite the early to mid-

twentieth century as an era of the philosophy of knowledge transfer (D’Ambrosio, 2003).  

Schoenfeld (1983, 1985, 1992) is generally credited with formally introducing 

personal epistemology to the mathematical problem-solving dialogue. He suggested that 

students’ “mathematical worldviews” are key components to the successful completion of 

problem-based tasks (Schoenfeld, 1985, p. 186). Schoenfeld dichotomously defined 

students’ mathematical problem solving beliefs as rational (logical and analytical 
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approach) or empirical (observational and perceptual approach). In general, Schoenfeld’s 

studies suggested that rational problem solvers exert more control and are more 

successful than their empirical counterparts. Typical empirical students’ beliefs included 

the assumptions that formal mathematics is not needed during problem solving, 

mathematics problems are solved quickly or not at all, mathematical discovery is only 

possible for geniuses, a unique solution exists for all mathematics problems, and a 

algorithmic, procedural method is available for all mathematics problems (Schoenfeld, 

1985, 1992). These non-availing mathematical beliefs would surface later as both general

and domain-specific epistemological beliefs literature expanded to a multi-dimensional 

perspective (Hofer, 2000; Hofer & Pintrich, 1997; Muis, 2004; Muis, Bendixen & Haerle, 

2006; Schommer, 1990). 

Schommer (1990) was the first to suggest that epistemological beliefs may exist 

as a system of independent dimensions. Much theoretical and empirical work led to the 

development of a contemporary system of epistemological beliefs: certainty of 

knowledge, simplicity of knowledge, sources of knowledge, and justification for knowing 

(Hofer, 2000; Hofer & Pintrich, 1997). Additionally, domain-specificity has been 

suggested as a major factor in the study of students’ epistemological beliefs (Hofer & 

Pintrich, 1997; Muis, 2004; Muis, Bendixen & Haerle, 2006). The main justification for 

examining beliefs from a domain-specific perspective is based on the assumption that 

students’ beliefs vary with respect to the domain of study. In the field of mathematics 

education, there is relatively consistent agreement that students’ adherence to non-

availing mathematical beliefs are generally detrimental to learning and performance 

(Muis, 2004; NCTM, 2000; Schoenfeld, 1988, 1989). Muis (2004) suggested that a 
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system of mathematical beliefs may include the “nature of mathematics knowledge, 

justifications of mathematics knowledge, sources of mathematics knowledge, and 

acquisition of mathematics knowledge” (p. 326). Within this synthesis, Muis (2004) also 

suggested that students’ epistemological beliefs impact cognition and motivation, which 

foreshadowed her future work relating personal epistemology and SRL. 

SRL and Epistemology 

Recently, SRL processing and epistemological beliefs have begun to appear as 

interrelated constructs in the literature (Muis, 2007, 2008; Muis & Franco, 2009; 

Schommer-Aikins, 2004). Schommer-Aikins (2004) hypothesized that a reciprocal 

relationship may exist between epistemological beliefs and SRL. Students’ initial beliefs 

may affect the degree of self-regulatory actions taken in the classroom and subsequently, 

the potential feedback loop inherent to SRL processing may affect, or possibly alter, the 

initial beliefs. Muis (2007) presented a model introducing epistemological beliefs into 

Winne and Hadwin’s (1998) SRL model. She suggested that students’ epistemological 

beliefs are enacted during the task definition and goal-setting phases. These beliefs may 

subsequently affect other aspects of self-regulatory processing (i.e., self-monitoring, self-

reflection). Consistent with Schommer-Aikins’ theoretical assertion, Muis also suggested 

that a reciprocal relationship may exist between students’ epistemological beliefs and 

SRL. Muis and colleagues have begun the work of studying the relationships that exist 

between SRL and epistemology (Muis, 2008; Muis & Franco, 2009). Their mixed-

methods findings were promising but suggested that further research is needed utilizing 

think-aloud and interview methods, specifically with respect to the definition of the task 

phase of SRL. 
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Problem Solving, SRL, and Epistemology  

 To my knowledge the only study investigating the relationships among 

mathematical problem solving, SRL, and epistemology is Muis’ (2008) study of 

Canadian college students. Muis conducted a mixed-methods study involving 

questionnaires, think-aloud protocols, and interview protocols. Her findings confirmed 

Schoenfeld’s assertion that rational problem solvers are more successful and engage in 

higher levels of SRL processing than empirical problem solvers. Her findings also 

suggested that epistemological beliefs are enacted during the definition of the task phase 

of SRL and may influence learning standards and strategies. Limitations to the study 

were the domain-generality of the epistemological questionnaire used and the lack of 

attention to more contemporary views of multi-dimensional aspects of epistemological 

beliefs. The current study attempted to extend the scholarly dialogue concerning 

connections between mathematical problem solving, epistemology, and SRL. The current 

study extended Muis’ (2008) work by infusing more contemporary, domain-specific 

epistemological beliefs into the theoretical framework. Additionally, the current study 

investigated high school students, an often underrepresented group in mathematics 

education research, in their authentic learning environment. 

Problem Statement

Research has demonstrated that a relationship exists between SRL and 

epistemological beliefs in multiple contexts (Bråten & Strømsø, 2005; Hofer, 1999; Muis, 

2008) . Research has also demonstrated that successful problem-solvers typically exert 

control over the problem space and have availing epistemological beliefs (Muis, 2008; 

Perels, Gürtler, & Schmitz, 2005; Schoenfeld, 1983, 1985, 1988, 1989). Unfortunately, 
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students continue to enter university mathematics courses without adequate problem-

solving skills. Despite this fact, a significant gap exists in the relevant literature for 

secondary mathematics education. Therefore, this study utilized domain-specific beliefs, 

contemporary views of SRL and epistemology, and authentic problem-solving tasks in an 

effort to provide further insights into relationships between secondary mathematics 

students’ beliefs and self-regulatory problem-solving practices. 

Statement of Purpose and Research Questions 

 The purpose of this study was to explore the SRL practices of six advanced 

mathematics students in relation to mathematical epistemological beliefs while engaged 

in problem-solving tasks. From a constructivist standpoint, it was assumed that 

engagement in mathematical problem solving could potentially lead to learning. So, 

furtherance of our understanding of the factors involved in both successful and 

unsuccessful students’ problem-solving engagement should lead to pedagogical 

initiatives aimed at improving student learning. This study explored these issues by 

answering the following research questions: 

1. How are students’ epistemological beliefs related to self-regulatory processing 

practices during engagement in mathematical problem-solving  tasks? 

2. What self-regulation strategies do students employ while preparing for the AP 

Calculus exam and engaging in problem-solving episodes?

3. What epistemological beliefs influence students’ choice and use of heuristic 

strategies to solve mathematical problems?

4. How are self-regulated learning strategies and epistemological beliefs related 

to student performance on problem-solving tasks? 
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Research Design Overview 

Prior to data collection, IRB approval was obtained from the local school district 

and university to study six students’ experiences with respect to the proposed problem. A 

multiple-case study design was selected to provide a deep, fine-grained exploration of 

students’ SRL processing practices relative to their mathematical epistemological beliefs 

(Creswell, 2007; Yin, 2008). Six students were selected to serve as case participants. The 

term case referred to a student who participated in the learning activities in this study and 

whose data were collected by the researcher. Due in large part to his mathematical 

background, the researcher applied the postpositivist qualitative paradigm to the study. 

Thus, research practices included accepting multiple realities to explain phenomena, 

applying rigorous data collection and analysis procedures, and reporting findings using a 

scientific structure (Creswell, 2007).  

Multiple types of data were collected from the six participants selected for this 

study. Data collection occurred in four different phases, with the first involving the 

administration of three quantitative surveys measuring students’ self-reported

epistemological beliefs and SRL aptitude. Second, students prepared for the AP Calculus 

exam during class by working select problems based on knowledge taught the prior 

semester. Field observation transcriptions and AP exam practice journals served as data 

sources. The third phase of data collection involved the six participants engaging in two 

think-aloud problem-solving sessions (Ericsson & Simon, 1993). Immediately following 

each session, participants completed retrospective interviews to discuss various aspects of 

their navigation through the problem space. Finally, soon after completion of data 
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collection, participants engaged in member-checking interviews to review narrative draft 

reports and discuss initial findings.

Data analysis occurred concurrently with data collection to ensure that accurate 

recollections of events were documented, allow opportunities for addressing 

discrepancies or misconceptions, and inform the researcher as to whether alterations in 

the research design were needed. Descriptive statistics from the quantitative surveys 

aided in participant selection and provided initial, albeit self-reported, evidence of 

students’ self-regulatory prowess and epistemological beliefs. For the qualitative data, an 

extensive codebook was developed from a thorough review of the literature and was used 

to code each piece of data. Various matrices provided multiple perspectives for both 

individual and cross-case analyses and led to rich, thick narrative descriptions. Reliability 

was ensured by creating a case study database, establishing a chain of evidence, and 

conducting a peer review of the coding scheme. The validity of the findings was 

supported by triangulating data sources, conducting member-checking interviews, and 

developing rich, thick descriptions (Creswell, 2007; Miles & Huberman, 1994; Yin, 

2008). 

Limitations and Delimitations

Limitations of this study existed that were beyond the researcher’s control. First, 

the results of this small-scale case study may not be generalized to all secondary

mathematics students. Rather, the results provided a deeper, fine-grained description of 

advanced secondary mathematics students’ experiences that is much needed in the 

literature. Another limitation was my role as both teacher and researcher. Participants

may have reacted differently in certain situations than if an outside researcher had 
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conducted the study. Although this dual role provided particularly poignant insights into 

students’ actions, the researcher was careful not to introduce bias into the analysis of the 

findings, but reported actual students’ actions and intentions. Finally, research methods 

may have affected the results of this study. Specifically, issues of group dynamics may 

have affected results during the in-class portion of the study and think-aloud protocols, 

although a widely used method for assessing cognitive activities, may not have produced 

a complete report of each participant’s thinking (Ericsson & Simon, 1993).  

 The desire to gain a deep, fine-grained description of students’ actions led to 

certain necessary delimitations for the study. First, the study included six students to 

enable deep analysis of all data and provide rich descriptions. Second, only high school 

students were selected as this group seems most neglected in the literature. Third, all six 

students were selected from one intact class to introduce rich contextual descriptions and 

social interactions that are important to both epistemological and SRL constructs.

Assumptions 

 Four major assumptions were made with respect to this study based on the review 

of literature and the researcher’s nine-year experience as a high school mathematics 

teacher. The first assumption was that most AP Calculus students have an innate desire to 

learn mathematics. Those who are not learning-driven are typically grade-driven, so all 

students have some motivation to perform at a high level. Second, mathematical learning 

can be achieved, and possibly enhanced, by the act of problem solving. This assumption 

was derived from suggestions made by NCTM’s (2000) Principles and Standards. Third, 

heuristic strategies, when applied properly, enhance problem-solving prowess. Polya 

(1957) introduced heuristics as a viable pedagogical tool and then Schoenfeld’s (1985) 
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findings suggested that heuristics can be taught to students and have the potential to 

positively affect problem-solving performance. Fourth, SRL processing enhances 

students’ overall educational experiences, particularly in the mathematics classroom. This 

assumption, which is crucial to the rationale for conducting the study, has been in place 

among social cognitive theorists since the conception of SRL (Bandura, 1986; 

Zimmerman, 1989). 

Rationale and Significance

 The rationale for conducting this study stemmed from my desire to see students

learn mathematical concepts by engaging in mathematical problem solving tasks. As 

discussed above, students’ mathematical epistemological beliefs and self-regulatory 

strategy use may be related to their problem-solving performance (Muis, 2008; 

Schoenfeld, 1985). Additionally, the active construction of mathematical knowledge is 

dependent upon students’ problem-solving prowess (NCTM, 2000). Then, from a 

practitioner’s point of view, justification for the study is established based on potential 

student learning and achievement benefits. 

This study has the potential to significantly contribute to theory and practice. 

Work has recently been undertaken to establishing relational ties between 

epistemological beliefs and SRL (Muis, 2007, 2008; Muis & Franco, 2009). This study 

sought to extend these works. Specifically, this case study was designed to provide 

evidence of the relationships between epistemological beliefs and SRL at a finer grain 

size by closely examining students’ authentic experiences. For the practicing educator, 

the study should provide formative groundwork for the development of pedagogical 

interventions for developing students’ availing mathematical beliefs and self-regulatory 
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practices. My desire is that the study will contribute to general educational psychology 

theory, mathematics education theory, and mathematics teachers’ arsenals of best 

practices. 

Definitions of Terms

The terms below represent the major constructs that are important to this study. 

Operational definitions are provided to clarify how each term was used throughout the 

study. A more detailed and extensive description and analysis of each construct and its 

component parts may be found in Chapter II: Review of Relevant Literature.

Epistemological Beliefs

 Hofer and Pintrich (1997) described “personal epistemological development and 

epistemological beliefs” as “how individuals come to know, the theories and beliefs they 

hold about knowing, and the manner in which such epistemological premises are a part of 

and an influence on the cognitive processes of thinking and reasoning” (p. 88). This study 

examined both students’ general and mathematics-specific epistemological beliefs from a 

contemporary, multi-dimensional viewpoint. The general epistemological beliefs 

dimensions included: certainty of knowledge, simplicity of knowledge, sources of 

knowledge, and justification for knowing (Hofer, 2000; Hofer & Pintrich, 1997). The 

mathematical problem-solving epistemological beliefs dimensions included:

rational/empirical problem-solving, unique/arbitrary problem solutions, duration of 

problem-solving, procedural/conceptual approach, importance/usefulness of mathematics, 

and effort/inherent mathematical ability (Kloosterman & Stage, 1992; Muis, 2004; Royce 

& Mos, 1980; Schoenfeld, 1983, 1985). From a multi-dimensional epistemological 
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beliefs perspective, students may hold various, even contradictory, beliefs depending on 

both contextual and domain-related issues.

Heuristic Strategies

 Generally considered the father of the modern study of heuristics, Polya (1957) 

defined heuristic strategies as “the process of solving problems, especially the mental 

operations typically useful in the process” (p. 129–130). Polya provided an extensive list 

of heuristic strategies and suggested that both teachers and students of mathematics could 

benefit from serious consideration of the use of heuristics when solving problems.  

Mathematical Problem 

For the proposed study, the definition of a mathematical problem is a scenario or 

situation proposed such that a prescribed solution path is not readily available to the 

solver (Schoenfeld, 1985). This definition differentiates between a mathematical problem 

and a mathematical exercise, which simply involves applying prescribed procedures. This 

distinction is important in that problems requiring application of pre-scripted knowledge 

(exercises) imply a rote-memorization approach to learning, which is in direct contrast to 

the constructivist philosophy of learning that is the basis of the study. 

Self-Regulated Learning (SRL)

Zimmerman (2002) defined SRL in the following manner: 

Self-regulation is not a mental ability or an academic performance skill; rather it 

is the self-directive process by which learners transform their mental abilities into 

academic skills. Learning is viewed as an activity that students do for themselves 

in a proactive way rather than as a covert event that happens to them in reaction to 

teaching. (p. 65) 
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For this study, the SRL process referenced by Zimmerman will include the following 

phases: definition of the task, forethought, performance control, and self-reflection 

(Winne & Hadwin, 1998; Zimmerman, 2000). Self-regulating students tend to navigate a 

problem space by recursively and cyclically applying the SRL phases as needed.
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CHAPTER II

REVIEW OF RELEVANT LITERATURE

This study examined how advanced mathematics students’ epistemological beliefs 

are related to self-regulated learning (SRL) processing while engaging in problem-

solving tasks. To complete a case study investigating such complex phenomena, a 

thorough review and critique of relevant literature was required (Yin, 2008). Thus, this 

chapter develops a literature-based analysis and synthesis of issues relevant to

epistemological beliefs, SRL, and mathematical problem-solving. 

Initially, the focus was on the broad spectrum of SRL literature and found highly-

developed theoretical constructs (e.g., Butler & Winne, 1995; Garcia & Pintrich, 1994; 

Pintrich, 2000; Winne & Hadwin, 1998, 2008; Zimmerman, 1989, 2000) and empirical 

studies relating SRL to various facets of education (e.g., Greene & Azevedo, 2009; 

Hadwin, Boutara, Knoetzke, & Thompson, 2004; Muis, 2008; Usher, 2009). As my 

review began to narrow, I discovered that current researchers were requesting studies 

investigating closely the specific mechanisms of students’ application of SRL processes 

and strategies (Hadwin, Boutara, Knoetzke, & Thompson, 2004; Winne & Jamieson-

Noel, 2003; Winne & Perry, 2000; Zimmerman, 2008). Thus, this study evolved into a 

qualitative case study to gain a rich description of individual students’ use of SRL 

processes, as opposed to a broad paint stroke of general SRL usage by a large sample of 
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students (Creswell, 2007; Yin, 2008). This study is expected to augment current models 

of SRL and uncover new perspectives for modeling SRL.  

Further narrowing of the literature review revealed a topic of SRL study related 

directly to mathematics education–problem solving (De Corte, Verschaffel & Op ’T 

Eynde, 2000; Muis, 2008; Schoenfeld, 1992). Then, the research topic was narrowed to 

the study of the relationships between epistemological beliefs and SRL processing of 

advanced high school mathematics students engaged in problem-solving episodes. 

Additional probing revealed that critical thinking and problem solving are influenced by 

students’ epistemological beliefs (Hofer, 1999, 2000; Hofer & Pintrich, 1997; 

Kloosterman & Stage, 1992; Muis, 2004, 2007, 2008; Schoenfeld, 1983, 1985, 1989). 

Particularly influential to the overall design and content of the proposed study was a

mixed methods study by Muis (2008), which examined the complex weave of 

mathematics students’ epistemic profiles, SRL processing, and problem solving capacity. 

This study attempted to extend Muis’ work by examining SRL, epistemology, and 

problem solving at a finer grain size and by examining students’ epistemological beliefs 

from a more contemporary, domain-specific perspective. 

 The ensuing review of relevant literature is topically segmented and incrementally 

builds a theoretical framework for the study. The main topics relevant to this study 

include SRL, epistemology, and problem solving. Each topic will be analyzed and 

synthesized with regard to the field of mathematics education. The presentation of 

relevant literature is divided into the following sections: (1) theoretical analysis of SRL, 

(2) theoretical analysis of epistemology, and (3) theoretical analysis of problem solving. 
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The review culminates in a description of the theoretical framework developed from the 

literature reviewed.

Topical Review of Relevant Literature

Theoretical Analysis of SRL

The purpose of this section of the literature review is to provide an analysis of 

general theory of SRL relevant to the study. As a branch of educational psychology, SRL 

has been widely researched and theoretically developed. SRL originated from Vygotsky’s 

(1978) notions of inner speech and Bandura’s (1986) social cognitive theory. Ormrod 

(2008) described the connection between Vygotsky’s theories on inner speech and SRL 

as follows:

In Vygotsky’s view, such self-talk (also known as private speech) plays an 

important role in cognitive development. By talking to themselves, children learn 

to guide and direct their own behaviors through difficult tasks and complex 

maneuvers in much the same way that adults have previously guided them. Self-

talk eventually evolves into inner speech [italics added], in which children “talk” 

to themselves mentally rather than aloud . . . We are essentially talking about self-

regulation here. (p. 331) 

Students who practice inner speech are essentially applying the self-monitoring process 

of SRL, which involves evaluating the effectiveness of learning goals and cycling back 

through SRL processes if needed. Several cognitive and affective processes are common 

to most SRL models (Butler & Winne, 1995; Garcia & Pintrich, 1994; Pintrich, 2000; 

Winne & Hadwin, 1998; Zimmerman, 2000). The ensuing theoretical analysis of SRL 

contains a description and analysis of the processes involved in the model used in this 
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study, qualitative studies of SRL processing, and relationships between SRL, external 

feedback, and motivation.  

Self-Regulated Learning (SRL) Processing Model

SRL is a highly-developed theory within educational psychology that describes 

students’ control of learning. Students may control, or regulate, virtually any aspect of 

their learning, including, but not limited to: cognition, metacognition, motivation and 

affect, emotion, and behavior (Boekaerts & Niemivirta, 2000; Pintrich, 2000). This study 

focused on SRL processing of cognitive and metacognitive navigation through problem-

solving tasks.  

Multiple models to describe SRL processing have been developed. For this study, 

Zimmerman’s (2000) cyclic model served as the main framework for describing SRL 

processing. However, particularly salient constructs from other models were integrated 

into Zimmerman’s model (Butler & Winne, 1995; Garcia & Pintrich, 1994; Pintrich, 

2000; Winne & Hadwin, 1998). Steeped in the tenets of social cognitive theory, 

Zimmerman’s (2000) cyclic model involves the following three phases: (1) forethought, 

(2) performance control, and (3) self-reflection. For the model used in this study, Winne 

and Hadwin’s (1998) definition of the task phase precedes these three phases. These four 

phases of SRL will serve to organizationally subdivide this section of the literature 

review.  

Definition of the task. Winne and Hadwin (1998) posited that self-regulating 

students develop a definition of the task prior to a specific goal-setting and planning 

phase. The definition of the task is “a perception about features of the task” and involves

students’ development of inferences and preliminary goals relative to the task (p. 283). 
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Portions of the task definition will remain intact throughout the task, while others will be 

eliminated as additional information is gleaned from future SRL processes. 

Forethought. The forethought phase involves developing goals and planning 

activities for the purpose of completing the learning task. Particularly well-attuned self-

regulators will set distal learning goals and then evaluate their progress via proximal 

process goals (Zimmerman, 1989, 2000). Process goals serve as standards for measuring 

task progression and provide the learner with parameters to assess levels of success. More 

specifically, goals may be classified as mastery- (focused on learning and understanding) 

or performance- (focused on doing better than others) oriented (Pintrich, 2000). Further 

delineation of performance goals yields an approach focus (motivated to demonstrate 

superiority over peers) and an avoidance focus (motivated to avoid failure). Pintrich 

(2000) pointed out that mastery- and performance-approach goal orientations tend to 

produce increased SRL processing in students, whereas students with a performance-

avoidance goal orientation tend to demonstrate inferior cognitive processing skills. 

Although mastery goals may also be subdivided into the categories approach (focused on 

comprehension and learning) and avoidance (focused on avoidance of misunderstanding), 

researchers typically do not address this distinction. Pintrich (2000) speculated that 

students with a mastery-avoidance approach may use less adaptive monitoring processes 

due to a focus on not making mistakes rather than on deep learning. Furthermore, SRL 

processing is not linear. Thus, students may set goals prior to a learning task or during 

latter stages of the task based on future SRL processing (Boekaerts & Niemivirta, 2000; 

Pintrich, 2000). 
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The planning stage involves the selection of strategies best suited to the learning 

task based on goal-driven standards for learning. Additionally, self-regulatory strategies 

vary with respect to both individuals and learning contexts. Since adjustments are 

necessary for most learning tasks, self-regulating students must develop a plan to monitor 

their progress as they navigate through the learning task (Boekaerts & Niemivirta, 2000; 

Zimmerman, 1989, 2000). 

Schunk (1996) reported the results of two empirical studies analyzing the effects 

of goal-setting and self-evaluation on fourth-grade students’ self-efficacy and 

achievement. Schunk adopted Dweck and Leggett’s differentiations of goal profiles (as 

cited in Schunk, 1996, p. 361) for the study: “A learning goal refers to what knowledge 

and skills students are to acquire; a performance goal denotes what task students are to 

complete.” These goal types are respectively synonymous with the mastery and 

performance goal orientations discussed above. In both studies, students were learning 

fraction skills and were divided into four groups. The groups consisted of students who 

were taught to set learning goals, students who were taught to set learning goals and 

practice self-evaluation, students who were taught to set performance goals, and students 

who were taught to set performance goals and practice self-evaluation. The reason for 

developing such groups was to better examine the effects of the differing types of goals 

and the presence or absence of self-evaluation practices. Schunk used a pretest-posttest 

model with assessments measuring students’ goal orientation, self-efficacy, skill, and 

motivation. The findings from both studies suggested that setting learning goals enhances 

students’ task (or mastery) goal orientation, skill, self-efficacy and motivation. The 

achievement results were mixed in that only the second study showed a significant 
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increase in achievement for students who set learning goals and participated in self-

evaluation, in comparison to students who set performance goals and participated in self-

evaluation.  

Ablard and Lipschultz (1998) investigated high-achieving students’ SRL 

processing with respect to goal orientation. One rationale for conducting the study was 

the suggestion from prior research that performance levels of some gifted students 

indicate underachievement (Risemberg & Zimmerman, 1992). Ablard and Lipschultz 

suggested that a lack of SRL processing capacity may be a factor in gifted students’ 

underachievement. To investigate their claim, the authors conducted a study of 222 

seventh-grade students who scored in the top 3% on grade-level assessments. 

Quantitative data were generated from a variety of SRL and goal orientation 

questionnaires and protocols.  

The results of the study indicated that, although all students were high-

performers, significant variation existed with respect to goal orientation and SRL strategy 

use. Students with high mastery goals demonstrated significantly higher use of SRL 

strategies than their low mastery-goal setting peers. In fact, of all the variables analyzed, 

mastery goal orientation accounted for the most variation in SRL strategy use. Ablard and 

Lipschultz (1998) suggested that some high-achieving students succeed without the use 

of SRL strategies and thus, relationships between SRL and achievement are complex. 

The authors tempered their findings by pointing out that data was obtained via self-report 

instrumentation. Thus, students may have indicated learning strategies that they were 

aware of, but did not actually use. The authors suggested that future research should 

investigate SRL strategies students actually apply compared to strategies they report.
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Performance control. During performance control, the learner utilizes self-control 

and self-observation to enact the plan developed in the forethought phase. Zimmerman 

(2000) identified the following self-control processes: “self-instruction, imagery, 

attention focusing, and task strategies” (p. 18). Self-instruction is the act of describing the 

process for completing a learning task while engaged in the task. Self-instruction may be 

a physical (e.g., self-talk, writing mathematical formulas before applying them) or mental 

(e.g., mental rehearsal of algebraic simplification steps, recalling typical pitfalls 

encountered during previous work) phenomenon. 

Students who utilize imagery self-control develop mental images to aid in the 

completion of a task. An example would be a student who separates a composite function 

into its component parts and uses mental images of the graphs of each function to solve a 

particularly difficult limit in calculus. Attention focusing involves ignoring external (e.g., 

a noisy classroom during group work) or internal (e.g., the nervous excitement of playing 

in tonight’s football opener) stimuli and consciously focusing on the learning task. Task 

strategies involve reducing a learning task to its component parts and developing a 

personalized systematic representation that makes sense to the learner. 

Self-observation, another component of the performance control phase, involves 

the student monitoring the learning task and assessing focused aspects of performance. 

Proximal goal-setting during the forethought phase facilitates purposefully selective self-

observation. Zimmerman (2000) suggested the following features of effective self-

observation: (a) self-feedback should be provided concurrently with the task, (b) 

feedback should inform the level of performance, (c) self-observations should be accurate 

portrayals, and (d) self-observations should focus on performance accomplishments 
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instead of deficits. Butler and Winne (1995) suggested that self-monitoring (or self-

observation) naturally elicits internal feedback, which provides a bridge between goal-

based expectations and actual performance. Operationally, Butler and Winne define 

internal (or self-) feedback as “conditional knowledge that bridges past performance to 

the next phase of engaging with a task” (p. 260). So, internal feedback is a product of 

self-observation and when compared to a goal-based standard, yields action on the part of 

the learner. This action is the subject of Zimmerman’s (2000) final phase in the SRL 

cycle, as described below. External feedback, or feedback provided by others, may also 

affect SRL processing and is discussed in detail in a later section of this chapter. 

In a recent empirical study, Greene and Azevedo (2009) used think-aloud 

protocols to study middle and high school students’ use of macro-level SRL processing 

of complex systems of information. Throughout the study, the authors used a model of 

SRL developed in part by Azevedo, which expands Winne and Hadwin’s (1998) and 

Pintrich’s (2000) theories of SRL into 35 specific micro-level processes that fall under 

five main processes similar to the model used in this study. The study involved 219 

middle and high school students investigating the circulatory system via a hypermedia 

learning environment (HLE) while thinking aloud and taking a pre- and post-test in the 

form of a mental model essay. The mental model pre-and posttests were scored based on 

a 0 to 12 point scale. The think-aloud transcriptions, which totaled 8760 minutes in 

duration, were encoded using the 35-component model of SRL, then categorized based 

upon the five macro-levels of the same model. Inter-rater agreement was high for both 

the essay scoring and the coding. 
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Using cumulative logit ordinal logistical regression modeling, Greene and 

Azevedo (2009) found significant differences in learning performance between middle 

and high school students, with high school students tending to have a more sophisticated 

mental model. Additionally, prior domain knowledge was significantly associated with 

the production of more sophisticated mental models. Finally, self- monitoring was the 

only SRL process that was significantly associated with the production of a more 

sophisticated mental model. These results suggest that monitoring is a key component of 

all aspects of SRL and is important in promoting student learning. The authors identified 

limitations of their study: lack of clarity as to the influence of think-aloud protocol on 

metacognitive activity in students, limited scope of the topic of study to one domain, and 

lack of instructional aids embedded into the HLE. The authors also suggested that future 

research should investigate SRL at multiple grain sizes and provide objective data 

regarding student SRL processing. 

Self-reflection. Finally, during the self-reflection phase, students make self-

evaluations and consider causal attributions in terms of their performance during the 

learning task (Zimmerman, 2000). Self-evaluations may use mastery criteria, which 

imply that the learner sets incremental performance markers ultimately leading to 

becoming expert in the task. Self-regulated learners who set process goals during the 

forethought phase naturally become mastery-focused self-evaluators. Alternatively, 

students may base their self-evaluation of current functioning on prior performance of 

similar tasks. Finally, students may utilize normative criteria during self-evaluation, 

which involves comparing their performance to that of others. Self-regulated learners 
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who set outcome goals tend to apply normative criteria to their evaluations and may find 

themselves focusing more on negative aspects of their performance.

Self-regulating students identify causal attributions based upon their self-

evaluations, perceived self-efficacy, and/or the learning environment (Bandura, 1997; 

Zimmerman, 2000). Attributions that focus on deficits in the learner’s ability tend to 

discourage future self-regulation; whereas attributions that focus on insufficient strategy 

use tend to promote motivation to alter future behavior to achieve self-set learning 

standards. As the cyclic SRL processing draws to an end, the student either makes an 

adaptive or defensive inference based upon progression through the learning task. 

Adaptive inferences lead students to improved understanding of the interplay between 

SRL phases with respect to the current task and improved application of SRL processing 

for future learning tasks (Winne & Hadwin, 1998; Zimmerman, 2000). Other students 

may choose a defensive inference, which protects the learner from adverse evaluations, 

but simultaneously stifles SRL processing. Thus, the cyclic nature of Zimmerman’s 

(2000) model is longitudinal in that students develop SRL skills over time based on their 

commitment to attaining personal learning and achievement standards.  

Qualitative Studies of SRL Processing 

SRL processing may be described along a developmental continuum. Hadwin, 

Boutara, Knoetzke, and Thompson (2004) studied Canadian college students’ SRL 

processing from a developmental perspective. The authors utilized self-report 

questionnaires, self-evaluations, and trace data obtained from a hypermedia program to 

develop case studies describing students’ actual SRL processing over a series of events.

Participants were 8 students chosen as cases out of 50 undergraduates enrolled in an 
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instructional psychology course. The participants were chosen based upon performance 

on three exams. Each participant was categorized  with respect to performance on the 

three exams as either a low, average, high, or improved performer. The unit of analysis 

became cross-case comparisons of each group, as opposed to individual case studies. 

Trace data were collected from hypermedia software called CoNoteS2, which was 

experimental software specifically designed to gather fine-grained data of student control 

of learning during a specified task. The remaining data were collected through three 

exams, weekly self-reflections, and a final self-reflection and analysis.  

During the four-week study, students studied content in each of three chapters 

presented by CoNoteS2 for one hour, completed a self-reflection, and took an exam over 

the content. Each learning event occurred once during the first three weeks and students 

were required to complete a one-page final self-reflection and analysis to be submitted 

for grading. Findings indicated significant variability in SRL processing within each 

performance group. For example, within the high-performing pair, one student displayed 

a learning-oriented approach while the other student tended more toward a performance-

oriented approach. Although the first student demonstrated much higher-order cognitive 

processing, both students performed well on the exams.  

Both the high and improved performance groups demonstrated deeper approaches 

to studying. However, the high performers demonstrated these skills throughout the three 

units; whereas, the improved performers developed their skills over time. Finally, the 

authors developed a continuum of SRL ratings: low, emerging, and high. Participants 

were given a overall rating based on their predominant rating classification in terms of 

skill, will, and self-regulation. Although one high achiever had the highest rating and one 
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low achiever had the lowest rating, results were inconsistent in between. Hadwin et al. 

suggested that this inconsistency indicates that students’ performance may not be a good 

indicator of SRL processing prowess. 

Despite the loss of generality inherent in qualitative designs, Hadwin et al. (2004) 

suggested that students in early developmental stages of SRL (low overall rating) appear 

to have difficulty accurately assessing their learning processes and products. 

Additionally, findings support the growing literature base that SRL study designs need to 

incorporate multiple sources of data. The authors pointed out that by collecting and 

analyzing data over a series of events, patterns of SRL processing and development 

emerged over time. Such patterns may not have been uncovered by a study using 

performance data that emerges from a single event. The authors provided calls for future 

research as follows: similar qualitative studies involving longer duration, more learning 

events, and/or more participants, studies investigating the relationship between goal 

orientations and SRL development, and studies involving more grade-bearing learning 

tasks while controlling for confounding instructional variables.  

Issues of self-efficacy often arise when considering students’ capacity to self-

regulate. Usher (2009) studied middle school students’ sources of self-efficacy and 

relations to issues of race, gender, and SRL processing. Eight students participated in the 

study and were representative of every combination of four subgroups: African American 

females, African American males, White females, and White males, and two self-efficacy 

profiles, high and low. Teachers and parents were also included as participants to gain 

additional perspectives on students’ functioning. Data collection instruments consisted of 

semi-structured interview protocols for students, parents, and teachers. Internal validity 



31

was addressed via triangulation from multiple sources, member checking, maintaining an 

audit trail, and peer review (intercoder reliability). External validity was addressed via 

rich descriptions of participants’ experiences. 

The findings of Usher’s (2009) study indicated that middle school mathematics 

students’ self-efficacy profiles are derived from performance interpretations, peer and 

adult influences, physiological influences, and self-regulatory activity. Additionally, 

Usher’s findings suggested that self-efficacy and SRL are reciprocally linked, which is in 

line with Bandura’s (1997) assertions. In other words, students’ degree of self-efficacy 

tends to predict their self-regulatory prowess. Inversely, the level of SRL processing 

practiced by a student tends to appropriately affect their self efficacy beliefs. Due to the 

in-depth nature of qualitative data collection and analysis, Usher was able to identify one 

student who did not participate in self-regulatory study habits, yet had high self-efficacy 

and performed well in mathematics. Additionally, this student’s family members all had 

poor mathematics skills, yet he used this as motivation to excel and thus, improved his 

mathematical self-efficacy. This finding contradicted Usher’s assertions and the 

theoretical framework that she developed. Usher used these surprising findings to justify 

her choice of qualitative methods for the study. Of additional importance to the current 

study is the fact that the aforementioned student was on an advanced mathematics track, 

thus implying that advanced mathematics students may not adhere strictly to theoretical 

SRL propositions.  

External Feedback and SRL

Feedback can be divided into two major categories: internal and external. Internal 

feedback is controlled by the learner and occurs naturally as the learner participates in the 
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self-monitoring process of SRL. External feedback is provided to the learner by teachers, 

peers, and other sources in the event that the established learning goals are not being 

successfully executed (Butler & Winne, 1995). Butler and Winne (1995) developed a 

research-based model for SRL that incorporates external feedback. For the purposes of 

this study, the model provides clear connectivity between both internal and external 

feedback and the processes of SRL. Butler and Winne suggested that external feedback 

initiates internal, cognitive processing conducive to self regulation.  

External feedback is supplied as a result of the provider’s evaluation of learner 

performance. “If external feedback is provided, that additional information may confirm, 

add to, or conflict with the learner's interpretations of the task and the path of learning” 

(Butler & Winne, 1995, p. 248). Students are then able to evaluate both internal and 

external feedback to determine necessary adjustments for the next learning task. So, 

external feedback should be provided while the student is engaged in the learning task so 

that the learner can process the feedback during the self-monitoring and self-evaluation 

phases. 

External feedback can be further subdivided into cognitive and outcome 

categories. Cognitive feedback has been suggested as preferable to outcome feedback 

(Butler & Winne, 1995). Outcome feedback simply  involves informing the learner if 

their performance is accurate; cognitive feedback refers to information provided to the 

learner that suggests learning cues that “may help students identify cues and monitor task 

engagement” (p. 253). Therefore, teacher and peer feedback should be constructed to 

encourage critical thinking and metacognitive activity. Finally, Butler and Winne found 

gaps in the literature and included a call for more research “that integrates instruction, 
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self-regulation, feedback, and knowledge construction” (p. 275). The authors further 

requested that research should be “fine-grained analyses” of “single students . . . that lead 

to successfully updated, improved performance” (p. 276). 

In a synthesis of feedback and SRL literature, Nicol and Macfarlane-Dick (2006) 

expanded Butler and Winne’s (1995) model. Most salient to the Nicol and Macfarlane-

Dick model is the development of “seven principles of good feedback,” as follows: 

 Good feedback practice:

1. helps clarify what good performance is (goals, criteria, expected standards); 

2. facilitates the development of self-assessment (reflection) in learning;

3. delivers high quality information to students about their learning; 

4. encourages teacher and peer dialogue around learning;

5. encourages positive motivational beliefs and self-esteem;

6. provides opportunities to close the gap between current and desired 

performance;

7. provides information to teachers that can be used to help shape teaching. (p. 

 205) 

The seven principles provide educators and researchers a standard by which to guide 

feedback practices. Reflecting on their assertions, Nicol and Macfarlane-Dick noted that 

research on the quality of external feedback is lacking, which may cause problems with 

the implementation of principle number three. The authors suggested that “good quality 

external feedback is information that helps students troubleshoot their own performance 

and self-correct: that is, it helps students take action to reduce the discrepancy between 

their intentions and the resulting effects” (p. 208). This definition is learner-focused and 
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steeped in SRL theory, providing practitioners with further guidance for feedback 

practices, despite the lack of a research-based description. Nicol and Macfarlane-Dick 

identified gaps in the research base that yielded calls for further research. Recognizing 

that their synthesis and resulting analysis was not exhaustive, a request for research to 

“refine these principles, identify gaps and to gather further evidence about the potential of 

formative assessment and feedback to support self-regulation” was suggested (p. 215). 

In a case study analysis, Cleary and Zimmerman (2004) assessed the 

implementation of the Self-Regulated Empowerment Program (SREP), which is a 

program designed to help educators foster positive, self-motivating learning experiences 

for students. The SREP provides students a self-regulated learning coach (SRC) to 

identify academic deficiencies, provide instruction fostering SRL cyclic processing, and 

generate continuous and immediate feedback. The ultimate goal of the SRC was to 

empower students to be responsible for their own learning.  

A single case study was presented that detailed a female student struggling in a 

science course who had been introduced previously to other interventions, resulting in 

very little success. The SREP provided her with guidance that initiated a cyclic SRL 

processing system to aid in learning tasks (Zimmerman, 1989, 2000). The results of the

case study analysis showed that the SREP fostered autonomy and self-directed learning 

practices. The student also showed increased achievement due in part to the program. The 

researchers did quantify their results by stating that the SREP is not an all-inclusive 

program and would be more successful if introduced in conjunction with other 

interventions. Cleary and Zimmerman’s (2004) comments on teacher feedback provided 

insight into the interrelationships inherent in SRL and external feedback, as follows: 
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The type of feedback that students receive from teachers also will influence their 

ability to reflect on performance outcomes. For example, teachers who do not 

provide students with strategic feedback or with a clear explanation of their 

specific errors will make it more difficult for students to understand why they are 

performing poorly and what they need to do to improve. (p. 548) 

So, according to Cleary and Zimmerman, educators can impact students’ self-regulatory 

actions and feedback provides a means for fostering such behavior.  

In a study involving an online university course in the Netherlands, van den 

Boom, Paas, and van Merriënboer (2007) investigated the effects of student reflections 

with external feedback on SRL and performance. The SRL framework used in the study 

consisted of a decomposition of SRL processing using theory similar to that found in 

Zimmerman’s (2000) cyclic model. The decomposition provided micro-level processes 

for each of the constructs from the model used in the study. Participants were 49 students 

studying psychology via a distance teaching university, who were assigned to the 

following random groups: control, reflection with peer feedback, and reflection with tutor 

feedback. Reflective protocols were developed using the decomposition of SRL 

processing described above and consisted of prompts intended to elicit student reflection 

of their learning process. Peer feedback was to be generated via electronic newsgroups 

concerning students’ discussion posts generated from the reflective protocols. Tutor 

feedback was provided via direct email from the students to their assigned tutor. 

Students’ SRL functioning, achievement, and appraisal of the learning experience were 

measured by the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich, 
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Garcia, Smith, & McKeachie, 1991), the final exam for the course, and an evaluation 

questionnaire. 

 Upon the completion of the study, van den Boom et al. (2007) chose to rename 

the peer-feedback group as the reflection-without-feedback group since very little peer 

feedback dialogue was generated by the group. This led to the observation that more 

research is needed to determine how to better elicit feedback dialogue amongst peer 

groups. Findings indicated a significant difference between the reflection-without-

feedback and tutor-feedback groups’ frequencies of reflective activities. In fact, the peer-

feedback group demonstrated very little attention to developing reflective dialogue. In 

terms of SRL functioning, the analysis conducted on the MSLQ data revealed significant 

differences in only two of the six scales: Value and Test Anxiety. The Value scale of the 

MSLQ contains three subscales: Intrinsic Goal Orientation, Extrinsic Goal Orientation, 

and Task Value. In both cases, the reflective groups scored higher than the control group. 

Only with respect to the test anxiety scale did the tutor-feedback group score significantly 

higher than the peer-feedback group. Although in partial agreement with their hypothesis 

that feedback would foster SRL processing, the authors suggested that inflexibility of the 

course and/or possible incongruities between the aspects of SRL being assessed and the 

MSLQ may explain why the findings indicated significant differences for only two of the 

scales of the MSLQ. In terms of achievement, the tutor-feedback group scored 

significantly higher on the exam than the peer-feedback group, but no significant 

difference was found between the control group and the combined reflective groups. The 

evaluation questionnaire revealed that both reflective groups valued the learning 

experience, but no significant differences were found amongst their responses. 
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 Finally, van den Boom et al. (2007) suggested that researchers investigate peer-

feedback in conjunction with collaborative learning and that similar studies be developed 

using mixed methods designs. The authors also suggested that educators implement 

reflective dialogue into online courses and utilize scaffolding to gradually shift the 

feedback responsibilities to students. The authors provided three limitations for their 

study, as follows: unaccountable factors in the design of the study, questionable 

credibility of the MSLQ (or any self-report questionnaire) as the main source of data, and 

conclusions being limited to higher education online learning environments. 

Motivation and SRL

In addition to cognitive aspects of SRL, Garcia and Pintrich (1994) suggested that 

motivation is an integral part of any SRL model. Garcia and Pintrich also suggested that 

motivation depends on students’ goals, orientation for learning, and beliefs about task 

difficulty. Further, they claimed that motivation is related to students’ knowledge of self, 

which includes self-schemas (i.e., students’ beliefs about themselves). They also 

introduced motivational strategies within the framework of SRL, which included self-

handicapping, defensive pessimism, self-affirmation, and attributional style.

According to Garcia and Pintrich (1994), self-handicapping is an anticipatory 

coping mechanism for students with fragile self-schemas, which involves students 

purposely failing to exert effort to maintain their self-worth. An example would be a 

student who exerts low effort on a learning task knowing that obtaining a high grade will 

be positive, but obtaining a low grade can be excused for lack of time spent on the task. 

Defensive pessimism is also anticipatory but involves the exertion of high effort to 

compensate for negative self-schemas. Students who practice defensive pessimism
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typically demonstrate high motivation and self-regulatory skills but set extremely low 

expectations to avoid anxiety and compensate for poor self-efficacy. The authors noted 

that the presence of SRL processing and low self-efficacy goes against research and 

literature suggesting that students need high self-efficacy to engage in SRL (Bandura, 

1997; Usher, 2009; Zimmerman, 1989, 2000). Self-affirmation is a reactive strategy that 

involves the learner activating positive self-conceptions to counteract a negative 

evaluation. For example, a student may receive a low grade on a mathematics quiz but 

remind himself that he is in a prestigious program of study. Finally, attributional style is a 

reactive strategy that involves the student with a well-defined self-schema responding to 

events based upon multiple habitual experiences. Each of these strategies may be 

employed by self-regulating students when faced with a particular academic task that 

demands motivational regulation. 

Wolters (1998) conducted a mixed-methods study examining the degree to which 

college students regulate motivation while participating in tasks deemed irrelevant, 

boring, or difficult. Overall, it was found that students did use a variety of techniques to 

regulate motivation. In fact, Wolters identified 14 different descriptors for coping 

strategies utilized by students to regulate motivation. Of the 14 codes developed by 

Wolters, the most often used coping strategies fell under the code of cognition and most 

of these instances occurred when the task condition was highly difficult. This finding 

indicates that students tend to exhibit self-regulatory practices when the task is more 

difficult.

Wolters (1998) also examined student self-regulation of motivation with respect 

to goal profiles. Recall that the focus of learning goals is on knowledge and skill 
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attainment, whereas the focus of performance goals is on task completion. Findings 

indicated that intrinsic motivation strategies were positively related to learning goal 

orientation and that extrinsic motivation strategies were positively related to performance 

goal orientations. Intrinsic motivation strategies were also positively related to cognitive 

strategy use, whereas extrinsic motivation strategies were not related to cognitive strategy 

use. Overall, Wolters suggested that the students demonstrated a systematic means of 

regulating motivation and that their regulation was similar to cognitive models of SRL.  

Wolters (1999) conducted another study on the regulation of motivation in high 

school students. This quantitative study utilized a questionnaire developed by the author 

based upon the MSLQ (Pintrich et al., 1991). Factor analysis revealed the following 

statistically valid factors developed by Wolters (1999) from the SRL and motivation 

literature:

! Self-consequating questions were related to students’ “self-provided 

extrinsic rewards for reinforcing their desire to finish academic tasks.” 

! Environmental control questions were related to students’ “avoiding or 

reducing distractions as a means of ensuring their completion of academic 

tasks.” 

! Interest enhancement questions were related to students’ “tendency to 

make the task into a game, or more generally to make it more immediately 

relevant, enjoyable, or fun to complete.” 

! Performance self-talk questions were related to students’ use of “subvocal 

statements or thoughts designed to increase their desire to complete the 

task by intensifying their focus on performance goals.”
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! Mastery self-talk questions were related to students’ “tendency to focus or 

make salient their desire to learn or master task materials in order to 

increase their level of motivation.” (p. 287). 

The strong relationships among factors imply that overall students who apply one 

motivational strategy tend to apply others. Results indicated that students differentiate the

frequency of motivational regulation strategy use, as indicated by the following highest-

to-lowest ordinal list: performance self-talk, environmental control, self-consequating, 

mastery self-talk, and interest enhancement. All five of the strategies exhibited moderate 

to strong positive correlations with cognitive and metacognitive SRL practices and effort, 

but only performance self-talk was significantly related to GPA. Also, mastery self-talk 

was significantly related to more elaborate forms of self-regulation; whereas performance 

self-talk was significantly related to lower-level cognitive aspects of SRL. This seems to 

go against theoretical suppositions that higher-order cognition is related to higher student 

achievement. These findings must be tempered with the fact that self-report was the only 

instrument used in the study.  

Recent SRL literature has brought to the forefront the theoretical underpinnings of 

motivation with respect to SRL (Schunk & Zimmerman, 2008). Zimmerman and Schunk 

(2008) provided a clear description of the need for motivational-based studies of SRL:

Although SRL interventions produced successful outcomes in classroom settings, 

they often failed to sustain students’ use of these processes in less-structured 

environments. This limitation has led researchers to focus on students’ sources of 

motivation to self-regulate . . . (p. 2) 
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A more specific rationale for investigating motivation within a study of SRL is that 

students who are able to effectively self-monitor learning tasks but lack the motivation to 

alter practices do not receive full benefits of SRL. 

Research has suggested that motivation is a key component in eliciting student 

transitions through phases within the SRL processing sequence (Wolters, 1998, 1999). 

Winne and Hadwin (2008) identified such changes and their relation to SRL, stating, 

“We refer to making such changes as regulating a motivational state [italics added]. We 

posit that regulating a motivational state follows a similar process to regulating other 

aspects of learning” (p. 306). Findings that suggest a link between SRL and motivation 

have significant implications for practicing educators. If what Winne and Hadwin posited 

above is true (i.e., if motivational state can be self-regulated) then practitioners could 

potentially develop methodologies for fostering autonomous, self-motivating students.  

Specifically, Winne and Hadwin (2008) requested studies tying motivational state 

to SRL:

Research needs to examine more thoroughly (a) the types of goals and standards 

students adopt with respect to motivational state, (b) strategies they actually 

employ to regulate motivational state, and (c) the degree to which they are 

metacognitively aware of the goals, standards and strategies used to monitor and 

change motivational states during learning activities. (p. 308).  

In addition to pointing out key gaps in the current body of literature, the authors also 

stated that such studies must examine thoroughly the actions students actually engage in 

with respect to SRL processing. Many of the current studies in the field merely report the 
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intentionality of students to participate in SRL but never follow up on the goals and plans 

established by participating students. 

Theoretical Analysis of Epistemology

“Epistemology [italics added] is an area of philosophy concerned with the nature 

and justification of knowledge” (Hofer & Pintrich, 1997, p. 88). Educational 

psychologists are interested in the effects that students’ epistemologies have on cognition, 

affect, and ultimately student achievement and learning. Educational epistemological 

research and theory can be divided into two main categories: the development of 

epistemological beliefs over time and the exploration and theory of a multidimensional 

interpretation of epistemological beliefs (Hofer & Pintrich, 1997). Perry (1970) is 

generally given credit for beginning the developmental epistemology movement (and the 

study of personal epistemology, in general) and Schommer (1990) is generally credited 

with initiating the study of epistemology through the lens of independent, multi-

dimensional beliefs. These seminal works would eventually filter down to two specific 

issues relevant to this study: the domain specificity of epistemological beliefs (Hofer & 

Pintrich, 1997; Muis, Bendixen & Haerle, 2006) and the ramifications of students’ 

personal epistemological beliefs on mathematical problem solving (Kloosterman & 

Stage, 1992; Muis, 2004, 2008; Schoenfeld, 1983, 1985, 1988, 1989, 1992). In her 

contemporary synthesis of mathematics-based personal epistemology research, Muis 

(2004) divided students’ mathematical beliefs into two categories with respect to 

learning: availing and non-availing. “An availing belief is one that is positively related to 

quality learning and achievement, and a nonavailing belief is one that does not affect 

learning or achievement in a positive way” (p. 324). These categories will be used 
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throughout the ensuing discussions of epistemology and mathematical problem solving. 

This section will present a literature-based, theoretical analysis of personal epistemology. 

The section will be subdivided as follows for organizational purposes: (1) multi-

dimensional beliefs view of epistemology, (2) issues of domain with respect to 

epistemology, and (3) mathematical problem solving and epistemology. 

Multi-Dimensional Beliefs View of Epistemology

Schommer (1990) suggested a framework for investigating epistemology based 

on multiple, independent dimensions of epistemological beliefs. Her study involving 

university and junior college students utilized a questionnaire to investigate her 

hypothesis that “epistemological beliefs are a system of more or less independent beliefs” 

(p. 499). Her findings suggested that epistemological beliefs can be divided into four 

independent dimensions: (1) innate ability (“the ability to learn is innate rather than 

acquired”), (2) simple knowledge (“knowledge is simple rather than complex”), (3) quick 

learning (“learning is quick or not at all”), and (4) certain knowledge (“knowledge is 

certain rather than tentative”) (p. 499). Additionally, Schommer found that quick learning 

predicted oversimplified conclusions, underperformance on mastery assessments, and 

overestimation of understanding. Certain knowledge predicted distortion of the reality 

that knowledge is relative and contextual to compensate for the rigid aspect of this belief.  

Since Schommer’s (1990) findings, researchers have sought to integrate a multi-

dimensional model of epistemological beliefs with other cognitive and affective models 

of learning (Hofer, 2004a; Hofer & Pintrich, 1997; Muis, 2007; Schommer-Aikins, 

2004). In fact, Schommer-Aikins (2004) stated, “The need for an embedded systemic 

model of epistemological beliefs, that is, a model that includes many other aspects of 
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cognition and affect, comes from the assumption that epistemological beliefs do not 

function in a vacuum” (p. 23). Of particular interest to this study are epistemological 

beliefs models that incorporate metacognitive, affective, and self-regulatory aspects.

Hofer and Pintrich (1997) acknowledged the theoretical strides of Schommer’s 

(1990) work, but questioned the innate ability belief dimension. They argued that innate, 

or “fixed, ability beliefs concern the nature of intelligence as a personal, psychological 

trait of an individual” and should, therefore, be considered a separate construct from 

epistemological beliefs (p. 109). They also acknowledged Schommer’s contribution of 

devising a questionnaire for measuring personal epistemology but pointed out the 

construct validity issues that have plagued the questionnaire’s use in her studies. In fact, 

Hofer and Pintrich questioned whether or not epistemological beliefs can be measured via 

questionnaire.  

Upon examining models ranging from Perry’s (1970) developmental model to 

Schommer’s (1990) multi-dimensional model, Hofer and Pintrich (1997) suggested the 

following general framework for epistemological beliefs: (1) nature of knowledge, which 

includes certainty of knowledge and simplicity of knowledge, and (2) process of 

knowing, which includes sources of knowledge and justification for knowing. Hofer and 

Pintrich provided comprehensive definitions for the four subdivisions of the general 

framework: 

! Certainty of knowledge. The degree to which one sees knowledge as fixed 

or fluid. 
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! Simplicity of knowledge. As conceptualized by Schommer, knowledge is 

viewed on a continuum as an accumulation of facts or as highly 

interrelated concepts.

! Source of knowledge. At the lower levels of most of the models, 

knowledge originates outside the self and resides in external authority, 

from whom it may be transmitted. The evolving conception of knower, 

with the ability to construct knowledge in interaction with others, is a 

developmental turning point of most models reviewed. 

! Justification for knowing. This dimension includes how individuals 

evaluate knowledge claims, including the use of evidence, the use they 

make of authority and expertise, and their evaluation of experts. (pp. 119–

120) 

These general epistemological beliefs dimensions provide a framework for analyzing 

student beliefs during any learning episode and may be applied to domain-specific 

inquiries.  

Additionally, Hofer and Pintrich (1997) suggested that epistemological beliefs 

may be related to cognition and motivation. In particular, they suggested that 

epistemological beliefs may be tied to the goal-setting phase of self-regulated learning 

models (e.g., Winne & Hadwin, 1998; Zimmerman, 2000). Their suggestions prompted 

epistemology researchers and theorists to develop and investigate integrated models of 

epistemological beliefs. These innovations include, but are not limited to, models relating 

epistemological beliefs to metacognition, metacognitive monitoring, and self-regulated 

learning (Hofer, 2004a; Muis, 2007; Schommer-Aikins, 2004).  
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Issues of Domain with Respect to Epistemology

One core issue facing the research of epistemology is determining whether 

epistemological beliefs are domain-general, domain-specific, or a combination of the 

two. In other words, are students’ beliefs of knowledge and knowing similar regardless of 

context (domain-general), or are there differences in students’ epistemological beliefs 

dependent upon context (domain-specific)? With respect to problem solving, Schraw 

(2001) suggested that the importance of answering this question is “that individuals may 

develop different epistemological commitments across domains depending upon the 

extent to which they possess expert knowledge” (p. 453).   

In a synthesis of epistemological studies related to academic domain issues, Muis, 

Bendixen, and Haerle (2006) found support for both domain-general and domain-specific 

views of epistemological beliefs. Based upon the extensive review, Muis et al. developed 

the theory of integrated domains in epistemology (TIDE) framework for academic studies 

and interventions relating to student epistemology. The TIDE model “provide[s] a 

theoretical framework from which to discuss broader relations among epistemic beliefs 

and various facets of cognition, motivation, and achievement” (p. 30). Throughout the 

model, general and domain-specific epistemological beliefs work in tandem and are 

reciprocally related. Additionally, development of epistemological beliefs is assumed to 

occur through the four dimensions suggested by Hofer and Pintrich (1997). The authors 

suggested that domain-specific beliefs socially develop and evolve through school 

experiences, but general ways of knowing developed before entering school remain and 

continue to influence subsequent learning experiences. As students progress through 

school, domain-specific beliefs tend to become more influential. Muis et al. suggested 
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that “as individuals become more specialized in a particular domain, which typically 

begins in upper-level high school, their academic epistemic beliefs are more 

representative of their focal domain” (p. 35). Muis et al. concluded that researchers 

should consider domain when developing contextually dependent studies involving 

personal epistemology, including the choice and use of questionnaires. 

Royce and colleagues’ findings are particularly salient for viewing students’ 

beliefs about mathematics knowledge as variant with respect to domains (Diamond & 

Royce, 1980; Royce & Mos, 1980; Wardell & Royce, 1978). Royce and colleagues 

examined three epistemological constructs: (1) rationalism (logical and analytical 

cognition), (2) empiricism (observational and perceptual cognition), and (3) 

metamorphism (insightful and symbolic cognition). Royce and Mos (1980) developed the 

Psycho-Epistemological Profile (PEP) to determine an individual’s epistemological 

persuasion. The PEP provides a score for each of the three epistemological constructs 

described above. The highest of the three scores indicates the individuals’ epistemic 

persuasion, or profile. Additionally, Royce and Mos (1980) found that mathematics 

professors tended to demonstrate rational epistemic qualities, which distinguishes 

mathematics from other disciplines such as science whose professors depended mainly 

upon empiricism. It should be noted that not all participants of domain-specific activities 

model the more generally dominant patterns of epistemic beliefs for that domain (Muis, 

et al., 2006; Muis, 2008). Students tend to exhibit this disconnect between actual beliefs 

and domain-dominant beliefs, which provides a window of opportunity to observe 

relationships between students’ actual epistemic profile, SRL prowess, and performance 

during mathematical problem-solving tasks. 
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Hofer (2000) investigated the dimensionality of epistemological beliefs with 

respect to academic discipline, or domain, in a study involving first-year college students 

in psychology and science. A portion of the study involved the testing of the Discipline-

Focused Epistemological Beliefs Questionnaire (DFEBQ) designed by the author. Her 

intention was that the DFEBQ would measure students’ levels of epistemological beliefs 

as described by Hofer and Pintrich (1997): certainty of knowledge, simplicity of 

knowledge, source of knowledge, and justification for knowing. After conducting a factor 

analysis, the following dimensions emerged from the questionnaire: certain/simple 

knowledge, justification for knowing: personal, source of knowledge: authority, and 

attainability of truth. Both certainty and simplicity of knowledge loaded onto the same 

dimension and thus, the two dimensions were collapsed to one. Thus, the certain/simple 

knowledge dimension may be assigned the combined definition of certainty and 

simplicity of knowledge provided by Hofer and Pintrich (1997) above. The justification 

for knowing and sources of knowledge items only loaded with respect to non-availing 

beliefs. Specifically, the justification dimension only factored with regard to personal 

opinion and experience, as opposed to the more availing belief that knowledge should be 

justified based on the evaluation of evidence and expertise. Similarly, the sources of 

knowledge dimension only factored with respect to external authority, as opposed to the 

more availing belief that knowledge may be attained via the interactive construction of 

knowledge. Finally, attainability of truth was an unexpected dimension whose items were 

expected to load onto certainty of knowledge. The results of the study revealed that 

significant differences existed between the science and psychology students for each 

belief scale. For example, students held significantly higher beliefs that science 
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knowledge was more certain than psychological knowledge. Hofer (2000) suggested that, 

while students hold domain-general epistemological beliefs, first-year college students

are able to discriminate among beliefs based on domain. Finally, Hofer suggested factor 

loadings indicated that additional work is needed to improve epistemological self-report 

questionnaires, implying that interviews and other qualitative methods may be more 

suitable for studying epistemology. 

Hofer continued to investigate the dimensionality and domain-specificity of 

epistemological beliefs using think-aloud protocols (Hofer, 2004a) and case study 

methods (Hofer, 2004b). Applying a framework encompassing metacognition and 

epistemology, Hofer (2004a) conducted a series of studies with high school and college 

students, which involved thinking aloud while conducting computer searches for a 

science unit. The framework situated certainty and simplicity of knowledge within a 

metacognitive knowledge construct, source of knowledge and justification of knowing 

within a metacognitive judgments and monitoring construct, and identified self-regulation 

as the regulation of cognition during knowledge construction. Her prior work revealed 

problems assessing students’ epistemological beliefs via self-report questionnaires, 

particularly the justification of knowing and source of knowledge dimensions (Hofer, 

2000). Think-aloud protocol analysis yielded evidence of all four beliefs dimensions and 

provided evidence that beliefs operate interactively and tie to student motivation. Despite 

methodological concerns, Hofer (2004a) suggested “thinking aloud, however imperfect, 

may be the best means of learning about the actual, situated nature of epistemic thinking” 

(p. 51).  
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Hofer (2004b) conducted a case study of 25 first-year university students enrolled 

in two different chemistry courses. Thirteen of the students were enrolled in an advanced 

organic chemistry course focusing on student construction of knowledge via group 

activities. The remaining twelve students were in a general chemistry course focusing on 

mathematical procedures and measurement. In the latter course, the professor placed 

heavy emphasis on the text and review sessions as means for preparing students for 

eventually curved open-ended exams. Hofer and Pintrich’s (1997) four dimensions of 

epistemological beliefs were analyzed within the classroom context using semi-structured 

interviews, classroom observations, and pedagogical artifacts. With respect to simplicity 

of knowledge, a common theme amongst many students was the preference for multiple-

choice exams, which typically assessed more simplistic, concrete topics instead of the 

open-ended questions that were prevalent on both chemistry courses’ exams. Although 

not to be generalized, findings indicated that students in the more constructivist-oriented 

course tended to adapt more readily to the critical thinking and synthesis required of the 

exams. The students in the more procedurally-based general chemistry course tended to 

struggle throughout the course.  

In terms of the continuum of certainty of knowledge, the results of the study 

suggested most students had moved past the extreme dualistic nature of knowledge but 

were not sophisticated enough to critically evaluate knowledge to develop improved 

interpretations. Such students tended to accept all knowledge as opinion and assigned 

equal validity to any claim. Students in the study held fairly unsophisticated views of 

source of knowledge and justification for knowing. Textbooks were generally cited as 

authoritative sources of knowledge despite college professors’ credentials and 
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preparation. Additionally, despite the opportunity in the organic chemistry course to 

attend study groups and construct their own knowledge, few of the students in the study 

participated. Finally, few students comprehended the mechanics of scientific inquiry, 

which is the main source for justifying knowledge in chemistry. 

Epistemological Beliefs and SRL 

Building on prior work suggesting connections between epistemological beliefs 

and SRL (e.g., Hofer, 2004a; Hofer & Pintrich, 1997; Schommer-Aikins, 2004), Muis 

(2007) proposed a model integrating epistemological beliefs into Winne and Hadwin’s 

(1998) model of SRL. Specifically, she theorized that epistemological beliefs are enacted 

at the definition of task phase and “may influence the standards set for a task,” which 

directly impacts the goals that students set (Muis, 2007, p. 180). In turn, standards affect 

students’ enactment and evaluation of strategies used to complete the task. Thus, Muis’ 

(2007) proposition implied that epistemological beliefs may be related to all phases of 

SRL, as defined by Winne and Hadwin (1998). Additionally, Muis suggested that a 

reciprocal relationship may exist between epistemological beliefs and SRL. Internal 

feedback generated at the monitoring phase of SRL is compared to standards set and 

ultimately informs cognitive and affective schemas, which may include epistemological 

beliefs. Finally, Muis suggested that studies examining the relationships between 

epistemology and SRL combine quantitative and qualitative techniques, including think-

aloud protocols and interviews.  

In a study directly applying Muis’ (2007) model of SRL and epistemological 

beliefs, Muis and Franco (2009) studied 201 undergraduate educational psychology 

students. Hofer and Pintrich’s (1997) four-dimension framework for epistemological 
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beliefs was used to analyze students’ beliefs. Data were collected with regard to students’ 

SRL processing, goal-orientation, and epistemological beliefs. Qualitative data consisted 

of students’ reflections on three course assessments. As part of the coursework, students 

were required to reflect on what they had learned and how they could apply the 

knowledge to teaching or learning situations. Quantitative data included the MSLQ 

(Pintrich et al., 1991), DFEBQ (Hofer, 2000), and a goal-orientation questionnaire. 

Qualitative data were coded based on a coding scheme developed from Hofer and 

Pintrich’s (1997) epistemological beliefs. Structural equation modeling was applied to the 

quantitative data to obtain a system of weighted, causal paths between the myriad of 

variables. The resultant model demonstrated a moderate to good fit and suggested that 

epistemological beliefs influence goal-orientation, then goal-orientation influences SRL 

strategy use, and finally, SRL strategy use influences student achievement. 

A surprising result was that the source of knowledge belief was not a factor in the 

model. Muis and Franco (2009) suggested that the applied nature of educational 

psychology may explain the lack of a significant causal path. Of particular interest are the 

findings relating epistemological beliefs to goal orientation (see Table 1). Muis and 

Franco’s findings suggested that a relationship exists between goal-orientation and three 

of Hofer’s (2000) epistemological beliefs categories from the DFEBQ. In addition to the 

lack of source of knowledge dimension, the relationship between attainability of truth 

and performance- and mastery-approach goal orientations was also surprising. This 

relationship contradicted Muis’ hypothesis that a constructivist orientation to learning 

would be more conducive to students’ adoption of mastery-approach goals since the 

belief that truth is attainable is generally considered to be non-availing and less 
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constructivist-based (Hofer & Pintrich, 1997). Muis and Franco suggested that the type 

and difficulty-level of tasks may affect the depth of SRL processing, including goal-

setting and orientation. Additionally, these findings suggested that domain-specificity 

may play a role in determining the relationship between epistemological beliefs and SRL. 

Finally, Muis and Franco called for research examining task-definition and domain-

specificity using think-aloud protocols and interviews. 

Table 1 

Interrelated Qualities of Goal-Setting and Epistemological Beliefs     

Belief Dimension Student profile Goal preference

Certainty/simplicity Certain/simple P-AP, P-AV

Certainty/simplicity Tentative/complex M-AP

Justification Expert justification P-AP, M-AV

Attainability of truth Truth is attainable P-AP, M-AP

Note. Belief dimensions represent Hofer’s (2000) belief scales from the

DFEBQ. Certainty of knowledge and simplicity of knowledge loaded onto a 

single factor and are thus, shown as a single dimension. P-AP = performance- 

approach; P-AV = performance-avoidance; M-AP = mastery-approach; 

M-AV = mastery-avoidance

Neber and Schommer-Aikins’s (2002) study focused on SRL and epistemological 

beliefs for gifted students. The study involved both elementary and secondary students 

and investigated, among other things, the causal relationships between epistemological 
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beliefs and SRL. The quantitative study utilized the MSLQ (Pintrich et al., 1991) and 

Schommer’s epistemological beliefs measure for high school students as the main 

instruments for data collection and subsequent MANOVA analyses. Three surprising 

results were found suggesting that high school students’ epistemological beliefs are no 

more advanced than elementary students, high school students demonstrate poor SRL 

processing in physics, and goal-orientation is a very weak predictor for SRL processing. 

Additionally, success does not require work was the only epistemological belief 

significantly related to SRL and subsequently included in the causal path model.  

Neber and Schommer-Aikins (2002) suggested that the constraining environment 

of high-school physics, in contrast to the more constructive elementary science courses, 

was the main cause of the differences in SRL practices. The authors also suggested that 

SRL in science could be promoted by increasing students’ opportunities to actively 

engage in investigative studies. Finally, the weak effects of epistemological beliefs on 

SRL strategy use may be attributed to the use of a domain-general questionnaire in a 

domain-specific study.  

Bråten and Strømsø (2005) investigated relationships between epistemological 

beliefs and SRL amongst Norwegian college students, 178 majoring in management and 

108 in education. The quantitative study utilized self-report questionnaires. In contrast to 

Neber and Schommer-Aikins’ (2002) findings, the results suggested that epistemological 

beliefs were significant predictors of SRL strategy use and “should be included in models 

of self-regulated learning” (Bråten and Strømsø, 2005, p. 559). These results were 

obtained despite using a domain-general questionnaire. However, the authors were unable 

to establish domain related differences amongst the students, which may be attributable 
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to the domain-generality of the instrument. Additionally, naïve epistemological beliefs

negatively related to self-efficacy and mastery goal orientation. The authors presented 

multiple calls for research, including a call for more research utilizing classroom 

observations, think-aloud protocols, and interviews to “provide dynamic, in-depth views 

of epistemological beliefs and their relations to other constructs” (p. 561).   

Research suggests that epistemological beliefs are related to academic 

achievement. In a quantitative study involving approximately 1600 students from Spain, 

Cano (2005) reported that quick and simple knowledge directly, negatively impacted 

student achievement. Additionally, surface approaches to learning negatively impacted 

student achievement; whereas deeper approaches to learning positively affected student 

achievement. Cano also found that high school students tend to show a significant 

decrease in deep-level approaches to learning. One possible rationale for this disturbing 

result is that secondary students may have become institutionalized and learned “to 

navigate the choppy waters of the curriculum” (Cano, 2005, p. 215). Schoenfeld (1988, 

1989) echoed this opinion in his work on problem solving, discussed in detail below. 

Theoretical Analysis of Problem Solving

According to the National Council of Teachers of Mathematics (NCTM), “solving 

problems that have been strategically chosen and carefully sequenced is a fundamental 

vehicle for learning mathematical content [italics added]” (NCTM, 2000, p. 335). The 

constructivist viewpoint taken by NCTM assumes that problem solving can be a form of 

learning, given that students are engaged in the development of their own knowledge. 

Unfortunately, Schoenfeld’s (1988, 1989) studies of high school geometry students 

indicated that students tend to rely heavily on rote memory and empirical musings, fail to 
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assess the validity of mathematical reasoning while problem solving, and lack the control 

to curtail wild goose chases. More contemporary studies have suggested that such 

behaviors are still prevalent (Lerch, 2004; Muis, 2008), but provide hope that 

pedagogical interventions are feasible and conducive to increasing students’ problem 

solving prowess and self-regulatory practices (de Corte, Verschaffel, & Op ’T Eynde, 

2000; Perels, Gürtler, & Schmitz, 2005).  

For this study, Schoenfeld’s (1985) problem-solving framework was appropriate 

for analyzing students’ problem-solving endeavors. Schoenfeld’s interest in problem 

solving can be credited to George Polya, the father of the modern problem-solving 

movement. Although problem solving has always been inherent in mathematics, George 

Polya is generally given credit for ushering in the modern era of the study of 

mathematical problem solving (Schoenfeld, 1987). Even with publication dates for most 

of his problem-solving works surpassing four decades, Polya’s general methods for 

teaching and learning mathematical problem solving, including an extensive list of 

heuristic (problem-solving) strategies, are still in use in classrooms today. Schoenfeld 

(1985), extending the work of Polya, presented a problem-solving framework that 

brought student control and beliefs issues to the forefront, suggesting that self-regulatory 

processing and epistemology may be an important aspect of problem solving. More 

recently, Muis’ (2008) findings have extended Schoenfeld’s work to encompass more 

contemporary SRL theory and have suggested that student beliefs, self-regulatory 

processing, and problem-solving capacity are interrelated constructs.

The design of this study necessitated the need for an analysis of task definition 

and group dynamics. Mathematical problem solving tasks may be defined according to 
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cognitive demand (Stein, Smith, Henningsen, & Silver, 2000) and structure (Lodewyk, 

2007; Lodewyk, Winne, & Jamieson-Noel, 2009). A framework for evaluating small 

group problem-solving episodes presented by Artzt and Armour-Thomas (1992) proved 

useful for evaluating self-regulatory aspects of students engaged in group work. This 

section of the literature review is divided as follows: (1) issues of task definition in 

mathematical problem solving, (2) Schoenfeld’s (1985) mathematical problem-solving 

model, (3) issues of group dynamics in mathematical problem solving, and (4) Muis’s 

(2008) study of mathematical problem solving, epistemology, and SRL.   

Issues of Task Definition in Mathematical Problem Solving

When developing learning tasks, teachers and researchers should consider the 

cognitive demand required of students for completing the task. Stein, Smith, Henningsen, 

and Silver (2000) suggested the following categorical scheme for assessing a task’s 

cognitive demand: lower-level demands–memorization tasks and procedures without 

connections tasks; higher-level demands–procedures with connections tasks and doing 

mathematics tasks. Procedures without connections tasks require students to apply 

algorithmic procedures, which are devoid of deeper connections to concepts underlying 

the task. Procedures with connections tasks make connections to underlying concepts and 

require significant cognition as students adapt procedures to task conditions. A 

constructivist, SRL-infused, problem-solving approach to mathematics teaching and 

learning implies the need to develop tasks with a high cognitive demand (Lodewyk, 

2007). The doing mathematics tasks most closely resemble the types of problem-solving 

activities appropriate to the constructivist view of mathematical learning. In fact, one 
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rationale suggested by Stein et al. for classifying a task as doing mathematics is “there is 

no predictable pathway suggested by the task and it requires complex thinking” (p. 21).  

In practice, tasks used by mathematics teachers will necessarily shift from one 

end of the cognitive continuum to the other (Stein et al., 2000). Teachers need to keep 

track of the frequency of use for each level and keep learning goals in mind as tasks are 

developed. Finally, teachers should also consider the most appropriate task level to use 

based on student abilities and needs (Stein et al., 2000).  

Lodewyk and colleagues investigated task structure with respect to epistemology 

and SRL (Lodewyk, 2007; Lodewyk, Winne, & Jamieson-Noel, 2009). In terms of 

structure, tasks are generally defined as either well-structured tasks (WST) or ill-

structured tasks (IST). Lodewyk (2007) suggested that a WST “is usually more clearly 

formulated and presented, and requires straightforward operations, providing the 

necessary information, algorithms, and precise criteria to indicate how the completed 

learning task will be assessed to aid the learner in searching for a suitable answer;” 

whereas an IST “makes less obvious the operations to be used, is more ambiguous (does 

not have a clearly identifiable answer), and does not provide the necessary information 

(clear instructions), algorithms (cues and resources), or evaluative criteria for students to 

determine if they are solving the problem correctly” (p. 311). 

Both studies discussed here drew from the same sample of tenth grade science 

students in western Canada (Lodewyk, 2007; Lodewyk et al., 2009). Each student 

completed a WST and an IST in partial completion of a science unit on cancer. To 

complete the WST, students typed an essay on cancer and were provided with specific 

subgoals, organized resources, and grading criteria. In contrast, the IST required students 



59

to develop a stance as to whether government should focus on the treatment or prevention 

of cancer. The task was more ambiguous, cognitively-demanding, and reflective than the 

WST. Both studies were quantitative and involved factor analyses, ANOVA, MANOVA, 

and structural equation modeling to provide robust results. 

Lodewyk’s (2007) focus was on the relationships between task structure and 

epistemological beliefs. Results suggested that students who view knowledge as simple 

and fixed tended to have more difficulty with the IST. Additionally, findings suggested 

that non-availing beliefs, especially quick, fixed and simple views of knowing, predict 

lower student achievement. Lodewyk suggested that teachers should provide students 

with both types of problem structures, as too many well-structured tasks tend to promote 

a simple-knowledge belief system in students and too many ill-structured tasks tend to 

promote anxiety and withdrawal. Finally, Lodewyk suggested that studies of 

epistemological beliefs should focus more on domain-specific beliefs and be more fine-

grained in nature. 

Lodewyk, Winne, and Jamieson-Noel (2009) suggested that teachers should 

consider student achievement when assigning tasks. Their study investigated aspects of 

self-regulation exhibited by students while working on the WST and the IST discussed 

above. They found that lower-level achievers regulated their efforts and performed better

on the WST but had difficulty scaffolding their knowledge to regulate and perform well 

on the IST due in large part to a lack of setting appropriate subgoals. In contrast, higher-

level achievement students tended to be more motivated, demonstrated higher levels of 

self-regulation, and performed better on the IST due to the high cognitive demand 
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inherent in such problems. Thus, teachers should vary the cognitive load of tasks 

assigned to students to simultaneously promote self-efficacy and critical thinking.  

Schoenfeld’s Mathematical Problem-Solving Model

Schoenfeld (1985) stated, “By definition, problem situations are those in which 

the individual does not have ready access to a (more or less) prepackaged means of 

solution” (p. 54). This definition differentiates problem solving from routine 

mathematical exercises and was the operational definition for problem solving throughout 

this study. Schoenfeld’s definition is also congruent with the doing mathematics 

cognitive demand category described above (Stein et al., 2000). The majority of 

Schoenfeld’s empirical studies involved undergraduate university students (1982, 1983, 

1985) and high school students (1988, 1989). His work produced a framework for 

examining mathematical problem solving. The components of his framework will serve 

as the categorical subheadings for the ensuing discussion: (1) resources, (2) heuristics, (3) 

control, and (4) belief systems (Schoenfeld, 1985). 

Resources. To undertake any endeavor, one must have the necessary resources to 

complete the task. Mathematical problem solving is no different and educators must take 

resource accessibility into account when infusing problem solving into any mathematics 

agenda. The most basic resource available to the prospective problem solver is “domain-

specific knowledge” (Schoenfeld, 1983, p. 332). For instance, a student attempting to 

determine two functions whose intersections form an enclosed region with area 

equivalent to some real number must either recall from elementary calculus that the area 

between curves is obtained via an integral expression or utilize an approximation 

technique from calculus or geometry. However, simply knowing a mathematical fact will 
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not be sufficient unless a student accesses the appropriate knowledge from long-term 

memory (LTM) while working a problem (Schoenfeld, 1983). For example, even though 

it is intuitively obvious to a calculus student that a non-horizontal, linear function cannot 

be positive on its entire domain, will the student access this knowledge when attempting

to prove, or disprove, whether a general cubic function can be concave up on its entire 

domain? 

According to Schoenfeld (1985), expert mathematicians access and apply relevant 

knowledge routinely in problem situations. Expert mathematicians develop a system of 

chunks of mathematical scenarios, have a schema prepared for each familiar chunk, and 

are able to perform even in complex, unfamiliar problem-solving situations. 

Unfortunately, novice problem solvers may fail to recognize a problem type, apply 

flawed resources to a recognized scenario, or simply fold under the pressure of a difficult, 

unfamiliar problem despite having the vision and resources necessary to adequately solve 

the problem. Since a student may fail to solve a problem for various reasons, Schoenfeld 

(1985) suggested that researchers keep “an inventory of resources,” which “should 

include not only the pieces of knowledge accessible to the individual, but the kinds of 

access that the individual has to them” (p. 57). The inventory may aid the researcher in 

determining the cause for the incomplete solution and provide an impetus for follow-up 

interview discussions.  

More specifically, resources are domain-specific within the overall mathematical 

discipline (Schoenfeld, 1985). For instance, students who have only studied first-year 

high school algebra may find difficulty in determining an equation of the line tangent to a 

circle in the plane without significant support. Although they have learned about average 
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rates of change and may have a vague notion of the meaning of tangent, they have not 

learned about the geometric properties of tangents, nor have they discussed instantaneous 

rates of change. Schoenfeld points out that a broad range of resources exists for each 

mathematical domain and range from “informal and intuitive knowledge” to 

“algorithmic” and “routine procedures” (pp. 54–55). Students will demonstrate varying 

mastery of these resources, which will heavily impact the degree of success that may be 

attained in problem solving within the domain. Finally, researchers need to build a 

repertoire of common student mistakes and be prepared to identify them based solely on 

the nature of students’ solution attempts. The fact that this can be done implies that 

teachers need to become more adept at identifying common student errors and develop 

pedagogical means for remedying them that are more robust than simply reiterating the 

same procedure taught in class. 

 Schoenfeld (1992) provided further insights into the importance of researchers’ 

understanding and identification of students’ resource capacity: 

 Did they fail to pursue particular options because they overlooked them, or 

 because they didn’t know of their existence? In the former case, the difficulty 

 might be metacognitive or not seeing the right “connections;” in the latter  case, it 

 is a matter of not having the right tools. From the point of view of the observer or 

 experimenter trying to understand problem-solving behavior, then, a major task is 

 the delineation of the knowledge base of individuals who confront  the given 

 problem solving tasks. It is important to note that in this context, the knowledge 

 base may contain things that are not true. Individuals bring  misconceptions and 
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misunderstood facts to problem situations; it is essential to understand that those

 are the tools they work with. (p. 349) 

Heuristics. Schoenfeld (1985) distinguished heuristics from routine problem 

solving strategies, as follows: “The use of a general problem-solving strategy is heuristic 

[italics added] if the problem solver is having difficulty, and there is reason to suspect 

that taking this particular approach might help” (p. 60). Expert problem solvers share a 

fairly common set of heuristic strategies and employ them during problem solving 

episodes (Schoenfeld, 1985). Thus, at the time of Schoenfeld’s (1985) work, mathematics 

educators had devoted large amounts of energy to teaching heuristic strategies but with 

few positive results. Schoenfeld suggested that the lack of success may be partially 

attributable to the lack of detail inherent in most heuristics-based pedagogy.  

In his seminal problem-solving work How to Solve It, Polya (1957) described a 

large number of heuristics that both teachers and learners may draw upon. Many of 

Polya’s heuristic strategies are referenced by NCTM’s (2000) reform suggestions for 

teaching through problem solving. Polya’s (1957) heuristic list includes, but is not limited 

to, draw a picture, set up an equation, introduce proper notation, introduce auxiliary 

elements, work backwards, special cases, and develop subgoals. Schoenfeld (1982, 1985) 

specifically cited two of Polya’s heuristics strategies: special cases and subgoals. To 

utilize the special cases heuristic, one must recognize that the problem can be simplified 

without loss of generality, determine an appropriate simplified form, utilize resources to 

solve the simpler problem, and then use the result to determine the solution for the 

general-case problem. Applying the subgoals heuristic requires a similar number of steps 

and is generally considered more difficult to employ than the special cases heuristic 
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(Schoenfeld, 1985). The subgoals established for the problem should be in partial 

fulfillment of the given conditions. Once established, the problem-solver would then

work to complete each subgoal until the original problem is solved. Expert problem 

solvers are capable of applying these strategies with ease and precision, but naïve 

problem-solvers demonstrate great difficulty with them (Schoenfeld, 1983, 1985).  

Schoenfeld (1985) suggested two major causes for students’ lack of ability to 

apply heuristics strategies. First, simply teaching, or demonstrating, general heuristics is 

not enough. As shown above, each heuristic method comes with a large quantity of sub-

steps that students must be taught and then allowed the opportunity to explore. 

Otherwise, students will have the general notion of the heuristic but lack the intuition to 

apply it. Second, students’ successful implementation of heuristics is heavily dependent 

on their possession of and access to resources. Mastery of a heuristic strategy will not 

help a student who cannot access appropriate subject matter knowledge in the given 

domain.  

Control. Schoenfeld’s (1985) notions of control are closely related to 

Zimmerman’s (2000) performance control and self-reflection phases. Considering 

resources and heuristics as key factors in planning and goal-setting for solving problems, 

Schoenfeld’s framework may be seen as a self-regulatory problem-solving framework, 

and has been cited as such (De Corte, Verschaffel, & Op ’T Eynde, 2000; Muis, 2008). 

To aid students in his university problem-solving courses taught in the 1970s, Schoenfeld 

(1985) developed a detailed strategy integrating heuristics and control, which was 

developed by him as he worked problems. Schoenfeld (1983, 1985) suggested that there 

was no need for control if a problem was routine to the solver. Thus, he told his students 
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to work problems as they normally would, but refer to the detailed strategy integrating 

heuristics and control when they were at an impasse in a particular problem. His 

problem-solving strategy proceeds as follows: (1) analysis, (2) design/exploration, (3) 

implementation, and (4) verification.  

During analysis, a careful examination of the problem is made and common 

heuristics, such as drawing a diagram or simplifying the problem without loss of 

generality, may be applied (Polya, 1957; Schoenfeld, 1985). Once a preliminary decision 

is made, one moves to the design phase, which entails determining an optimal plan of 

attack that may provide a path to success. During this phase, exploration is taking place, 

which is the most active heuristics stage involving such practices as replacing conditions 

with equivalent ones, developing subgoals, and constructing analogous, simpler problems 

(Polya, 1957; Schoenfeld, 1985). At any point during exploration, one may wish to go 

back and re-analyze the problem or alter facets of the current design given that navigation 

of the problem space is not going well. Once a schematic solution plan is obtained from 

this stage, one moves to implementation and completes the work required by the chosen 

methods. Finally, during verification, the solution is tested to ensure accuracy. For the 

purposes of protocol analysis, Schoenfeld parsed problem-solving sessions into timed 

episodes, as follows: read, analyze, explore, plan, implement, and verify. 

Overall, Schoenfeld’s (1982, 1983, 1985) results were favorable in that students 

who utilized his strategy were typically able to more readily apply heuristics and 

correctly solve problems as a result of his course. However, Schoenfeld’s (1985) myriad 

observations and videotaped sessions suggested enough variation that he developed a 

continuum of “effects of control decisions on problem-solving success,” as follows:



66

Type A. Bad decisions guarantee failure: Wild goose chases waste resources, and 

potentially useful directions are ignored. 

Type B. Executive behavior is neutral: Wild goose chases are curtailed before 

they cause disasters, but resources are not exploited as they might be. 

Type C. Control decisions are a positive force in a solution: Resources are chosen 

carefully and exploited or abandoned appropriately as a result of careful 

monitoring. 

Type D. There is (virtually) no need for control behavior: The appropriate facts 

and procedures for problem solution are accessed in long-term memory (LTM). 

(p. 116) 

Of these four levels, Schoenfeld asserted that Type C control demonstrates “true 

problem-solving skill” (p. 127). The problem has aspects that the potential solver is 

unable to readily access, yet via control and continuous monitoring, the solution is still 

obtained.  

Lerch (2004) challenged Schoenfeld’s (1985) assertions that control was at the 

heart of students’ failures, citing a significant lack of resources amongst most 

undergraduate students. Lerch suggested that Schoenfeld may have disproportionately 

focused on control issues, and failed to give proper credence to the immense supply of 

problem-solving resources available to the expert professors that he compared with his 

student participants. She further suggested that students’ lack of such resources may 

explain their wild goose chases better than issues of control. Lerch’s (2004) small-scale 

qualitative study investigated the differences inherent in undergraduate mathematics 

students’ problem-solving capacity with respect to well-structured (textbook) exercises 
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versus ill-structured problems. Her findings were that the students successfully applied 

and adapted strategies for solving the textbook problems, but were unable to successfully 

complete the ill-structured problems. Lerch suggested that students’ success on textbook 

problems may be attributed to the accessibility of a procedural model; students’ lack of a 

mathematical processing model (due to insufficient resources) for unfamiliar problems 

may explain the failure to solve the ill-structured problems. Although not empirical, 

Lerch’s study supported the assertion that students need to develop a more broad-based, 

conceptual approach to problem solving, which steers away from the algorithmic 

procedures that made the students successful on the textbook problems. From a 

mathematical problem-solving perspective, such success is artificial anyway. It only 

indicates the ability to follow a recipe, not that any mathematical problem-solving 

prowess has been attained (Schoenfeld, 1992). Finally, Lerch suggested that student 

attainment of mathematical problem solving skills is a multi-faceted enigma and the 

compelling evidence presented for using SRL as a framework only tells part of the story.  

Perels, Gürtler, and Schmitz (2005) presented some promising results concerning 

SRL and problem-solving training for students from their study of 249 eighth-grade 

German gymnasium students. Using an SRL problem-solving framework based on 

Zimmerman (2000) and de Corte et al. (2000), Perels et al. found that providing students 

with six weeks of SRL and problem-solving training resulted in improvements in students 

for both constructs. Training sessions focused on self-regulatory components consistent 

with Zimmerman’s model and problem-solving training focused on applying heuristic 

methods. To ensure quality training sessions, the researchers kept group sizes to no more 

than 19 students per training session. The study implemented a pretest-posttest design 
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with each test having an SRL questionnaire component and a mathematical problem-

solving component.  

The results of Perels et al.’s (2005) study revealed that the students trained in both 

SRL processing and problem-solving skills improved from pretest to posttest for both 

constructs. Unfortunately, not every aspect of SRL (including goal-setting and learning 

strategies) was improved to a statistically significant level, which led Perels et al. to 

request further research to determine more appropriate means of teaching these skills. A 

surprising result was that students who only received SRL training (but no problem-

solving training) showed improvements in both SRL processing and problem-solving 

ability. Thus, although Perels et al. suggested difficulties in developing self-regulatory 

capacity, the benefits inherent to improving problem-solving capacity indicate that the 

endeavor should be of paramount importance to constructivist-minded mathematics 

educators.

Belief systems. Researchers have examined the relationships between 

epistemological beliefs and mathematical problem solving (Kloosterman & Stage, 1992; 

Muis, 2004, 2008; Royce & Mos, 1980; Schoenfeld, 1983, 1985, 1988, 1989, 1992). 

Much of Schoenfeld’s research was devoted to investigating students and experts while 

solving mathematical problems. Based on his videotaped problem-solving sessions, 

Schoenfeld (1985) suggested that three nonavailing beliefs typically pervade students’ 

attempts at solving mathematical problems:

1. Formal mathematics has little or nothing to do with real thinking or problem 

solving. 
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2. Mathematics problems are always solved in less than ten minutes, if they are 

solved at all. 

3. Only geniuses are capable of discovering or creating mathematics. (p. 43) 

In a synthesis of problem solving literature, Schoenfeld (1992) provided additional non-

availing student beliefs:

1. Mathematics problems have one and only one right answer. 

2. There is only one correct way to solve any mathematics problem–usually the 

rule the teacher has most recently demonstrated to the class.

3. Ordinary students cannot expect to understand mathematics; they expect 

simply to memorize it and apply what they have learned mechanically and 

without understanding. (p. 359) 

Although obviously couched in a mathematical problem-solving perspective, 

these non-availing beliefs are fairly congruent with low-level, multi-dimensional

epistemological beliefs described above (Hofer, 2000; Hofer & Pintrich, 1997; 

Schommer, 1990). Specifically, the beliefs listed above are congruent with Schommer’s 

(1990) quick learning belief and the low-level beliefs from Hofer and Pintrich’s (1997) 

source of knowledge and simplicity of knowledge dimensions. Along a more 

contemporary vein, Muis (2004) stated, “In the context of mathematics epistemological 

beliefs, beliefs include perspectives on the nature of mathematics knowledge, 

justifications of mathematics knowledge, sources of mathematics knowledge, and 

acquisition of mathematics knowledge” (p. 326).  

Romberg (1992) described mathematical epistemology from a process 

perspective, as opposed to an acquisition perspective: 
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When many nonmathematicians look at mathematics, they see a bounded and 

static set of concepts and skills to be mastered. This is perhaps a reflection of the 

mathematics they studied in school or college rather than insight into the 

discipline itself. For many, to know means to identify the artifacts of the 

discipline–its basic concepts and procedures. For others more familiar with the

discipline, to know mathematics is to do mathematics. A person gathers, 

 discovers, or creates knowledge in the course of some activity having a purpose. 

 Only if the emphasis is put on the process of doing is mathematics likely to make 

sense to students. (pp. 60–61)    

Partially based on the works of Schoenfeld, Kloosterman and Stage (1992) 

developed the Indiana Mathematics Belief Scales (IMBS) to measure “secondary school 

and college students’ beliefs about mathematics as a subject and how mathematics is 

learned” (p. 109). Through a series of studies, the five scales were validated and include 

measurements of the following topics of mathematical beliefs: duration of problem-

solving engagement, solutions of problems via procedural means, importance of 

conceptual understanding, importance of word problems, and attributing mathematical 

ability to effort versus innate skill. An additional scale measuring students’ beliefs about

the usefulness of mathematics was also included with the other five scales. A more 

complete assessment of the IMBS may be found in Chapter III: Methodology.

Schommer-Aikins, Duell, and Hutter (2005) “tested the hypothesis that general 

epistemological beliefs are linked to the mathematical problem-solving beliefs” in a study 

of 1269 middle school students from the American Midwest (p. 292). Additionally, 

Schommer-Aikins et al. explored the developmental nature of the structure of middle 
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school students’ beliefs, and examined relationships and possible causality between 

epistemological beliefs, mathematical problem solving beliefs, and performance. Data 

were collected from a middle school version of Schommer’s (1990) epistemological 

belief questionnaire, the IMBS, students’ performance on a standardized exam, and 

students’ overall GPA. To test the hypotheses, data analyses included exploratory factor 

analysis, regression calculations, and path analysis.

Results indicated that the structure of middle school students’ beliefs tend to be 

less developed than secondary and college students’ beliefs. Exploratory factor analysis 

revealed that quick/fixed learning and studying aimlessly were the two strongest general 

epistemological beliefs and effortful math, useful math, math confidence, and understand 

math concepts were the four strongest mathematical problem-solving beliefs. Step-wise 

regression indicated that the less students believe in quick/fixed learning, the more likely 

they will believe that problem solving is effortful and useful, requires understanding of 

concepts, and have confidence in their ability to solve problems. An additional step-wise 

regression analysis revealed that beliefs in quick/fixed learning and that mathematics is 

useful predicted mathematical problem-solving performance. Finally, path analysis 

indicated that beliefs in quick/fixed learning, useful mathematics, math confidence, and 

understand math concepts had a significant effect on overall academic performance. In 

sum, Schommer-Aikins et al. (2005) stated, “The results of our study also suggest that 

both general epistemological beliefs and mathematical beliefs may play a role in 

students’ problem-solving performance” (p. 301).  

Mason (2003) used an Italian interpretation of the IMBS to study 599 Italian high 

school students’ mathematical beliefs. Participants included students from two school, 
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representative of each of the five grades of Italian high schools. The mixed methods 

study included analyses of the Italian version of the IMBS and students’ achievement in 

mathematics, and individual interviews with select students. All but one scale, 

importance of word problems, of the Italian version of the IMBS demonstrated moderate 

to high reliability. It is not surprising that the importance of word problems scale 

demonstrated low reliability since Kloosterman and Stage (1992) reported difficulty in 

generating reliable ratings for this scale due to students’ confusion with the term word 

problem. The results of the study indicated that as students progress through high school, 

their beliefs that all problems may be solved via routine means begin to diminish. 

Unfortunately, findings indicated that non-availing beliefs emerge during the high school 

years as students’ beliefs that they can solve difficult problems and their beliefs in the 

usefulness of mathematics decrease with time. Additionally, the findings indicated that 

four scales predicted student achievement to varying degrees, as follows in order from 

strongest to weakest: duration of problem-solving engagement, solutions of problems via 

procedural means, usefulness of mathematics, and importance of conceptual 

understanding. The findings of this study indicated the importance of considering 

mathematical beliefs as factors in students’ mathematics education. Mason suggested that 

educators develop interventions for fostering availing mathematical beliefs in students 

and also suggested that teachers design instruction, tasks, and assessments in alignment 

with such availing mathematical beliefs.

Royce and Mos’ (1980) and Schoenfeld’s (1983, 1985) findings suggested that 

mathematics professors exhibit rationalist-based approaches to mathematical problem-

solving. Expert mathematicians and professors develop a rational sense of problem 
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solving through graduate school experiences and are able to derive mathematical 

information even if they cannot recall it (Schoenfeld, 1983, 1985). However, 

Schoenfeld’s (1983, 1985) findings suggested that college mathematics students tend to 

solve problems from an empirical perspective. In Schoenfeld’s studies, multiple students, 

with little idea as to how to progress, simply tried every plausible solution by visual 

inspection, rather than utilizing a logical chain of reasoning or proof. Schoenfeld (1985) 

provided the title naïve empiricism to such a belief system. In contrast, when Schoenfeld 

(1983) gave the same problems to mathematicians, they derived necessary results, 

monitored their performance, and verified their solution processes. In other words, 

mathematicians modeled Royce and Mos’ (1980) rationalist epistemic profile and 

demonstrated many of the phases of the SRL processing model used in this study (Winne 

& Hadwin, 1998; Zimmerman, 2000).  

Schoenfeld (1985) also described how high school classroom experiences 

promote empirical beliefs in students and stymie the use of proof and discovery in 

problem solving: 

Such experience is abstracted as part of the students’ mathematical world view as 

follows: Mathematical argumentation only serves to verify established 

knowledge, and argumentation (proof) has nothing to do with the processes of 

discovery or understanding. As a result, students who are perfectly capable of 

deriving the answers to given problems do not do so, because it does not occur to 

them that this kind of approach would be of value. (p. 186) 

On a positive note, Schoenfeld (1983) suggested that his problem solving courses 

promoted heuristics-based control approaches and a more rational belief system amongst 
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students in his university problem-solving courses. These changes resulted in improved 

problem-solving performance, which shows that success and progress can be made in a 

classroom setting.  

Muis (2004) suggested that, to a certain extent, students’ beliefs concerning 

mathematical knowledge are dependent upon classroom practices. Based on her extensive 

synthesis of mathematics-based epistemology literature, Muis suggested that teacher-

centered classrooms focused on rote-memorization for the purpose of passing 

standardized exams are detrimental to students’ active pursuit of mathematical 

knowledge as constructed schemas for solving problems. She further suggested that 

teacher-centered classrooms foster non-availing epistemological beliefs amongst 

students. She suggested that teachers develop classrooms that foster student construction 

of mathematics and place teachers in the role of facilitators of learning. In line with Muis’ 

views, de Corte et al. (2000) shunned the overuse of standardized assessments and 

suggested that teachers assume a theory of assessment devoted to authentic, complex, 

real-life alternative forms of assessment. Alternative assessments may include 

performance tasks, journals, and portfolios (NCTM, 2000). However, it is not enough to 

develop such assessments and then mark them in a traditional manner with a grade 

ranging from zero to one hundred. From both the SRL and constructivist perspectives, 

teachers must provide constructive, cognitive feedback (Butler & Winne, 1995; Nicol & 

Macfarlane-Dick, 2006) and “stimulate in students the development of attitudes toward 

and skills in assessing their own mathematical learning processes and performances” (de 

Corte et al., 2000).
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Schoenfeld’s (1985, 1988, 1989) findings were among the evidence that led to 

Muis’ (2004) and de Corte et al.’s (2000) assertions. Schoenfeld studied high school 

geometry students’ epistemological beliefs via a year-long observational period 

(Schoenfeld, 1988) and a questionnaire containing both Likert-scale and open-ended 

items (Schoenfeld, 1989). Students reported that learning mathematics requires 

memorization of formulas and proofs, homework problems should be solved in a matter 

of minutes or not at all, and that quality teaching involves showing students how to use 

rules. Problem solving was discussed in classrooms, but rarely did teachers engage 

students in mathematical tasks beyond the scope of rote-memorized material. Thus, 

although performance on standardized exams was high, the observed instruction and 

student engagement was sub-par from a conceptual perspective. Schoenfeld (1988) 

continually referenced instances in which instruction focused on mechanics and form 

(e.g., two-column proofs and procedural constructions) at the expense of understanding. 

Additionally, concepts were segmented to the point that students could not make 

connections or apply prior knowledge to newly discussed material. In total, Schoenfeld’s 

findings painted a bleak picture of non-availing student belief profiles for learning 

mathematics. I choose to close this section with a quote from Schoenfeld (1989) that still 

resonates in my mind as I reflect on my own mathematics teaching practice:

Perhaps the most troubling aspect of the present study is the suggestion that these 

students have come to separate school mathematics–the mathematics they know 

and experience in their classrooms–from abstract mathematics, the discipline of 

creativity, problem solving, and discovery, about which they are told but which 

they have not experienced. (p. 349) 
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Issues of Group Dynamics in Mathematical Problem Solving  

 Theoretical and empirical work from educational psychology has provided 

mounting evidence that problem-solving endeavors in small group settings can be 

successful (Johnson & Johnson, 2009). Additionally, the social constructivist viewpoint 

used in most reform mathematics literature (e.g., NCTM, 2000) has suggested that 

students should be critically thinking about and communicating mathematical ideas with 

their peers. However, simply placing students in heterogeneous groups of two to three 

members will not guarantee successful problem solving experiences (Johnson & Johnson, 

2009). A multitude of factors must be considered by researchers investigating and 

educators implementing group problem solving. This section will review two frameworks 

for analyzing group problem-solving (Artzt & Armour-Thomas, 1992; Goos, Galbraith, 

& Renshaw, 2002). 

Expanding Schoenfeld’s (1985) episodic framework for analyzing problem-

solving protocols, Artzt and Armour-Thomas (1992) developed a framework for 

analyzing cognitive and metacognitive behaviors exhibited by individual students 

engaged in group problem solving. In addition to Schoenfeld’s read, analyze, explore,

plan, implement, and verify episodes, Artzt and Armour-Thomas considered 

understanding the problem and watching and listening important instances in group 

problem-solving progression. Within these episodes, an individual member of the group 

may exhibit overt evidence of either cognitive or metacognitive actions. The authors 

distinguished these behaviors as follows: 

Metacognitive behaviors can be exhibited by statements made about the problem 

or statements made about the problem-solving process. Cognitive behaviors can 
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be exhibited by verbal or nonverbal actions that indicate actual processing of 

information. (p. 141) 

Testing their framework, Artzt and Armour-Thomas (1992) investigated the group 

problem-solving practices of 27 seventh-grade students from an urban middle school in 

Queens, New York. Six groups containing four to five students each were randomly 

selected to participate. The study involved the six groups working on a problem together 

in the classroom setting. All sessions were videotaped and students were interviewed 

individually while watching particular portions of the video. Coding of the videotapes 

was consistent with the framework developed by the authors and interrater reliability 

percentages were above 90% for all coders.

In terms of overall group statistics, the results of the study revealed that the 

highest percentage of metacognitive behaviors occurred during the exploring and 

understanding episodes. By a very large margin, the exploring episodes contained the 

highest percentage of students’ cognitive behaviors. In most cases, the metacognitive 

verbalizations of individual students redirected group work and curtailed erroneous ideas.  

Additionally, results indicated that watching-and-listening is an important factor 

in group problem-solving success. The only group that failed to solve the problem 

contained members who did not listen to one another or communicate well. In fact, the 

group that was unable to solve the problem had the lowest percentage of metacognitive 

behaviors, the highest percentage of cognitive behaviors, and the lowest percentage of 

watch-and-listen behaviors. On the other hand, one of the groups to successfully solve the 

problem provided evidence indicating negative aspects of watching-and-listening. In this 

group, one member dominated the problem-solving session while the others watched and 
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listened, participating only intermittently and showing signs of not understanding the 

evolution of the solution process. Artzt and Armour-Thomas (1992) described the level 

of interaction among group members on a continuum from students who work 

independently and do not contribute to students who actively pursue problem solutions in 

tandem with their fellow group members.  

Finally, the study indicated that having high-ability students is not sufficient for 

proper group functioning or problem-solving success. The group that failed to solve the 

problem contained a very high achieving student who admittedly never works well with 

other students in groups. Another group contained a high achieving student who 

independently solved the problem, but failed to see the need in ensuring that others 

contributed to group success or learned from the experience. Artzt and Armour-Thomas 

(1992) concluded that group work has the potential for fostering student learning and 

metacognitive development, but many factors are involved that may confound group 

problem-solving endeavors.   

 Goos, Galbraith, and Renshaw (2002) pointed out that Artzt and Armour-

Thomas’s (1992) framework failed to differentiate between an individual student’s 

monitoring of their own actions and thinking and monitoring of their partners’ actions 

and thinking. Thus, Goos et al. suggested an alternative framework for analyzing 

metacognitive discourse during group problem-solving: 

! Self-disclosure – Self-oriented statements and responses that clarify, elaborate, 

evaluate, or justify one’s own thinking. 

! Feedback Request – Self-oriented questions that invite a partner to critique one’s 

own thinking. 
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! Other-monitoring – Other-oriented statements, questions and responses that 

represent an attempt to understand a partner’s thinking. (p. 199) 

The authors conducted a three-year study of senior secondary students in Queensland, 

Australia working novel problems in the classroom setting. One lesson per week was 

observed, videotaped, and audiotaped over the three-year duration. The problems worked 

by the participants were novel in that they represented new content and were presented as 

mathematical problems. The topics included projectile motion, combinatorics, and 

compound interest.  

Goos et al. (2002) reported and analyzed the results of one successful and one 

unsuccessful problem solving session. The successful problem session, which involved 

students solving a projectile motion problem, indicated that group members were actively 

engaged in metacognitive assessments of their actions and thoughts, as well as those of 

others. Surprisingly, the unsuccessful problem-solving session, which involved multiple 

combinatorics problems, contained a similar percentage of metacognitive activities as the 

successful session. However, further analysis revealed that the main difference between 

the sessions involved the transactive nature of the metacognitive activities. In this study, 

the difference between successful and unsuccessful group problem solving was 

attributable to the degree that individual group members engaged in assessing and 

monitoring the thinking and actions of the group as a whole. In other words, a group was 

successful when all members engaged in the serious consideration and analysis of every 

thought and action posed by the group. In summary, Goos et al. suggested that cognitive 

and metacognitive analyses of group problem-solving sessions should include interactive, 



80

dynamic facets of group discourse, which is an extension of Artzt and Armour-Thomas’s 

(1992) framework that focused on individual students’ metacognitive behaviors.    

Muis’s (2008) Study of Mathematical Problem-Solving, Epistemology, and SRL

Muis (2008) conducted a two-part study investigating the relationships between 

student epistemic profiles and SRL processing while engaged in mathematical problem 

solving. She framed SRL from the perspective of Schoenfeld’s (1985) view of problem-

solving control and epistemology from the perspective of Royce and Mos’ (1980) 

empirical and rational epistemic styles. In the first part of the study, 268 undergraduate 

university students enrolled in mathematics and statistics courses were given the Psycho-

Epistemological Profile (PEP; Royce & Mos, 1980) and the metacognitive self-regulation 

scale from the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich, Smith, 

Garcia, & McKeachie, 1991), both described in detail in the Chapter III: Methodology.

Royce and Mos designed the PEP to classify students as predominantly empirical, 

rational, or metaphorical. Muis also developed a scaled scoring method to determine 

students’ epistemic profiles, as follows: predominantly rational, both rational and 

empirical, and predominantly empirical. In Muis’ study, rational and empirical epistemic 

profiles were assumed to have the same connotation as that intended by Schoenfeld 

(1985). The number of students classified as metaphorical, a third classification of 

epistemic style from the PEP, was so low that Muis did not include them in the study. 

Using MANOVA, the results indicated that rational students scored significantly higher 

on the metacognitive self-regulation subscale of the MSLQ than either group, with 

students classified as both rational and empirical scoring significantly higher on the same 

subscale as empirical students.
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For the second half of the study, a sub-sample of 24 students majoring in 

mathematics was taken from the original sample of participants. Students completed six 

problems (two from geometry, one from algebra, and three on the binomial distribution) 

outside of the classroom environment. The two geometry problems and one algebraic 

problem were taken from Schoenfeld’s (1982) study and students worked these problems 

with no prior exposure to content. For the three binomial distribution problems, students 

studied a brief excerpt on the binomial distribution and then worked the problems with 

the option of referring back to the material just read. In completing all six problems, 

students adhered to the think-aloud protocol methodology (Ericsson & Simon, 1993) and 

sessions were audiotaped. Once completed, student work was coded for evidence of SRL 

processing and application of either a rational or empirical beliefs orientation. The SRL 

codes used in the study were “planning, metacognitive monitoring, and metacognitive 

control” (Muis, 2008, p. 190). Validation of coding and interpretations was obtained via 

retrospective interviews (Ericsson & Simon, 1993), member-checking, and inter-rater 

agreement. Inter-rater agreement percentages all exceeded Miles and Huberman’s (1994) 

80% suggestion.  

Findings from the second half of the study indicated that students categorized as 

rational by the PEP demonstrated statistically higher usage of planning, monitoring, and 

metacognitive control than the other two groups. Additionally, students categorized as 

rational correctly solved more problems that the other two groups. These findings are in-

line with Schoenfeld’s (1982, 1985) assertions regarding approaches to problem solving 

made by students exhibiting rational beliefs. However, Muis stated, “What has yet to be 

explored is why, in the context of mathematics problem solving, individuals profiled as 
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predominantly rational engage in more regulation of cognition” (p. 200). The qualitative 

results of Muis’s study also indicated that students’ epistemological beliefs may be 

enacted during the definition of the task phase (Winne & Hadwin, 1998). Once enacted, 

Muis suggested that students’ epistemological beliefs carry through other phases of SRL 

based mainly on the relationship between beliefs and learning standards. This finding 

provided support for Muis’s (2007) model infusing epistemological beliefs into Winne 

and Hadwin’s model of SRL. Finally, Muis cautioned researchers that, despite the 

advantages, sole use of think-aloud protocols may not provide a rich description of 

students’ engagement in a task. Multiple forms of data collection are certainly preferable.

Theoretical Framework: An Integrated Model 

Three major theoretical constructs were considered in this study: self-regulated 

learning (SRL), epistemology, and mathematical problem solving. Thus, the design of the 

study necessitated a framework integrating these constructs for the purposes of data 

collection, data analysis, and discussion. The SRL model used in this study provided the 

most overarching tool for describing students’ navigation through complex problem-

solving tasks. Steeped in the tenets of social cognitive theory, Zimmerman’s (2000) 

cyclic model involves the following three phases: (1) forethought, (2) performance 

control, and (3) self-reflection. Preceding these three phases is Winne and Hadwin’s 

(1998) definition of the task phase.  

A survey of relevant literature (Hofer, 1999, 2000, 2004a, 2004b; Hofer & 

Pintrich, 1997; Kloosterman & Stage, 1992; Mos & Royce, 1980; Muis, 2004, 2007, 

2008; Muis & Franco, 2009; Schoenfeld, 1983, 1985, 1988, 1989, 1992) informed the 

integration of epistemological beliefs into the model. Muis and colleagues have made 
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significant progress in determining relationships between SRL and epistemological 

beliefs both theoretically (Muis, 2004, 2007) and empirically (Muis, 2008; Muis & 

Franco, 2009). Muis’s (2007) model that integrated epistemological beliefs into Winne 

and Hadwin’s (1998) recursive model of SRL initiated the work of theorizing possible 

phases of SRL at which beliefs may be enacted. Additionally, Muis (2007, 2008) 

suggested further influences that beliefs may have on each phase of SRL. Finally, 

Schoenfeld’s (1982, 1983, 1985, 1988, 1989, 1992) problem-solving contributions that 

incorporated cognitive control strategies and mathematical beliefs were infused into the 

model. The result was an integrated framework that guided all facets of the design and 

implementation of the study.  

An Integrated Model 

As students navigate a mathematical problem space, issues of control and beliefs 

arise that affect both current and future functioning (Muis, 2008; Schoenfeld, 1982, 1983, 

1985, 1988, 1989, 1992). Issues of control may be assessed by evaluating students’ 

application of SRL processing, as exemplified by this study, which employed a 

combination of Winne and Hadwin’s (1998) and Zimmerman’s (2000) models of SRL. 

Recent theoretical and empirical work has revealed that significant relationships exist 

between epistemological beliefs and SRL processing (Hofer, 2004a; Hofer & Pintrich, 

1997; Muis, 2007, 2008; Muis & Franco, 2009; Schommer-Aikins, 2004). In particular, 

Muis (2008) suggested students’ epistemic profiles are related to their performance and 

SRL processing while engaged in mathematical problems, and epistemological beliefs 

may be enacted during the task definition phase of SRL and then affect subsequent 

phases of SRL.   
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Based on a thorough review of relevant literature, a theoretical framework 

encompassing epistemological beliefs and SRL theory was developed to guide the study. 

Figure 1 below provides a visual representation of the model that is the basis of the 

framework. To begin, SRL is displayed as a cyclic, recursive process (Winne & Hadwin, 

1998; Zimmerman, 2000) that students may utilize to guide their actions through a 

problem space. Ideally, students who practice SRL processing navigate through a task in 

an A-B-C-D progression (see Figure 1) and positively alter subsequent SRL processing 

based on self-reflections from D. However, students tend to be unpredictable and do not 

necessarily follow this pattern verbatim (Boekaerts & Niemivirta, 2000; Pintrich, 2000; 

Winne & Hadwin, 1998; Zimmerman, 2000). Thus, the multitude of two-way arrows 

indicate that students may navigate through the phases in virtually any combination of 

ways, with events from a current phase prompting motion to subsequent, but not 

necessarily sequential, phases.

Additionally, the model depicts students’ epistemological beliefs, both general 

and mathematics-specific, as being enacted at any phase and affecting all aspects of SRL 

processing. In theory, epistemological beliefs are enacted at the definition of the task 

phase, affect the goals and plans developed during forethought, influence the strategies 

used during performance control, and influence standards set during definition of the task

that are used to assess efforts during the self-reflection phase (Muis, 2007, 2008; Muis & 

Franco, 2009). However, students often enter SRL processing at various phases (not 

always beginning with task definition and then progressing sequentially), but they will 

bring their beliefs with them regardless of the entry point.  
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Figure 1. Model of Epistemology and SRL for Mathematical Problem Solving  

Thus, the researcher suggests that the enactment and influence of epistemological 

beliefs may follow the recursive, cyclic, and unpredictable pattern found in the actual 

practice of SRL. For instance, a student with a non-availing belief in problem-solving 

duration may jump blindly into implementing a seemingly appropriate, but erroneous, 

strategy without curtail. When unsuccessful, the student may stop working and move on 

to other tasks because of the belief that the problem should be solved quickly or not at all 

(Schoenfeld, 1985). In this case, the student’s belief that problems should be solved 

quickly has been enacted at the performance control phase and subsequently stifled 

monitoring and reflecting processes. Finally, the two-way arrow at the bottom of the 

model depicts the reciprocal nature of the relationship between epistemological beliefs 

and SRL, as suggested by Muis (2007, 2008).  
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Definition of the Task

In terms of navigation of the problem space, students will likely engage in the 

definition of the task phase of SRL during the reading and analysis episodes (Schoenfeld, 

1985). Students will read the problem, and possibly later re-read the problem, then rely 

on their mathematical resources in developing an appropriate definition of the task. 

Experts will often jump to implementation and remain on auto-pilot as they navigate a 

familiar problem space. The particularly well-attuned problem solver may envision a 

chunk of the problem resembling prior work, a schema based on categorizing the 

problem, or a more elaborate functional response to the problem situation (Schoenfeld, 

1985). Novice problem solvers typically must engage in analysis in an attempt to 

understand the problem more fully. Often, initial heuristic strategies are employed, such 

as drawing a picture, to gain further insight before developing a plan. Any of these 

progressively more sophisticated initial responses has the potential to develop into a 

rational approach to the problem at hand (Schoenfeld, 1983, 1985). It should be noted 

that information gleaned from this phase is subject to change as the problem-solver 

delves into problem specifics, but all or part of the task definition may remain intact 

dependent upon the circumstances (Winne & Hadwin, 1998). Extremely novice problem 

solvers may fail to tap into their available mathematical resources and thus, have little or 

no logical vision of a possible solution technique, which implies that this phase may be 

skipped by naïve problem solvers. As discussed in detail above, this may result in the 

student engaging in empirical wild goose chases (Schoenfeld, 1983, 1985).   
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Forethought

In terms of mathematical problem solving, students exhibit evidence of 

forethought processing during the analysis, exploration, and planning episodes of 

problem execution (Schoenfeld, 1985). As a student navigates through these episodes, 

each epistemological belief espoused by the student may influence the standards on

which goals are based (Hofer & Pintrich, 1997; Muis, 2007). More constructivist-based 

beliefs tend to produce mastery-oriented goals, which are more conducive to self-

regulatory processing (Pintrich, 2000; Muis, 2008; Muis & Franco, 2009). For instance, if 

a student believes that effort can yield increases in mathematical ability, as opposed to 

mathematical prowess being innate (Kloosterman & Stage, 1992; Schoenfeld, 1985), then 

the student may adopt a mastery-oriented approach to a task rather than simply focusing 

on their performance.

Additionally, students’ arsenal of heuristics heavily influences the forethought 

phase. An experienced, or particularly adept, problem solver includes heuristics in their 

problem-solving plans. As mentioned above, heuristic planning must include the 

multitude of sub-strategies that fall under the heuristic of choice (Schoenfeld, 1985). For 

instance, if a student chooses to use the sub-goal heuristic approach, then the student 

must plan for each mathematical exercise that has been deemed an appropriate sub-

problem to build a solution for the original problem. Naïve, or inexperienced, problem 

solvers may not have advanced heuristic strategies at their disposal and may simply plan 

to apply a seemingly appropriate mathematical operation to the problem. If this fails, 

other mathematical operations will be applied, in a manner congruent with the empiricist 

approach. This may not be entirely the students’ fault–many mathematics teachers, with 
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the best intentions, demonstrate appropriate heuristics, but “bypass all of [the] 

complexity” and “leave the students completely unprepared to use the strategy” 

(Schoenfeld, 1985, p. 91). 

Performance Control

Whether planning is overt or implied, students will begin applying strategies in an 

effort to solve the given problem. Schoenfeld (1985) called this set of actions the 

implementation episode. Self-regulating students will apply their plan during this phase 

and monitor progress based on standards set when establishing goals (Zimmerman, 

2000). Recent theoretical and empirical works have suggested that students’ 

epistemological beliefs influence the standards they set and thus, may affect strategy use 

and monitoring (Muis, 2007, 2008; Muis & Franco, 2009; Schommer-Aikins, 2004). 

Specifically, Schoenfeld’s (1985) problem-solving control continuum, Types A–D,

provides a means of assessing students’ abilities to self-evaluate and make on-line checks 

of progress based on their goals. Briefly, Type A-controlled problem solvers apply 

strategies without considering consequences and often fail to solve problems. Type B-

controlled problem solvers apply some level of control but fail to tap all necessary 

resources. Type C-controlled problem solvers, the optimum level, monitor solution 

processes such that regulation results in positive actions toward success. Finally, Type D-

controlled problem solvers easily access solution methods and need virtually no control 

interventions.  

The results of self-monitoring are inputs into internal feedback loops that may 

result in the need to alter strategy use, re-assess goals and plans, or re-read the problem to 

better define the task (Butler & Winne, 1995; Winne & Hadwin, 1998; Zimmerman, 
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2000). In fact, Schoenfeld (1985) stated, “One of the hallmarks of good problem solvers’ 

control behavior is that, while they are in the midst of working problems, such 

individuals seem to maintain an internal dialogue regarding the way that their solutions 

evolve” (p. 140). External feedback from peer and teachers may also serve as inputs into 

internal feedback loops that may alter students’ solution paths (Butler & Winne, 1995; 

Nicol & Macfarlane-Dick, 2006). Such interruptions in cognitive processing often occur 

when students are engaged in group problem solving and may curtail wild goose chases 

or have adverse effects on solution paths (Artzt & Armour-Thomas, 1992; Goos et al., 

2002).   

Self-reflection 

From a mathematical problem-solving perspective, the verification episode 

involves checking a solution for either accuracy or agreement to a set of conditions, 

depending on the nature of the task (Schoenfeld, 1985). For instance, an ill-defined task 

will not typically have a correct answer, rather students would simply need to make sure 

that their solution did not oversimplify the conditions, completely ignore a condition, etc. 

However, a well-defined task will have a particular unique solution or set of solutions 

that may be checked for accuracy. Schoenfeld (1985) and Polya (1957) suggested that 

adept problem solvers assess their solution paths and reflect on such factors as whether 

alternative solutions may exist or whether solutions may be generalized for further 

application. This deeper assessment of the navigation of a problem space is more 

synonymous to the self-reflection phase than the mere checking step described above. 

One consequence of students’ participation in self-reflection is the assessment of causal 

attributions to task results (Zimmerman, 2000). Epistemological beliefs may emerge 
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during this phase, as suggested by Zimmerman, who stated that “attributions of errors to a 

fixed ability prompt learners to react negatively and discourage efforts to improve” (p. 

22).   

Summary

 This review of relevant literature delved into SRL, epistemology, and problem 

solving to inform and frame this study. Educational aspects of SRL emerged from the 

development of social cognitive theory (Bandura, 1986). Much of the early literature was 

dedicated to describing and defining general aspects of the construct (e.g., Zimmerman, 

1989). Then studies began appearing tying SRL to multiple aspects of education, 

including student learning and achievement, pedagogical practices, and even specific 

disciplines (Butler & Winne, 1995; Hadwin et al., 2004; Muis, 2008; Muis & Franco, 

2009; Perels et al., 2005; Schunk, 1996; Usher, 2009). Additionally, theoretical and 

empirical advancements have provided researchers with a plethora of general SRL 

models (e.g., Pintrich, 2000; Winne & Hadwin, 1998; Zimmerman, 2000) and a model 

integrating SRL and epistemological beliefs (Muis, 2007).  

 Perry’s (1970) study is generally cited as the origin of educational epistemology. 

His work investigated the development of epistemology amongst college students. 

Shortly after Perry’s work, Royce and colleagues  suggested that students could be 

assigned epistemic profiles based on three ways of knowing: rational, empirical, or 

metaphorical (Diamond & Royce, 1980; Royce & Mos, 1980; Wardell & Royce, 1978). 

Schoenfeld (1983, 1985) applied the empiricist and rationalist titles to his descriptions of 

mathematical beliefs with respect to problem solving. A major turning point in the study 

of epistemology was Schommer’s (1990) study introducing the conception of 
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epistemological beliefs as a multitude of independent dimensions. Several studies and 

theoretical reviews have suggested the nature of these epistemological beliefs and 

developed various integrated models (Hofer, 2000; Hofer & Pintrich, 1997; Kloosterman 

& Stage, 1992; Muis, 2007; Muis et al., 2006; Schommer-Aikins, 2004).  

Winne and Perry’s (2000) work prompted researchers to consider either 

augmenting self-report questionnaires with other types of data or developing more robust 

tools to analyze fine-grained instances of SRL processing. Recently, research has been 

both conducted and requested utilizing think-aloud protocols and qualitative methods 

(Greene & Azevedo, 2009; Hadwin et al., 2004; Muis, 2007, 2008; Usher, 2009; 

Zimmerman, 2008). Studies utilizing qualitative methods and think-aloud protocols are 

also common in both epistemological beliefs (Hofer, 2004a, 2004b; Muis, 2008) and 

problem-solving (Muis, 2008; Schoenfeld, 1983, 1985) disciplines. We now turn to a 

detailed description of the methods employed in this case study, which explored the 

relations between students’ epistemological beliefs and SRL while engaged in 

mathematical problem solving.
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CHAPTER III

METHODOLOGY

This study investigated the relationships that exist between advanced mathematics 

students’ epistemological beliefs and SRL processing while engaged in mathematical 

problem solving. Specifically, the current study sought to answer the following research 

questions: 

1. How are students’ epistemological beliefs related to self-regulatory processing 

practices during engagement in mathematical problem-solving  tasks?

2. What self-regulation strategies do students employ while preparing for the AP 

Calculus exam and engaging in problem-solving episodes?

3. What epistemological beliefs influence students’ choice and use of heuristic 

strategies to solve mathematical problems?

4. How are self-regulated learning strategies and epistemological beliefs related 

to student performance on problem-solving tasks? 

 The researcher selected the case study methodology to obtain in-depth, 

exploratory descriptions and explanations of the above phenomena. Yin (2008) provided 

confirmation of the appropriateness of this methodological decision: 

 The more that your questions seek to explain some present circumstance (e.g., 

 “how” or “why” some social phenomenon works), the more that the case study 

 will be relevant. The method also is relevant the more that your questions require 

 an extensive and “in-depth” description of some social phenomenon. (p. 4)
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Additionally, Winne and colleagues questioned the use of self-report 

questionnaires as the sole, or predominant, form of data collection in SRL studies (Muis, 

2008; Muis, Winne, & Jamieson-Noel, 2007; Winne & Perry, 2000; Winne & Jamieson-

Noel, 2003). Winne and Perry further suggested that studies investigate SRL at a finer 

grain size to accumulate extensive descriptions of SRL processing. Such studies have the 

potential to produce more dynamic and accurate models of SRL. Thus, recent studies 

have sought to investigate SRL processing more closely, such as Hadwin, Boutara, 

Knoetzke, and Thompson’s (2004) case study and Greene and Azevedo’s (2009) 

quantitative study applying think-aloud protocols. 

Expressing similar skepticism for self-report questionnaire use in epistemological 

studies, Hofer and Pintrich (1997) stated, “Although each of the dimensions is 

conceptualized as a continuum, it may be difficult to assume that a continuum of 

epistemological beliefs can be represented or measured by simply stating extreme 

positions and registering degrees of agreement” (p. 110). Muis and colleagues provided 

more recent criticism of self-report instruments and requested more fine-grained, 

qualitative studies, which utilize think-aloud protocols, and mixed-methods designs 

(Muis, 2007, 2008; Muis, Bendixen, & Haerle, 2006). These recommendations are in line 

with design suggestions from current self-regulated learning literature (Muis, 2007; 

Zimmerman, 2008). Hofer (2004a, 2004b) utilized think-aloud protocols and case study 

methods recently to investigate epistemological beliefs. Muis and colleagues have begun

to tie epistemological beliefs to facets of SRL via mixed methods studies (Muis, 2008; 

Muis & Franco, 2009). Suggestions and studies from both SRL and epistemological 

beliefs literature provide a rationale for the design of the proposed study. 
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Due mainly to his mathematical and engineering background, the researcher 

adhered to the postpositivist qualitative paradigm, described by Creswell (2007), an 

admitted postpositivist himself: 

In terms of practice, postpositivist researchers will likely view inquiry as a series 

of logically related steps, believe in multiple perspectives from participants rather 

than a single reality, and espouse rigorous methods of qualitative data collection 

and analysis. They will use multiple levels of data analysis for rigor, employ 

computer programs to assist in their analysis, encourage the use of validity 

approaches, and write their qualitative studies in the form of scientific reports, 

with a structure resembling quantitative approaches (e.g., problem, questions, data 

collection, results, conclusions). (p. 20)

 Evidence of the postpositivist paradigm pervaded this study, which began with a 

“thorough review of literature” (Yin, 2008, p.3) that established “a priori theories” 

(Creswell, 2007, p.20) that were utilized to develop codes, analyze data, and interpret 

results. A thorough description of the methods employed in this study is presented below 

and organized as follows: (1) the setting, (2) selection of participants, (3) instrumentation 

and protocols, (4) data collection procedures, (5) data analysis, (6) validity and reliability, 

and (7) ethical issues.

The Setting

 This case study was conducted at Pine Valley High School, located in the suburbs 

of a large metropolitan city in southeastern USA, during the spring semester of the 2009–

2010 school year. At the time of the study, Pine Valley High School had a population of 

2168 students. Demographic data for the 2009–2010 school year were unavailable at the 
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time of this writing, so remaining data will correspond to the 2008–2009 school year. The 

breakdown of students at Pine Valley High School by race was as follows: 65% 

Caucasian, 19% African American, 8% Hispanic, 4% Asian, and 3% Multiracial. 

Additionally, 19% of the student body was eligible for free or reduced meals, 9% of the 

students had various disabilities, and 2% were limited in their English language 

proficiency. Pine Valley High School had a mathematics and science magnet program, 

which means that students from all over the district applied for admission into the 

rigorous program and, if accepted, were provided transportation to the school. The school 

was also both locally and globally renowned for its character education program, student 

government involvement, and academic rigor. In fact, it was not uncommon for visitors

from other states and even other nations to travel for the purposes of observing various 

facets of the school.  

Selection of Participants

At the time of this study, the researcher taught Advanced Placement (AP) 

Calculus AB and BC at Pine Valley High School and purposefully selected one of his AP 

Calculus BC classes to participate in the study. AP Calculus AB is a course designed by 

College Board to provide advanced high school students an opportunity to experience 

first-semester college calculus. AP Calculus BC is an extension of AP Calculus AB and 

introduces students to topics such as power series, two-dimensional vector calculus, and 

the calculus of parametric- and polar-defined relations. Both courses culminate in a 

standardized exam that gives students the opportunity to earn college credit, dependent 

upon their exam scores and individual college’s entrance requirements. The selected class

contained 30 students, who represented a more disparate group of students with respect to 
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achievement in AP Calculus AB, the course prerequisite for AP Calculus BC, when 

compared to the researcher’s other classes. With respect to gender, the selected class

contained 22 male and 8 female students. With respect to race, the class contained 24 

Caucasian, 3 Hispanic, 1 African American, 1 Pacific Asian, and 1 Middle-Eastern Asian 

student. The 30 students were amongst the highest mathematics achievers in the school 

and were generally motivated either intrinsically to learn or extrinsically to perform. 

Additionally, these students were heavily involved in extracurricular and community 

service activities (e.g., sports, academic clubs, band, student government) that placed 

added demands on them before and after school. 

Before data collection, the researcher obtained Institutional Review Board (IRB) 

approval from both the participating school district and the university supervising the 

study. Additionally, participant and parental consent (see Appendix A) were obtained 

prior to data collection. Then, all students completed an abbreviated version of the 

Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich, Smith, Garcia, & 

McKeachie, 1991), the Psycho-epistemological Profile (PEP; Royce & Mos, 1980), and 

the Indiana Mathematics Belief Scales (IMBS; Kloosterman & Stage, 1992). See 

Appendix B for full reproductions of the IMBS and PEP. Permission to use each 

questionnaire was obtained either from the first author or the university owning the 

copyright (see Appendix C). Full reproduction of the MSLQ questions used in this study

could not be reproduced due to copyright restrictions. Full-length versions of the PEP and 

IMBS were administered, but only select, intact subscales of the MSLQ were used in this 

study. Each questionnaire was selected based on the theoretical framework and research 

questions. Pintrich et al. (1991) reported validity and reliability statistics for each 



97

subscale and stated explicitly that subscales could be used separately or as a complete 

questionnaire. The PEP provided domain-general insights into students’ rational and 

empirical beliefs, as identified by Mos and Royce (1980) and Schoenfeld (1983, 1985). 

The IMBS quantified various mathematics-specific beliefs, including students’ beliefs in 

the importance of conceptual and procedural approaches to problem-solving 

(Kloosterman & Stage, 1992; Schoenfeld, 1992). The subscales selected from the MSLQ 

generated data consistent with the four-phase model of SRL in the theoretical framework 

(Pintrich et al., 1991; Winne & Hadwin, 1998; Zimmerman, 2000). As part of the course 

verification process at the beginning of each semester, the researcher had access to 

students’ transcripts, from which grades were obtained for all students from AP Calculus 

AB, the prerequisite for the course involved in this study. From these data, six students 

were selected as participants for the purposes of individual case and cross-case analyses.  

Using SPSS Version 15, descriptive statistics were generated to analyze the above 

data and determine appropriate categorizations for the purpose of applying a mixture of 

quota and maximum variation sampling (Miles & Huberman, 1994). For mathematics 

achievement, the class mean and standard deviation for grades from AP Calculus AB 

were determined. Students scoring more than two standard deviations above the mean 

were considered Category I achievers. Students scoring between one and two standard 

deviations above the mean were considered Category II achievers. Similarly, students 

were considered Category III and Category IV achievers for scores having standard 

deviations below the mean. Using the PEP, a researcher may determine an individual’s 

epistemological profile as either rational, empirical, or metaphorical by summing scores 

for each subscale and assigning the appropriate predominant profile based on the highest 
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score. Thus, students were assigned a predominant profile based on their highest score 

obtained from the three subscales of the PEP.

Difficulties arose in determining quantifying values for students based on the 

abbreviated MSLQ and the IMBS, which have seven scales and six scales, respectively.

For both questionnaires, individual students’ scores for each scale were assigned an 

integer score from the interval [–3, 3] based on the score’s distance from the mean, M.

More specifically, six subintervals of width equal to one standard deviation, SD, were 

obtained for each scale from the continuous interval [M – 3SD, M + 3SD]. For instance, a 

student may have scored 2.2 standard deviations above the mean for the Critical Thinking 

scale of the MSLQ. This student would receive a score of 3 for that scale since their score 

fell in the interval (M + 2SD, M + 3SD). All students’ scores were summed to obtain a 

combined score for the MSLQ and IMBS allowing for comparison to the class 

population. Ultimately, the researcher considered six quantifiers when applying the 

sampling strategy: achievement, MSLQ combined score, IMBS combined score, and 

three individual PEP scores. Distributions for all 16 scales from the three questionnaires 

used in this study can be found in Appendix D.  Data from the scales were relatively 

normal since skewness and kurtosis values for most measures fell between ± 2 (George & 

Mallery, 2008). The only exception was the Belief 6 scale of the IMBS, which had a 

kurtosis value of 2.12. This is not surprising as advanced mathematics students would 

generally be expected to find mathematics useful. 

A matrix was developed to aid in selecting participants that appropriately 

represented the variation in scores from the class. Figure 2 represents the effectiveness of 

the sampling strategy in obtaining a valid quota and maximum variation sample based on 
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AP Calculus  
AB Grade 

IMBS MSLQ Rational Empirical Metaphorical 

the factors considered in this study. To obtain a single scale for graphing purposes, z-

scores were calculated to standardize all relevant data. For simplicity, a single value was 

computed for the IMBS and MSLQ since the questionnaires together had 13 scales. 

Participants’ IMBS and MSLQ values were obtained by calculating the mean of 

participants’ z-scores for the respective questionnaires. Despite data being categorical, a 

line graph was chosen to aid the reader in tracking the scores of individual participants.

Each participant was assigned a pseudonym to aid in maintaining confidentiality. Similar 

categorical sampling techniques have produced robust results in both SRL and 

epistemological research (Hadwin et al., 2004; Muis, 2008).  

Figure 2. Distribution of Measures Used for Sampling 

z
-s

c
o

re
 



100

Ultimately, six participants were selected to represent the diversity of the overall 

class based on the prescribed categories–this is the essence of quota sampling (Miles & 

Huberman, 1994). To begin the quota sampling process, students were chosen who 

provided the most accurate representation of the spread of all 30 students’ mathematics 

achievement categories. Simultaneously, various combinations of mathematics 

achievement and questionnaire categorizations were considered until a sample was 

obtained that represented the diversity of the class (see Figure 2). Quota sampling added 

richness to the study by providing in-depth descriptions of representatives from the 

various categorizations. Quota sampling also allowed for cross-cases analysis that made 

this study more compelling. Additionally, two of the participants represented the 

extremes, or outliers, from the class with respect to mathematical achievement–this is the 

essence of maximum variation (Miles & Huberman, 1994). Participants representing 

extreme cases based on questionnaire data were merely coincidences from other sampling 

strategies. For instance, the selection of Martin added an additional Category I

mathematics achiever to build the quota sample and provided an extreme case since he 

had the highest Rational score on the PEP (see Figure 2). The inclusion of “outlier cases” 

helped to determine “whether main patterns still hold” (p. 28). Main patterns which 

emerge from the data may be compared and contrasted with specific data from outlier 

cases. Since the outlier cases came from the higher and lower performance subgroups 

developed for quota sampling, they also served to provide rich, cross-case analysis. 

Additionally, the outlier cases provided both confirmation of some findings and prompted 

the consideration of alternative explanations for other findings. Both of these 

contributions added richness to the study. On the one hand, confirmation increased the 
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validity of the study. On the other hand, alternative explanations prompted further 

investigation within this study.  

Instrumentation and Protocols

The sampling procedures, described in detail above, utilized questionnaire data to 

determine case-study participants. The questionnaires also provided self-reported

quantitative data indicating students’ epistemological beliefs and their intentions to self-

regulate. However, Winne and colleagues have pointed out that students’ self-reported 

use of SRL processing may not suffice as accurate or reliable sole sources of data (Muis, 

2008; Muis, Winne, & Jamieson-Noel, 2007; Winne & Perry, 2000; Winne & Jamieson-

Noel, 2003). Along the same vein, epistemological beliefs literature has questioned the 

validity and plausibility of examining such complex, multi-dimensional constructs using 

self-report questionnaires (Hofer & Pintrich, 1997; Muis, 2008; Muis, Bendixen, & 

Haerle, 2006). Thus, the self-report instruments utilized in this study identified 

participants and served as a starting point for data collection. To closely examine how 

students’ epistemological beliefs and SRL processing related the self-report questionnaire 

instruments were augmented heavily by qualitative data.  

All instruments and protocols are described below and the discussion is 

partitioned into the phases of data collection. Under Phase I: Self-report questionnaire 

administration, the following instruments will be discussed: (1) the MSLQ (Pintrich,

Smith, Garcia & McKeachie, 1991), (2) the PEP (Royce & Mos, 1980), and (3) the IMBS 

(Kloosterman & Stage, 1992). Then, Phase II: AP calculus exam preparation instruments 

and protocols will be discussed: (4) AP Calculus AB free-response exam questions, (5) 

observational protocols, (6) reflective journals. Phase III: Think-aloud problem solving 
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data collection features the following sources of data: (7) problem solving tasks, (8) 

student solutions to problem-solving tasks, (9) think-aloud transcriptions. Finally, during 

Phase IV: Confirmation of findings, the single source of data will be (10) follow-up 

interview transcriptions.

Phase I: Self-reported questionnaire administration

MSLQ. The MSLQ (Pintrich et al., 1991) is an 81-question, 7-point Likert scale, 

self-report questionnaire designed to measure multiple aspects of students’ self-

regulatory attributes and processing and is divided into two separate sets of scales:

Motivation and Learning Strategies. Pintrich et al. performed a confirmatory factor 

analysis on the MSLQ, which yielded factor validity for six subscales from the 

Motivation category and nine subscales from the Learning Strategies category. 

Additionally, “Chronbach’s alphas are robust, ranging from .52 to .93” for the 15 

subscales (p. 4). Due to the length of the questionnaire, individual subscales were chosen 

for administration based on alignment with the literature reviewed. From the Motivation 

category, the following subscales were used: (1) Task Value, (2) Intrinsic Goal 

Orientation, and (3) Extrinsic Goal Orientation. From the Learning Strategies category,

the following subscales were used: (4) Critical Thinking, (5) Metacognitive Self-

regulation, (6) Peer Learning, and (7) Help Seeking. Particular attention was given to 

assuring that the MSLQ subscales were congruent with the theoretical framework 

developed in the previous chapter. Thus, the definition of the task, forethought, 

performance control, and self-reflection phases will be related to each subscale, as 

appropriate, in the ensuing discussion. 
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Task Value. The Task Value subscale ( .90" # ) is most closely related to Winne 

and Hadwin’s (1998) definition of the task phase, but only requires students to consider 

motivational aspects of their assessment of a task. None of the cognitive or metacognitive 

behaviors so crucial to navigation through a problem space is assessed via this scale.  

Pintrich, et al. (1991) stated, “On the MSLQ, task value refers to students’ perceptions of 

the course material in terms of interest, importance, and utility” (p. 11). This subscale 

contains five items, including: “I am very interested in the content area of this course” (p. 

11).  

Intrinsic and Extrinsic Goal Orientation. The Intrinsic Goal Orientation subscale 

( .74" # ) is closely related to the mastery-goal orientation from Pintrich’s (2000) SRL 

model. In fact, Pintrich et al. (1991) stated, “Intrinsic goal orientation concerns the degree 

to which the student perceives herself to be participating in a task for reasons such as 

challenge, curiosity, mastery [italics added]” (p. 9). This subscale contains four items, 

including: “When I have the opportunity in this class, I choose course assignments that I 

can learn from even if they don’t guarantee me a good grade” (p. 9). 

The Extrinsic Goal Orientation subscale ( .62" # ) is the antithesis of the previous 

subscale and is, thus, closely related to the performance-goal orientation of Pintrich’s 

(2000) SRL model. Pintrich et al. (1991) defined extrinsic goal orientation as “the degree 

to which a student perceives herself to be participating in a task for reasons such as 

grades, rewards, performance [italics added], evaluation by others, and competition” (p. 

10). This subscale contains four items, including: “The most important thing for me right 

now is improving my overall grade point average, so my main concern in this class is 

getting a good grade” (p. 10).  
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Critical Thinking. The Critical Thinking subscale ( .80" # ) is most closely 

related to the performance control phase of SRL and is directly related to aspects of 

mathematical problem solving. Pintrich et al. (1991) stated, “Critical thinking refers to 

the degree to which students report applying previous knowledge to new situations in 

order to solve problems [italics added], reach decisions, or make critical evaluations with 

respect to standards of excellence” (p. 22). This scale contains five items, including: 

“When a theory, interpretation, or conclusion is presented in class or in the readings, I try 

to decide if there is good supporting evidence” (p. 22). 

Metacognitive Self-regulation. The metacognitive self-regulation subscale 

( .79" # ) is the most all-encompassing of the subscales and includes aspects of the 

forethought, performance control, and self-reflection phases of SRL. The scale includes 

12 items on subjects such as goal-setting, self-monitoring, and making adjustments to 

cognitive activities.

 Although some goal-setting items are in this scale, the metacognitive self-

regulation scale is most closely related to the performance control and self-reflection 

phases of the theoretical framework. Unfortunately, the scale does not fit well with 

Schoenfeld’s (1985) control aspect of mathematical problem solving. The scale instead 

focuses more on study habits than on the cognitive aspects of learning inherent to 

problem solving. This misalignment must be considered as data are analyzed and 

interpreted. Overall, this scale provided a very general, broad-ranged quantifier of student 

SRL processing.  

Peer Learning and Help Seeking. The final two subscales assess students’ abilities

to manage resources. The Peer Learning subscale ( .76" # ) contains three items that 
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measure the degree to which students utilize peers to aid in the learning process. A 

sample question is as follows: “When studying for this course, I often set aside time to 

discuss the course material with a group of students from the class” (Pintrich et al., 1991, 

p. 28). The Help Seeking subscale ( .52" # ) contains four items that measure the degree 

to which students utilize peer and instructor assistance when they need help with an 

academic task. A sample item is: “I ask the instructor to clarify concepts I don’t 

understand well” (p. 29). Both subscales measure students’ use of external resources to 

control cognitive activities.  

PEP. The Psycho-Epistemological Profile (PEP, Royce & Mos, 1980) is a 90-

question, 5-point Likert-scale questionnaire that provides a hierarchical assessment of an 

individual’s epistemological profile. Specifically, the PEP delineates the degree to which 

individuals self-report adhering to rational, empirical, and metaphorical epistemological 

beliefs. Thirty questions from the questionnaire apply to each type of profile. Thus, the 

maximum score per scale is 150. Although Royce and Mos suggested that an individual 

may exhibit behaviors consistent with all three ways of knowing, results from the PEP 

indicate an individual’s predominant adherence to one of the three beliefs based on the 

individual’s highest score. 

 Royce and Mos (1980) reported that multiple factor analyses have been 

performed on the PEP and items consistently loaded onto the aforementioned three 

epistemological beliefs. In a recent study, Muis (2008), concerned with the datedness of 

the questionnaire, performed a confirmatory factor analysis on the PEP with 268 

university students and obtained a CFI value of .86. Her findings concurred with Royce 

and Mos’ assertion that the PEP is a good fit to the three factors. In terms of internal 
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validity, Royce and Mos reported adjusted Spearman Brown split-half correlation 

coefficients ranging from .75 to .77 for the Rational scale, .76 to .77 for the Empirical 

scale, and .85 to .88 for the Metaphorical scale. The three ways of knowing presented by 

Royce and Mos (1980) are steeped in philosophical literature contemporary to the time of 

PEP development. Table 2 provides a summary of the “three ways of knowing,” as 

defined by Royce and Mos (p. 3). Expert mathematicians are generally associated with 

the rational epistemic style (Royce & Mos, 1980; Schoenfeld, 1985). Additionally, 

research has suggested that rational problem-solvers tend to perform better and 

demonstrate more SRL processing than their empirical peers while problem solving 

(Muis, 2008; Schoenfeld, 1982, 1983, 1985). 

Table 2  

Royce and Mos’s (1980) Three Ways of Knowing 

Profile Assessment of Reality Cognitive Processing 

Rationalism Logical consistency Clear thinking, rational 

analysis, synthesis of

ideas

Empiricism Observational Active perception,  

sensory experience

Metaphorism Insight and awareness Symbolizing 
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IMBS. The Indiana Mathematics Belief Scales (IMBS) is a 36-item, 5-point Likert 

scale questionnaire that measures “secondary school and college students’ beliefs about 

mathematics as a subject and about how mathematics is learned” (Kloosterman & Stage, 

1992, p. 109). Students’ beliefs about mathematical problem solving are measured by the 

following six scales, with Kloosterman and Stage’s reported Chronbach’s alpha values:  

(1) I can solve time-consuming mathematics problems. $ %.77" #

(2) There are word problems that cannot be solved with simple, step-by-step 

procedures. $ %.67" #

(3) Understanding concepts is important in mathematics. $ %.76" #

(4) Word problems are important in mathematics. $ %.54" #

(5) Effort can increase mathematical ability. $ %.84" #

(6) Mathematics is useful in daily life. $ %.86" #  (pp. 112, 115) 

The first five scales were developed by Kloosterman and Stage and originally contained 

ten items. However, multiple stages of testing for scale validity reduced each scale to six 

items. The sixth scale contains six items from Fennema-Sherman’s (1976) Usefulness of 

Mathematics Scale. Scales (1) through (4) and scale (6) contain three positively-oriented 

items and three negatively-oriented items. All six items from Scale (5) are positively-

oriented.

Scale (1) is based on Schoenfeld’s (1985) assertion that many students feel that 

mathematics problems should be solved quickly or not at all. A positively-oriented 

sample item from this scale is: “Math problems that take a long time don’t bother me” (p. 

115). The theoretical basis for scale (2) is that good problem solvers tend to be motivated 
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to solve problems even when no apparent algorithm applies; whereas poor problem 

solvers either give up or apply incorrect algorithms to such problems. A negatively-

oriented sample item from this scale is: “Any word problem can be solved if you know 

the right steps to follow” (p. 115). Scale (3) measures the degree to which students have 

the availing belief that conceptual understanding is important, as opposed to the non-

availing belief that solely applying algorithmic procedures leads to successful problem-

solving. A positively-oriented sample item from this scale is: “Time used to investigate 

why a solution to a math problem works is time well spent” (p. 115). 

The belief measured by scale (4) is the degree to which students relate 

mathematical acuity to the attainment of computational skills, a non-availing belief, or 

problem-solving skills, an availing belief. A negatively-oriented sample item from this 

scale is: “Math classes should not emphasize word problems” (p. 115). Scale (5) 

measures the degree to which students have availing beliefs about effort yielding positive 

results in obtaining mathematical skills. All items were positively-oriented in this scale 

and a sample item is: “Ability in math increases when one studies hard” (p. 115). 

Kloosterman and Stage (1992) included six items from the Fennema-Sherman (1976) 

Usefulness of Mathematics scale because of relations between availing beliefs about the 

usefulness of mathematics in daily life and motivation to learn. A negatively-oriented 

sample item from this scale is: “Studying mathematics is a waste of time” (p. 115). In 

sum, the IMBS provided an appropriate fit to the theoretical framework developed for 

this study. Additionally, the IMBS provided data for sampling procedures and a 

springboard for more in-depth analyses of students’ mathematical beliefs via qualitative 

data.  
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 Phase II: AP Calculus  exam preparation  

AP Calculus AB free-response exam questions. During all classroom 

observations, students were engaged in completing AP Calculus AB free-response exam 

questions from previous years’ exam administrations (see Appendix E) in small 

heterogeneous groups. Permission was obtained to use the questions prior to the initiation 

of this study (see Appendix C). Care was taken to fully abide by the legal specifications 

detailed by the College Board with regard to citations and exclusion from the views 

expressed by this study. Use of these questions provided students with an authentic sense 

of the difficulty level of their ensuing sitting for the AP exam. Additionally, research has 

suggested that on-line observations of student engagement having an impact on 

performance may be more conducive to determining actual student functioning than 

solely relying on assessments of student engagement on contrived tasks (Hadwin, et al., 

2004). Assessment of student behaviors during observations was dependent on detailed 

field notes taken by the researcher and student journal entries.

Observational protocols. Researcher-generated products from AP exam 

preparation sessions were classroom observation protocol forms (see Appendix E)

completed during each AP exam preparation session. Since all classroom-observation 

sessions involved students working in groups, participants’ actions were recorded that 

demonstrated aspects of group-regulation, as identified in the literature review (Artzt & 

Armour-Thomas, 1992; Goos, Galbraith, & Renshaw, 2002).Each of the six participants 

was observed twice during the study, resulting in twelve total sessions of approximately 

15-minute duration. The researcher sat in relatively close proximity to the appropriate 

group and recorded detailed notes focused on the behaviors and actions of the participant
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with respect to group navigation of each problem space. For clarity, the term participant

will refer to individuals from the class selected from the sampling strategy and the term 

student will refer to individuals from the class not selected from the sampling strategy.

Reflective journals. Student-generated products from AP exam preparation 

sessions were problem-solving journal entries. Using the AP Exam Preparation Journal 

Format (see Appendix E), students recorded their solution to a given AP exam problem 

on the left side of the journal entry form. Then, students recorded their plans, thoughts, 

and resource use for particular stages of the problem solution on the right side of the 

form, directly across from the applicable mathematical work recorded on the left side. 

Care was taken not to lead students’ right-side responses and questions were answered 

with the statement: Please provide as much detail as possible. Each student in the class 

maintained and submitted a journal, regardless of whether they were selected as a 

participant. The journals completed the triangulation of data with self-report survey 

results and researcher observation notes for the AP exam preparation phase of the study. 

Phase III: Think Aloud Problem-Solving 

Problem-solving tasks. The purpose of the think-aloud problem-solving sessions 

was to produce a vast amount of data for analyzing the six participants’ SRL processing

and epistemological beliefs during mathematical problem-solving episodes. Two 

problems were developed by the researcher that reflect single-variable calculus concepts 

learned by students during the previous semester (see Appendix F). Both problems fit 

Polya’s (1957) definition of a “problem to find” by requiring students to find, or develop, 

unknown functions or quantities in consideration of given constraints (p. 154). 
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Additionally, both problems were aligned with Schoenfeld’s (1985) distinction between a 

mathematical problem and a mathematical task: 

The difficulty with defining the term problem is that problem solving is relative. 

The same tasks that call for significant efforts from some students may well be 

routine exercises for others, and answering them may just be a matter of recall for 

a given mathematician. Thus being a “problem” is not a property inherent in a 

mathematical task. Rather, it is a particular relationship between the individual 

and the task that makes the task a problem for that person. The word problem is 

used here in this relative sense, as a task that is difficult for the individual who is 

trying to solve it. (p. 74) 

Thus, problems were developed that drew on topics discussed in AP Calculus AB; 

however, solution paths to the particular problems were never explicitly discussed. So, 

the problems were based on material that students had not seen in several months and 

asked questions that stretched that content knowledge, which is in line with Schoenfeld’s 

definition of a problem described above.

Student work from problem-solving tasks. During the problem solving sessions, 

each individual case participant worked on the problems described above during two 30-

minute sessions, thinking-aloud as they worked. Participants were allowed to write on the 

paper containing the problems and were given extra paper if needed. All work was 

collected. Participants were instructed to write down all work and, rather than erasing, to 

draw a line through any work they deemed incorrect. Collection of work provided a 

complete, written account of participants’ efforts in solving the problems. This method 
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for preserving student work was employed successfully by Schoenfeld (1982, 1985) in 

his problem-solving queries. 

Think-aloud session transcriptions. The bulk of data collected during this phase 

came from transcriptions of participants’ think-aloud sessions. Students were asked to 

think aloud while working the problems and provide a retrospective report of their work.

The think-aloud sessions were conducted in strict adherence to Ericsson and Simon’s 

(1993) and Schoenfeld’s (1985) methodological prescriptions. See Appendix F for the 

think-aloud scripts used by the researcher. The retrospective report that followed each 

session involved participants’ recall of their thinking as they reviewed their work. 

Ericsson and Simon (1993) recommended the use of both think-aloud and retrospective 

reports when analyzing problem-solving behaviors. They rationalized the usage of 

retrospective reports following think-aloud sessions as follows:

Even for cognitive processes of long duration, where we know that the 

retrospective report will be incomplete, it will be quite useful. In this case, it will 

more clearly convey the general structure of the process, as most of the detailed 

information will not be retrieved, and retrieval will use the higher-level 

organizational cues, like subgoals, or recall cues. (p. 379)  

All sessions were recorded by a digital recording device and, in case of data loss, a 

traditional tape-recorder. Each recorded session was transcribed verbatim and 

supplemented with notes that were written during the researcher’s observations of the 

think-aloud session. Transcriptions were completed immediately following sessions to 

ensure the most accurate rendition of events.



113

Phase IV: Confirmation of findings 

Follow-up interview transcriptions. Semi-structured, follow-up interviews with 

the six participants served as member-checking sessions and provided a final opportunity 

for the researcher to obtain additional information pertinent to this study (see Appendix G 

for the interview protocol). Students reviewed the initial findings of their individual case 

narratives and commented as to the degree of accuracy of events and behaviors reported. 

Additional questions were asked of each participant based upon their behaviors and 

verbalizations during this study. A protocol was not developed because questions were 

unique to each participant’s experiences. All interviews were recorded by a digital 

recording device and, in case of data loss, a traditional tape-recorder. Each interview was 

transcribed and the researcher applied any necessary changes to the findings based on 

student comments. Additional findings and clarifications gleaned from final interview 

questions were included in the results and discussion of the findings. 

Data Collection Procedures

 During this study, multiple sources of data were collected from each participant to 

help achieve triangulation of findings, a crucial element to validity in case studies and 

qualitative inquiries in general (Creswell, 2007; Marshall & Rossman, 2006; Yin, 2008). 

Prior to data collection, IRB approval, participant consent, and parental consent were 

obtained (see Appendix A). Then, the four phases of data collection commenced: (1) self-

report questionnaire administration, (2) AP Calculus exam preparation, (3) think aloud 

problem-solving sessions, and (4) follow-up interview sessions.
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Phase I: Self-Report Questionnaire Administration

The MSLQ, PEP, and IMBS (see Appendix B) were administered to serve as 

participant sampling criteria and initial data for participants’ narratives. Due to the length 

of the questionnaires, administration was conducted in two days. The abbreviated MSLQ 

and IMBS have a combined 74 items and took approximately 20 minutes to administer. 

The PEP contains 90 items and administration took approximately 20 to 30 minutes, in 

congruence with Royce and Mos’ (1980) estimation. Instructions for administration 

described in the MSLQ and PEP manuals and the IMBS article were followed precisely 

to obtain reliable and valid results from participants (Kloosterman & Stage, 1992; 

Pintrich et al., 1991; Royce & Mos, 1980). 

Phase II: AP Calculus Exam Preparation 

 A key component of the AP Calculus BC course involved preparation for the 

ensuing AP exam, which is the gateway to receiving college credit. During the early part 

of the semester, exam preparation consisted of reviewing material learned in the previous 

course, AP Calculus AB. Based on College Board’s approval (see Appendix C), this goal 

was achieved by having students work actual AP Calculus AB free-response exam 

questions from prior years’ administrations (see Appendix E). During these activities, 

participants were observed for data collection purposes. 

Once the six participants were confirmed, the class was divided into ten 

heterogeneous groups of three students. To achieve heterogeneity, the researcher ordered 

students from lowest to highest based on their grade from the prior course, AP Calculus 

AB. Then the researcher subdivided the class into three groups of ten, which naturally 

formed high, average, and low student groupings. Heterogeneous groups of three were 



115

then formed by selecting a student from each group and checking the average AP 

Calculus AB grade for each group to ensure that differences between groups were not 

excessive. The group AP Calculus AB grade means ranged from 85.00 to 88.67, which 

are relatively consistent with the overall class mean of 86.80. Additionally, six of the ten 

groups contained one participant for the purposes of individual observation.

 Students worked all of the AP Calculus exam preparation problems while in 

assigned groups. During each session, students recorded work and reflections in their AP 

exam preparation journals and the researcher took detailed observational notes on one of 

the six groups containing a participant (see Appendix E). Each AP exam preparation 

session was conducted during approximately fifteen to twenty minutes of regular class 

time. There were two to three AP exam preparation sessions each week for the duration 

of the study, ultimately providing a total of twelve opportunities for data collection. The 

twelve sessions allowed for two observations of each participant collaboratively 

preparing for a high-stakes exam. Data were coded and analyzed simultaneously with 

data collection to determine any necessary adjustments in the design of the study and to 

begin preparing individual case narratives.    

Phase III: Think-Aloud Problem-Solving Sessions 

Phase III data collection was conducted concurrently with Phase II outside of the 

classroom environment. The six participants worked on two calculus-based problem-

solving tasks (see Appendix F) during two sessions, thinking aloud as they worked. 

Participants were presented with the application of differentiation problem during the 

first session and then returned to continue working on the problem during a second 

session if the task had not been completed. Participants were allowed to work on or think 
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about the problem during the interim between sessions but were required to submit all 

work from the first session to the researcher for the purposes of analysis. If a participant

solved the application of differentiation problem during either session, then they would 

receive the application of integration problem and could work on it for the remainder of 

their allotted time. To avoid revealing possible problem-solving solution methods, the 

application of differentiation and application of integration problems were re-named as 

problem solving task #1 and problem-solving task #2, respectively, when presented to 

participants during the think-aloud sessions.  

Think-aloud problem-solving sessions were conducted in the classroom 

immediately following school for approximately one hour. The researcher coordinated 

schedules with the six participants and scheduled sessions well in advance. At the 

beginning of the first session, participants were trained to think aloud, as prescribed by 

Ericsson and Simon (1993). Each participant was instructed to verbalize their in-line 

thinking while solving problems. Ericsson and Simon cautioned that having participants 

expound on or explain their thoughts may affect problem solving performance, so 

students were trained to simply speak exactly what thoughts were on their minds without 

explanations or justifications. Participants were given a computational practice problem 

and asked to practice the think-aloud and retrospective report procedures. Another

practice problem was available to participants if needed. Once questions were answered, 

participants were given approximately thirty minutes to complete the appropriate

problem. If the researcher felt that the participant was engaged in a productive problem-

solving activity at the 30-minute mark, then a few additional minutes were allowed for 

the participant to complete the line of reasoning. The researcher prompted participants to 



117

“keep talking” when instances of silence exceeded ten to fifteen seconds (Ericsson &

Simon, 1993, p. 83). Upon completion of each session, participants were asked to provide 

a retrospective report of their thinking as they reviewed their work. Additionally, the 

researcher provided general cognitive feedback for the purposes of exploring SRL 

processing but did not discuss specifics concerning the problem unless a student had 

solved it (Nicol & Macfarlane-Dick, 2006; Butler & Winne, 1995). For instance, Julia 

considered the parent function f (x) = x3 while working part (a) of the application of 

differentiation problem (see Appendix F). Unable to use the parent function to solve part 

(a) during her first think aloud session, the researcher prompted her to consider how the 

parent function may be used to develop a solution. 

The second session was conducted similarly, however participants were given the 

option of doing a practice think-aloud problem or immediately commencing the timed 

session. An additional difference was that after the retrospective report, an informal 

interview was conducted to discuss and clarify specific aspects of each participant’s 

individual problem-solving approaches and manifested epistemological beliefs. It should 

be noted that no interview protocols were developed for the informal interviews since the 

content of each interview was specifically related to participants’ navigation through the 

problem space. Questions were developed by the researcher during the sessions. Finally, 

each think-aloud problem-solving session was recorded by digital recording device and, 

in case of data loss, traditional tape recorder. All participant work, including scratch work 

and work completed during the interim between sessions, was collected for the purposes 

of data analysis.  
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Phase IV: Follow-up interview sessions

Since initial data analysis was conducted concurrently with data collection, all 

open coding and some axial coding had been completed shortly after the final think-aloud 

and classroom observation sessions. Then, draft narrative reports were written for each of 

the six participants. Once the draft reports were completed, an individual, semi-structured 

follow-up interview (see Appendix G) was scheduled with each of the six participants. 

The purpose of this interview was to provide member-checking validation of the findings 

and further insight into discrepancies and inconsistencies that emerged during initial data 

analysis. Each participant was presented their narrative report, asked to read it carefully, 

and determine whether or to what degree they agreed with the findings. This created a 

dilemma. On one hand, the reports needed to be ready for participants soon after data 

collection while experiences were fresh in their minds. On the other hand, hurried data 

analysis may yield poor results at best. So, the researcher was diligent to analyze data 

during data collection and kept a running draft report for each participant that simply 

required editing and finalizing at the end of data collection. This strategy allowed the 

researcher to produce quality narratives for participants to review in a timely manner. 

Each follow-up interview session was recorded.

Data Analysis

 The final product of data analysis consisted of six individual, narrative case 

reports and an extensive cross-case analysis. Quantitative data from the MSLQ, PEP, and 

IMBS provided a small amount of data to begin developing narrative reports. The 

remainder of each narrative report was developed via deep analysis of qualitative data 

from observations, journals, think-aloud and interview transcriptions, and quantitative 
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results from student performance on problem-solving and AP exam preparation tasks. 

Finally, pattern and theme development via even deeper analysis yielded findings used in 

the cross-case analysis. The overall results of data analysis provided a rich, thick 

description of the significant findings of the study. Data analysis procedures are 

described below and subdivided as follows: (1) quantitative analyses, (2) coding, (3) 

problem-solving task assessment, (4) development and analyses of matrices, and (5) 

technology use.

Quantitative Analyses 

 Quantitative data collected from the MSLQ, PEP, and IMBS mainly served to 

delineate six participants from the intact AP Calculus BC course involved in this study

(see Figure 2). However, the quantitative data also served as initial building blocks for 

each participant’s narrative report. Using SPSS Version 15, descriptive statistics were 

calculated for the entire class with respect to each scale of the MSLQ and IMBS and the 

three ways of knowing scores from the PEP. Then, each participant’s scores were 

analyzed and compared to whole-class means and standard deviations to determine a 

quantitative, self-reported categorization (low, average, or high) of specific aspects of 

SRL and epistemological beliefs. For instance, the overall class’ mean score for the 

problem-solving duration scale of the IMBS was 22 with a standard deviation of 

approximately 3.97. A participant who scored 30 on the problem-solving duration scale, 

which is more than 2 standard deviations above the mean, was categorized as having a 

high belief that mathematical problems may require time to solve. Each participant’s self-

reported results were heavily augmented by qualitative data to provide contextually rich 

narrative reports and cross-case analysis.
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Coding 

 The qualitative data from the AP exam preparation and think-aloud problem-

solving sessions were exhaustively coded based on the SRL, epistemological beliefs, and 

problem solving constructs. The data sources coded were AP exam preparation journal 

entries, observational protocol transcriptions, student solutions to problem-solving tasks, 

think-aloud with retrospective interview transcriptions, and member-checking interview 

transcriptions. The first phase of the coding process involved open coding, defined by 

Creswell (2007) as a process that “involves taking data (e.g., interview transcriptions) 

and segmenting them into categories of information” (p. 240). In this study, data were 

initially coded at the micro-level for specific instances of the construct being analyzed. 

Micro-level coding was repeated in an iterative fashion until all data were saturated of 

information. Creswell (2007) stated, “In this process, I finally come to a point at which 

the categories are ‘saturated’; I no longer find new information that adds to my 

understanding of the category” (p. 240). Then, data were collapsed into macro-level 

nodes that served as general categories for the study’s findings (Miles & Huberman, 

1994).  

Detailed micro- and macro-level code lists were developed for each construct 

based on the literature review presented in the prior chapter (see Appendix H). For SRL, 

micro-level codes were based primarily on Zimmerman’s (2000) SRL framework, 

Greene and Azevedo’s (2009) expanded coding scheme, and Schoenfeld’s (1985) 

episodic problem-solving framework. Greene and Azevedo’s coding scheme was used on 

think-aloud protocol data and contained 35 separate SRL categories. For example, 

Greene and Azevedo subdivided “monitoring” into “judgment of learning, feeling of 
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knowing, self-questioning, content evaluation, identify adequacy of information, monitor 

progress towards goals, and monitor use of strategies” (pp. 25–26). Although Greene and 

Azevedo’s codes provided an excellent initial list, the researcher augmented them with 

more appropriate mathematical problem-solving based codes, based primarily on 

Schoenfeld’s work, and deleted others that did not fit this study. For example, the 

researcher included specific heuristic strategies, such as solve a simpler problem, in the 

performance control phase, providing a mathematics-based problem-solving context for 

students’ strategy use (Polya, 1957; Schoenfeld, 1985). Additionally, the researcher 

deleted items such as “free search” (p. 26), which is a code that applied specifically to 

student use of the hypermedia environment used in Greene and Azevedo’s study. Once 

micro-level coding was completed, data were collapsed into macro-level categories, or 

nodes, based on the four phases of SRL inherent to my theoretical framework, which 

were definition of the task, forethought, performance control, and self-reflection (Winne 

& Hadwin, 1998; Zimmerman, 2000).  

Data were also coded for specific evidence of epistemological beliefs that 

manifested as participants worked problems. Rather than an extensive list of micro-level 

codes, operational definitions were developed for both general and mathematics-specific 

epistemological beliefs (Hofer, 2000; Hofer & Pintrich, 1997; Kloosterman & Stage, 

1992; Muis, 2004; Royce & Mos, 1980; Schoenfeld, 1983, 1985, 1992). Overt participant 

behaviors that exemplified specific beliefs were coded as evidence of adherence to that

belief. General epistemological beliefs included certainty/simplicity of knowledge, source 

of knowledge, justification of knowledge, attainability of truth (Hofer, 2000; Hofer & 

Pintrich, 1997). Mathematics-specific problem-solving epistemological beliefs included 
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unique/arbitrary nature of problem solutions, rational/empirical approach to problem 

solving, duration of problem solving, procedural/conceptual approach to problem solving, 

importance/usefulness of mathematics, and effort/inherent mathematical ability 

(Kloosterman & Stage, 1992; Royce & Mos, 1980; Schoenfeld, 1983, 1985, 1992). 

Upon completion of open coding by hand, data sources and their respective codes 

were input into NVivo Version 8 for the purpose of deeper analysis. Axial coding was the 

next phase in the coding process, defined by Creswell (2007): 

The researcher takes the categories of open coding, identifies one as a central 

 phenomenon, and then returns to the database to identify (a) what caused this 

 phenomenon to occur, (b) what strategies or actions actors employed in response 

to it, (c) what context (specific context) and intervening conditions (broad 

 context) influenced the strategies, and (d) what consequences resulted from these 

 strategies. (p. 237)  

In this study, NVivo Version 8 expedited the axial coding process by generating matrices 

that related aspects of the study (e.g., participants, actions, beliefs) to each major 

phenomenon, or theme that emerged from the data. Examination of matrices revealed 

multiple categories of information converging on each phenomena.  

Further exploration of the data via NVivo Version 8 facilitated selective coding. 

This final phase of coding was described by Creswell (2007): “The researcher takes the 

central phenomenon and systematically relates it to other categories, validating 

relationships and filling in categories that need further refinement and development” (p. 

240). For example, monitoring emerged as a major theme and matrices were generated in 

NVivo Version 8 that allowed for the examination of this major construct with respect to 
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all other categories, including but not limited to individual, categorized participants and 

various aspects of participants’ beliefs.

Problem-Solving Task Assessment

Student performance on the think-aloud problem-solving tasks were scored using 

a modified version of Schoenfeld’s (1982) scoring scheme, which provided for multiple 

levels of analysis based on both full and partial problem solutions. Recall that students 

submitted all work for the four parts of the application of differentiation and application 

of integration problems. All solution attempts were graded using the following scheme: 0 

points for “an approach that is not pursued,” 1 to 5 points for an approach “making ‘little’ 

progress,” 6 to 10 points for “‘some’ progress,” 11 to 15 points for “‘almost’ solutions,” 

and 16 to 20 points for “‘solved’” problems (Schoenfeld, 1982, pp. 39–40). Individual 

scores obtained from the multiple-count scoring categories were determined based on the 

amount of progress attained. For example, the range given for solved problems above 

was applied if students correctly solved a problem but failed to adequately justify their 

solution. Specifically, a participant working the application of differentiation problem 

solved for a, b, c, and d using purely empirical means by guessing values based on 

flawed logic. Upon graphing the guess using a calculator, the participant noted that 

problem conditions were met. However, the only justification provided was that the graph 

of the function met the conditions. A score of 17 was applied to this participant’s work 

for the accurate solution and partial justification. Schoenfeld (1982) reported that 

“reliability with the researcher’s grading was better than 90%” (p. 40).  

For the AP exam preparation problems, College Board provides specific scoring 

guidelines for previous exams. Participants’ solutions from journal entries were graded 
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using the appropriate scoring guidelines and produced integer scores ranging from zero to 

nine. Due to the specificity of the scoring guidelines, little subjectivity was involved in 

scoring participants’ AP exam preparation problems. 

Development and Analyses of Matrices

To answer the research questions, multiple matrices were assembled for 

individual and cross-case analyses. Preliminary matrices contained general categories 

such as the four phases of SRL, general epistemological beliefs, and mathematical 

problem-solving beliefs. For example, an initial matrix had the six participants as rows 

and accumulated codes from the four phases of SRL as columns. All matrices were 

generated with NVivo Version 8 and thus, each cell was hyperlinked to corresponding 

text, providing access to particular quotations corresponding to the relations being 

analyzed. From an individual case analysis perspective, matrices of this type provided a

means for analyzing a participant’s overall utilization of SRL processing. Matrices with 

numeric values provided frequencies of occurrence for phenomena. The hyperlinked 

access provided by NVivo Version 8 to text corresponding to matrix cells allowed for the 

development of thick descriptions and text-based analysis of phenomena. 

As data analysis progressed, matrices became increasingly more specific in 

nature. An example of a more specific matrix included availing and non-availing beliefs 

as rows and specific instances of monitoring as columns. Yet again, NVivo Version 8 

provided access to both frequencies and corresponding text for all cells. From a cross-

case analysis perspective, this matrix provided a means for comparing and contrasting 

epistemological beliefs with performance control phase processing. Both quantitative and 

thick descriptive data obtained from matrices were analyzed based on the multitude of 
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SRL and epistemological beliefs descriptors identified and reported in each participant’s 

narrative report. Data analysis continued as multiple general, specific, individual-case, 

and cross-case matrices were developed. These matrices provided rich, detailed, and 

accurate interpretations of actual events. 

Technology Use

Descriptive statistics for quantitative data were obtained via SPSS Version 15. 

Due to the volume of qualitative data collected, NVivo Version 8 was used for all data 

coding organization and matrix development. NVivo Version 8 is essentially a powerful 

organizational software program and will only organize coded data and develop matrices 

based on information input by the researcher. Thus, the researcher conducted open coding 

line-by-line by hand over multiple iterations to obtain data saturation. However, once 

finished, NVivo Version 8’s organizational and categorical capacity allowed axial 

coding, selective coding, and matrix development via mouse clicks, as opposed to the 

arduous development of such analytical tools using bulky stacks of data and simple 

spreadsheet software.

Validity and Reliability

Issues of validity arise in any research endeavor and must, therefore, be addressed 

at the design phase. For case study research, validity essentially refers to the quality, 

trustworthiness, and credibility of a study. Considering validation a mutual process, 

Creswell (2007) stated, “I consider ‘validation’ in qualitative research to be an attempt to 

assess the ‘accuracy’ of the findings, as best described by the researcher and the 

participants” (pp. 206–207). The researcher employed data triangulation, thick, rich 

descriptions, and member checking to bolster validity for this study (Creswell, 2007; Yin, 
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2008). Data triangulation was achieved by collecting multiple sources of data from all 

participants and then carefully analyzing every source to increase accuracy and depth of 

descriptive and inductive findings. Creswell (2007) stated, “In triangulation, researchers 

make use of multiple and different sources, methods, investigators, and theories to 

provide corroborating evidence” (p. 208). In this study, the multitude of data sources, 

variety of data collection methods, and diversity of the individual participants provided 

the means for assessing the degree of convergence of the findings. Well-developed, 

research-based codes and categories ensured that the appropriate operationalized 

construct was being measured. Thick, rich descriptions of experiences allow readers to 

determine the degree to which results are transferable to other contexts. Finally, follow-

up interviews with case participants provided member checking of initial findings and 

themes. Participants were presented with draft narrative reports. To bolster credibility in 

the findings of the study, participants were encouraged to identify any inconsistencies, 

inaccuracies, or omissions in the text provided to them (Creswell, 2007). 

Reliability refers to the repeatability of a study’s procedures and the “stability of 

responses to multiple coders of data sets” (Creswell, 2007, p. 210; Yin, 2008). Reliability 

for this study was enhanced by creating a case study database, establishing a chain of 

evidence, and conducting peer review of the coding scheme (Creswell, 2007; Miles & 

Huberman, 1994; Yin, 2008). Creating an exhaustive case study database will provide an 

outside auditor, or curious academic, access to all evidence (i.e., transcriptions, student 

work) so that the degree of consistency between raw data and final reports may be 

assessed. The case study database was kept digitally, organized in folders, on my 
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computer’s hard drive, external hard drive, and CD-ROMs and physically in multiple 

binders organized by participant. 

 Yin (2008) used the analogy of forensic investigations to explain the maintenance 

of a chain of evidence. Basically, the purpose of a chain of evidence is to provide a clear 

path from the origins of the case (or crime) to the final presentation of findings (or court 

case). My chain of evidence (see Figure 3) was established by clear, focused research 

questions. Then, the development of my proposal (or prospectus) established a rationale 

for the study, operational constructs to be measured, and appropriate methodology for 

collecting and measuring evidence of the phenomena. During the study, evidence was 

collected, analyzed, and organized in the case study database. Finally, the results of the

study were recorded in Chapter IV: Individual Case Results and Chapter V: Cross-Case 

Results of this dissertation and may be summarized for one or more scholarly journals. If 

appropriately maintained, the chain of evidence will allow bi-directionality of the above 

progression, thus allowing for assessments of accuracy at all stages of the research 

process. 

Figure 3. Chain of Evidence.  

Ethical Issues

 Common to most studies of human subjects are ethical issues involving the 

welfare of the participants. Hence, the researcher would be remiss to fail to address any 
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foreseeable ethical issues inherent in this study. Throughout this section the titles

researcher and teacher will be used to clarify my role in the given context. The reader is 

reminded that the researcher and teacher are one and the same person. First, issues of 

informed consent were considered. As consent forms were distributed, the researcher 

explained in detail the procedures involved in conducting the study and the general goals 

and aims of the study. This enhanced students’ understanding of the ramifications of 

signing the consent form and avoided ambiguity (Creswell, 2007; Miles & Huberman, 

1994). In reference to implications for analysis, Miles and Huberman (1994) stated, 

“Weak consent usually leads to poorer data: Respondents will try to protect themselves in 

a mistrusted relationship, or one formed with the researchers by superiors only” (p.291). 

Students may also have felt pressured to sign the consent form since the researcher was 

also their teacher. To counter this, the researcher assured students that there was no 

pressure to participate in the study and there would be no repercussions or ill will if they 

decided to withdraw for any reason. Additionally, students were ensured that withdrawal 

would be confidential. Full exclusion from the study was ensured for any student who 

wished to withdraw (Miles & Huberman, 1994). 

 Second, student confidentiality was enhanced by assigning letters to students and 

having them use those for all documents submitted to the researcher (Miles & Huberman, 

1994). Participants were assigned pseudonyms for use in narrative reports and cross-case

analysis (Creswell, 2007). Files referring to students by their actual names were locked 

securely in a closet in the classroom and the researcher’s home. Digital files were saved 

onto the researcher’s laptop, external hard drive, and back-up CD-ROMs. This ensured 

that no data were lost but also that sensitive data were not saved on high traffic computers 
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at the researcher’s school. Computers holding any sensitive data were password-protected 

to further enhance data security. Finally, all forms of data (e.g., transcriptions, tape-

recordings, journal entries) will be kept for two years and then destroyed. 

 Third, it may have appeared that the teacher was ignoring students’ needs by 

simply observing while they struggled through AP practice problems in the classroom. 

Miles and Huberman (1994) referred to this ethical dilemma as “detached inquiry versus 

help” and identified two extremes: (1) focusing solely on understanding and (2) offering 

assistance to the point of losing intellectual objectivity and going native (p. 296).

However, the teacher’s philosophy has always been that students need opportunities to 

struggle with such problems before intervention is provided. There is a 45-minute time 

limit imposed on students to answer 3 questions during their actual sitting for the exam. 

Giving students time to work on their own provides opportunities for solution 

development independently of the instructor, which is a more authentic scenario with 

respect to standardized exam experiences.  So, in the past, the teacher has allowed 

students 15–20 minutes to do as much as they can and struggle with each problem. 

However, the teacher always discussed every problem solution in great depth once time 

was called; the same process was applied to the problems worked during this study. 

Therefore students did not lose any instructional time due to the researcher’s needs to 

obtain observational data. Additionally, the dual roles of teacher and researcher were 

appropriately separated to avoid the extremes of ignoring students’ needs or going native. 

Finally, participants’ emotional and psychological states were potentially in 

jeopardy should certain wording appear in the draft narrative reports given to them during 

member checking (Miles & Huberman, 1994). Care was made to omit terminology such 
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as low and poor. The reports simply described the facts of each participant’s experiences 

and results from data analysis. When possible, participants were asked if they agreed with 

certain categorizations, such as rational or empirical problem-solver, as long as the 

categories did not contain potentially demeaning wording or titles. In conclusion, 

extensive effort was expended to ensure that students were treated fairly and without 

harm.

Summary

 This chapter has provided a detailed account of the methods employed in this case 

study investigation. Participants were selected based on a mixture of quota and maximum 

variation sampling with prior achievement and questionnaire responses as parameters 

(Miles & Huberman, 1994). The validity and reliability of quantitative instruments were 

discussed in depth, as well as the development of qualitative instrumentation. Logistical 

and chronological details for collecting data were presented and means of overcoming 

barriers discussed. Then, coding schemes and matrix development were discussed in 

relation to analysis of the data. Finally, issues of validity, reliability, and ethical concerns 

inherent in this qualitative study were addressed. The next chapter provides descriptive 

results of the study in the form of individual case narratives. 
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CHAPTER IV

INDIVIDUAL CASE RESULTS

This study examined the relationships between students’ epistemological beliefs 

and self-regulated learning (SRL) processing while engaged in mathematical problem 

solving tasks. Applying a multiple-case study design, six students purposefully selected 

from an Advanced Placement (AP) Calculus BC course engaged in individual 

mathematical problem-solving while thinking aloud and group AP Calculus exam 

preparation. Narrative accounts of each participant’s experiences based on self-report 

questionnaire data, think-aloud transcriptions, observational field notes, participant 

journal entries, and individual interviews are presented in this chapter. Quantitative data 

were analyzed via descriptive statistics obtained from SPSS Version 15 software. 

Qualitative data were analyzed by open, axial, and selective coding, matrix development, 

and extensive thematic analysis using NVivo Version 8 software.  

 The main purpose of this chapter is to provide rich, thick descriptions of 

participants’ experiences. In many cases, inferences and interpretations were necessary to 

bridge the gap between the theoretical framework (see Chapter II: Review of Relevant 

Literature) and the reality of the lived events described below. Thus, member checking 

was employed to enhance credibility (Creswell, 2007; Miles & Huberman, 1994; Yin, 

2008). The findings are broadly subdivided into two main categories: whole-class results 

and participant narratives. Accessibility to whole-class results facilitates the comparison

of individual participant results to a given population, which, in this case, encompassed
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the 30 students in the AP Calculus BC class. Participant narratives are presented in a 

time-elapse manner to re-create accurate and detailed events.

Whole-Class Results

Calculus Achievement

 For the calculus achievement category, student grades from the previous course, 

AP Calculus AB, were obtained for the 30 students involved in this study. The AP 

Calculus AB grades yielded a mean score of 86.80 (SD = 7.85), of which the lowest 

grade was 72 and the highest was 100. Both of these extreme cases, Robert and Cameron 

respectively, were included as participants in this study. Ensuring that extreme cases are 

included as participants, known as maximum variation sampling, was employed to ensure 

that data were obtained from outliers and to assess whether main patterns in the data still 

hold (Miles & Huberman, 1994). From the data, intervals of width equivalent to one 

standard deviation were computed and categorized for calculus achievement: Category I

(94.65, 102.50), Category II (86.80, 94.65), Category III (78.95, 86.80), and Category IV

(71.10, 78.95). For the purposes of quota sampling, four additional individual cases were 

selected to represent the diversity of the class (Miles & Huberman, 1994). A more 

complete and detailed account of sampling procedures may be found in Chapter III: 

Methodology.

Self-Report Questionnaires

The three self-report questionnaires used in the study were given to all 30 students 

in the AP Calculus BC course. Questionnaire data were subdivided categorically using 

descriptive statistics. For each scale, the mean and standard deviation were calculated. 

Then, three subdivisions of width equivalent to two standard deviations were obtained 



133

and categorized: high (M + SD, M + 3SD), average (M – SD, M + SD), and low (M – 

3SD, M – SD).

The Indiana Mathematics Belief Scales (IMBS; Kloosterman & Stage, 1992) is a 

five-point Likert scale questionnaire and all six scales contain six questions. Thus, a 

minimum score of 5 and a maximum score of 30 may be obtained for each scale. Table 3

summarizes the data obtained from all 30 students in the AP Calculus BC course. These 

scores are higher than those reported by Kloosterman and Stage (1992), who validated 

the scales using a sample of remedial college students and college students majoring in 

early education. However, higher scores are not surprising as Kloosterman and Stage 

predicted that “one might expect highly able students to score higher” (p. 114). 

Additionally, it should be noted that student scores for Belief 6 were so high that it was 

impossible to obtain the high categorization, implying that the majority of students in this 

course self-reported a belief that mathematics is useful. Thus, in the ensuing analysis, 

only students who scored in the low range will be discussed. 

 Students’ scores on the IMBS informed quota sampling by capturing a broad 

range of self-reported mathematical beliefs. Due to the preponderance of data, an integer 

quantifier was calculated for each student’s overall IMBS scale scores. The quantifier 

was determined by establishing six intervals of width equivalent to one standard 

deviation from the mean for each scale, assigning an integer value on the interval [– 3, 3] 

based on the relative positioning of each student’s scale scores, and summing the results. 

For instance, Edwina scored 21 points for Belief 3, which fell in the interval (M – 2SD, M

– SD) and thus, was assigned a score of 2& . Her other scale scores were similarly 

calculated and the sum resulted in an overall score of 1 for mathematical beliefs. With 
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respect to the whole class, mathematical beliefs scores ranged from 10&  to 10. For 

sampling, student performance data were merged with mathematical beliefs data and 

multiple students were considered as potential participants. The six students who were 

selected and consented to participate in the study had mathematical beliefs scores ranging 

from 4&  to 9.  

Table 3

Descriptive Statistics for the Indiana Mathematics Belief Scales (N = 30)  

Scale Minimum Maximum M SD

Belief 1 14 30 22.00 3.97

Belief 2 14 27 20.80 3.18

Belief 3 15 30 24.83 3.52

Belief 4 12 29 20.07 4.95

Belief 5 16 30 24.27 4.28

Belief 6 12 30 25.67 4.41

Note. Belief 1 = I can solve time-consuming mathematics problems; 

Belief 2 = There are word problems that cannot be solved with simple,

step-by-step procedures; Belief 3 = Understanding concepts is

important in mathematics; Belief 4 = Word problems are important in

mathematics; Belief 5: Effort can increase mathematical ability; 

Belief 6 = Mathematics is useful in daily life. (Kloosterman & Stage, 

1992, p. 115) 
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The Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich, et al., 

1991) is a seven-point Likert scale questionnaire, which is divided into two main subsets 

of scales: Motivation and Learning Strategies. Since the scales contain varying amounts 

of questions, an overall mean is calculated for each scale for the purposes of data 

analysis. Thus, a minimum score of one and a maximum score of seven may be obtained 

for each scale. Based on the theoretical framework and purposes of the study, an 

abbreviated version of the MSLQ was used in this study. The Motivation scales used 

were Intrinsic Goal Orientation, Extrinsic Goal Orientation, and Task Value. The 

Learning Strategies scales used were Critical Thinking, Metacognitive Self-regulation, 

Peer Learning, and Help Seeking. Table 4 summarizes the results obtained from the 

MSLQ for all 30 students in the AP Calculus BC course.

The same technique described above for the IMBS was utilized to obtain integer 

scores from students’ MSLQ results, thus providing an SRL score. The resulting range of 

scores for the whole class was –12 to 14. The SRL score provided a third indicator for 

participant selection. The six individual students that participated in the study had scores 

ranging from –3 to 14. 

Finally, the Psycho-Epistemological Profile (PEP; Royce & Mos, 1980) is a 90-

question, 5-point Likert scale questionnaire that determines whether a person’s epistemic 

style is predominantly rational, empirical, or metaphorical. Traits of a rational 

perspective include the use of logic, rigid analysis, and synthesis of ideas. The empirical 

perspective is largely based on observational phenomena, perception, and the senses. The 

metaphorical perspective is synonymous to symbolism and insightfulness (Royce & Mos, 

1980). Since each scale contains 30 questions, the minimum score per scale is 30 and the 
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maximum is 150. Table 5 summarizes the results obtained from the PEP for the 30 

students in the AP Calculus BC course.

Table 4

Descriptive Statistics the for Motivated Strategies for Learning  

Questionnaire (N = 30) 

Scale Minimum Maximum M SD

IGO 1.75 7.00 4.79 1.35

EGO 3.00 6.50 5.28 0.86

TV 1.50 7.00 5.42 1.28

CT 1.00 7.00 3.79 1.53

MSR 2.83 6.50 4.49 0.72

PL 1.33 7.00 3.96 1.54

HS 1.00 7.00 4.63 1.55

Note. IGO = Intrinsic Goal Orientation; EGO = Extrinsic Goal 

Orientation; TV = Task Value; CT = Critical Thinking; MSR =  

Metacognitive Self-regulation; PL = Peer Learning; HS = Help Seeking 

 Overall, 18 students profiled as predominantly rational, 12 as predominantly 

empirical, 1 as predominantly metaphorical, and 2 students obtained the same score for 

Rational and Empirical scales. Continuing to meet purposeful sampling goals, the 

researcher chose the participants with the highest scores on each scale: Martin with a 

Rational scale score of 123, Julia with an Empirical scale score of 125, and Olivia, the 



137

only predominantly metaphorical student, with a Metaphorical scale score of 113. Further 

sampling enhancement was obtained as Cameron, the upper-bound maximum variation

case with respect to performance, obtained the exact same Rational and Empirical scale

score, 105, and had the lowest Metaphorical scale score, 67, in the class.

Table 5

Descriptive Statistics for the Psycho-Epistemological Profile (N = 30)  

Scale Minimum Maximum M SD 

Rational 96 123 106.93 6.60

Empirical 77 125 102.37 11.54

Metaphorical 67 113 91.83 11.37

  

AP Calculus AB Exam Practice

All 30 students in the AP Calculus BC course also participated in the in-class, 

group AP Calculus exam preparation sessions. Despite working in groups, some within-

group variation in scores occurred as students submitted individual work via journal 

entries. Additionally, due to absenteeism, all 30 students were not present for every 

session. Each student’s journal entries were graded by the researcher using the College 

Board Scoring Guidelines for the appropriate problem. The maximum score for each 

problem is 9 points. Table 6 summarizes the descriptive statistics obtained from the AP 

Calculus exam preparation sessions for the students in the AP Calculus BC course. AP 

Calculus exam preparation results are discussed extensively below within each 

participant’s narrative.
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Table 6

Descriptive Statistics for AP Calculus Exam Preparation

Question N Minimum Maximum M SD

AB 2003B #2 30 3.00 7.00 4.53 1.04

AB 2004B #4 26 1.00 9.00 5.12 2.14

AB 2004B #6 29 1.00 8.00 2.66 1.45

AB 2005B #5 26 3.00 9.00 5.85 1.99

AB 2006B #3 30 0.00 9.00 4.83 2.26

AB 2006B #4 30 2.00 8.00 4.90 1.67

AB 2007B #2 19 2.00 7.00 4.42 1.74

AB 2007B #5 30 2.00 9.00 4.97 1.90

AB 2007B #6 28 0.00 7.00 3.21 2.06

AB 2008B #3 28 2.00 9.00 6.43 2.41

AB 2009B #2 30 1.00 9.00 4.73 1.91

AB 2009 #1 30 4.00 9.00 7.33 1.52

AB 2009 #1 30 4.00 9.00 7.33 1.52

Note. Question titles are abbreviated as follows: AB 2003B #2 = 2003 AP 

Calculus AB (Form B) Free Response Question 2. The remaining questions

follow the same format of abbreviation. The question in the last row was not 

from a Form B exam. The variation in N is due to student absenteeism on 

days in which the class engaged in AP exam preparation. 
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Participant Narratives

 The purpose of this section is to provide detailed narratives of participants’ 

experiences. Each narrative is subdivided into three main categories: (1) achievement and 

questionnaire data, (2) think-aloud problem-solving sessions, and (3) AP exam 

preparation sessions. Subdivision (1) of each narrative provides a detailed report with 

interpretations of a participant’s categorizations based on achievement and self-report 

questionnaire data. Subdivision (2) of each narrative contains rich, thick descriptions of a 

participant’s experiences during the think-aloud problem-solving sessions based on think-

aloud transcriptions, student work, and interview transcriptions. Finally, subdivision (3) 

of each narrative describes a participant’s experiences within their group while working

on two AP exam practice problems based on AP exam preparation journal entries and 

researcher observational field notes. In the interest of space and alleviation of 

redundancy, the following abbreviations were developed and used throughout the 

narratives: TA1 = first think-aloud problem solving session, TA2 = second think-aloud 

problem solving session, RRI1  = first retrospective report and interview, RRI2 = second 

retrospective report and interview, and MCI = member-checking interview.  

Robert’s Narrative

Mathematical Achievement and Questionnaire Data 

Robert was categorized as a Category IV calculus achiever compared to his peers 

because he scored a 72 in AP Calculus AB. Since his grade was lowest in the class, 

Robert constituted the lower-bound maximum variation participant. For the IMBS, 

Robert was categorized as having average beliefs for all scales except Belief 2, for which 

he received a low rating. A low rating indicates that he self-reported a belief that word 
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problems can be solved by following procedural, algorithmic steps (Kloosterman & 

Stage, 1992). The remainder of his self-reported mathematical beliefs was consistent with 

his peers. 

For all MSLQ scales, Robert was categorized as average. One point of interest is 

that Robert scored higher on Extrinsic Goal Orientation (5.5) than on Intrinsic Goal 

Orientation (4.25). Thus, based on self-report data, Robert may tend to participate in 

tasks for reasons such as grades or other performance indicators instead of being driven 

by the desire to master content (Pintrich et al., 1991). Finally, Robert’s PEP 

categorizations for each belief dimension were all average. For the Rational, Empirical, 

and Metaphorical scales, he scored 105, 103, and 101, respectively. These results 

indicated that Robert was predominantly rational, but due to the proximity of the scores, 

the results were deemed inconclusive. Qualitative methods were employed to derive 

further categorization of Robert’s predominant adherence to either the rational, empirical, 

or metaphorical epistemic style.  

Think-Aloud Sessions 

 Session 1. Robert began TA1 by spending 15 seconds reading part (a) of the 

application of differentiation problem (see Appendix F). This was the extent of his 

cognitive activity in the definition of the task phase. Then, fixated on the exactly one root

condition of part (a) of the problem, he spent 28 min 25 sec on a fruitless exploration. 

During this exploratory episode of Robert’s navigation through the problem space, 

evidence of the forethought phase was restricted to the first minute. His plan to use 

substitution consumed him and he never diverted from it. When probed later during his 
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RRI2, Robert cited problem recognition from a prior course, Algebra 2, as the reason for 

trying to use substitution to solve for a, b, c, and d.

A significant number of overt instances of metacognitive monitoring were coded 

during this exploratory excursion, potentially indicative of activity in the performance 

control phase of SRL. Despite 11 instances of locally assessing his problem strategy and 

2 instances of globally assessing his progress toward his perception of the goals of the 

problem, no corrective actions or problem-solving transitions were employed by Robert. 

In each instance of monitoring, Robert’s references to his current solution state were 

vague and did not focus on the specific conditions and goals of the problem. Rather, his 

assessments were focused on his substitution strategy or were general statements such as 

the following: “As of right now, I don’t really know if I’m doing this right, but I’m 

getting rid of variables, so I guess that’s a good thing.”  

His inability to focus on the particular goals of the problem may be explained by a 

persistent confusion between the goals and conditions of the application of differentiation

problem that was still present during his RRI2. In fact, during that interview Robert 

stated, “Maybe I wasn’t supposed to solve for a, b, c, and d. I was supposed to just deal 

with those and try to find tangent lines or the roots in terms of them.” Since the problem 

clearly asks the solver to find a, b, c, and d using conditions involving roots and tangents, 

Robert seems to have struggled with appropriately defining the task. His lack of attention 

to the preliminary phases of SRL processing may also explain his inability to convert his 

monitoring to problem-solving control aimed at progression toward a solution during the 

performance control phase. During his RRI2, I asked Robert whether mathematical 

resources, strategies, or control were his most significant barriers. Although he cited lack 
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of control as the most significant barrier for the application of differentiation problem, a 

statement later in the interview referring to the same problem seemed to contradict his 

assessment and imply that lack of mathematical resources was an issue. “I really just 

couldn’t think of anything else to do. That’s really all I could come up with,” he stated.  

 At 28 min 40 sec into TA1, Robert concluded that part (a) was not possible due to 

the failure of his substitution method to produce a solution, instead yielding 0 = 0. He 

then made a statement indicative of the self-reflection phase of SRL: “I feel like if I did 

this right and I get zero equals zero, that might mean that the if possible just means it’s 

not possible.” His reference to doing the problem right indicated a causal attribution that 

was strategy-focused, which is less likely to cause learning deficiencies than ability-

focused causal attributions (Zimmerman, 2000). At this point, Robert moved on to part 

(b) of the application of differentiation problem. He spent 1 min 27 sec reading and re-

reading the problem, then moved on to promising analysis of the problem conditions. For 

43 seconds, Robert worked with the second derivative, tying its roots to possible points of 

inflection. If only he had considered the type of function that he was working with, the 

fact that no solution was possible would have fallen into his lap! However, the arbitrary 

constants, which he claimed in subsequent interviews plagued him throughout both 

sessions, confused him to the point of reverting to his substitution strategy, and he spent 

his final 1 min 21 sec on this fruitless exploration. Additionally, during TA1, Robert’s 

only instances of heuristic strategy use were setting up the equations for finding the roots 

of the function and its first two derivatives. 

Robert’s work and verbalizations from TA1 exhibited three distinct 

epistemological beliefs. First, Robert’s work during TA1 represented a continuous 
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application of trial-and-error strategies, devoid of reason and logic, which demonstrates 

an empirical belief in mathematical problem solving. With respect to questionnaire data, 

this finding is not surprising since his PEP results yielded virtually the same score for all 

three scales of beliefs. The following quote from TA1 provides an example of Robert’s 

manifestations of an empirical belief in problem solving: “I’m going to plug it into the 

modified equation that I just got–see if that will get me anywhere.” Second, his devotion 

to the substitution strategy and his citation of this strategy as a causal attribution to his 

success or failure imply a belief that applying the right procedures to a mathematical 

problem will result in a solution. This finding is triangulated by questionnaire data since 

Robert received a low categorization for Belief 2 on the IMBS. Finally, Robert’s lack of 

contextual consideration for his substitution technique and failure to relate the conditions 

of the problem in some meaningful manner indicate a straightforward belief in the 

simplicity of knowledge (Hofer, 2000; Hofer & Pintrich, 1997). The following quote 

from his RRI2 is indicative of Robert’s manifestations of all three beliefs: 

So, I just went through this whole process of a few pages of work trying to solve 

for a, b, c, and d and initially I thought it was a pretty good idea. But, then I 

started to get these pages upon pages of work, which really didn’t make sense to 

me. But, I just kept going with it because I was in the thick of it.

Session 2. At the beginning of TA2, Robert continued to work on the application 

of differentiation problem. It should be noted that he was given the opportunity to work 

on the problem at home, if desired, during the interim between sessions, which amounted 

to two evenings since he had school during daytime hours. Robert reported that he simply 

thought about the problem during the interim, but wished that he would have done some 
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work on it. He spent the first 29 seconds of TA1 engaged in analysis of the problem 

space, relating the roots of the first derivative to horizontal tangents. Then, just as in 

TA1, the arbitrary constants a, b, c, and d diverted Robert’s attention from his promising 

work and eventually led him back to his substitution technique, which amounted to a 7 

min 2 sec fruitless exploration. During this portion of TA2, six occurrences of either 

monitoring strategy or goal state were coded but did not lead to any meaningful 

transitions in Robert’s navigation of the problem space. At one point during his 

exploration, Robert stated, “See if there’s an easier way to solve for a, b, c, and d. Hmm, 

the function, f, equals zero–it could be any number of values.” This quote represents a 

belief that all mathematical problems do not have a unique solution, and thus, certain

liberties in solution path development may exist. However, he continued to assume that a 

single, algebraic method existed and attempted to use the computer algebra system (CAS) 

built into his calculator to solve for a, b, c, and d.

Robert then turned his attention to part (b) of the application of differentiation 

problem. He spent 18 seconds reading the problem and 48 seconds engaged in analysis,

working with the second derivative. Then, 2 min 16 sec of exploration ensued, producing 

little progress toward the solution. This portion of the session ended when Robert stated, 

“Neither one of them [referring to parts (a) and (b) of the problem] are possible, because 

it does give me that option to say that they’re not possible, which I know good and well 

they most likely are. I’m just not thinking of the right way to do it.” This self-evaluation 

is evidence of the self-reflection phase of SRL. Robert’s assignment of causal attributions 

to his own ability may eventually prove detrimental to future learning endeavors, as 
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“attributions of errors to a fixed ability prompt learners to react negatively and discourage 

efforts to improve” (Zimmerman, 2000, p. 22).  

At this point, a brief transition period occurred while the researcher retrieved the 

application of integration problem (see Appendix F) for Robert. He spent approximately 

30 seconds reading the problem and then engaged in 55 seconds of analysis. During the 

analysis, Robert employed the draw a picture heuristic by sketching a graph of the 

function along with its bounds and then shading the appropriate region. This analysis led 

directly to a productive exploration lasting 3 min 46 sec, which resulted in expressions 

for the entire area and half the area of the enclosed region in terms of m (with a minor 

error). At this point, Robert transitioned back to the forethought phase of SRL and 

recycled the goal in working memory, stating, “Now, I just have to find the line that 

bounds that.” Despite this plan, Robert was unable to develop a strategy to find an 

equation for the vertical line.

With no immediate strategies available for completing part (a), Robert decided to 

move to part (b). He spent 11 seconds reading the problem, followed by 50 seconds 

engaged in analysis. Yet again, the analysis phase consisted mainly of Robert applying 

the draw a picture heuristic by sketching the graph of the curve, bounds, and shaded 

region. This analysis appeared to lead to productive exploration. However, Robert made a 

costly error when calculating the area of the enclosed region. His integral expression did 

not account for the boundary y = 1/2. So, despite three occurrences of monitoring either 

strategy use or goal state, Robert allowed this major error to go unchecked. Additionally, 

even if he had caught his mistake, the goal of part (b) was to find a horizontal line, which 

would have required a completely different approach. Calculating the area using 
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integration with respect to x lends itself to finding an equation for a vertical line, but not a 

horizontal line. At any rate, Robert then moved into a fruitless exploration that would last 

the final 13 min 32 sec of the session.  

Congruent with his earlier perusals of problem spaces, Robert’s actions during 

this exploration logged multiple instances of monitoring either strategy use or goal state–

12 instances, in fact. The culprit of his lack of attaining control, yet again, was the 

arbitrary constant m. A significant amount of metacognitive monitoring occurred as 

Robert grappled with the significance of m. To begin, he quickly dismissed solving for m,

recalling his earlier problems solving for a, b, c, and d, and decided to keep the m in the 

function. A good example of monitoring during this exploratory episode presented itself

when Robert stated, “I know it’s not as easy as just saying it’s three-fourths because the 

halves wouldn’t be equal.” A very lengthy exploration of the effects that m may have on 

the graph of h followed but was never resolved. He did consider making the substitution 

m = 1, which would have had some heuristic promise if he had considered solving this 

simpler problem. Instead, he merely used the substitution to view a graph. Then, Robert 

ended the session by trying a proportionality approach to solving for the necessary lines, 

but to no avail. 

From an epistemological standpoint, Robert’s overall navigation of the problem 

space during TA2 was coded as predominantly empirical, despite some flashes of 

rational logic mainly occurring during the application of integration problem. A sample 

quote supporting this assessment is as follows: “Well for the sake of I don’t really know 

what, I’m just going to factor out an m.” Similarly, despite some glimpses of a conceptual 

belief in mathematical problem-solving, most notably connecting integration to area 
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under the curve, this session was coded as demonstrative of a predominantly procedural

stance with respect to mathematical problem solving. Evidence of this assessment is 

Robert integrating part (b) with respect to x just as he did in part (a) without considering 

the conceptual ramifications of this decision with respect to the goal of finding an 

equation for a horizontal line. In fact, after reading part (b), he stated, “So, it’s basically 

the same concept, it looks like. I’ve just got to figure out what that concept is.” Yet again, 

questionnaire results provided triangulation for both the empirical and procedural

epistemological classifications. 

Interestingly, Robert’s MCI contradicted the procedural coding of his problem-

solving activities. Despite approving of the accuracy of his narrative which included the 

procedural coding, Robert made the following statement when asked whether procedural 

or conceptual understanding is more important to problem solving success: 

There have been plenty of people who don’t follow conventional steps and are 

still able to solve the problem in a round-about way. If you solve everything 

procedurally, some hiccup comes up and you don’t know how to handle it 

because you’re just focused on doing something you think just has to go step by 

step. . . If you know calculus, you can get through, well not everything, but you 

can sometimes formulate your own pathway, I guess.   

With respect to his problem-solving actions, this statement provides compelling evidence 

of a disconnect between Robert’s idealized belief in a conceptual approach and his 

realized manifestation of a procedural approach to mathematical problem solving. 

Robert’s RRI2 and MCI revealed an additional epistemological belief that 

manifested during the study. Robert’s confusion regarding the arbitrary constants a, b, c,
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d, and m had a rather deep-seeded, mathematical-beliefs basis. Schoenfeld (1992) 

suggested that many students have the non-availing belief that all mathematical problems 

have a unique solution. To situate this belief in the current context, consider the following 

statements. A unique belief regarding problem solutions would imply that a student 

would expect a unique solution for a, b, c, and d in the application of differentiation 

problem and require a unique value for m in the application of integration problem. An 

arbitrary belief regarding problem solutions would imply that a student is open to the 

possibility of infinite or no solutions for a, b, c, and d in the application of differentiation 

problem and comfortable with m representing a family of exponential functions from 

which a general solution with respect to m may be obtained.  

Based on his problem-solving actions and interview responses, Robert’s belief 

regarding problem solutions was coded as predominantly unique. It should be noted that 

Robert stated that a, b, c, and d could be any number of values, which is demonstrative of 

an arbitrary belief regarding problem solutions. Based on the theoretical framework for 

this study, beliefs lie on a continuum and thus, may manifest in a contradictory fashion 

based upon context (Hofer & Pintrich, 1997; Schommer, 1990). Then, the above finding 

implies that Robert lies somewhere between the extremes of this belief’s continuum, but 

is closer to the unique classification. An alternative hypothesis may be that Robert held 

an arbitrary belief for the duration of the application of differentiation problem but 

lacked the mathematical resources to develop additional strategies. Based on this data, the 

researcher asserts that Robert’s non-availing, unique belief and a lack of mathematical 

resources worked in tandem to produce his unsuccessful problem-solving attempt. The 

arbitrary/unique belief regarding problem solutions dimension seems closely related to 
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Hofer and Pintrich’s (1997) fixed and fluid beliefs in the certainty of knowledge. Further 

discussion of this suggestion may be found in Chapter V: Cross-Case Results.

In a manifestation of his unique belief, Robert expressed his confusion regarding 

the role that the constant m played in the application of integration problem during his 

RRI2:

I still have the whole m problem, which I feel more confident about the value of m

being irrelevant, just because it tells me it’s a nonzero positive integer. And I 

guess that could be a guideline, so when you solve it and you get negative one, 

you’re just wrong. But I feel like you just have to know it’s positive, more so than 

figuring out the actual value for it. But, it still just messed with my head a little 

bit. I’m not good with having a variable that I don’t know the answer for.

When probed further as to whether substituting an arbitrary value for m would produce an 

acceptable solution for the problem, Robert responded: 

It would have been, because as long as I keep my m consistent, it really shouldn’t 

matter, I wouldn’t think. Because if I plugged in a seventy-two, I have a seventy-

two all the way through; so, I don’t think it would matter because in the end, 

using given values it would give me, I don’t know if it would give me a different 

answer. It would give me different work, certainly. But, I think the answer would 

probably still be the same.  

Finally, during his MCI, the researcher asked Robert to discuss his confusions with the 

arbitrary constants and, if possible, indicate a source for his confusions. His response 

indicated that his unique belief continued to persist as of this writing and provided a 

possible source for its inception:
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Well, just having variables there. I’ve always been taught you need to solve for 

your variables.  Because other than calculus there has never really been a problem 

where you’ve had variables, but that’s not really the focus of the problem.   

As will be discussed further below, Robert was not alone in this confusion with arbitrary 

constants and variables. 

Think-aloud problem-solving session performance. Robert made progress on both 

problems, but was unable to fully solve either of the problems given during the think-

aloud sessions. For part (a) of the application of differentiation problem, the researcher 

deemed that his problem-solving approaches led to little progress and applying 

Schoenfeld’s (1982) scoring range of 1–5 points (see Chapter III: Methodology for 

details), assigned him a score of 4 points for part (a) of the application of differentiation 

problem. The rationale for assigning four points is that Robert’s recognition of the 

calculus connections between the conditions and the first derivative merited some 

recognition, but no progress was made toward connecting the conditions to the goal of 

the problem. For part (b) of the application of differentiation problem, Robert was 

awarded 10 points based on Schoenfeld’s (1982) 6–10 point range given for approaches 

yielding some progress. The rationale for this score is that accurate calculation of the 

second derivative was a significant step in the solution of this problem. In fact, 

recognizing that a linear function with nonzero, defined slope may never be strictly 

positive was all that was left to obtain full credit. So, Robert’s total score for the 

application of differentiation problem was 14 out of 40 points. 

For part (a) of the application of integration problem, Robert made little progress 

and, factoring in a minor calculation error, a score of four points was assigned for part (a) 
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of the application of integration problem. For part (b) of the application of integration 

problem, he made little progress and, factoring in a major integral setup error, a score of 

two points was assigned for part (b) of the application of integration problem. So, 

Robert’s total score for the application of integration problem was 6 out of 40 points. His 

total combined score for both problems was 20 out of 80 points. 

AP Calculus Exam Preparation 

Each participant was asked to describe the differences in the problem-solving 

tasks used during AP Calculus exam preparation and think-aloud sessions. Regarding the 

AP Calculus exam preparation problems, Robert made the following statement:  

The ones in class were difficult calculus but they were straightforward calculus. 

There weren’t too many that were just out there. They were difficult concepts, 

you know, a lot of steps [emphasis added] and that sort of stuff. 

From the researcher’s perspective, the AP Calculus exam preparation problems generally 

provided either an explicit or implicit solution path. However, mindless application of 

procedures would not have yielded a successful solution; connections to various concepts 

based on multiple representations of information were required to successfully solve the 

problems (Stein, Smith, Henningsen, & Silver, 2000).  

In contrast, Robert indicated significant differences in the think-aloud session 

problems: 

The ones outside of class seemed to be a lot more abstract, you know, you had the 

variables and it was just kind of weird. . . The ones after school seems like you 

needed a little bit more practice, you needed to be a more seasoned calculus 

student, or user, I guess.       
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The researcher concluded that the think-aloud problems required participants to exert 

significant cognitive load, develop non-algorithmic solution paths, and apply multiple 

calculus concepts learned at various times throughout the course (Stein et al., 2000). 

Overall, the exam preparation problems were categorized as “procedures with 

connections tasks” and the think-aloud problems as “doing mathematics tasks” (Stein et 

al., 2000, p. 16). 

Classroom observation 1. Robert was observed working on question 3 of the AP 

Calculus AB 2006 (Form B) exam with his partners, Dan and Tom (see Appendix E). 

Students were provided a graph that modeled the height of a skateboard ramp and 

conditions that the graph met and given four problems, (a)–(d), to solve. For part (a), the 

group had to show that the general quadratic f (x) = ax
2 did not meet one of the given 

conditions. The researcher got the impression very early in the session that Tom had 

become the de facto leader of the group. He developed a plan for solving part (a) and 

shared his plan with the group. Dan and Tom embraced the plan and began working. 

However, Robert was unable to move forward due to the abstract nature of the function. 

He self-disclosed his problems and requested feedback from his partners. Ironically, as 

Dan and Tom helped Robert, they caught an error in their work. Due in large part to 

Robert’s request for help and the ensuing group monitoring, all three group members 

received the full two points for part (a).

 For part (b), students had to find a coefficient for a family of cubic functions that 

met one of the given conditions. There was virtually no discussion about this part; all 

three seemed to understand what needed to be done. Possibly based on the monitoring 

lesson learned above, the group actually engaged in two separate instances of monitoring 
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for part (b). The result was a verified solution whose accuracy earned all three members 

the one point designated for part (b). 

 For part (c), the group had to show that the function they developed in part (b) did 

not meet one of the conditions given in the problem. Tom had to assume his leader role 

again, as Dan and Robert were unable to contribute any ideas. Upon presenting his plan, 

Dan began working, but Robert stated that he had “no idea what is going on.” This was 

another example of group monitoring by Robert, as self-disclosure of current state and 

feedback requests ensured that all group members understood the problem. So, aided by 

direction provided by Tom, Robert calculated the required derivative and provided an 

explanation based on his work. The result was that all three group members received the 

full two points for part (c).

 For part (d), a new function, h (x) = xn
/k, was introduced and students were 

required to find values for n and k such that all conditions were met. Upon reading this 

part, Robert said that “his head was starting to hurt.” His verbalizations indicated that he 

understood the general connections between the conditions of the problem and the goal. 

However, as in his think-aloud sessions, the arbitrary constants k and n confounded the 

development of a solution path. Despite requesting and receiving feedback from Tom, 

Robert was unable to rectify part (d) and finished the session watching and listening. Dan 

and Tom continued working on part (d) until time was called. Thus, Robert received zero 

points, Dan received two points, and Tom received three points out of four possible 

points. In sum, Robert received 5 points, Dan received 7 points, and Tom received 8 

points, resulting in a mean group score of 6.67 out of 9 possible points. The group 

outperformed the class, which averaged only 4.87 points. 
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Classroom observation 2. For his second classroom observation, Robert worked 

with his group on question 2 of the AP Calculus AB 2007 (Form B) exam (see Appendix 

E). This question provided students with a velocity function and its graph on a closed 

interval and four subsequent problems, (a)–(d). For part (a), Robert suggested they use 

the second derivative to calculate the acceleration and asked for feedback from the group. 

Tom pointed out that the given function and graph represented velocity and thus, only 

one derivative was needed. This instance of monitoring and discussion resulted in all 

group members receiving the full one point for part (a).

 Unfortunately, the group was unable to do much after their early success on part 

(a). For part (b), Tom erroneously informed the group that total distance is the definite 

integral of the velocity function over a domain. Dan and Robert assented without 

argument and began working. The group moved on upon obtaining a solution but 

returned to part (b) later and discussed whether the solution was accurate. During this 

discussion, Tom recalled the need for absolute value, but wanted to use the position 

function. Dan and Robert applied group monitoring and convinced Tom that velocity was

the correct function. Unfortunately, no one considered the conceptual significance of 

their arguments. They were all trying to recall procedures and never considered 

examining the role of the integral and the physical aspects of the problem. Thus, all three 

students left their answers as before and received zero out of two possible points.  

 For part (c), students were to find the final position of the object given an initial 

position and an interval of time. No one was able to even provide an idea for part (c) and 

all three left the problem blank, earning zero out of three possible points. For part (d), 

students were to determine the point at which the object is farthest right over a given time 
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interval. At the beginning, Dan and Tom discussed the problem and seemed to be on 

track to provide a full solution. Robert was watching and listening and at one point asked 

which part the group was working on. At this point, Tom described the current state of 

his solution to Robert, who assented but did not indicate whether he fully understood the 

problem. Despite having an accurate solution and engaging in some group monitoring, no 

one received full credit because their analyses were incomplete. Robert and Tom each 

received one point and Dan received two out of a possible three points. In sum, Robert 

and Tom received 2 points and Dan received 3 points, resulting in a mean group score of 

2.33 out of 9 possible points. The group was outperformed by the class, which averaged 

4.42 points. 

 AP Calculus exam preparation performance. All three members of Robert’s 

group were present for all twelve AP practice sessions. Group statistics for the twelve 

problems were as follows: Robert averaged 4.50 points, Dan averaged 4.75 points, and 

Tom averaged 5.92 points. Thus, the group’s overall average score for the 12 problems 

was 5.06 points, resulting in a difference between Robert’s and his group’s average score 

of 0.56&  points. The overall class average for the 12 problems was 4.92, resulting in a 

difference between Robert’s average score and the overall class’ average score of 0.42&

points. 

Edwina’s Narrative 

Mathematical Achievement and Questionnaire Data 

With respect to her peers, Edwina was categorized as a Category IV calculus 

achiever with a grade of 76 in AP Calculus AB. Her inclusion in the study was for the 

purposes of quota sampling, as she placed slightly higher in the achievement interval than 
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Robert (Miles & Huberman, 1994). For the IMBS, Edwina was categorized as average 

for all scales except Belief 3, for which she received a low categorization. Thus, based on 

self-reported data, Edwina tended to believe that understanding mathematical concepts is 

not important as long as performance can be maintained to a satisfactory level 

(Kloosterman & Stage, 1992).  

For the MSLQ, Edwina was categorized as average for all scales except for the 

Peer Learning scale, for which she received a high categorization. So, Edwina self-

reported that she found value in collaborating with peers while working on assignments 

and studying for this course (Pintrich, et al., 1991). Additionally, like Robert, Edwina 

scored higher on Extrinsic Goal Orientation (5.75) than on Intrinsic Goal Orientation

(3.75). Thus, based on self-report data, Edwina tended to participate in tasks for reasons 

such as grades or other performance indicators instead of being driven by the desire to 

master content (Pintrich et al., 1991).  

Edwina’s PEP scores for the Rational, Empirical, and Metaphorical scales were 

104, 113, and 94, respectively. All three scores categorized Edwina as average and 

indicated that she was predominantly empirical in her views on knowledge construction 

and development. Based on her self-reported empirical epistemological preference, 

Edwina indicated a tendency to apply perceptual cognitive processing and to justify 

knowledge claims via observational criteria (Royce & Mos, 1980).  

Think-Aloud Sessions 

 Session 1. Edwina began TA1 by spending 27 seconds reading part (a) of the 

application of differentiation problem and spending 1 min 58 sec engaged in analysis of 

the problem space. Unfortunately, two issues emerged during her analysis that plagued 
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her future work on the problem. First, Edwina exhibited conceptual confusion by trying 

to tie the first derivative of f to the roots of f. When questioned later during her RRI1, 

Edwina was unable to identify the meaning of the root of a function. Second, Edwina 

stated, “This is weird because I am working mostly with variables and constants,” 

indicating confusion with the arbitrary constants a, b, c, and d. Her interviews provided 

confirmation of this assertion and will be discussed further below. So, despite making 

some progress with the conditions, Edwina entered part (a) with a poor definition of the 

task, due in large part to her misconceptions. 

After this analysis of part (a), Edwina spent 17 seconds reading part (b) of the 

application of differentiation problem. Then, the remaining 23 min 2 sec were spent 

engaging in a series of fruitless explorations. Edwina began her exploration by applying 

the heuristic draw a picture by graphing the function with her calculator. During the 

session, I was confused by how she produced a graph since f represented a family of 

curves. In her retrospective interview, my probes revealed that she had fixed a = 1, b = 1, 

c = 1, and d = 0. Her substitutions provided a means for viewing a sample graph and a 

special case of f to begin building a function. However, she had no plans to use her 

special case in this manner. Rather, she used this special case in place of f in an attempt to 

solve for a, b, c, and d, not realizing the circular nature of her logic. When questioned as 

to the ramifications of substituting for a, b, c, and d during the retrospective report and 

interview, Edwina’s responses were indicative of continued confusion with the role of the 

arbitrary constants and the final goal of the problem. Further probing during the interview 

presented evidence of a unique belief regarding problem solutions as described in 

Robert’s narrative above and as indicated by the following statement:
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I knew I had to solve for a, b, c, and d. I just didn’t know how so I just took 

circular routes, doing stuff I thought I knew how to do. I think that’s it. I’m just 

really bad when, it sounds bad, but the less information, when you do have more 

constants and more coefficients that aren’t given confuses me–that’s my one 

weakness. 

During her exploration, Edwina showed some signs of forethought, as her actions 

produced five codes for planning. Her plans were generally empirical in nature and did 

not result in significant progress toward the overall goal of the problem. Early in the 

exploration Edwina lost sight of the goal of the problem and made a plan early to solve 

for x, seemingly to find the locations of the horizontal tangents and the root. Upon 

solving for x using the first derivative of her special case for f, Edwina continued to show 

signs of conceptual confusion, particularly with respect to the role of the first derivative: 

x equals negative two thirds, but this can’t be right because I’m solving for 

tangents. And I just solved for the slope. But the derivative is the tangent line, but 

not the horizontal tangent, so this doesn’t make sense. 

Other examples of plans included constructing sign lines for both derivatives, writing 

equations of tangent lines, and substituting the value of x obtained above into the original 

function. All plans were indicative of both empirical and procedural beliefs in problem 

solving. 

Evidence of actions in the performance control phase of SRL processing included 

six instances of local assessments of strategy use and two instances of global assessments 

of goal state. Each of her assessments focused on surface qualities of current strategies 

and general statements of an inability to move forward, producing no information to alter 



159

current strategies or transition to other ideas. For example, she stated, “I graphed the 

second derivative and that didn’t do anything for me because it just went straight to the 

origin as a line. It has nothing to do with concavity right here.” Her linear graph of the 

second derivative had everything to do with the concavity of f and analysis of the graph’s 

qualities leads directly to a solution for part (b). However, her conceptual confusions 

mentioned above stifled her ability to monitor her current state, assess the graph, and 

produce transitional metacognitive feedback necessary for productive action during the 

performance control phase.  

 Edwina’s session ended with her giving up on the problem after 26 min 14 sec, 

rather than completing the thirty-minute session. Just before she stopped working, 

Edwina made a statement that shed some light on her conceptual confusions: “I’m not 

used to finding a, b, c, and d. This is probably really easy if I saw how to do it once.” Her 

statement was indicative of a procedural belief in mathematical problem solving, which 

is in direct contradiction to a conceptual stance. This result is consistent with her low 

score on the Belief 3 scale of the IMBS, which measures the degree to which students 

feel conceptual knowledge is important to mathematics. Further evidence and discussion 

of this belief will be presented below.

Interim between sessions. Despite stopping before the session ended, the 

researcher encouraged Edwina to take the application of differentiation problem home 

and continue working on or thinking about it during the interim between sessions, which 

consisted of three evenings since she was in school during the day. By a stroke of luck, a 

calculus teacher was visiting next door to Edwina. Demonstrating the help-seeking

qualities of SRL, Edwina asked this teacher for help and, thus, was able to solve part (a) 
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of the problem, providing the function f (x) = x3 + 2x
2 + 10. Unfortunately, she was only 

able to partially explain and justify the solution path. Additionally, Edwina stated that 

part (b) was not possible but was unable to provide any justification for her answer.  

Session 2. Satisfied with her progress on the application of differentiation 

problem, Edwina spent all of her time during TA2 working on the application of 

integration problem. She spent the first 52 seconds of the session reading part (a) of the 

problem, noting the conditions and identifying the goal. Then, she spent the next 5 min 5 

sec engaged in analysis of the graphical properties of the function and the accompanying 

shaded regions (see Figure 4). During this period she used her graphing calculator to 

view two special cases such that m = 1 and m = 5 to determine the effects that m may 

have on the graph. She also recycled the goal in working memory, indicating that she had 

not lost sight of the desired end state. So, Edwina entered the remainder of the problem 

session with an accurate and adequate definition of the task for part (a).

Upon properly defining the problem space for (a), Edwina spent 19 seconds 

reading part (b), noting the conditions and identifying the goal state. Then, she spent 1 

min 51 sec engaged in analysis similar to that in part (a), which resulted in an erroneous 

sketch of the shaded region since she bounded the region by the x-axis, instead of the y-

axis. Additionally, Edwina stated, “This is the same kind of problem,” which implied that 

she failed to note the significant alteration inherent in the requirement of finding a 

horizontal line, rather than a vertical line. Thus, Edwina did not enter the problem space 

with a sufficient definition of the task for part (b).

Edwina made virtually no progress on either part after this point. She spent her 

remaining 17 min 13 sec in a series of fruitless explorations. Her first exploratory action 
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was prefaced with the following statement: “Maybe I’ll take the derivative, just for the 

heck of it, and see what it does.” This statement is indicative of the empirical mindset 

that pervaded the remainder of the session. Finding no application for the derivative, 

Edwina examined her graphs again and discovered a problem with the shaded region for 

part (b)–it was boundless. Unable to resolve this issue, Edwina developed a plan to find 

the area of the enclosed region and then divide it in half. This sole instance of activity in 

the forethought phase showed that Edwina had a general notion of the demands of the 

problem. However, Edwina was unable to recall the difference between the integral-

defined formulas for area and volume: 

OK, we’ll try that, we will solve for area right now. And, area is different from 

 volume; I’ll have to remember that. Volume is right over left and bottom over the 

 top. 

Edwina had truly confused the calculus of area and volume. She partially recalled the 

mnemonics right minus left and top minus bottom, which many novice calculus students 

apply when trying to determine the order of subtraction for area problems, not volume 

problems as indicated by Edwina. 

 Unable to develop the integral expression for area, Edwina tried to approximate 

the area. Her first attempt involved using the Pythagorean Theorem to estimate the area 

of the region, which she assumed to be approximately triangular. Unfortunately, she used 

a height value, or y-value of 4, which should have been 1 and obtained a large value for 

the hypotenuse. Unable to rectify this, she turned to part (b) and discovered that the 

unbounded nature of her shaded region was due to an error in her sketch. Based on this 

local assessment of her current strategy, she corrected the problem and thus, obtained an 
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accurate sketch of the shaded region (see Figure 5). Deciding the region was too small to 

estimate, Edwina made one last attempt to recall calculus-based area. When this was 

unsuccessful, Edwina decided to stop working after 25 min 20 sec instead of waiting for 

the thirty-minute session to expire. Over the duration of the session, only six instances of 

self-monitoring were coded and led to no productive transitions or alterations in strategy, 

providing little evidence of the performance control phase.

Figure 4. Edwina’s Sketch for Part (a) of the Application of Integration Problem-Solving 

Task.
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Figure 5. Edwina’s Corrected Sketch for Part (b) of the Application of Integration 

Problem-Solving Task. 

At one point during her exploration, Edwina recalled the goal of the problem and 

made the following statement, indicating an underlying reliance on procedures: “I don’t 

remember how to solve [emphasis added] for a vertical line and I don’t know how we’re

going to find out where it divides it exactly in half.” Edwina expected a procedural 

method for finding equations of vertical lines. For this problem, there is no such 

algorithmic procedure; one must conceptualize the meaning of enclosed area and the role 

of bounds to develop a means for finding the vertical line. This interpretation of Edwina’s 

procedural belief in mathematical problem solving is supported by her low score on the 

Belief 3 scale of the IMBS. Additional support for this finding is her response to a query 

concerning barriers to problem solving from her RRI2: “Having memorized the equations 
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in the past and not really knowing how to apply them, so therefore you forget the 

equations and it’s not good because you need to remember them.” Edwina also cited lack 

of access to mathematical resources as an issue that prevented her from considering 

multiple problem-solving strategies.  

Edwina shed some light onto the source of her procedural belief and lack of 

mathematical problem-solving resources: 

My experience in the past–and not to hate on the teachers I’ve had–but they’ve 

never really encouraged you to think.  It’s all been cookie-cutter questions, even 

with word problems. I remember my Algebra One teacher, she had a little trick 

for everything. So, of course, I don’t remember the trick now and I don’t 

remember why I was doing it. So, I felt like there were a lot of short cuts, and I 

was never really taught why you were using it. So, I memorized everything, 

which is what I’ve been doing ever since.                      

So, Edwina attributed her beliefs in procedural mathematical problem-solving and her 

lack of mathematical resources to a consistent focus on memorization and cookie-cutter

mathematical problems presented in past courses. In a manner similar to Robert, 

Edwina’s responses during the MCI indicated a disconnect between desired beliefs and 

manifested beliefs. Her comments to my query regarding the importance of procedural or 

conceptual understanding to problem solving were as follows:  

Understanding the underlying concepts because you can’t get very far without 

them, like I was unable to do. I didn’t understand all the concepts, so I wasn’t able 

to solve any parts of the problem. Even if I understood part of it, I couldn’t get 

very far. 
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So, Edwina realized that her lack of conceptual understanding was her demise, but her 

prior experiences in mathematics courses appears to have resulted in a manifestation of 

procedural dependence while solving mathematical problems.  

Finally, Edwina indicated having difficulty with the arbitrary constant m, which 

was consistent with her issues with a, b, c, and d during the first session. The inability to 

reconcile these arbitrary constants may be attributed to a unique belief regarding problem 

solutions. When asked to comment on her confusions and their possible source, Edwina 

made the following statement: 

So I wasn’t really sure how to [emphasis added] solve the problem when you’re 

just given constants because that requires you to think conceptually [emphasis 

added] and think, well what’s going on in this equation, rather than oh, let’s see 

what’s going on once I plug  these numbers in. So that’s where I had the problem, 

it goes back to the whole conceptual knowledge part, I think. 

True to her deeply ingrained belief in procedural problem solving, Edwina ironically used 

the words how to in the same sentence that ended with think conceptually. Edwina’s 

comments also introduce a possible link between the non-availing unique belief regarding 

problem solutions and the non-availing procedural belief in problem solving. 

Think-aloud problem-solving session performance. For part (a) of the application 

of differentiation problem, Edwina made little progress during her first session. Despite 

having the help of a calculus teacher during the interim between sessions, Edwina was 

unable to adequately justify each step leading to her answer for part (a). Thus, based on 

Schoenfeld’s (1982) scoring guidelines, Edwina was awarded 16 points out of 20. For 

part (b) of the application of differentiation problem, Edwina made significant progress 
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by calculating the second derivative but could not recall its connection to concavity. 

Then, during her interim interview, she stated, “I wasn’t sure how it could be concave up 

from negative infinity to infinity, so I don’t think it’s possible.” Her uncertainty was still 

apparent during RRI2, as she stated that the problem confused her and she was uncertain 

of her answer. Based on the above, Edwina was determined to have made some progress 

on part (b) and was awarded 10 points out of 20. In total, Edwina scored 26 points out of 

40 on the application of differentiation problem. 

 For the application of integration problem, Edwina made very little progress on 

both parts (a) and (b). By the end of TA2, Edwina had made accurate sketches of the 

regions for both parts, but made no progress toward connecting conditions to goals. Thus, 

Edwina received 1 point for each part of the application of integration problem, resulting 

in a total score of 2 out of 20 points. Overall, Edwina scored 28 out of 80 points for the 

think-aloud sessions.

AP Calculus Exam Preparation 

During each MCI, participants were asked to comment on the differences in the 

tasks given during the AP Calculus exam preparation sessions held during class and the 

think-aloud sessions held after school. With respect to the think-aloud problems, Edwina 

stated, “The after school problems were definitely more abstract and required me to think 

all on my own.” This description is consistent with categorizing the think-aloud problems 

as “doing mathematics tasks” (Stein et al., 2000). However, Edwina’s comments 

regarding the AP exam practice problems were too vague to assign a classification.  

Classroom observation 1. Edwina was observed while working on question 6 

from AP Calculus AB 2004 (Form B) exam with her partners, Bob and Ken (see 
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Appendix E). The question provided a graph of the general power function y = x
n and its 

tangent at the point $ %1, 1  and posed three problems, (a)–(c). For part (a), students were 

asked to calculate the integral of the function y = x
n with respect to x from zero to one. 

Bob, who appeared to be the de facto leader, integrated the expression without problem, 

but Ken and Edwina seemed confused. Bob and Ken discussed the problem, resolved the 

issue of uncertainty as to whether bounds are substituted in for n or x, and both were 

satisfied with their work. Edwina assented to their plan and followed along procedurally. 

For part (a), all three group members earned the full two points. 

For part (b), students were required to calculate the area under the tangent line. 

After lengthy discussions, Bob and Ken successfully determined a method for finding the 

slope of the tangent and chose to integrate with respect to y to find the area. Edwina was 

unable to follow along, but assented and carried out the established plan. The method for 

finding the slope of the tangent was successful, but integrating with respect to y proved 

too difficult. Finding the area using geometric formulae or integrating with respect to x

would have been simpler. Due to a minor arithmetic error, Bob and Ken earned two 

points out of three. Unfortunately, despite group verification, Edwina’s answer contained 

the arithmetic error and the integral was not properly set up. So, she only received one 

point out of three for part (b). 

Finally, part (c) required students to find the area contained between the general 

power function, y = x
n, and the tangent, then determine the value of n that maximizes the

area. Upon recognizing the need for optimization, Bob provided a general plan for 

solving the problem but could not adapt his plan to the current context. Ken and Edwina 

could not follow his logic and were unable to contribute. None of the group members 



168

made any significant progress on part (c), so all three received zero points out of four. In 

sum, Edwina received 3 points and Bob and Ken received 4 points, resulting in a mean 

group score of 3.67 out of 9 possible points. Despite the low score, the group 

outperformed the class, which averaged 2.72 points. This was the lowest average score 

for the class of all twelve problems.

Classroom observation 2. For her second observation, Edwina was observed 

working on question 3 from the AP Calculus AB 2008 (Form B) exam with her group 

members (see Appendix E). The question provided a table of water depth values at 

various distances from the shore of a river and a function describing the river’s velocity. 

Based on the given information, four problems, (a)–(d), were posed. For part (a), students 

were required to use the trapezoidal rule to approximate the cross-sectional area of the 

river. After a brief conversation, all three students appeared to understand the concept 

and began working. Unfortunately, despite group verification, only Bob and Ken received 

the one point for part (a). Edwina had the correct answer, but her Trapezoidal rule setup 

was incorrect and did not lead to her answer. So, she received zero points for part (a). The 

reason for this and other instances of point discrepancies between Edwina’s and her 

group’s scores may be explained by her lack of questioning, as she indicated during her 

MCI, stating, “I didn’t want to keep asking questions. I felt bad for interrupting their 

thinking process.” So, group dynamics definitely affected the number of group 

monitoring codes recorded for each group.     

 For part (b), volumetric flow was defined as the product of cross-sectional area 

and velocity. Students were required to calculate the average volumetric flow over a 

given time period. Bob immediately recognized that average value was needed and 
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conceptually explained his reasoning to Ken. Edwina assented to their plan and all three 

began working. Edwina had calculator problems and upon asking for help, Ken appeared 

to rectify the issue. Unfortunately, Edwina’s final answer was still inaccurate, so she 

received two points out of three. Bob also received two points out of three for having an 

inaccurate setup. Finally, Ken received the full three points for part (b).

 For part (c), a function was proposed to model the depth of the river in lieu of the 

table of values given. Students were required to find the cross-sectional area using the 

newly-defined function for depth. After initial confusion with wording, Bob yet again 

developed the group’s solution path, suggesting that simple integration was sufficient. 

Both Ken and Edwina assented and all three began working. Just as in part (b), Edwina 

had problems inputting the necessary commands into her calculator. She again relied on 

her partners to monitor her problems, as Bob was called upon to assess her calculator 

issues. In the end, all three students earned the full two points for part (c). 

Finally, part (d) required students to decide if water must be diverted based upon 

a constraint given for the volumetric flow. Bob developed a plan involving the use of 

results from (c) and information from (b) to generate a solution. Edwina did not follow 

his plan and upon request, Bob clarified for her. Once satisfied, all three worked the 

problem and earned the full three points for part (d). Throughout the observation, Edwina 

remained a passive observer and assented to plans developed by Bob and Ken. In sum, 

Edwina received 7 points, Bob received 8 points, and Ken received 9 points, resulting in

a mean group score of 8 out of 9 possible points. Once again, the group outperformed the 

class, which averaged 6.43 points.  
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 AP Calculus exam preparation performance. Since Ken missed two AP exam 

practice sessions, all group data contain only the ten sessions for which the group was 

intact. Group statistics for the ten problems were as follows: Edwina averaged 4.0 points, 

Bob averaged 5.8 points, and Ken averaged 5.2 points. Thus, the group’s overall average 

score for the 10 problems was 5.0 points, resulting in a difference between Edwina’s 

average score and her group’s average score of 1.0& . Edwina’s overall average 

performance on all 12 in-class AP Calculus AB practice problems was 4.17 out of 9 

possible points. The overall class average for all 12 problems was 4.92, resulting in a 

difference between Edwina’s average score and the overall class’ average score of 0.75&

points.  

Julia’s Narrative

Mathematical Achievement and Questionnaire Data 

With an AP Calculus AB grade of 85, Julia was very close to the class average (M

= 86.8) and was categorized as a Category III calculus achiever. Her inclusion in the 

study was a result of continuing to build the quota sample (Miles & Huberman, 1994) 

and a preponderance of high scale categorizations from the questionnaires. For the IMBS, 

Julia was categorized as average for every scale except Belief 5, for which she was 

categorized as high with a maximum score of 30. Thus, Julia self-reported a strong, 

availing belief that students can increase mathematical proficiency via effort 

(Kloosterman & Stage, 1992).  

For the MSLQ, Julia was categorized as average on four scales and high on three 

scales. For the Motivation scales, Julia’s only high categorization was for the Extrinsic 

Goal Orientation subscale. Additionally, like Robert and Edwina, Julia scored higher on 
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Extrinsic Goal Orientation (6.5) than on Intrinsic Goal Orientation (5.5). Thus, based on 

self-report data, Julia tends to participate in tasks for reasons such as grades or other 

performance indicators instead of being driven by the desire to master content (Pintrich et 

al., 1991). For the Learning Strategies scales, Julia was categorized as high for Peer 

Learning and Help Seeking. Thus, Julia self-reported the ability to manage resources and 

use peers, teachers, and other sources to facilitate her learning and achievement (Pintrich 

et al., 1991).  

Finally, Julia was categorized as high for both rational and empirical 

epistemological persuasions from the PEP. She was identified as predominantly 

empirical, producing the highest score for this scale (125) in the class. However, with a 

high categorization for the Rational scale as well, Julia self-reported the tendency to 

apply cognitive processing that may exhibit a mixture of perception and analysis, and 

justifications that may be based on a combination of observations and logic (Royce & 

Mos, 1980).  

Think-Aloud Sessions 

 Session 1. Julia began TA1 by spending 47 seconds reading both parts of the 

application of differentiation problem. Then, she engaged in analysis for 1 min 45 sec, 

establishing a relationship between the conditions and the goal of part (a) of the 

application of differentiation problem by setting up two equations–one to solve for the 

roots of the function f and one to solve for the roots of the derivative of f. So, Julia 

appeared to enter part (a) of the application of differentiation problem with a well 

established definition of the task. However, Julia did not recognize the arbitrary nature of 

the problem and subsequently, set off on a fruitless exploration of the problem space that 



172

lasted 9 min 45 sec. This exploratory phase of her problem solving effort was peppered 

with four instances of planning, indicative of processing in the forethought phase of SRL. 

However, the planning instances were not precluded by an assessment of the current state

of the problem and thus, promoted further distancing from the conditions of the problem 

and the goal state (Schoenfeld, 1985). For example, one of her plans was to set the 

function equal to the derivative and try to use the equation to solve for a, b, c, and d.

Clearly, this equation has little, if any, mathematical meaning and indicates that Julia was 

simply trying to accomplish something. 

Particularly lacking from Julia’s exploration were instances of monitoring. In fact, 

only three instances of locally monitoring strategy use and no instances of globally 

monitoring goal state were coded. Additionally, all four instances focused on deficiencies 

in the current state of her efforts, as follows: “That’s pointless;” and “That one didn’t take 

out the a.” The instances of monitoring also yielded no fruitful transitions or 

modifications to the strategies being employed. 

Julia spent 5 min 9 sec alternately re-reading and analyzing parts (a) and (b) of the 

problem. During this period, 50 seconds were spent re-reading and the remaining 4 min 

19 sec were spent in analysis. Julia employed some rather productive heuristics during 

this period of analysis. She drew a few graphs and began considering the simpler case of 

the function y = x
3. During this analysis, she stated that a cubic will be concave up if the 

value of a is positive. This statement baffled me until she explained, during RRI2 that she 

was confusing the concept of a quadratic graph opening up with a general polynomial 

being concave up. Two very enlightening, yet simultaneously frustrating, statements were 

made during this phase. The first, which regards part (b), is as follows: “It couldn’t be 
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cubic–if it were going to be concave up the whole time, so a would have to be zero, but it 

can’t be. (Exasperated) So, I don’t know.” The problem clearly contained the wording if

possible, implying that no solution was a possibility. Julia had developed a sufficient and 

appropriate argument that part (b) is not possible, but doubted her assertion. The second 

statement, which regards part (a), is as follows: “If it has two horizontal tangents and one 

root, that means one horizontal tangent is below the x-axis and one’s above.” Clearly this 

is a false statement, but this direction would have been fruitful to explore; however, Julia 

left it unchecked and moved to other explorations. 

Despite this promising analysis of the problem space, Julia was unable to make 

the necessary critical connections, and instead reverted to her substitution methods and 

spent the remaining 15 min 12 sec on this fruitless exploration. This phase of her problem 

solving endeavor began with the statement, “OK, let’s try. . . (loud sigh) I have to solve 

for something.” Then, despite having just developed a rational argument for part (b) 

having no solution, Julia attempted to solve for a, b, c, and d by setting the second 

derivative equal to zero. This led her to the equation 6ax + 2b = 0 and having just stated 

that 0a ' , she was once again primed to show that part (b) was not possible. Instead, she 

spent the remainder of the session trying to find solutions for a, b, c, and d for the roots of 

the second derivative and for the conditions she had developed from part (a).  

During this exploration, the extent of Julia’s actions in the forethought phase 

encompassed two instances of planning. Each plan resulted in a transition to a new 

problem-solving strategy, but Julia never considered the consequences of the transitions 

in terms of progression toward the goal state of the problem. Only two instances of 

monitoring were coded, indicating little evidence of performance control during this 
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exploration. Additionally, all three instances of monitoring were negative assessments of 

her current strategy, as the following example indicates: “c equals x over negative three 

ax plus 2x–that’s not helping.” As time was called, Julia was continuing to randomly try 

substitution, factoring, and other strategies to find the solution. Her work had led her to 

the equation x2 = –1, which unfortunately has no real solutions. 

Evidence of three epistemological beliefs was noted during TA1. First, Julia’s 

verbalizations during TA1 indicated conceptual understanding of roots, tangents, and 

concavity. However, Julia’s actions during TA1 indicated a predominantly empirical 

stance on mathematical problem solving. Support for this assertion includes her 

Empirical score on the PEP, which was highest in the class, and her own words during 

RRI1. Wording like “I tried” and “I thought I would” can be found throughout her 

retrospective report, with little, or no, discussion of the conceptual support for her 

strategies. 

Second, Julia’s actions were representative of a procedural, rather than 

conceptual view of mathematical problem solving. Overt evidence of this belief includes 

her development of the implausibility of part (b), only to attempt to solve for a, b, c, and 

d anyway. Julia discussed this event during her RRI2: 

I didn’t see how it could always be concave up, because that would make it a 

quadratic and if a can’t equal zero, then it has to be cubic, no matter what. So, I 

didn’t really think that was possible, but I don’t know. And, um, but then, I knew 

that to solve for the concave up intervals, you could do the second derivative to 

find those intervals.
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So, despite having a conceptual argument as a solution for (b), Julia felt the need to 

attempt to build a procedural solution. This finding contradicts her IMBS score for Belief 

3, which indicated that Julia did not feel that all problems have an algorithmic procedure. 

Finally, Julia’s actions provided evidence of a belief in knowledge as 

straightforward, as opposed to interrelated. Evidence of this belief was elicited every 

time Julia engaged in a strategy that disregarded the conceptual context established by the 

conditions and goals of the problem. A specific example is when Julia developed a plan 

early in the session to set the derivative function equal to the original cubic function. This 

plan exhibits a disregard for conceptual aspects of the problem since any solutions 

derived from the established equation would have been devoid of conceptual importance 

for the problem.  

Interim between sessions. Of the six participants, Julia accomplished the most 

during the interim between sessions, which amounted to two evenings since she was in 

school during the day. During an interview about her efforts in the interim, Julia stated 

that she had worked for a couple of hours on the problem at home. The extra time 

allowed her to make a very important realization about the direction of her TA1 

explorations: “I realized that, like, the main goal was to solve for a, b, c, and d. I was 

getting further and further away from that.” This assessment led her to more productive 

exploration and ultimately, to a successful solution. She used the Internet to look up the 

definition of horizontal tangent and access an interactive grapher. By looking up the 

definition of horizontal tangent, she was able to correct a misconception–during the first 

session, she was confusing the term horizontal tangent with horizontal asymptote. Julia’s 

confusion explains her conjecture from session one that a cubic with one root should have 
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one horizontal tangent below and one above the x-axis. Then, equipped with a more 

appropriate image of her goal state, she used an online interactive grapher to explore the 

effects of different values for a, b, c, and d until she had built a cubic function that met all 

conditions of the problem. Her final answer was f (x) = 3x
3 – 2x

2 – x + 2. She also 

provided the values of the roots and the relative extrema.  

She then explained that with her improved definition of the task, the fact that part 

(b) had no solution became obvious. Despite some rather awkward statements for her 

justification, Julia’s explanation indicated conceptual understanding of the reasoning for 

the not possible solution for part (b). Her main justifications were graphical reasoning 

and the fact that 0a '  and thus, reduce f to a quadratic function. 

  Julia’s discussion of her work during the interim provided additional information 

regarding her epistemological beliefs and SRL processing. To begin, her work on part (a) 

revealed that Julia can successfully employ both rational and empirical problem-solving 

strategies. She established an accurate definition of the task that connected conditions to 

goals, which is indicative of a rational approach to problem solving. Then, armed with 

her logically-based understanding of the problem, she applied empirical means to test her 

assertions. Additionally, she attributed time and access to mathematical resources as the 

most important contributors to her success. By spending a couple of hours of her spare 

time working the problem and attributing time to successful mathematical problem-

solving, Julia certainly demonstrated a belief that difficult mathematical problems may 

require a long duration of time to solve. Her work during the interim between sessions 

also affirmed her high categorization for Belief 5 on the IMBS, which measures the 

degree to which an individual attributes increases in mathematical proficiency to effort 
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(Kloosterman & Stage, 1992). Julia also made a revealing statement regarding the 

relationship between mathematical resources and SRL processing: “Yeah, I realized I 

worked on one path that I knew was not working for me, but I just couldn’t think of 

anything else to do.” In essence, students cannot control strategy use unless they can 

access alternative strategies.   

Session 2. With the application of differentiation problem solved to her 

satisfaction over the interim, Julia moved on to the application of integration problem for 

TA2. She began the session by reading part (a) of the problem for 33 seconds. Then, she 

spent 2 min 33 sec engaged in analysis of the problem conditions and goals. Most of this 

time was spent applying an appropriate heuristic–sketching a graph with a shaded region 

that defined the area in question. She then spent 15 seconds re-reading the problem and 

stated that she did not understand what A meant. The researcher interjected and 22 

seconds were spent making sure that Julia understood that A simply represented the 

bounded area for both parts (a) and (b). Julia then spent 5 min 38 sec engaged in 

productive exploration of the problem space. With the aid of her graphing calculator, this 

phase began with an examination of the effects that various values of m had on the graph 

of the function h. Then, Julia decided to let m = 1 and solve part (a) for this special case. 

In sum, the first 9 min 21 sec were spent developing an appropriate definition of the task, 

establishing goals for the purposes of analyzing and exploring the problem space, and 

transitioning to the next phase of her plan based on informed assessments and conceptual 

justification.

This rational-based demonstration of controlled problem-solving prowess came to 

an abrupt halt and Julia spent the next 14 min 16 sec on a lengthy empirical search for a 
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solution for her special case of part (a) for m = 1. Upon obtaining an accurate area for the 

enclosed region and dividing the area in half, Julia fixed the lower bound of her integral 

to zero and spent the remainder of her time substituting guesses in for an upper bound 

that yielded half of the original area. Although seven instances of monitoring were coded 

during this period, all were related to assessments of the validity of her guesses. So, from 

a purely frequency-based analysis of this portion of her session, it appeared that Julia was 

engaged in performance control processing but a more qualitative assessment revealed 

that she was merely controlling the surface features of a flawed plan. This phase ended 

with her solution of 0.5662036x # , which is fairly accurate for the special case m = 1, 

but the solution did not provide her with a means of generalizing a solution with respect 

to m.

Satisfied with her work, Julia decided to work on part (b) of the application of 

integration problem. She spent 21 seconds reading the problem and then 35 seconds 

engaged in analysis, consisting mainly of sketching the shaded region to be considered. 

Then, failing to note the conceptual significance of the goal of obtaining a horizontal line, 

as opposed to the vertical line for part (a), Julia procedurally mimicked her work from 

part (a) while working on part (b). Thus, the final 8 min 2 sec of her session were spent 

trying to find the equation of a horizontal line by testing x-values, which can only 

represent vertical lines. Additionally, her integral expression for the bounded region was 

not properly set up, so the area that she obtained was inaccurate. With respect to 

forethought, all goal-setting was done with little attention to her current problem-solving 

state. Additionally, this final phase of her session contained only two instances of 

monitoring and both were simply assessing the validity of a proposed upper bound. The 
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session ended with Julia in the middle of guessing an upper bound. Then, she stated, 

“OK, I didn’t like that. I know I was doing something wrong.” This statement is 

indicative of the self-reflection phase of SRL and although the statement is deficit-

focused, the causal attribution was based on her strategy, as opposed to the more 

academically debilitating attributions to ability (Zimmerman, 2000).

Overall, Julia’s TA2 was coded as indicative of a belief in both rational and 

empirical approaches to mathematical problem-solving. Her work logically established 

an appropriate definition of the task for part (a) and thus, was coded as a rational belief in 

problem solving. However, the remainder of her session was deemed an empirical

perusal of the problem space. These results are supported by her high categorizations for 

both the Rational and Empirical scales of the PEP. 

Despite some glimpses of conceptual insight, Julia’s TA2 was coded as indicative 

of a predominantly procedural belief in mathematical problem solving. For example, her 

use of the exact same plan for part (b) that was used in (a), regardless of changes in 

problem conditions, provided a concrete example of this assertion. However, keeping 

with the trend set by Robert and Edwina, Julia reported an idealized conceptual belief in 

mathematical problem solving during her MCI. However, manifestations of a procedural

belief proliferated in her work. Julia verbalized her idealized conceptual belief in her 

MCI, as follows:

I think it’s more important to have a conceptual knowledge of it even if you know 

the procedures, but if you have the conceptual knowledge, you can reinvent the 

procedures.  Like, if you know what’s going on, you can still solve for it. 



180

So, there appears to be a fundamental disconnect between Julia’s desired problem-solving 

belief system and her practiced problem-solving belief system.

Additionally, Julia’s confusion regarding a, b, c, d, and m, resulted in a coding of 

a predominantly  unique belief regarding problem solutions. In fact, Julia made the 

following statement during RRI2 when asked what her most significant barrier was to 

success:

The m thing. The variables are the hardest part, I guess. I know math was easy 

until you get to letters and alphabets that are not supposed to be there. But, I just 

didn’t see any way at all to solve for m. They didn’t give you any information 

about m to be able to solve for it. [emphasis added] 

Julia’s expectation that a solution existed for m is indicative of a unique belief. When 

probed to comment further, Julia made a statement that hinted at the source her unique 

and procedural beliefs:

Usually, I’m used to directions giving you, like, here’s the information you need 

to know about it, so then you use that to solve for it. And I’m sure if I was given 

that, then that would have made more sense, but critically thinking . . . 

Julia made a similar statement during her MCI that blamed prior mathematics courses for 

her procedural belief:

Until calculus it didn’t really matter because you would learn something, then you 

would take a test on it, and then you would just drop it. I mean, you would build 

upon certain basic knowledge and that’s what I understood and that kind of thing. 

But then specific things you just learned for a test and then you can just drop it; 
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whereas in calculus, you build on everything you learn which I think has kind of 

helped me though, because you still have to recall back at things you’ve learned. 

So, Julia seemed to indicate that past experiences have given her an expectation of a 

unique solution for variables and sufficient information to develop a procedure to solve 

given problems. Julia cited the calculus as a course that seems to be improving her ability 

to work with abstraction. However, as the following quote from her RRI2 indicates, 

Julia’s confusions continued to persist: 

I think that’s what messed me up in the beginning was that the first day I was 

thinking, OK, there’s a specific answer for a, b, c, and d; that’s the only way it 

works. And then I think once I realized that there were an infinite number of 

answers, it’s not as hard as I thought it was. But, I was surprised because you used 

to, just always, as you’re solving for a variable and usually the variable has a 

given number to it. And that’s why I wasn’t sure if m is a variable and that’s just 

supposed to stay like that and so it has different solutions or if it had a specific 

answer. 

In this single quote, Julia seemed to go full circle from a unique to an arbitrary belief, 

then back to a unique belief.

Think-aloud problem-solving session performance. Julia received nearly full 

credit for the application of differentiation problem, but made little progress on the 

application of integration problem. During TA1, she made little progress on parts (a) and 

(b), but took full advantage of the interim between sessions, developing a full solution for 

both parts. For her efforts, she was awarded the full 20 points for part (a) of the 

application of differentiation problem. However, her justification for part (b) was rather 
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vague and incomplete. She rightly stated that as long as a is not zero, making the function 

quadratic, then a cubic can never be concave up on the continuum of real numbers. Then, 

a wild excursion into taking the cubed root of the function and other comments that 

danced around the issue constituted the remainder of her justification. Hence, Julia was 

awarded 17 points for solving part (b) with a partial justification for the answer and thus, 

received a combined score of 37 out of 40 points for the application of differentiation 

problem. 

For part (a) of the application of integration problem, Julia showed early promise, 

but her work only produced an approximation for the special case of m = 1. So, Julia was 

awarded 8 out of 20 points for her efforts. The rationale for the score is that solving the 

area in terms of m and solving a simpler problem with m = 1 is indicative of making some 

progress, but failure to use the simpler problem as a heuristic to move to the general case 

or make other connections to problem conditions hampered further solution efforts. Very 

little progress was made with respect to solving part (b) and the path chosen was 

procedurally identical to part (a), despite the change in goal state. Thus, Julia was 

awarded a score of 1 out of 20 for part (b). Her total score for the application of 

integration problem was 9 out of 40, resulting in a combined score of 46 out of 80 points 

for both problems. 

AP Calculus Exam Preparation 

During the MCI, all participants were asked to comment on the differences in the 

AP Calculus exam preparation problems and the think-aloud problems. Julia responded

as follows:
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The after-school sessions were definitely more conceptual and you had to kind of 

like, I had never seen this stuff before. I had a clue of the basic knowledge but I 

had no clue how to deal with it, and whereas the in-school group was all stuff we 

had been working on this year. So, I knew what to do and it was more procedural; 

you could find stuff from what you knew from the procedure you learned earlier 

in the year. 

Julia’s response provided further justification for categorizing the AP exam practice

problems as “procedures with connections tasks” and the think-aloud problems as “doing 

mathematics tasks” (Stein et al., 2000, p. 16).   

Classroom observation 1. Julia was observed working question 4 from the 2004 

AP Calculus AB (Form B) exam with her partners, Ron and Lee (see Appendix E). This 

problem provided the graph of a derivative for a function f and then presented three 

questions, (a)–(c), about the function f. For part (a), the group had to determine x-

coordinates for the points of inflection of f and provide an explanation for their solution. 

The group worked quickly and quietly, with very little noted interaction. This is 

unfortunate, because this was the only part for which group members had a discrepancy 

in score. Julia received the full two points, but her fellow group members only received 

one point because their explanations were insufficient. Had group monitoring occurred, a 

discussion may have helped to clear up Ron and Lee’s confusions in developing their 

justifications. 

For part (b), the group had to find the absolute extrema for f on a closed interval. 

This part really confused the group; in fact, Julia at one point claimed that it could not be 

solved and that the problem writers should have provided more information. Her 
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requirement of a unique, well-defined function, f, represented a further manifestation of a 

unique belief regarding problem solutions, as described above to explain Julia’s trouble 

dealing with the arbitrary constants in the think-aloud problems. Fortunately for Julia, 

Ron and Lee engaged in a nice mathematical discussion about the problem and developed 

an accurate solution. However, the three group members could not develop a sufficient 

justification, so all got two points out of four.  

 Finally, part (c) defined a function g (x) = x f (x) and required the group to write 

the equation of a tangent line for g at a given point. For this part, the group demonstrated 

much more control. Julia’s actions were coded three times for group monitoring during 

part (c). She was on the receiving end of the most notable monitoring action. The whole 

group had disclosed their progress and upon review, Ron reminded Julia and Lee that the

product rule was required for calculating the derivative of g. Due in part to their 

monitoring, all group members received the full two points for part (c). In sum, Julia 

received 7 points and Ron and Lee received 6 points, resulting in a mean group score of 

6.33 out of 9 possible points. The group outperformed the class, which averaged only 

5.12 points. 

Classroom observation 2. Julia’s second classroom observation occurred while 

working on question 6 from the 2007 AP Calculus AB (Form B) exam with her group 

members (see Appendix E). This question provided students with two ordered pairs for a 

function, f, and then posed four problems, (a)–(d), regarding the function, f, and another 

function, g (x) = f ( f (x)). For part (a), the group had to apply the Mean Value Theorem 

(MVT) to the function f. Although he could not recall the name of the MVT, Lee was 

able to adequately explain the concept to his group members. Then, silent work ensued, 
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with the only further discussion concerning whether continuity had to be explicitly 

shown. Despite a lack of group monitoring and verification, all three group members 

earned the two points for part (a).

Part (b) was similar to part (a), but the difficulty level increased because the MVT 

had to be applied to the derivative of g. Part (b) provided the only evidence of group 

monitoring during the observational period. Julia was the primary instigator, with two 

instances of group monitoring coded during this part of the problem. In the first instance, 

Julia asked Ron how he was working the problem. She received some assistance from 

him in understanding the similarities between parts (a) and (b). Soon after, however, she 

was asking for help again when she disclosed that she was struggling with the 

explanation. The group interactions resulted in a score of two points out of three for all 

members. Each student’s work was accurate, but no one was able to develop an adequate 

explanation using the MVT.   

Once satisfied with part (b), the group moved on to part (c), which dealt with 

concavity of f and g, and worked silently until the end of my observation. This was 

unfortunate for Julia and Lee since they did not earn the full two points. Both students’ 

calculations of the second derivative omitted the product rule. (This is ironic because Ron 

had to remind them of the product rule during their first observation.) Had group 

monitoring occurred, this error would have been noted and Julia and Lee could have 

made corrections. Due to time constraints, the group was unable to work on part (d). In 

sum, Julia and Lee received 5 points and Ron received 6 points, resulting in a mean group 

score of 5.33 out of 9 possible points. Yet again, the group outperformed the class, which 

averaged only 3.14 points. 
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AP Calculus exam preparation performance. Julia was only present for ten of the 

twelve AP Calculus preparation sessions. Additionally, Lee was absent during another 

session. So, the group statistics below contain data from the nine sessions in which her 

group was intact and the overall class statistics contain data from the ten sessions for 

which she was present. Group statistics for the nine problems were as follows: Julia 

averaged 5.00 points, Ron averaged 5.33 points, and Lee averaged 5.67 points. Thus, the 

group’s overall average score for the 9 problems was 5.33 points, resulting in a difference 

between Julia’s average score and her group’s average score of 0.33& points. Julia’s 

overall average performance on the 10 in-class AP Calculus AB practice problems was 

5.30 points. The overall class average for the 10 problems that Julia completed was 4.70, 

resulting in a difference between Julia’s average score and the overall class’ average 

score of 0.60(  points.  

Olivia’s Narrative 

Mathematical Achievement and Questionnaire Data 

Olivia was categorized as a Category II calculus achiever, with an AP Calculus 

AB grade of 90. She was included in the study for her contribution to the quota sample 

(Miles & Huberman, 1994), for multiple low scale categorizations, and for being the only 

predominantly metaphorical participant. For the IMBS, Olivia was categorized as 

average for four scales and low for the other two. Her low categorizations were for the

Belief 3 and Belief 6 scales. So, Olivia self-reported non-availing beliefs that conceptual 

understanding is not important as long as performance is maintained and that 

mathematics is not useful in daily life (Kloosterman & Stage, 1992). For the MSLQ, 

Olivia was categorized as average for all scales except Critical Thinking, for which she 
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received a low categorization. Thus, Olivia self-reported a lack of applying prior 

knowledge to new problems and a lack of critically evaluating newly presented content 

(Pintrich et al., 1991).  

Finally, for the PEP, Olivia’s scores for the Rational, Empirical, and Metaphorical

were 105, 105, and 113, respectively. She was categorized as average for the Rational 

and Empirical scales and high for the Metaphorical. As mentioned above, Olivia was the 

only student in the class who was predominantly metaphorical. So, Olivia self-reported 

that she predominantly utilizes symbolism in her cognitive processing and justifies 

knowledge claims via insight and awareness (Royce & Mos, 1980).   

Think-Aloud Sessions 

 Session 1. Olivia worked on the application of differentiation problem for the 

duration of TA1. She began the session by spending 33 seconds reading part (a) of the 

problem, noting conditions, and identifying the goal. Then, she spent 1 min 27 sec 

engaged in analysis of the problem space. During this time, she connected the term root

to the zeroes of the function and the term horizontal tangent to the zeros of the first 

derivative. So, Olivia developed an adequate definition of the task for part (a) of the 

application of differentiation problem.  

 The remainder of her work with part (a) amounted to a 21 min 5 sec fruitless 

exploration of the problem space. Early in the exploration, she applied the heuristic draw 

a picture and sketched a graph of the function and its derivative. Not realizing the rich 

connections between her graphs and the problem goal, Olivia then began trying to work 

with the slope intercept and point-slope forms of linear equations, hoping to make some 

connections to the horizontal tangent lines. Shortly after this effort, Olivia turned to the 
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researcher and stated that she had tried everything. The researcher suggested that she 

could move to part (b). After the conversation, she began working with the second 

derivative, which seemed to indicate that she had moved on to part (b). However, 

Olivia’s verbalizations indicated that she was still working on part (a). During her RRI1, 

Olivia clarified my confusions–she had noted that part (b) dealt with concavity and 

decided to use the second derivative to eliminate variables, in this case c. This decision to 

use the second derivative without establishing conceptual connections to part (a), was 

indicative of Olivia’s belief that mathematical problems can be solved by procedural 

means. This finding is supported by her low rating on Belief 3 of the IMBS and her work 

that followed.  

 Upon deciding to use the second derivative, Olivia applied a system of equations 

approach that produced no promising leads for solving for a, b, c, and d. During this 

period, Olivia set no overt goals and she only logged three instances of monitoring. In 

each case, monitoring involved local assessments of her strategy use and indicated that 

she did not feel that her plan was working. Thus, little evidence of the forethought and 

performance control phases of SRL were present during her exploration.  

 Near the end of her exploratory excursion, Olivia turned and spoke to me twice, 

voicing her struggles and lamenting her inability to “get rid of d.” She also stated that she 

wished the problem merely asked for the horizontal tangents, not “all the letters.” Her 

statements further supported the interpretation that her problem-solving belief system was 

mainly procedural-based. Additionally, the confusion with all the letters indicated a 

unique belief regarding problem solutions. Additional triangulation came from her RRI1. 
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When asked about alternative strategies that she considered, Olivia made the following 

statement:

The only other thing I could do that I guess would make sense is to take a 

derivative and find the max and min and that would be the minimum and that 

would be the maximum [pointing to her sketch]. But when I tried that you just end 

up with variables and letters and it doesn’t simplify anything. 

In this statement, Olivia continued to hold strong to the belief that a unique solution could 

be attained via procedural means.

 At 23 min 25 sec into the session, Olivia moved to part (b) of the application of 

differentiation problem. Oddly enough, there was no overt indication that she read the 

problem or noted the conditions or goal. She engaged in analysis lasting 4 min 11 sec and 

produced a complete solution. The solution was the result of the heuristic draw a picture, 

which in this case, was a sketch of the function and its first two derivatives on the same 

Cartesian plane. With this visual, Olivia easily determined that part (b) was not possible 

and developed a well-written justification for her claim. Thus, despite her lack of success 

on part (a), Olivia ended the session in a positive manner. 

Overall, Olivia’s actions during TA1 were coded as a predominantly empirical

approach to problem solving. Her work with part (b) during the last several minutes of 

the session was purely rational, based on conceptual insight and logical reasoning and 

justification. However, the first 23 min 25 sec of the session were filled with brute force 

algebra and attempts to solve for a, b, c, and d without regard to context or conditions. In 

fact, Olivia confirmed this assessment of her efforts during the RRI1, stating the 

following: 
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Well, I don’t think that’s really legal because I had to make the derivatives equal 

0. So, it’s really not going to be accurate, you know. It was just something to do. 

This statement indicates that Olivia had run out of options and was simply trying to do 

something since she was in the middle of the problem. Finally, Olivia’s verbalizations 

were also indicative of her classification as predominantly metaphorical for the PEP. Her 

references to functions and expressions as you provided a subtle indication that a portion 

of her cognitive processing consisted of constructing “internally generated forms,” which 

symbolized various aspects of the problem space (Royce & Mos, 1980, p. 6). Further and 

more direct evidence of her metaphorical beliefs is discussed below.

Session 2. Olivia did not work on part (a) of the application of differentiation 

problem during the interim between sessions, which only amounted to one evening since 

she was in school during the day. She had a lot of homework to complete, including 

studying for an AP Calculus BC power series quiz. Despite this fact, she felt that no more 

progress would be made and thus, worked on the application of integration problem for 

the duration of TA2. 

Realizing that the application of integration problem involved the area bounded 

by multiple curves, Olivia requested the use of her colored pencils. Then, she spent 3 min 

46 sec engaged in a combination of reading and analyzing part (a). Her analysis of the 

problem space involved sketching and color-coding each function to produce a sketch of 

the bounded region (see Figure 6). Upon completion of her sketch, Olivia engaged in an 

additional 4 min 15 sec of analysis, attempting to establish relationships between the 

problem conditions and goal. During this analysis, two instances of monitoring were 

coded, including the discovery that her graph representing  h (x) = e – mx was incorrect. In 
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terms of developing a definition of the task, Olivia’s sketches provided a clear 

understanding of the conditions of the problem. 

Figure 6. Olivia’s Sketch for Part (a) of the Application of Integration Problem-Solving 

Task.

However, Olivia was unable to tie conditions to the overall goal of the problem, 

as the product of her analysis was an inferred plan (i.e., participants’ actions rather than 

verbalizations provided evidence of a plan) to find the value of c via the equation

$ % $ % $ %
2 22 2 2
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c
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Her problem-solving plan did not adequately connect problem conditions to desired goal 

since an integral with a squared integrand does not produce area and this expression 

would merely find an arbitrary value for c, rather than the value of c corresponding to 

half of the area. Thus, her actions continued to indicate an empirical approach to problem 

solving and an adherence to procedural means for navigating a problem space. 

Olivia then spent 9 min 22 sec in fruitless exploration since she was implementing 

a flawed plan that took her farther from the desired goal state. During this exploration, no 

instances of monitoring were coded and the result of her work was the solution c = 1, 

which makes sense with her setup, but certainly does not produce a bound for half the 

area of A1. Her lack of overt monitoring indicated that Olivia engaged very little in the 

performance control phase of SRL. At this point, which was 17 min 6 sec into the 

session, the researcher noted that Olivia did not have her calculator on her desk and 

reminded her that she could use one. She replied that she did not see the relevance of the 

calculator since it does not “do letters,” but she retrieved it anyway. 

Upon returning with her calculator, Olivia moved to part (b) and engaged in 

reading and analysis similar to that conducted in part (a) for 3 min 19 sec. Thus, yet 

again, she had a color-coded sketch of the bounded region and entered the problem space 

with an adequate and appropriate representation of problem conditions for her definition 

of the task (see Figure 7). Then, Olivia engaged in a 3 min 14 sec productive exploration 

of the problem space. Her first efforts during this exploration involved integral 

expressions with respect to x, which were not conducive for finding equations of 

horizontal lines. Global monitoring of the goal of part (b) indicated to Olivia that 
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integration with respect to y would yield a more desirable integral equation. Thus, at the 

end of this exploratory period, Olivia developed a plan to solve for b using the equation  

2 2
1

1 2

ln lnb

b

y y
dy dy

m m

) * ) *& # &. / . /+ , + ,- - .

If the squares are taken from the integrands, this equation produces the correct solution 

for part (b). The presence of the squared integrands provided further indication of 

Olivia’s procedural belief in problem solving, as she was confusing procedures for 

applications of integration involving area and volume. Thus, Olivia navigated more 

productively between the forethought and performance control phases of SRL processing 

for part (b) than part (a).

Troubled by the difficulty of the above integral equation, Olivia turned to the 

researcher after 25 min 54 sec of work and made the following statement: 

If I ask you a question, can you tell me the answer? OK, I know that when you’re 

revolving, you square; if you’re not, you don’t. OK. 

Having apparently answered her own question, she turned and spent 1 min 47 sec 

correcting all of her erroneous work for part (a). The result of her corrections was a 

perfectly set-up equation for finding the solution to part (a):

$ % $ %
2

0

c

c
h x dx h x dx#- - .
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Despite having a calculator with a built-in CAS, she spent her final 7 min 35 sec trying to 

solve the equation by hand. Her work contained a multitude of errors, her verbal report 

indicated no overt instances of monitoring, and she never achieved a final solution. 

Additionally, she never corrected her work for part (b), leaving the squared integrands in 

her submitted work. After 34 min 16 sec of work, the researcher asked Olivia if she 

needed more time to complete her current work, but she declined and stated, “I just need 

to stop.” 

Figure 7. Olivia’s Sketch for Part (b) of the Application of Integration Problem-Solving 

Task.
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 Overall, Olivia’s navigation through the problem space for the application of 

integration problem was coded as both rational and empirical. Her early work was 

empirical in nature, resulting in unchecked strings of algebraic expressions that carried 

her farther from the goals of the problems. However, her empirical meanderings 

eventually led to her more rational latter work, which was indicative of a logical 

progression from problem conditions to goal state. As a possible explanation of the 

source of her capacity to work from both epistemological stances, Olivia provided the 

following statement during her RRI2: 

I believe that the public education system teaches students to regurgitate and I 

have never been taught how to think by the school. Fortunate for me, I have pretty 

amazing parents; they’ve really instilled that in me.  I was very fortunate to be 

born with some intelligence and a natural curiosity and a bit of common sense. 

Like I’ve said before, my dad pretty much taught me math–how to do it and you 

know if you don’t know what to do draw a picture, write everything you know, 

just keep doing whatever can possibly relate to it until something clicks. So, that’s 

pretty much what I did. 

So, Olivia cited her parents as her sole source for developing thinking skills and her 

father as the source of her ability to adapt to a problem and utilize heuristic strategies. 

Finally, Olivia’s TA2 provided further support for her metaphorical classification from 

the PEP. The main source of evidence came from her verbalizations while sketching. 

Rather than simply producing a sketch, Olivia assigned a color-code to each one, with 

statements like “You are blue, you are red,” etc. Olivia’s color assignments provided 

further evidence of the subtle cognitive activity of assigning symbols to structures, such 



196

as the graphs produced by the functions in the application of integration task (Royce & 

Mos, 1980). 

 Olivia’s work during TA2 provided further support that she held a procedural

belief in mathematical problem solving. The majority of her work indicated that she was 

searching for a familiar process to map onto the problem, rather than considering the 

conceptual ramifications of problem conditions. Her continued use of a squared integrand 

could have been curtailed by examining the dimensionality of the integral, noting that 

solutions would be cubed and thus, not provide the desired area. Additionally, her first 

problem-solving plan applied a property of integration that produces solutions for interior 

bounds and was applied during the previous semester. Her use of this equation to solve 

part (a) provided further indication of a procedural mindset since no conceptual ties can 

be made between problem conditions and her plan.  

 Olivia’s response to whether procedures or concepts are more important to 

problem solving during her MCI provides further insight as to possible sources of her 

adherence to a procedural belief in mathematical problem solving: 

I have to learn the procedures first because I can’t understand the concepts until I 

actually do the problem. And once I do a couple of them and let it sit in the back 

of my mind I can start to get the concepts.  It helps me to know why I’m doing 

what I’m doing but I need to do whatever it is first before I understand why. 

Since the think-aloud problems were novel with respect to Olivia’s current calculus 

functioning level, she was unable to frame them conceptually and thus, reverted to her 

procedural approach. Additionally, Olivia’s stance may be counterproductive to a 

constructivist philosophy of education, which implies that students actively construct 
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conceptual knowledge, as opposed to applying rote-memorized rules and procedures 

(NCTM, 2000). 

 During her RRI2 and MCI, Olivia’s comments indicated conflicting 

interpretations with respect to her beliefs regarding problem solutions. For example, 

when asked how many solutions were possible for part (a) of the application of 

differentiation problem during her RRI2, Olivia stated, “At least one, maybe more. Part 

(a) was not very friendly to me, but there might be more than one cubic that would satisfy 

those conditions.” Her comments indicated openness to an arbitrary belief regarding 

problem solutions and a sophisticated understanding of the role of the arbitrary constants 

a, b, c, and d in producing a family of cubic functions.  

Then, later in the RRI2, Olivia made the following statement when asked a 

similar question about the application of integration problem: 

Depending on what m is, well, it wouldn’t have any effect on c. So, I guess in that 

particular problem, I would say that the variables were pretty much independent, 

obviously m and x are related, but c and m, I didn’t necessarily see a relationship. 

Although her last statement is false, c and m are related, this statement provided further 

evidence that Olivia may hold a more arbitrary belief regarding problem solutions than 

indicated by her TA1.  

 During her MCI, Olivia seemed to revert to a more unique belief, with statements 

indicative of the certainty of a solution path: 

Well, often with problems that have some symbolic representation for a numerical 

value, you can use algebra to isolate them and figure out what the letters or

whatever actually stands for. And so I tried that because I am an algebraic person, 
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I like that, it works, it makes sense, and it didn’t pan out for me in this, so I went 

to a graph and I tried to make some sense of it . . . It was difficult for me to have 

to deal with some conceptual, ideological letter that represented something else 

that I could not apply algebra to. 

So, Olivia seemed to rely on algebra to obtain a solution and when the algebraic

procedures failed to produce a unique solution, she was unable to adapt to the arbitrary

nature of the problem space. It is possible that she is currently developing a more 

arbitrary belief regarding problem solutions, but further examination of such 

development is beyond the scope of the current study. Thus, the contradiction will be 

interpreted as a disconnect between beliefs and practice since Olivia’s actions indicated a 

unique belief but some of her interview quotes indicated an arbitrary belief.   

Think-aloud problem-solving session performance. Olivia made progress on both 

the application of differentiation and application of integration problems. For part (a) of 

the application of differentiation problem, she was unable to make significant progress

beyond establishing that roots are the zeros of a function and horizontal tangents are 

related to the zeros of the derivative of a cubic function. Applying Schoenfeld’s (1982) 

grading scheme, Olivia made little progress on part (a) and was awarded 5 points out of 

20. For part (b) of the application of differentiation problem, Olivia provided a correct 

answer with an appropriate and sophisticated justification, thus earning the full 20 points. 

Overall, Olivia earned 25 out of 40 points for the application of differentiation problem.

For part (a) of the application of integration problem, Olivia eventually developed 

an equation whose solution would have yielded the correct answer. Unfortunately, she 

was unable to solve the equation and did not provide overt justification for her method. 
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Thus, her work indicated an almost solution, which merits a score between 11 and 15 

points. Since her work failed to yield a final answer, she was awarded 12 out of 20 points. 

For part (b), Olivia was on the right track, but never corrected the squared integrands and 

did not make any progress beyond setting up the integral equation. So, Olivia made some 

progress and was awarded a score of 8 out of 20 points. In sum, Olivia earned 20 out of 

40 points for the application of integration problem, resulting in a total of 45 out of 80 

points for her two think-aloud problem-solving sessions. 

AP Calculus Exam Preparation 

During each MCI, participants were asked to comment on the differences in the 

group AP Calculus exam practice session problems and the individual think-aloud 

session problems. Olivia’s comments were as follows:

The problems in the group sessions made more sense. There was more algebra 

and more just applying principles and using procedures that you had to find 

before, like you have this kind of problem this is what you need to do for it, 

versus the problems that I did alone were very conceptual. We hadn’t really done 

anything like that before so it was very new versus the other ones we had done 

before were similar enough.

Olivia’s comments provided further justification for the categorization of the AP exam 

practice problems as “procedures with connections tasks” and the think-aloud session 

problems as “doing mathematics tasks” (Stein et al., 2000, p. 16). 

Classroom observation 1. Olivia was observed working on question 4 from the 

AP Calculus AB 2006 (Form B) exam with her group members, Tim and Jon (see 

Appendix E). This problem provided students with a piecewise-defined, graphical 
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representation for a function describing the rate calories are burned as a person uses an 

exercise machine and posed four problems, (a)–(d). For part (a), students were required to 

calculate the derivative of the function at a given point and indicate units of measure. All 

three group members applied the slope formula since the graph was linear at the given 

point. Unfortunately, no one realized that their answers did not include units. So, despite 

having an accurate numeric solution, all three group members received zero points since 

part (a) was only worth one point. 

 For part (b), students were required to find the time that the function obtained its 

greatest rate on the given interval and provide reasoning for their answer. Based on 

empirically analyzing the graph, Jon made a conjecture as to the answer but then was 

confused since he could not “derive a graph.” He then developed an answer that his group 

members agreed with but over-complicated the problem by trying to use the second 

derivative. To this point, Jon had dominated group planning and interaction, but Olivia 

interceded and both group members developed a plan for obtaining a solution. Upon 

completion, the group members verified their solutions, which were numerically 

accurate. However, this problem required a deep level of analysis and, despite checking 

final solutions, it was obvious that analytical work was not verified by the group. Thus, 

due to incomplete analyses, Tim and Jon received three points, and Olivia received two 

points out of four for part (b). 

For part (c), students were required to find the total number of calories burned 

over a specified time interval. All three group members recognized that this part required 

combining integration and geometric area formulae to calculate total function change. 

Content with conceptual understanding, the group worked silently while calculating the 
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appropriate area. Upon completion, Olivia realized that she misread the problem and 

thought that the problem was asking for average value. Jon examined her work and 

helped her understand the conceptual aspects of the problem. As he was doing so, Tim 

and Jon realized that Olivia had a computational error in her work and were able to 

resolve it. At some point, Tim, who I thought had the correct answer, recorded the 

average value solution as his final answer. Thus, Olivia and Jon received the full two 

points and Tim received one point for part (c). 

 Part (d) introduced a vertical shift to the given function and required students to 

find the value of the vertical shift that would maintain a specified average value. Olivia 

was able to draw on her average value approach that was erroneous for part (c) to help 

Jon with his confusion. Once a plan was established, the group worked until time was 

called and thus, had no means for verifying solutions. Thus, Olivia received one point out 

of two for a perfect setup but no solution, Jon received the full two points for his setup 

with correct solution, and Tim received one point for recording the correct solution with 

an insufficient setup. In sum, Olivia received 5 points, Tim received 6 points, and Jon 

received 7 points, resulting in a mean group score of 6 out of 9 possible points. The group 

outperformed the class, which averaged only 4.90 points. 

Classroom observation 2. For her second observation, Olivia worked on question 

2 from the AP Calculus 2009 (Form B) exam with her group members (see Appendix E). 

The question provided a function that modeled the rate of change of the distance from a 

road to the edge of water during a storm, as well as various other given information, and 

posed four problems, (a)–(d). For part (a), students were required to compute the distance 

between the road and the edge of the water at the end of the storm. Jon suggested this 
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problem was an application of integration. The group agreed and worked silently. Upon 

completion, the members of the group monitored each other’s solutions and verified 

numerical accuracy. However, Jon had not set up his integral expression properly, so he 

only received one point out of two. Olivia and Tim each received the full two points for 

part (a).

 For part (b), students were required to provide an interpretation with proper units 

for the derivative of the function at a given time. Jon immediately complained of issues 

with the necessary units. Once he had finished his interpretation, Jon requested feedback 

from Olivia, who did not respond. Rather than following up with his request, Jon merely 

moved on to the next problem. This is unfortunate, because Olivia crafted an accurate 

interpretation with units and received the full two points for part (b). Jon received only 

one point due to incorrect units and Tim received one point because he had an inaccurate 

interpretation with correct units.

Part (c) required students to determine when the distance between the road and 

the water is decreasing most rapidly during the storm. Jon suggested that the problem was 

an extrema application for the first derivative. Despite its conceptual accuracy, Jon 

questioned his own plan and began arguing for the need of the next derivative. In an 

application of group monitoring, Olivia argued the group back to optimizing the first 

derivative. The group members then worked quietly, but were only calculating relative 

extrema, rather than absolute extrema. Upon completion, Jon identified the relative 

maximum, having misread the problem. This began a lengthy debate between Olivia and 

Jon as to whether the answer should be the relative maximum or minimum. (Neither 

realized that they were only finding relative extrema, instead of absolute extrema.) 
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Despite an animated discussion, the group decided on the relative maximum, which was 

not the correct answer. Since the group was not applying an absolute extrema analysis 

and decided on the wrong solution, each group member received only one point out of 

four for part (c).  

Due to spending a long time on part (c), the group did not attempt part (d) and all 

members received zero points out of two. In sum, Olivia received 5 points, Tim received 

4 points, and Jon received 3 points, resulting in a mean group score of 4 out of 9 possible 

points. Due mainly to the group’s issues with part (c), the class, which averaged 4.73 

points, outperformed the group. 

AP Calculus exam preparation performance. Since Olivia missed five AP exam 

preparation sessions and Tim and Jon missed one AP practice session on the same day, 

all group data contain only the six sessions for which the group was intact. Group 

statistics for the 6 problems were as follows: Olivia averaged 4.67 points, Tim averaged 

4.67 points, and Jon averaged 5.00 points. Thus, the group’s overall average score for the 

6 problems was 4.78 points, resulting in a difference between Olivia’s average score and 

her group’s average score of 0.11&  points. Olivia’s overall average performance on the 7 

in-class AP Calculus AB practice problems for which she was present was 4.86 points. 

The overall class average for the 7 problems that Olivia completed was 5.11, resulting in 

a difference between Olivia’s average score and the overall class’ average score of 0.25&

points.  
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Martin’s Narrative

Mathematical Achievement and Questionnaire Data 

Martin was classified as a Category I calculus achiever since his AP Calculus AB

grade was 97. He was included in this study for his contribution to the quota sample

(Miles & Huberman, 1994) and the preponderance of high scale categorizations he 

received. For the IMBS, Martin received three average and three high categorizations. 

The high categorizations were for the Belief 1, Belief 3, and Belief 4 scales. Thus, Martin 

self-reported highly availing beliefs that he can solve difficult mathematics problems 

regardless of duration, conceptual understanding is important in mathematical problem 

solving, and word problems are important in mathematics (Kloosterman & Stage, 1992).  

For the MSLQ, Martin was categorized as high for all scales except for 

Motivation: Extrinsic Goal Orientation and Learning Strategies: Help Seeking. These 

high categorizations imply that he self-reported participation in a multitude of self-

regulatory practices and processes. Unlike the previous four participants, Martin had a 

higher Intrinsic Goal Orientation score (7.0) than Extrinsic Goal Orientation score (6.0), 

indicating the tendency to engage in tasks to be challenged or obtain conceptual mastery. 

His high rating on the Motivation: Task Value scale suggests that Martin was interested 

in tasks in this course and found them important and useful. Martin’s remaining high

categorizations were in the Learning Strategies section of the questionnaire and included 

the Critical Thinking, Metacognitive Self-Regulation, and Peer Learning scales. Thus, 

Martin self-reported that he applies prior knowledge to problems and evaluates new 

content, regulates his cognitive and metacognitive processes, and places value on 

providing and receiving contributions from peers. The Metacognitive Self-Regulation 
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scale is the most comprehensive on the MSLQ and includes twelve items that delve into 

planning, monitoring, and regulating (Pintrich et al., 1991). Thus, Martin’s 

categorizations indicated that he may participate in SRL processing to a higher degree 

than his peers. 

Finally, for the PEP, Martin’s Rational, Empirical, and Metaphorical scale scores 

were 123, 120, and 106, respectively. All of his scores were categorized as high; in fact, 

Martin had the highest score in the class for the Rational scale and the next highest score 

for Empirical scale. Overall, he was profiled as predominantly rational, but with the 

proximity of the scores, a more appropriate categorization may be rational/empirical. So, 

Martin self-reported the tendency to apply logic when justifying knowledge claims and 

use analysis and synthesis for cognitive processing. However, observational and 

perceptual inputs may be utilized by Martin for cognitive processing or justification when 

necessary (Royce & Mos, 1980).   

Think-Aloud Sessions 

 Session 1. For the entirety of TA1, Martin worked on the application of 

differentiation problem. He began by spending 32 seconds reading part (a), noting the 

conditions and the goal of the problem. Then, he spent 3 min 53 sec engaged in analysis,

connecting the first derivative to horizontal tangents and establishing relationships 

between the conditions and the goal. Thus, Martin developed an adequate definition of 

the task to aid in developing solution strategies. This analysis portion of his session was 

also indicative of early signs of processing from the forethought phase of SRL, with one 

instance of prior knowledge activation coded, one code for recycling the goal in working 

memory, and one code for an overt plan. 
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 The overt plan coded during the analysis phase applied the quadratic formula to 

solve for x-coordinates of horizontal tangents, and was a foreshadowing of Martin’s strict 

adherence to a procedural approach to mathematical problem solving during TA1. 

Making little progress with the quadratic formula, Martin embarked on a 26 min 55 sec 

exploration, producing relatively fruitless expressions and equations from the conditions 

in various forms of preparation for a system of equations approach to solve for a, b, c,

and d. The exploratory phase opened with Martin planning to set the derivative equal to 

the function, which has little mathematical meaning, especially in this context.  He later

informed me during his MCI that he recognized that both functions were equal to zero 

and thus, could be set equal to one another. Fortunately, Martin exercised performance 

control over his actions throughout the session. Unique to other participants, he applied 

the monitoring technique self-questioning for most of his local and global assessments, 

with five instances coded during this phase. For example, when assessing the validity of 

setting the derivative and function equal, Martin made the following statement:

I know that zero is equal to the original function and it produces one root. But I 

don’t know if one of those roots is also the horizontal tangents. So if I back track, 

what would I be able to solve down to, anyway? If I continued working that out 

assuming that there is a root actually equal to a horizontal tangent, I mean, that’s 

not going to tell you anything. 

Unfortunately, Martin’s monitoring skills proved insufficient to procedurally solve the 

application of differentiation problem.

After making little progress solving the system by hand, Martin spent the 

remainder of this exploration attempting to use the computer algebra system (CAS) 
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capabilities of his calculator to solve for a, b, c, and d. Ideas ranged from simply solving 

the equations as is to storing the expressions for x obtained from the quadratic formula, 

then substituting these values into the cubic and trying to solve. Despite logging six 

instances of local and global assessments of strategy use and goal state, Martin was 

unable to alter his solution path or transition to another strategy more conducive to 

solution development. 

 Finally, Martin moved to part (b) and spent 23 seconds reading the problem, 

noting conditions and identifying goals. Despite only spending 4 min 35 sec on part (b), 

he had already developed an adequate definition of the task and was beginning to work 

with linear functions. However, time was called before he could advance further.

With respect to epistemology, Martin’s behavior was erratic, directly contrasting

his questionnaire results that were highest in the class for all scales. For example, despite 

demonstrating an arbitrary belief regarding problem solutions by understanding the 

infinitude of possible values for a, b, c, and d, he remained fixated on applying 

procedural techniques that generally produce a single solution. Interview data from his 

RRI1 triangulated this finding: 

I was assuming more than one [solution] for sure. But, to be honest, I thought if 

I’d just start working through the math, I mean, I left it as an open blank whether I 

don’t really know how many solutions there will be. So, I decided not even to 

think about that and rather just work out the math and see if I can start making 

conclusions without the various variables I had. 

Later in the interview, after expressing disdain for guess-and-check as a mathematical 

problem-solving method, Martin bluntly described his mindset during TA1: 
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Looking back at my thought process, I think that I was so determined that there 

wasn’t going to be any guess-and-checking to it. There was going to be a straight 

algorithmic way to approach it rather than, oh well, now that I know this and 

know this, let’s try a couple of values here or here or a range of values. I mean, 

maybe looking back now, that would have been a better idea if I were still 

working on that problem. 

As his comments indicate, Martin realized late in the interview that a mixture of 

logically-based mathematical problem-solving techniques may be advantageous 

depending on the context. Despite overt instances of monitoring, Martin’s TA1 would be 

best described as a series of applications of fruitless empirical explorations. 

Session 2. Martin made up for his lack of success in TA1 by displaying a flurry of 

mathematical problem-solving prowess during TA2. With extracurricular demands, 

homework, and only one evening between sessions, he was unable to even look at the 

problem during the interim between sessions. So, Martin requested to have both problems 

on the table simultaneously and work intermittently between the problems. He began 

TA2 by reading part (a) of the application of integration problem for 48 seconds, noting 

conditions and identifying the goal. Then, Martin spent 36 seconds engaged in analysis of 

the problem space, establishing relationships between the conditions and the goal. Based 

on his analysis, Martin developed a plan to find the area, divide it by two, and use the 

upper bound of the integral to find an equation for the vertical line. He spent 6 min 53 sec 

implementing this plan. Martin required only one instance of monitoring during the 

implementation and seemed perfectly comfortable with the technique that he was 

applying. Except for two minor errors that did cost him accuracy, he employed his 



209

method flawlessly. Had he spent some time in verification, Martin may have received full 

credit.

 Upon completion of part (a), Martin spent 19 seconds reading part (b) of the 

application of integration problem. From reading, Martin moved to a 4 min 8 sec analysis

episode and made significant progress, finding the area of the bounded region with 

precision. During this phase, he demonstrated excellent problem-solving control by 

catching an error in his original graph. Martin had inadvertently misplaced one of the 

boundaries and was prepared to set up an improper integral, or integral over an 

unbounded region, when he decided to graph the region on his calculator. Upon typing 

the boundaries into the calculator, Martin caught his error and was able to move forward 

with a bounded region.  

Martin failed to read the problem carefully and assumed that part (b) was similar 

to part (a). Thus, he set up an integral with respect to x and attempted to find an equation 

of a vertical line separating the area into two parts, despite the directions requesting a 

horizontal line. This error led to a 7 min 16 sec fruitless exploration ending with an un-

solvable equation since the area of the region increases without bound horizontally as m

approaches zero. The most troublesome aspect of this phase was the lack of self-

monitoring; Martin only monitored his performance two times during the 

implementation, never re-read the problem, and moved through transitional phases with 

no regard to their effect on the goal of the problem. For this reason, his problem-solving 

practices were coded as rational and conceptual for part (a) since he demonstrated 

understanding of the underlying principles of the problem and translated them to 

mathematical output. However, his blind perception that part (b) was the same type of 
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problem resulted in empirical and procedural coding for his problem-solving efforts for 

part (b). 

Stumped by the lack of a solution for part (b) of the application of integration 

problem, Martin spent 19 seconds reading part (b) of the application of differentiation 

problem. Then, he spent 2 min 59 sec engaged in analysis of the conditions of the 

problem, tying the second derivative to concavity and brainstorming ways to make linear 

functions always positive, which is the crux of the problem. 

Realizing that time was not on his side, Martin moved on to part (a) of the 

application of differentiation problem without re-reading the instructions. He spent 4 min 

33 sec in productive exploration that resulted in a solution. During this phase, he 

attempted to use the CAS on his calculator one more time, but without success. 

Monitoring kept him from continuing down this erroneous path. Then, he attempted to 

build a cubic function based on conceptual understanding and developed the function           

f (x) = –3x
3 + 4x

2 +2x + 1, which meets all of the conditions of the problem. Some of the 

logic leading to his solution was flawed, resulting in a lower score for justification.

Satisfied with his result for part (a) of the application of differentiation problem, 

Martin spent 2 min 41 sec in analysis and verification of part (b) of the application of 

differentiation problem. His analysis of the problem space led him to the conclusion that 

a linear function with non-zero, defined slope cannot be positive on its entire domain. 

Upon verification, Martin reported his answer and received full credit for this solution. 

 For his final 4 min 31 sec, Martin engaged in exploration and analysis of part (b) 

of the application of integration problem, since he still had no solution to report. Despite

analyzing his sketches and making one more global assessment of his goal state, Martin 
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failed to note that he was not even answering the correct question. Thus, his session 

ended with him still pondering this final, incomplete problem. 

In terms of epistemological beliefs, Martin’s received an overall categorization of 

rational/empirical for his beliefs in mathematical problem solving. His navigation of the 

problem space included both logically-based problem solving plans and perceptually-

based explorations. Martin’s RRI2 and MCI elicited findings regarding two beliefs. First, 

despite appearing to be comfortable with the arbitrary constants in both problems, Martin 

cited them as a major barrier to problem-solving success during his RRI2: 

Conceptually [the problems] are not easy by any means but I think even harder 

than that is just working with all the variables and all the arbitrary m and I guess 

in this case the arbitrary a, b, c, and d. Really just trying to keep up with it is the 

most difficult.

Earlier in the interview, he made some statements that indicated a possible source of 

these troubles:

Well, originally when I did 1 (a) [application of differentiation problem], 

especially yesterday, I remember thinking, and this is bad thinking on me, but I

remember thinking you wouldn’t give me a question in which there is more than 

one answer. But I think that was more of me thinking of what kind of problem 

you would give me rather than looking at the actual problem itself.   

Probed as to what gave him the impression that the problem may have only one solution, 

Martin stated:

Oh, I don’t know, I just always feel a lot of times in math they try and focus and 

give you a systematic way to do it which would mean there is only one answer. 
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Martin’s expressions indicate, despite a certain level of comfort in the arbitrary nature of 

problem solutions, a unique belief may manifest in students’ mathematical problem-

solving practices based on past experiences in mathematics courses. 

Second, Martin’s final comment above indicated that an overt focus on 

procedural methods of navigating problem spaces may be the culprit for his confusions. 

His RCI comments provided triangulation for such an assertion. When asked whether 

knowing procedures or understanding concepts is more important to problem-solving 

success, he made the following statement:

I would say understanding underlying concepts which would lead you hopefully 

to a certain set of steps; that would be my guess. . . conceptual knowledge, I think, 

leads to the procedural knowledge, or the procedural steps generally to solve the 

problem. 

So, despite emphasizing the conceptual, Martin continued to indicate a desire for 

procedures. When probed as to the sources of his desire to have a more procedural, or 

direct, approach, Martin responded:

Because I felt that if I had just done the guess-and-check thing I wasn’t really 

justifying anything, I really was just kind of guess-and-checking. Where if I had 

shown work for it at least I would have work behind it to explain how I got to that 

solution, which I like better.

So, Martin indicated the need for a procedurally-based, as opposed to a conceptually-

based, justification for his mathematical work. It appears that a disconnect between an 

ideally conceptual belief in mathematical problem-solving and the realized procedural 
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manifestation of problem-solving habits exists in high-achieving, advanced mathematics 

students.   

Think-aloud problem-solving session performance. Martin received nearly full 

credit for both parts of the application of differentiation problem and part (a) of the 

application of integration problem. During the second session, Martin was able to 

adequately solve part (a) of the application of differentiation problem. However, his 

justification was insufficient; thus, based on Schoenfeld’s (1982) grading scheme, he was 

awarded 17 points for part (a) of the application of differentiation problem. Martin’s 

solution with justification for part (b) of the application of differentiation problem was 

perfect. Hence, Martin was awarded the full 20 points for solving part (b) and earned a 

combined score of 37 out of 40 points for the application of differentiation problem. 

For part (a) of the application of integration problem, Martin worked like an 

expert. Very little control was applied and his methods were flawless. Unfortunately, he 

made two careless errors that affected the final solution. Thus, Martin was awarded 18 

out of 20 points for his efforts. Finally, Martin made some progress on part (b) but the 

solution path chosen was procedurally identical to part (a) despite the change in goal 

state. However, his area was accurate and with respect to m. If he had simply noted the 

need for a horizontal line, he may have been able to solve the problem. Thus, Martin was 

awarded a score of 10 out of 20 points for part (b). His total score for the application of 

integration problem was 28 out of 40, resulting in a combined total of 65 out of 80 points 

for both problems. 
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AP Calculus Exam Preparation 

 During the MCI, each participant was asked to comment on the differences in the 

AP Calculus exam preparation session problems and the think-aloud session problems. 

Martin stated that the think-aloud session problems were “more difficult” and that he 

could not “remember any AP problems either in groups or in class that I didn’t really 

understand what I was doing.” Unfortunately, despite noting the difficulty-level 

differences and citing the procedural aspects of the AP exam practice problems, Martin 

provided insufficient detail for providing additional justification for categorizations of the 

tasks based on Stein et al.’s (2000) system. 

 Classroom observation 1. Martin was observed working on question 5 from the 

AP Calculus AB 2005 (Form B) exam with his partners, Roy and Mae (see Appendix E). 

The question required students to work with an implicitly-defined relation and solve four 

problems, (a)–(d). For part (a), students were to show that the derivative of the implicit 

relation was equal to a given expression. The group finished this part so quickly that they 

were working on part (b) when the researcher began the observation. Upon inspecting 

solutions, things must have gone well because all three group members earned the full 

two points. 

For part (b), students had to find all points such that the slope of the curve equals 

one-half. Mae presented an idea to the group, but Martin pointed out a flaw in her plan 

and suggested that the group set the derivative from part (a) equal to one-half and solve 

for one of the variables. Martin and Mae employed this plan but soon realized the 

cumbersome algebra in store for them. At this point, Martin requested feedback from 

Roy, who demonstrated an alternative solution path. All three agreed with the new plan, 
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which was similar to Martin’s plan but with fewer algebraic steps. All three group 

members successfully solved for x, but made an error in solving for y. Thus, each group 

member received one out of the possible two points for part (b). 

 For part (c), students were to show that the curve had no points such that the 

tangent was horizontal. Mae was unable to recall the definition of a horizontal tangent but 

Martin was able to provide a conceptual explanation for her. Then, all group members 

appeared to be working on the problem. Providing an overt example of group monitoring, 

Roy noted that Martin had set the denominator equal to zero instead of the numerator and 

saved him a costly error. Despite the discussions engaged by Martin and Roy, Mae was 

still unable to make any progress with part (c). Eventually, Martin simply explained 

verbatim how to show that the curve can have no horizontal tangents so the group could 

move on. All three group members received the full two points for part (c). 

For part (d), x and y were defined as functions of t, additional information was 

provided, and students were asked to find the derivative of x with respect to t at a given 

point. The entire group was stumped for several minutes and Roy was literally scratching 

his head. None of them saw the connection to related rates. Fortunately, Martin, in an 

expression of critical-thinking genius, developed a plan to differentiate all variables with 

respect to t at the given point. (He had essentially developed the concept of related rates 

without realizing it!) His fellow group members had difficulty following him. Roy 

decided to work independently and this decision cost him as he only earned one point out 

of three. Mae probed Martin, who provided a sufficient explanation for her to earn two 

points out of three. Despite attempting to verify his solution, Martin’s stroke of genius 

only yielded him two points out of three, as he had two arithmetic errors and thus, an 
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incorrect final solution. In sum, Martin and Mae received 7 points and Roy received 6 

points, resulting in a mean group score of 6.67 out of 9 possible points. The group 

outperformed the class, which averaged 5.85 points. 

Classroom observation 2.  During his second observation, Martin worked on 

question 1 from the AP Calculus AB 2009 exam with his group members (see Appendix 

E). In direct contrast to the first observation, this observation is best described as three 

students working independently on a problem and occasionally discussing their thoughts. 

The question provided a piecewise-linear graph representing the velocity of a student’s 

bicycle as she rides to school and posed four problems, (a)–(d). For part (a), students 

were required to find the acceleration of the bike at a given time with appropriate units of 

measure. Martin and Roy immediately recognized that differentiation was necessary and 

set to work calculating the slope of the linear piece containing the given time. Mae 

walked in a little late and had to catch up with her partners. In the first example of the 

lack of group unity, each group member received one point out of two for part (a) but all 

for different reasons. Martin and Roy indicated incorrect units with differing errors. If 

they had participated in group monitoring, they may have reconciled the issue. Mae had 

correct units, which she did not share with the group but made a calculation error that 

was not monitored. 

For part (b), students were required to interpret the meaning of the integral of the 

absolute value of the velocity function over a give interval and then find the value of the 

integral. Yet again, the group failed to monitor or verify each other’s interpretations and 

this cost Martin, as he excluded the time interval from his answer. Ironically, Mae could 

not recall whether the integral produced total distance or displacement and upon asking 
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for help, received a good explanation of the conceptual differences in distance and 

displacement from Martin, and earned a point that Martin himself did not receive. For the 

calculation, Martin presented the plan to use geometric formulas to calculate the integral.

Everyone assented and worked quietly calculating the area. Upon completion, Martin 

asked the group if they got 1.8 as an answer, but everyone had obtained different results. 

Upon inspection, Martin and Roy determined that the error involved the scale of the 

graph; the horizontal scaling was one unit, but the vertical scaling was 0.1 units. So, Roy 

and Mae re-calculated their areas. Mae checked her solution with Martin and found that 

she was still slightly inaccurate. She mumbled something under her breath about just 

leaving it. Upon checking her work, it was confirmed that she had not corrected the error. 

So, for part (b), Martin earned one point out of two due to his incomplete interpretation of 

the integral, Roy earned the full two points, and Mae earned one point since she did not 

correct her erroneous calculation of the integral. 

Part (c) required students to determine the time at which the student returned 

home to retrieve her calculus homework and provide a reason for their answer. At time t

= 2, the graph indicated a change in velocity from positive to negative, demonstrating a 

change in direction. The group had no noticeable discussions of this part and simply 

worked quietly. As a result, all group members determined the correct answer but Mae’s 

reasoning was inaccurate. So, Martin and Roy received the full two points and Mae 

received one point for part (c). 

 Part (d) introduced another student riding his bike to school with a specific 

function, rather than a piecewise graphical representation, describing the velocity of the 

bike. Students were required to determine which student lived closer to the school. 
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Martin presented the plan to compare both students’ displacements, rather than distances, 

which was an accurate conceptualization of the problem. Students then struggled with 

rectifying the change in direction that resulted from the first student’s bike trip. 

Eventually, Martin and Roy figured out a technique to find the first students’ distance and 

were able to complete the problem. Despite receiving help from Martin, Mae was 

unsuccessful in her solution for part (d) and only received one point out of three. Roy 

received the full three points since his integrals were properly set up, calculated, and the 

results interpreted. Martin received two points out of three since he made all the 

calculations appropriately but misinterpreted his results and made the wrong conclusion. 

So, the session ended as it began, with lack of group monitoring resulting in three 

different scores for a group of students supposedly working together. In sum, Martin 

received 6 points, Roy received 8 points, and Mae received 4 points, resulting in a mean 

group score of 6 out of 9 possible points. Due in large part to a lack of group monitoring, 

the class, which averaged 7.33 points, outperformed the group. 

 AP Calculus exam preparation performance. Since Martin and Mae missed the 

same two AP practice sessions, all group and overall class data contain only the ten 

sessions for which the group was intact. Group statistics for the ten problems were as 

follows: Martin averaged 6.10 points, Roy averaged 6.60 points, and Mae averaged 4.50 

points. Thus, the group’s overall average score for the 10 problems was 5.73 points, 

resulting in a difference between Martin’s average score and his group’s average score of 

0.37( . The overall class average for the 10 problems that Martin completed was 4.95, 

resulting in a difference between Martin’s average score and the overall class’ average 

score of 1.15(  points.  
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Cameron’s Narrative

Mathematical Achievement and Questionnaire Data  

 Cameron was the upper-bound maximum variation participant (Miles & 

Huberman, 1994) based on his grade of 100 in AP Calculus AB. His grade was the 

highest among students from all sections of AP Calculus AB offered at the school, 

obviously making him a Category I calculus achiever. Cameron also had a very diverse 

array of categorizations from the questionnaires. For the IMBS, Cameron had one low,

three average, and two high categorizations. His low categorization was for the scale 

Belief 5, implying that he self-reported the non-availing belief that mathematical 

knowledge is innate and hard work may not produce mathematical proficiency. His two 

high categorizations were for the Belief 1 and Belief 4 scales, indicating that he self-

reported the availing belief that he could solve difficult mathematical problems regardless 

of duration, and word problems are important to mathematics, respectively (Kloosterman 

& Stage, 1992). 

 For the MSLQ, Cameron was categorized as low for one scale, average for three, 

and high for three. His low categorization was for the scale Learning Strategies: Help 

Seeking, indicating that Cameron self-reported placing little value on seeking help from 

outside sources. His three high categorizations were for Motivation: Intrinsic Goal 

Orientation, Motivation: Task Value, and Learning Strategies: Critical Thinking. 

Congruent with Martin and in opposition to the other participants, Cameron scored higher 

on Intrinsic Goal Orientation (6.5) than Extrinsic Goal Orientation (5.5), indicating the 

tendency to engage in tasks for the purposes of mastering and understanding concepts. 

His other high categorizations, Task Value and Critical Thinking, indicate that Cameron 
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self-reported being interested and seeing importance in tasks for this course, and in 

applying prior knowledge to problems and critically evaluating content presented in this 

course, respectively (Pintrich et al., 1991).

Finally, for the PEP, Cameron’s scores for the Rational, Empirical, and 

Metaphorical scales were 110, 110, and 67, respectively. He was categorized as average

for the Rational and Empirical scales and low for the metaphorical scale. In fact, 

Cameron’s metaphorical score was lowest in the class. Due to obtaining the exact same 

score for both scales, Cameron was categorized as rational/empirical. This categorization 

implies that Cameron self-reported giving equal credence to analysis, synthesis, and logic 

(rational), and observation and perception (empirical) for cognitive processing and 

justifying knowledge claims. The low categorization assigned to the Metaphorical scale 

indicates that Cameron gives little credence to insight, awareness, and symbolism as 

means for cognitive processing and justifying knowledge (Royce & Mos, 1980). 

Think-Aloud Sessions 

 Session 1. During TA1, Cameron spent all of his time working on the application 

of differentiation problem. He began TA1 by reading both parts (a) and (b) for 42 

seconds and then spending 1 min 30 sec engaged in analysis of the conditions and goals 

of part (a) of the problem. During his analysis, Cameron established accurate and 

appropriate relationships between problem conditions and goals by applying the restate 

the problem and setting up equations heuristics, enacting prior knowledge, and recycling 

the goal in working memory. Thus, Cameron developed a definition of the task that 

allowed for establishment of initial goals that would inform the forethought phase of SRL 

processing. From this analysis phase, Cameron shifted to a rather fruitless exploration of 
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the quadratic formula as a means for finding the x-coordinates of the horizontal tangents

that lasted 1 min 18 sec. An earlier global assessment indicated that he doubted the 

usefulness of this idea. The exploration resulted in an expression for x dependent upon 

the variables a, b, and c.

Then Cameron assessed the current state of the problem and established a plan to 

“create values” for a, b, c, and d. This decision made in the forethought phase of SRL 

processing proved to be the most important to his successful navigation through the 

problem space. The ensuing 14 min 2 sec was comprised of an elegantly developed and 

successfully implemented solution and verification for part (a). To use his own words, 

Cameron was “working backwards,” which is a useful heuristic, by “creating arbitrary 

points.” He began this process by assigning an x-coordinate to the single point of 

inflection that he had logically deduced must exist. Since the second derivative still

contained two unknowns, a and b, he arbitrarily assigned a = 1 so he could solve for b.

Then, using a combination of rational logic and empirical substitutions, Cameron used 

the first derivative to find an appropriate value for c and then assigned a value to d that 

lifted the function above the x-axis.

During this implementation, six instances of local assessment of strategy use and 

two instances of global assessment toward goal state were coded and led to transitions 

that were purposeful and productive. It should be noted that, although successful, 

Cameron’s problem-solving path was not seamless; his ability to control erroneous and 

unforeseen results during the performance control phase of SRL was crucial to his 

success. For example, when solving for c, Cameron had established two x-values for his 

horizontal tangents, but substituting the x-values resulted in two different c values. The 
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reason for this rather strange occurrence is that he had correctly set his horizontal 

tangents equidistant from the point of inflection but made a minor arithmetic error when 

solving an equation. Spending only seconds contemplating this issue, Cameron decided 

that the best option would be to accept one of the c-values and continue working the 

problem. Thus, control kept him from spending too much time focusing on issues that 

had no bearing on the overall goal state of the problem. During verification, Cameron 

used his graphing calculator to check that his solution, which was f (x) = x3 – 3x
2 – 9x +

28, met the conditions of the problem.  

Satisfied with his solution for part (a), Cameron spent 16 seconds re-reading part 

(b) and then spent 1 min 8 sec engaged in analysis of the second derivative. Then, 

Cameron developed an argument that part (b) was not possible based on the linear 

qualities of the second derivative and verified his result by re-reading his answer. The 

solution and verification of part (b) lasted 3 min 31 sec. No control was needed because 

Cameron conceptually understood the relationship between goals and conditions to the 

point that strategy use was unnecessary.

In terms of epistemological beliefs, Cameron’s navigation through TA1 was 

coded as predominantly rational but with evidence that an empirical belief in 

mathematical problem solving is important as well. This result is supported by 

Cameron’s scores on the Rational and Empirical scales of the PEP. Additional support 

includes his solution strategy for part (a), which was based simultaneously on conceptual 

understanding and arbitrary assignments of values to variables. Additionally, a strict 

adherence to the belief in conceptually solving mathematical problems pervaded the 

session. There was little evidence of prescription or procedure during the plan and 
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implementation phase of part (a). Rather, Cameron’s navigation of the problem space 

consisted of decisions based on conceptual insights and transitions applied in light of 

local and global assessments of his strategy.   

Cameron’s work during TA1 was also indicative of a belief that knowledge is 

interrelated. For example, he was the only participant to consider the second derivative 

and points of inflection while developing a strategy to solve part (a). His consideration of 

the information inherent in the second derivative provided him with another equation to 

work with, a point (of inflection) from which to develop a function, and the Second 

Derivative Test to justify his extrema. Finally, Cameron’s work and RRI1 provided 

evidence of an arbitrary belief regarding problem solutions. Within this specific context, 

this belief dimension is representative of the degree of acceptance that multiple 

representations may exist for the constants contained in both problems. Overt evidence of 

Cameron’s arbitrary belief is represented by the following quotes from his RRI1: “When 

I first read the question I saw all the variables, a, b, c, and d, that left it up for grabs;” and 

“I realized that there were a lot of possibilities here so I could start making arbitrary 

assumptions.” Summarily, Cameron demonstrated an availing belief in mathematical 

problem solving. 

Session 2. Having successfully solved the application of differentiation problem 

during TA1, Cameron spent all of TA2 working on the application of integration 

problem. Cameron began TA2 by spending 52 seconds reading the problem and then 58 

seconds engaged in analysis. The analysis portion of this phase of the session involved 

sketching a graph of the shaded region and establishing relationships between conditions 

and goals. So, as in TA1, Cameron entered the forethought and performance control
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phases of SRL processing with an accurate definition of the task. Following analysis, 

Cameron embarked on a 58-second, productive exploration that resulted in obtaining the 

area of the bounded region for part (a). However, upon global assessment, Cameron 

dismissed this result as unnecessary based on the plan he had in mind.

 Recognizing the conceptual significance of the bounds of an integral in solving 

for area, Cameron determined the following equation to be the most appropriate means 

for solving the problem: 
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 He followed this plan to success over a 5 min 2 sec implementation phase. The execution 

of the plan was so precise that little monitoring was required; hence, little evidence of 

performance control was coded. In fact, only three instances of locally assessing strategy 

use and three instances of globally assessing progress toward goals were coded. In the 

end, Cameron solved the integral equation completely by hand and got an answer of  
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He then used the CAS capabilities of his calculator to verify his result by setting both 

definite integrals equal to each other and obtaining the word true. 

 Cameron’s work for part (b) began by re-reading the problem for 17 seconds, 

then spending 1 min 20 sec engaged in analysis. During this analysis phase, he sketched 
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the appropriate region and more importantly noted the importance of re-writing h (x) as a 

function of y to facilitate finding an equation for the horizontal line. Then, appropriately 

using the heuristic of recalling a similar problem, he applied his plan for part (a), but 

with respect to y, and developed a solution in 7 min 32 sec. It should be noted that his 

plan would not have been successful had he not re-written h as a function of y.

Additionally, Cameron monitored his actions, logging seven instances of locally 

assessing his strategy and three instances of globally assessing his goal state. The most 

intriguing assessment occurred as Cameron neared the end of implementing his problem-

solving plan. He had been solving by hand but reached an unsolvable equation and used 

the CAS to find the solution. As he did so, he realized that the solution was to be unique 

(i.e., not related to m) and this caused him to consider the plausibility of his solution. 

Once Cameron had a solution, 0.6348108y 6 , he spent his final 3 min 51 sec verifying it

in the same manner as part (a). Up to the end, Cameron was trying to convince himself 

that one unique solution was plausible for part (b).

From an epistemological perspective, multiple findings emerged from Cameron’s 

TA2 and RRI2. To begin, Cameron’s navigation of the problem space was coded as 

completely rational throughout. Every thought and action was logically-based and 

grounded in the integral calculus. Consequently, the problem-solving session was also 

coded as exhibiting a predominantly conceptual belief in mathematical problem-solving 

and the interrelated nature of knowledge. These beliefs were evident when Cameron 

transitioned from using the area in part (a) to set up an integral equation. This action 

demonstrated a deviation from procedure, which would typically lead to a numeric value 

for the area, to a more sophisticated and contextual understanding of conceptual aspects 
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of the conditions and goals of the problem. Cameron confirmed this interpretation during 

his MCI, as demonstrated by the following excerpt of his answer to whether knowing 

procedures or understanding concepts is more important to problem solving: 

In a conceptual understanding, you can not only apply it to any of the cases but 

also apply it to cases that you haven’t been taught a procedure for. You can at 

least give it a try and have a better shot at going into the unknown. And if you’ve 

just known procedures, then you will not be able to take that outside. 

Finally, Cameron’s session also indicated an arbitrary belief regarding problem 

solutions. The most informative evidence of this arbitrary belief was Cameron’s reaction 

to the unique solution obtained for part (b) during TA2: “Am I going to get a value here? 

That’s odd. Uh, well let me keep going and I will ponder that later.” Later in the session 

while verifying his solution, he was still perplexed by the unique solution: “I still think 

it’s weird that I’m getting that number answer for something when not everything is 

defined.” These statements indicated that Cameron understood the effect that the constant 

m typically has on a problem of this nature. Thus, he was not expecting a unique solution 

and upon receiving one, questioned its validity.  

 During his RRI2, Cameron made the following statement: 

And then with 2 (a) and (b), because there was this m, I was expecting a solution 

that would have ms in it. So that it wouldn’t be an exact value; it would be a 

variable answer kind of thing. So with (a) my expectations were met, and then 

with (b) it surprised me that I got a numerical answer as opposed to some 

expression involving m.
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Thus, Cameron seemed to hold a strong belief in the arbitrary nature of the constants and 

their differing roles in the problems analyzed in this study. When probed during his MCI, 

Cameron was unable to identify the source of his arbitrary belief, but he did concur that 

previous mathematics courses did not prepare him adequately for such abstractions by 

stating, “Well, I have actually noticed, now that you’ve mentioned it, but all the previous 

math classes when we have a variable we solve for it and it eventually becomes a number 

and never any arbitrary constants and general solutions.” 

Think-aloud problem-solving session performance. Cameron was the only 

participant to earn the full 80 points for the given problems. Additionally, he successfully 

solved both problems within the time constraints of the sessions, solving the application 

of differentiation problem in 22 min 27 sec and the application of integration problem in 

24 min 19 sec. Despite two minor errors, all four final solutions were accurate and 

adequately and conceptually justified. 

AP Calculus Exam Preparation 

During the MCI, each participant was asked to comment on the differences 

between the in-class, AP Calculus exam preparation session problems and the after-

school, think-aloud session problems. Cameron responded with the following: 

The practice problems we did in class, even thought they were AP questions, were 

just more stuff we had learned, just taking our knowledge and applying it to just a 

little problem; whereas the afternoon sessions were a little more outside the box, 

let’s think a little more. And it has to be the AP questions that they need to focus 

on the knowledge you currently have and test the knowledge we have, as opposed 

to trying to build new knowledge. 
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So, Cameron’s response provides further justification for categorizing the AP Calculus 

exam preparation session problems as “procedures with connections tasks” and the think-

aloud session problems as “doing mathematics tasks” (Stein et al., 2000, p.16). 

Classroom observation 1. Cameron was observed working on question 2 of the 

AP Calculus AB 2003 (Form B) exam with his partners, Jim and Ned (see Appendix E). 

The question provided functions describing the rates heating oil is pumped into and 

removed from a tank. Four problems, (a)–(d), were posed based on the given information. 

For part (a), students had to find the total amount of oil pumped into the tank over a give 

time period. The group simply began working quietly on the problem and once finished 

demonstrated group verification by checking one another’s answers. During verification, 

Jim pointed out to Cameron that he was missing part of the function in his calculation and 

thus, had an incorrect answer. However, no one realized that Ned had only recorded two 

decimal places of accuracy, thus he lost a point. For part (a), Jim and Cameron received 

the full two points and Ned received one point. 

 For part (b), the group determined whether the level of oil was increasing or 

decreasing at a certain time. For this part, Cameron’s group monitoring practices came to 

Jim’s aid. Both began by assuming a derivative was required, but upon re-reading, 

Cameron realized that the functions were already providing rates. After some 

calculations, the group, yet again, took time to verify solutions and the result was that all 

three received the full one point.

As soon as Jim and Cameron read part (c), both students knew that an initial 

condition integral expression was required. As with the first two parts, Ned provided little 

input and simply assented and applied Jim and Cameron’s plan. All worked quietly, until 
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Ned informed the group that he could not input the integral expression into his calculator. 

Jim and Cameron helped him clear up the calculator problems. Then Jim discussed the 

conceptual meaning behind the initial condition and integration performed. Despite this 

showing of group monitoring, Ned did not set up the integral properly. Thus, Jim and 

Cameron received the full three points and Ned received two points for part (c). 

None of the students recalled the necessary conceptual knowledge to solve the 

absolute extrema problem presented in part (d). In fact, Cameron’s journal even indicated 

a plan to apply relative extrema techniques. The group spent a lot of time quietly reading 

and discussing this problem but was never able to get past considering relative extrema. 

For this reason and because time was called, Ned and Cameron received one point and 

Jim received zero points out of three. In sum, Cameron received 7 points, Jim received 6 

points, and Ned received 5 points, resulting in a mean group score of 6 out of 9 possible 

points. The group outperformed the class, which averaged only 4.53 points. 

Classroom observation 2. During his second observation, Cameron worked on 

question 5 from the AP Calculus AB 2007 (Form B) exam (see Appendix E). The 

question posed four problems, (a)–(d), based on a given, non-separable differential 

equation. For part (a), students simply had to sketch a slope field for the differential 

equation. The group worked silently on this part and no one showed signs of 

misunderstanding the concept. However, thanks to group monitoring, Cameron caught an 

error made by Ned while the group was verifying solutions. All three group members 

earned the full two points for part (a). 

 Part (b) required students to find the second derivative and discuss the concavity 

of the solution curves to the differential equation. Yet again, Jim and Cameron 
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formulated a plan for solution and Ned merely assented and followed along. However, 

during implementation, Jim was unable to rectify the dy dx remaining in the expression 

for the second derivative. In another example of group monitoring, Cameron pointed out 

the substitution provided by the given information. At this point, the group got very 

confused, as Jim thought that (b) was finished and moved on to (c) and Ned attempted to 

continue following along. Cameron straightened the group out by reminding them that 

part (b) had a second question. Thus, Cameron’s focus on the definition of the task and 

goal state had a heavy influence on group performance. For part (b), all three group 

members earned the full three points.   

 Since he had moved on earlier, Jim knew that part (c) required the use of the 

Second Derivative Test to determine whether a given solution to the differential equation 

contained a relative extrema value at a given point. Based on this plan, Jim and Cameron 

began working but Ned could not recall how to apply the Second Derivative Test. Thus, 

Cameron explained the concept of the Second Derivative Test and its application to the 

given context. After completing his work, Cameron began work on part (d), but Jim made 

him stop so the group could verify solutions. All three group members earned the full two 

points for part (c).

 The group was truly stumped by part (d), which required them to find values for 

m and b such that y mx b# (  would be a solution for the differential equation. Jim and 

Cameron discussed the problem extensively, with the most important instance of group 

monitoring occurring when Cameron stifled Jim’s desire to solve using separation of 

variables. Ned interrupted the deep discussion to ask which part the group was working 

on, clearly showing that he was unable to follow along. Then, Ned realized that his 
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solution for part (c) was incorrect and Cameron re-explained the concept to him. As the 

researcher stood to leave, Cameron had a revelation and began building an argument for 

using the result from part (b), which provided a solution for zero concavity, or linearity. 

An inspection of his work showed that he had developed a solution. He must have shared 

his solution with the group since all three received the full two points for part (d). In sum, 

all three group members received the full 9 points for this question, obviously resulting in 

a mean group score of 9 points. The group outperformed the class by a large margin, as 

the class averaged only 4.97 points. 

 AP Calculus exam preparation performance. Since Jim missed one AP practice 

session, all group data contains only the eleven sessions that the group was intact. Group 

statistics for the eleven problems were as follows: Cameron averaged 7.64 points, Jim 

averaged 6.91 points, and Ned averaged 5.73 points. Thus, the group’s overall average 

score was 6.76 points, resulting in a difference between Cameron’s average score and his 

group’s average score of 0.88( . Cameron’s overall average performance on the 12 in-

class AP Calculus AB practice problems was 7.50 out of 9 possible points. The overall 

class average for the 12 problems was 4.92, resulting in a difference between Cameron’s 

average score and the overall class’ average of 2.58(  points.  

Conclusion 

 This chapter has provided rich, thick descriptive narratives of the experiences of 

the six participants. In addition, theoretical interpretations were provided via triangulated 

data sources with respect to epistemological beliefs, SRL, and mathematical problem-

solving based on the theoretical framework developed in Chapter II: Review of Relevant 

Literature. Each participant engaged in a member-checking interview shortly after the 
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study to review initial findings, augment results, and answer follow-up questions to 

ensure credibility of the findings. Overall, the results suggest the following: 

! SRL processing and mathematical problem-solving prowess are related to 

students’ beliefs in a procedural or conceptual approach to mathematical problem 

solving and additionally a simple or interrelated belief in the simplicity of 

knowledge; 

! SRL processing and mathematical problem-solving prowess are related to 

students’ unique or arbitrary beliefs regarding problem solutions; and 

! SRL processing and mathematical problem-solving prowess are related to 

students’ abilities to appropriately apply both an empirical and rational approach 

to mathematical problem-solving. 

Further qualitative exploration of these assertions were addressed via cross-case analysis

and is the subject of the ensuing chapter.
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CHAPTER V

CROSS-CASE RESULTS

 The purpose of this study was to explore relationships between students’ 

epistemological beliefs and self-regulatory processing in the context of mathematical 

problem solving. To achieve this goal, the researcher applied quota and maximum 

variation sampling to obtain six individual participants from an intact Advanced 

Placement (AP) Calculus BC class (Miles & Huberman, 1994). Then, participants were 

provided opportunities to work mathematical problems both individually and in small 

groups. Data were collected from think-aloud transcriptions, student work samples, 

journal entries, observational field notes, and individual interviews. Finally, the 

researcher provided students with draft narrative accounts of their experiences to review 

for the purposes of member checking.

In the previous chapter, rich, thick descriptions of participants’ experiences during

the eleven-week study presented initial interpretations that emerged from open-coding 

analyses (Creswell, 2007; Miles & Huberman, 1994). Then, using NVivo Version 8, data 

were analyzed via axial and selective coding to determine patterns, themes, and 

relationships (Bazeley, 2007; Creswell, 2007). Matrices and models were developed to 

provide both final analyses and visualizations of the findings. This chapter provides a 

culminating report of cross-case data analyses with respect to categorizations developed 

for participants.
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General Overview

The previous chapter provided narratives reports of the analysis of each 

participant’s experiences. This chapter will present cross-case analysis that revealed

major themes and patterns which emerged from the data. A broad overview of 

participants’ experiences will be provided. During the think-aloud sessions, virtually all 

students demonstrated some degree of processing in all four phases of the SRL model 

developed in the theoretical framework (see Table 7). Differences and similarities 

between participants and their attributes will be discussed at length below. It should be 

noted that the performance control phase was further subdivided into five subcategories, 

as follows: self-control and self-observation, problem-solving explorations and 

implementations, general and heuristic strategy use, monitoring, and transitions.

Additionally, participants’ capacity to appropriately monitor their progress and transition 

to more purposeful problem-solving plans emerged as a major finding during analysis 

and thus, pervades much of the discussion.  

 Due to the nature of group problem solving, credit for problem interpretations and 

development of problem solving plans during the AP exam preparation sessions was 

often blurred. Thus, coding was done only for the performance control and self-reflection 

phases and only if the participant was actively involved in the action. The 6 individuals 

identified via sampling are referred to as participants; whereas the remaining 24 

individuals in the class are referred to as students. In other words, participants’ actions 

were coded at an individual level for their active participation in monitoring group 

problem solving during the AP exam preparation sessions. Classroom observations and, 

to a lesser degree, participants’ journals provided data from the AP exam preparation 
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sessions. Yet again, all participants demonstrated some level of self-regulatory (or group-

regulatory) activity during their two classroom observations (see Table 8). Further 

discussion of similarities and differences amongst participants and their attributes may be 

found below. 

Table 7

Coding Frequencies  for SRL Processing During Think-Aloud Problem- 

Solving Sessions

Participant DT FO PC SR

Robert 16 30 98 7

Edwina 10 14 8 2

Julia 18 34 64 2

Olivia 6 8 13 0

Martin 15 25 29 4

Cameron 9 33 41 7

Note. DT = definition of the task; FO = forethought; PC = performance 

control; SR = self-reflection 

Categorizations 

Each participant’s performance on the think-aloud problems was quantified using 

Schoenfeld’s (1982) grading scheme. Performance on the AP Calculus exam preparation 

problems was assessed via scoring guidelines developed by College Board. (See Chapter 

IV: Individual Case Results for further details.) Participants were categorized based on 
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their performance during the think-aloud problem solving sessions and the AP Calculus 

exam preparation sessions. Students were placed into categories based on their 

performance from both sessions as indicated by the following intervals: low (M – 1.5SD,

M – 0.5SD), average (M – 0.5SD, M + 0.5SD), and high (M + 0.5SD, M + 1.5SD). For the 

think-aloud sessions, the mean score was M = 47.33 (SD = 22.39), resulting in the 

following respective performance intervals: (13.75, 36.14), (36.14, 58.53), and (58.53, 

80.92). For the AP exam preparation sessions, the mean score was M = 5.40 (SD = 1.23), 

resulting in the following respective performance intervals: (3.56, 4.79), (4.79, 6.02), and 

(6.02, 7.25).  

Table 8

Coding Frequencies for Group Problem-Solving Behaviors During AP Exam 

Preparation 

Participant FR SD OM VS WL FA WQ

Robert 5 2 2 4 2 2 2

Edwina 2 3 0 1 4 7 0

Julia 1 2 1 1 0 0 4

Olivia 1 2 4 2 0 1 3

Martin 1 1 6 2 0 0 3

Cameron 0 1 8 3 0 0 3

Note. FR = feedback request; SD = self-disclosure; OM = other-monitoring; 

VS = verifying solutions; WL = watching and listening; FA = following 

along; WQ = working quietly 
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The performance results for both sessions yielded the same categorization for 

each participant and were relatively consistent with each participant’s original calculus 

achievement categorization obtained for sampling  purposes. Although some ordinal 

variation occurred within the three performance indicators, all six participants’ overall 

categorizations were consistent across all three indicators. Thus, for the purposes of 

cross-case analysis, Robert and Edwina were categorized as low achievers, Julia and 

Olivia as average achievers, and Martin and Cameron as high achievers with respect to 

calculus performance prior to and during the study. 

Throughout the study, participants’ actions and verbalizations suggested 

adherence to particular epistemological beliefs. Based on Muis’s (2008) cautions, 

participants’ epistemological beliefs were not determined based on a single data source. 

Instead, participants’ verbalizations and actions during the four parts of the think-aloud 

session were given overall codes for beliefs that manifested as participants worked. Then 

participants’ interviews were coded for overt references to particular epistemological 

beliefs. Based on these manifested and self-reported beliefs, participants were categorized 

as predominantly adhering to either an availing or non-availing persuasion for each belief

emerging during this study (See Table 9). Lacking a high degree of confidence in 

assigning categorizations based on a close proximity of coding frequencies, participant 

categorizations were assigned only if the difference between the frequencies for a given 

belief exceeded two. For example, Olivia was described as predominantly 

straightforward in terms of simplicity of knowledge since the difference in frequencies 

was three but was described as procedural/conceptual for conceptual mathematical 

problem-solving since the difference in frequencies was only two. When possible, 



238

participants’ categorizations were compared to self-report questionnaire findings to either 

triangulate or call to question the assigned categorization. Such comparisons were 

presented in participants’ narratives (see Chapter IV: Individual Case Results). 

Additionally, participants were probed during member checking to further inform 

categorizations. None of the participants disagreed with the categorizations.  

Only two issues were discussed during member checking regarding findings. To 

maintain confidentiality, participants’ pseudonyms will not be identified during this 

discussion. One participant described in detail the reasoning for exploring a solution 

strategy during the application of differentiation problem. The wording in the original 

draft narrative indicated that the strategy lacked conceptual reasoning. The explanation 

provided by the participant was inserted into the narrative to more accurately depict the 

cognitive reasoning involved in exploring the strategy. Another participant agreed with 

the accuracy of the findings but was displeased with the overall tone of the narrative. This 

participant felt that the wording in the narrative was overly negative. This reaction 

prompted a re-evaluation of the wording for all participants’ narratives. Wherever 

possible, changes were made to eliminate both explicit and implicit negative connotations 

while maintaining accuracy of participants’ experiences. 

Finally, based on the literature, the following belief codes (see Table 9) were 

considered non-availing for their respective beliefs dimension: fixed, straightforward,

procedural, and empirical (Hofer, 2000; Hofer & Pintrich, 1997; Kloosterman & Stage, 

1992; Muis, 2004, 2008; Royce & Mos, 1980; Schoenfeld, 1983, 1985). The remaining 

codes were considered availing for their respective beliefs dimension. Thus, for the 

purposes of cross-case analysis, Robert, Edwina, and Julia were assigned a novice
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mathematical problem-solving beliefs (MPB) categorization since they had non-availing 

beliefs for all dimensions. Olivia and Martin were assigned an emerging MPB 

categorization since the majority of their beliefs dimensions were indeterminate. Finally, 

Cameron was the only participant to attain the advanced MPB beliefs categorization 

because he was assigned availing beliefs for all dimensions.

Table 9

Coding Frequencies for Epistemological Beliefs 

Nature of Simplicity of Approaches to

solutions knowledge problem solving 

Participant UN AM ST IN PR CO EM RA

Robert 9* 0 8* 0 11* 1 7* 1

Edwina 6* 0 4* 0 5* 1 4* 0

Julia 10* 2 6* 1 9* 1 7* 1

Olivia 4 2 5* 2 6 5 3 4

Martin 0 3* 4 4 7 5 5 5

Cameron 0 9* 0 7* 0 9* 1 8*

Note. Numbers with asterisks indicate that the participant was 

categorized as predominantly adhering to the corresponding belief. UN

= unique; AM = ambiguous; ST = straightforward; IN = interrelated; 

PR = procedural; CO = conceptual; EM = empirical; RA = rational
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Cross-Case Analysis

Based on individual participant narratives and categorizations, patterns and 

themes emerged from the data. In most cases, overall quantitative tabulations of open 

coding provided insufficient descriptions of actual events and thus, deeper qualitative 

analyses were required to accurately depict the emerging patterns and themes. In fact, 

initial results of summed open codes of SRL processing seemed to indicate a surprising 

result. Robert and Julia, two participants attributed with non-availing MPB, registered the 

most codes for SRL processing in this study (see Table 7). However, as discussed in 

depth below, a more accurate depiction of participants’ experiences was obtained from a 

finer-grained, qualitative interpretation of the data. Using NVivo Version 8 for axial 

coding, selective coding, textual analysis, and matrix development, the nature of patterns 

and themes was revealed (Bazeley, 2007).  

Beliefs Affected Definition of the Task and Forethought

 Only think-aloud session data were analyzed for this section since AP Calculus 

exam preparation sessions provided insufficient evidence for individual participants. 

From a purely quantitative perspective, the results pertaining to the definition of the task

and forethought phases appeared inconclusive (see Table 7). Thus, deeper qualitative 

analyses were conducted to gain a clearer rendition of lived events and reveal findings 

hiding behind the numbers. To begin, participants’ frequencies for the three finer-grained 

codes under the definition of the task node were analyzed and revealed distinct patterns 

(see Table 10). Despite logging the majority of codes for noting conditions and 

identifying goal state, the three novice MPB participants logged fewer instances of 

establishing relationships between conditions and goals than the other three participants. 
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Participants were assigned the establishing relationships code if they made mathematical 

connections between conditions and goals that were conducive to plan development 

(Schoenfeld, 1985). Thus, despite referring to the given information multiple times for 

each part of the two problems, novice participants were relatively unsuccessful at 

establishing an adequate definition of the task upon entering the forethought and 

performance control phases. In contrast, the emerging and advanced MPB participants 

were more successful at establishing relationships and developing a more adequate and 

appropriate definition of the task. This finding is congruent with prior research suggesting 

that epistemological beliefs may be activated during the definition of the task phase and 

subsequently affect planning in the forethought phase (Muis, 2008; Muis & Franco, 

2009). 

A finer-grained analysis of participants’ frequencies of forethought phase codes 

also revealed further insights (see Table 11). Participants’ coding frequencies for prior 

knowledge activation provided evidence, along with prior course completion, of the 

availability of appropriate calculus resources for completing the given problems. 

Participants received the prior knowledge activation code if they activated accurate 

mathematical knowledge that had potential for aiding in the solution of the given 

problem. This code in no way implies that the participant properly utilized the 

knowledge, only that the knowledge was available for use. Edwina appeared to be the 

only notable exception, demonstrating insufficient prior knowledge to complete the 

problems. Although she passed the previous course, Edwina genuinely appeared to lack 

the necessary resources to complete both problems and would have received a very low 

overall think-aloud score had she not consulted an expert during the interim between 
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sessions. Thus, conclusions drawn with respect to Edwina’s data must be tempered with 

the fact that she lacked the appropriate resources to complete the problems. All other 

participants were able to activate the appropriate calculus knowledge but had varying 

success in applying the knowledge. 

Table 10 

Total Frequencies for  Definition of the Task Behaviors 

Participant NC IG ER

Robert 14 6 1

Edwina 8 4 0

Julia 11 4 2

Olivia 3 3 2

Martin 9 5 3

Cameron 4 4 4

Note. NC = noting conditions of the problem; IG =  

identifying goal state; ER = establish relationships between 

conditions and goal 

 According to Zimmerman (2000), an important product of the forethought phase 

is a plan for successfully completing the learning task. With the exception of Olivia, all 

participants verbalized overt plans for developing problem-solving strategies (see Table 

11). Although Olivia’s work indicated significant planning, her verbalizations during the 

think-aloud sessions were vague and skipped from idea to idea with little indication of the 
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planning involved. This occurred despite providing her with multiple practice think-aloud 

problems (Ericsson & Simon, 1993). Since little data from the forethought phase was 

obtained from Olivia, only the five other case participants are included in the following 

discussion. To assess these five participants’ planning acuity, a comprehensive, 

qualitative analysis of participants’ verbalized overt plans was conducted based on their 

beliefs (see Tables 12 and 13). Using NVivo Version 8, participants were placed into sets 

based on their beliefs (i.e., unique or arbitrary, procedural or conceptual, empirical or 

rational) and codes for definition of the task and forethought verbalizations were analyzed 

qualitatively via axial coding (Bazeley, 2007; Creswell, 2007). Patterns and themes 

emerging from the data suggest that availing beliefs are related to more productive 

processing during the definition of the task and forethought phases of SRL.   

Unique Versus Arbitrary

The unique belief regarding problem solutions was negatively related to the 

definition of the task and forethought phases. For example, Julia, categorized as a 

participant holding a unique belief regarding problem solutions, exhibited a major 

misconception concerning m in part (a) of the application of integration problem. She 

believed a unique value needed to be assigned to m and as long as m was any positive 

integer, then an accurate solution could be obtained. Assigning a unique value to m would 

have been consistent with applying Polya’s (1957) solving a simpler problem heuristic 

but solution paths for both parts of the application of integration problem had to be 

involve m. This inaccurate assessment of the task led to a flawed plan being developed in 

the forethought phase, involving serial testing of upper bounds to obtain a solution for her 

special case (see Table 13). Her plan was flawed because the solution of her simpler 



244

problem did not lead to a solution path which could be generalized (Schoenfeld, 1985). 

Thus, Julia’s unique belief in the value of m in the problem led to a poor definition of the 

task and subsequently, to an unproductive plan from the forethought phase. The finding 

from this study suggesting a relationship between a unique belief regarding problem 

solutions and academic deficiencies is consistent with prior research (Neber & 

Schommer-Aikins, 2002; Schoenfeld, 1992). Furthermore, Neber and Schommer-Aikins 

suggested that the lack of ambiguity in high school physics courses is particularly 

detrimental to motivation and SRL strategy use in gifted students. These results also lend 

support to Muis’ assertions that beliefs are activated in the definition of the task phase of 

SRL (Muis, 2007, 2008; Muis & Franco, 2009).  

Table 11 

Total Frequencies for Forethought Behaviors

Participant OP IP PK RG

Robert 13 3 8 7

Edwina 10 1 1 2

Julia 11 7 8 7

Olivia 0 5 4 0

Martin 14 3 5 3

Cameron 16 6 10 3

Note. OP = overt planning; IP = inferred planning; PK = prior knowledge 

activation; RG = recycle goal in working memory
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In contrast to Julia’s efforts, Martin’s work with m in part (a) of the application of 

integration problem demonstrated that an arbitrary belief regarding problem solutions 

may lead to an appropriate definition of the task. He was fully aware that his solution 

should be in terms of m and thus, developed a plan that incorporated m into the solution 

(see Table 13). His plan led to a solution receiving almost full credit for part (a) but lack 

of attention to detail stymied his solution of part (b).  

Procedural Versus Conceptual and Straightforward Versus Interrelated

 Patterns were uncovered indicating that procedural versus conceptual and 

straightforward versus interrelated beliefs affected the forethought phase. In general, 

participants categorized as availing for both sets of beliefs developed more productive 

plans than their non-availing beliefs counterparts (see Tables 12 and 13). For example, 

Robert’s fixation on finding a unique solution for a, b, c, and d led to his decision to 

apply systems of equations to the application of differentiation problem. Despite 

receiving feedback from monitoring that his plan was not working, Robert continued to 

revert to his procedural technique and cited problem recognition from prior courses as his 

reasoning. This pattern continued during the application of integration problem, for 

which Robert was able to apply the procedure of calculating area but failed to develop a 

conceptual plan to find the necessary bounds. Additionally, once Robert realized that a 

procedure had failed, his planning based on monitoring generally consisted of 

considerations of other fully-intact procedures without regard to conceptual implications, 

which took him farther from the problem goals (see Table 13). Thus, Robert’s planning 

consisted of random procedures inconsistent with the conditions and goals of the 

problem. Findings based on Robert’s experiences lend support to Hofer’s (2004a) 
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Table 12 

Participants’ Verbalizations of Overt Planning During the Application of Differentiation 

Problem 

Participant Overt Planning 

Novice 

Robert Part (a)

- go ahead and solve for x, I would guess 

- solve things in terms of things and substitute that back in  

- going to be setting [derivative] equal to zero 

- try to plug this into my calculator

Part (b)

- take the second derivative of this 

- need to find values for x that are positive

Edwina Part (a)

- take the derivative . . . set it equal to, to something, to zero, and that 

can give me one root 

Part (b)

- maybe I’ll try solving for x. . .put my function into the calculator 

- just try taking the second derivative . . . see what I can get from that 

- I’ll try a sign line

- could plug negative two-thirds back into the original equation and  

see what I get
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Table 12 (continued) 

Participant Overt Planning 

Novice 

Julia Part (a)

- gonna set and find what x is when it’s equal to zero, or when x is

zero  

- set the derivative equation and use it as two functions 

- find what x is at zero

Part (b)

- use the derivative I already have . . . derive that again 

Emerging 

Olivia No overt planning coded. 

Martin Part (a)

- Maybe I could try and use quadratic [formula] 

- I can say those two functions are equal 

- I plug that back into the original function and set equal to zero

- I have everything but a, I think, can I use a calculator?

- if I were to solve for x

- make the first one negative and the rest positive, I can try that

Part (b)

- have to prove that 6ax + 2b is always going to be greater than zero
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Table 12 (continued) 

Participant Overt Planning 

Advanced 

Cameron Part (a)

- have to create a, b, c, and d so that there are three distinct values for 

that 

- that would just simplify everything if I set a equal to one 

- make the point of inflection at point zero 

- I can now find c

- I guess I’ll need points for x

- I’ve got to find the . . . relative minimum 

- need to somehow get two roots out of that . . . let’s just plug it into  

the calculator

- to find out which one was the minimum, I plug in negative one and  

three into the double prime

Part (b)

- have to prove that somehow 



249

Table 13 

Participants’ Verbalizations of Overt Planning During the Application of Integration 

Problem 

Participant Overt Planning 

Novice 

Robert Part (a)

- need to probably find the area 

- have to find the line that bounds that 

Part (b)

- have to figure out where the other two intersect 

- have to find the horizontal line that divides it in half

- graph this on my calculator

- do just some, I don’t know, proportions 

Edwina Part (a)

- go ahead and graph this, the lines 

- let’s see what happens when I put in a number besides one 

Part (b)

- draw this graph out as well 

- we will solve for area right now 

- maybe I can estimate the area in my graph
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Table 13 (continued) 

Participant Overt Planning 

Novice 

Julia Part (a)

- going to graph that real fast 

- guess I’ll solve for m

- guess I’ll solve it without finding m . . . plug it into my calculator

- set 0.4323 equal to the integral of h(x) 

Part (b)

- find the horizontal line that divides A exactly in half

Emerging 

Olivia No overt planning coded. 

Martin Part (a)

- I’m going to do two first 

- let’s figure out what 1A is equal to

Part (b)

- let’s graph this

- just plug that into my calculator

- going to have to half that, define where my z is

- what if I try to solve this by hand 
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Table 13 (continued) 

Participant Overt Planning 

Advanced

Cameron Part (a)

- so to integrate that

- the integral from zero to a . . . will equal the integral from a to two

- just have to find a way to solve for a

- in order to justify, I’ll have to plug that entire value back into the  

bound

Part (b)

- have to write h(x) . . . as a function of y 

- just have to . . . the integral now from one-half to a

- going to the solve command 

- plug in that value 
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suggestions that epistemological beliefs are not independent, but rather form an 

interconnected theory of epistemology since Robert’s unique belief regarding problem 

solutions yielded procedural problem-solving planning. 

On the other hand, Cameron’s plans for both problems were based on 

conceptualization of the conditions and focused attention to goals. Thus, upon receiving 

feedback from monitoring, he was able to cycle back to forethought and alter plans to 

meet problem criteria. In contrast, Robert’s procedural plans were not malleable since 

they were based on prescription. In sum, as feedback was taken in, conceptualization led 

to purposeful planning; whereas a procedural approach implied the need for a fully-

established procedure as a new plan. For the mathematical problem-solving suggested by 

Schoenfeld (1985) and implied by NCTM (2000), procedural beliefs would be 

insufficient since students are applying problem-solving to learn, or construct, new 

knowledge. 

Empirical Versus Rational 

 In line with prior studies, differences were noted between problem-solving 

behaviors for participants categorized as empirical or rational (Muis, 2008; Schoenfeld, 

1985). The results of this study indicate differences in the forethought phase for 

participants with predominantly empirical or rational beliefs. For instance, Edwina, a 

novice MPB participant, read the application of differentiation problem and then recalled 

that roots of the first derivative produce horizontal tangents. Unable to progress from this 

point, Edwina applied a series of empirically-based plans for the remainder of her first 

session. In terms of SRL, Edwina received internal feedback from monitoring that her 

current plan was not working, which she verbalized during the think-aloud. Then, rather 
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than building logically from her current state, Edwina simply jumped into a new plan, 

thus reducing the productivity of planning that occurred from cycling back to the 

forethought phase. The interpretations gleaned from Edwina’s empirical beliefs must be 

tempered with the fact that she did not appear to have the appropriate mathematical 

resources to solve the problems. In fact, during this session she could not recall whether 

the first or second derivative described concavity. Serial testing of mathematically-based 

plans that lacked logical significance to the current problem was prolific amongst all 

participants while empirical beliefs were being manifested. In fact, Julia spent the 

majority of her second session engaged in serial testing of decimal upper bounds for an 

integral expression that did not even provide the desired solution.

 Cameron, the only predominantly rational participant based on actual 

performance, produced plans that were highly productive and based on logical 

connections between conditions and goals. For instance, at one point during part (a) of 

the application of differentiation problem, Cameron’s assessment of the problem space 

revealed that he needed to determine two x-values for the horizontal tangents. Cameron 

developed a logically based plan to place the x-values equidistant from the point of 

inflection that he had determined, which is a property of cubic functions with two 

extrema. This property of cubic functions had never been addressed in class; Cameron’s 

conceptualization of the cubic function allowed him to develop this justification. Thus, he 

was building a justification for his solution as he solved the problem since his work 

provided a logical mapping of the problem space. 
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Beliefs Affected Performance Control

Think-Aloud Problem-Solving Sessions 

General overview. Based solely on the performance control data from Table 7,

findings appear mixed and inconsistent. Thus, deeper qualitative analyses necessitated

grouping codes into sets using NVivo Version 8 for the purposes of axial and selective 

coding (Bazeley, 2007; Creswell, 2007). All beliefs coded as non-availing and availing 

were included in two sets, regardless of the overall MPB categorization of individual 

participants. Thus, availing and non-availing beliefs became the units of analysis. Then, 

monitoring and transitioning activities were further subdivided into advanced and low-

level categories. An example of advanced monitoring is monitoring progress based on 

implementation of a plausible plan; whereas an example of low-level monitoring is 

monitoring strategy use while embarking on a fruitless exploration of the problem space. 

An example of advanced transitions is assessing the appropriateness of the new direction; 

whereas an example of low-level transitions is jumping into a transition without 

considering ramifications. Finally, all deficit-focused self-observations were included as 

a set in NVivo Version 8. The results indicate that a relationship existed between the 

quality of performance control processing and participants’ beliefs (see Table 14). This 

finding provides support for Muis’ hypothesis that epistemological beliefs enacted in 

earlier phases of SRL affect SRL processing in latter phases (Muis, 2007, 2008; Muis & 

Franco, 2009).  

More specifically, manifestations of participants’ beliefs affected their ability to 

control problem-solving performance (see Table 14). Cameron, the only advanced MPB 

participant, accounted for virtually all instances of advanced monitoring and transitions. 
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One may question whether other factors, such as prior performance and accessibility of 

mathematical resources, may provide alternative hypotheses for Cameron’s findings. 

Martin’s results provided a negative case for the prior performance and mathematical 

resource hypotheses. Despite his high achieving categorization and evidence of sufficient 

prior knowledge activation, Martin, an emerging MPB participant, produced mainly low-

level monitoring and transitioning codes. Martin’s activities in the performance control 

phase coupled with his emerging MPB categorization provided a compelling 

counterexample for alternative hypotheses. The researcher fully acknowledges that SRL 

processing is related to multiple factors. The purpose of this study was to examine 

relationships between SRL and a single factor, epistemological beliefs. The results of this 

study indicate that epistemological beliefs are related to SRL processing. Further research 

is warranted to assess the degree to which epistemological beliefs (and other factors) are 

related to students’ regulation of mathematical problem-solving tasks. 

On the opposite end of the spectrum, Robert and Julia, while they appeared to 

dominate SRL processing in the study, were actually involved in only low-level 

performance control activities and deficit-focused verbalizations. Finally, Edwina and 

Olivia provided the fewest codes for performance control processing in the study. The 

performance control codes noted for Edwina and Olivia were almost exclusively low-

level. Future investigations of these phenomena will require even deeper qualitative 

analyses into specific beliefs dimensions.
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Table 14 

Coding Frequencies for Advanced and Low-level Performance Control 

Behaviors 

Source AM AT DF LM LT

By belief categorization

Availing 34 10 1 6 5

Non-availing 0 6 40 90 39

By participant 

Robert 0 2 23 35 13

Edwina 0 1 12 15 2

Julia 0 2 4 18 18

Olivia 1 1 1 10 2

Martin 2 1 0 17 5

Cameron 31 8 1 1 3

Note. AM = advanced monitoring; AT = advanced transitions; DF =  

deficit- focused verbalizations; LM = low-level monitoring; LT = low- 

level transitions

Unique versus arbitrary. As mentioned above, participants’ unique and arbitrary 

beliefs affected their actions in the definition of the task and forethought phases. Since 

activities in both phases directly affect the performance control phase, participants’ 

unique and arbitrary beliefs regarding problem solutions also affected their strategy use 

and control as they navigated the problem space (Muis, 2007, 2008; Winne & Hadwin, 
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1998; Zimmerman, 2000). For example, Robert, a unique belief participant, became so 

fixated on finding a unique solution for part (a) of the application of differentiation 

problem that he spent his entire first session engaged in a fruitless attempt to solve for a,

b, c, and d via a system of equations. He monitored this plan fairly closely, checking for 

errors and assessing the validity of his substitutions. However, despite doubts and deficit-

focused statements regarding his plan, Robert never transitioned to other strategies. He 

later stated in an interview that he expected a unique solution for a, b, c, and d but did not

know of any other technique to find it. So, his belief that a single, unique solution existed 

negatively impacted his ability to make executive, transitional decisions based on his 

monitoring. Lerch (2004) suggested an alternative explanation to the one presented 

above. She argued that Schoenfeld (1985) disproportionately attributed students’ control 

issues to their lack of success at mathematical problem solving. Lerch suggested that 

Schoenfeld’s mathematical resources category in tandem with students’ beliefs provided 

a more accurate explanation for students’ struggles with mathematical problem solving 

during her case study. However, the findings in this study show that students were able to 

access the appropriate mathematical resources but failed to make controlled executive 

decisions regarding how to apply these resources in the given context.   

 In direct contrast, Cameron, who maintained an arbitrary belief throughout both 

think-aloud sessions, engaged in a well-controlled plan for part (a) of the application of 

differentiation problem. His plan consisted of building a cubic function based 

simultaneously on arbitrary assignments and conceptualizations. His belief that multiple 

solutions existed and that he could develop a solution (rather than the solution) as 

knowledge of the conditions and goals of the task unfolded allowed him to make 
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executive decisions which led to prosperous transitions. Initially, however, Cameron was 

no different from other participants. He was visibly and audibly shocked when first faced 

with the application of differentiation problem, which involved finding a solution for four 

variables with two equations. In his first solution attempt, he applied the quadratic 

formula to the equation formed by setting the first derivative function equal to zero. The 

difference in Cameron’s work within the problem space was his ability to abandon this 

procedural method and seek non-standard techniques of solution, which eventually led to 

the plan outlined above and ultimately to a successful solution. 

Robert and Cameron were on opposite ends of a continuum of beliefs regarding 

the nature of problem solutions. Olivia was closer to the middle of the continuum and 

provided a different set of experiences to examine (see Table 9). For the application of 

differentiation problem, Olivia’s actions and verbalizations indicated both unique and 

arbitrary manifestations of beliefs. For instance, she reacted to part (a) just as Robert and 

tried to apply algebraic systems of equations to find unique values for a, b, c, and d.

Then, for part (b), she seemed completely comfortable with the arbitrary constants and 

developed and executed an argument for the lack of a solution with little effort. Her 

interview responses provided triangulation for these findings. For instance, when probed 

to expound on her actions during session one, her responses indicated a clear 

understanding that a, b, c, and d generated a family of cubic functions but simultaneously 

indicated the expectation of a unique solution for part (a). In sum, her actions and 

verbalizations indicated the belief that an infinite family of cubic functions existed but 

did not carry over to developing an arbitrary member of the family based on the problem 

conditions. Finally, the findings discussed in this section indicate that students’ beliefs 
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regarding the nature of problem solutions affected actions in the performance control

phase while solving mathematical problems.

Procedural versus conceptual and straightforward versus interrelated. Due to 

similarities, discussion regarding manifestations of procedural versus conceptual problem 

solving beliefs and straightforward versus interrelated beliefs in the simplicity of 

knowledge are conducted together. Edwina exhibited non-availing beliefs for both sets of 

beliefs. In both sessions, Edwina’s actions and verbalizations indicated that she was 

expecting a procedural method for solving the problems. Additionally, her problem-

solving strategies always consisted of straightforward applications of one concept at a 

time, never attempting to interrelate topics or find connections. For example, Edwina 

was able to apply all the procedural steps necessary for success on part (b) of the 

application of differentiation problem. She calculated the first and second derivatives of f

and even attempted to apply sign line procedures, indicating that she had sufficient 

mathematical resources for this part of the problem despite her overall lack of resources 

demonstrated in other parts of the study. When her procedural efforts failed, Edwina 

applied a useful heuristic by graphing the second derivative, which produced a line 

passing through the origin. Lacking a conceptual or interrelated mindset, Edwina 

determined the graph to be useless for conclusions about the concavity of the function f.

Thus, her beliefs stifled the development of productive transitions from her assessment of 

the current state of the problem. In other words, she was unable to interrelate the 

properties of linear functions with the conceptual aspects of concavity and the second 

derivative.  
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As mentioned above, Lerch (2004) advocated for lack of mathematical resources 

as the primary source of students’ failures at problem solving. She further argued for a 

“mathematical process model” that would provide “universal procedures” to be 

applicable for a variety of problem-solving situations (p. 34). Thus, her argument for 

students’ success is grounded in specific problem-solving strategies that transcend 

problem types. Based on the findings in this study and especially with regard to Edwina’s 

experiences above, I advocate a more conceptual-beliefs approach to mathematical 

problem-solving that would foster a more controlled navigation of the problem space 

based on conditions and goals, rather than predetermined procedures that may or may not 

be accessible in long term memory.  

Edwina’s procedural mindset carried through the entire problem, as indicated by 

her lamentations at the end of the session of not having seen how to solve the problem 

before it was presented to her. As indicated by Schoenfeld (1985), however, if one has 

seen how to work a mathematical exercise, it is no longer a mathematical problem.

Finally, her inability to develop a procedural method for either problem led to a 

significant number of deficit-focused verbalizations (see Table 14), which may explain 

why she gave up before either session had ended (Zimmerman, 2000).  

Cameron’s work indicated purely conceptual, interrelated beliefs throughout both 

sessions and painted a very different picture than Edwina’s. As mentioned previously, 

Cameron was initially stumped by the situation of having two equations and four 

variables for part (a) of the application of differentiation problem but was able to navigate 

through the problem space due largely to monitoring which led to productive transitions. 

An example of his belief that concepts are interrelated emerged as he considered the 
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second derivative and applied it to his solution path. Other participants considered the 

second derivative but only Cameron monitored its introduction and transitioned to a plan 

involving a single point of inflection for f and the application of the second derivative 

test. Every other participant who introduced the second derivative expected the extra 

equation to aid in eliminating variables for the purposes of their systems of equations 

procedure. Thus, their assessment, monitoring, and subsequent transitions based on the 

introduction of the second derivative were fruitless. There were no previously learned 

algorithmic procedures for solving part (a) of the application of differentiation problem, 

which provided the novelty necessary for true problem solving (Schoenfeld, 1985). Thus, 

Cameron’s conceptual, interrelated belief system provided the perfect engine for 

controlled performance for this problem.

Martin, whose MPB categorization was indeterminate, provided a unique 

perspective. Despite maintaining an arbitrary belief and indicating that part (a) of the 

application of differentiation problem may have infinite solutions, Martin procedurally

applied system of equations techniques during the majority of his first session, which 

indicated the expectation of obtaining a single solution. Thus, like Robert, his strict 

adherence to a system of equations approach made purposeful transitions impossible, as

he considered all assessments of monitoring from his procedural perspective. However, 

unlike Robert, his logic for applying procedures did not evolve from a fixed belief, rather 

he felt that justifications of mathematical work must come from rigorous, algebraic 

procedures. Thus, his close-minded belief that mathematics problems must be solved 

systematically led to the demise of any productive performance control activities during 

his first think-aloud session (Schoenfeld, 1992).  
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During his second session, Martin demonstrated the dual nature of his beliefs via 

productive work grounded mainly in conceptual, interrelated decision-making, which 

produced the majority of his high-level performance control codes. Despite these 

manifestations of his conceptual and interrelated beliefs, his procedural mindset did 

emerge during the second session and hampered part of his work. Upon obtaining a 

solution with only minor errors for part (a) of the application of integration problem, 

Martin assumed that part (b) was procedurally the same and thus, worked part (b) in 

exactly the same manner as part (a). When he was unable to solve part (b), Martin spent 

all of his efforts in the performance control phase monitoring his procedures for errors 

but never considered to monitor the more global, conceptual aspects of the problem. 

Thus, Martin’s lack of conceptual focus and attention to procedures inhibited his 

transition to a more productive plan and ultimately resulted in an unsuccessful solution 

attempt. 

Rational and empirical problem-solving beliefs. Participants’ rational and 

empirical approaches to problem solving also affected performance control. Julia’s 

actions and verbalizations indicated an empirical belief in problem solving, which was 

consistent with her high score on the Empirical scale of the PEP. Virtually all activities

during her think-aloud sessions were coded as empirical (see Table 9). The most overt 

example of her empirical beliefs occurred as she worked part (a) of the application of 

integration problem during session two. Having found the area of the bounded region 

using a special case for m = 1, she was unable to develop a solution strategy to find an 

equation of the vertical line that divided the area in half. Thus, she began arbitrarily 

substituting values in for the upper bound of her integral in an attempt to find the 



263

numerical value that corresponded to half the area. This empirical method of solution 

would eventually lead to a fairly accurate answer but no generalizations conducive for 

finding a solution with respect to m. At any point, she could have monitored her progress 

and rationally determined that her serial testing of values was equivalent to finding an 

unknown value and that a variable could be assigned to the upper bound. However, her 

overt empiricism led her to merely check her serial tests for accuracy, a very low level of 

monitoring, until she had an acceptable value. Thus, Julia’s lack of logical reasoning led 

to low-level monitoring that produced assessments of a flawed plan, rather than 

generating internal feedback to foster advancement toward the goal state. 

Virtually the opposite result occurred for Cameron, who demonstrated rational 

beliefs throughout the sessions. While working on part (a) of the application of 

integration problem, he began by determining the area just as Julia  had, except his area 

was in terms of m. Then, based on a logical assessment of the area with respect to the 

overall goal of the problem, Cameron determined that his area calculation was 

unnecessary and transitioned to an integral equation approach that yielded an accurate 

solution. Despite having far fewer codes for monitoring than Julia during this part of the 

problem, Cameron’s performance control processing was logically-based and productive. 

Cameron’s lower frequency of monitoring may not be surprising, as Zimmerman (2000) 

suggested that students who attain a higher level of self-regulatory skill for a given task 

will require fewer instances of monitoring to obtain successful results. Further discussion 

of self-regulatory skill is provided below. Both Cameron and Julia’s findings are 

supported by previous literature examining rational and empirical beliefs with respect to 

mathematical problem solving (Muis, 2008; Schoenfeld, 1983, 1985, 1988, 1989). 
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Despite having the highest Rational scale score in the class on the PEP, Martin’s 

actual performance during the problem-solving sessions indicated even adherence to both 

empiricism and rationalism. This may be explained by his insistence on applying 

procedural techniques as described above. This insistence led him to many illogically-

based decisions, which resulted in a serial testing of procedures. Hence, like Julia, the 

empirical side of Martin’s beliefs led to low-level monitoring that produced a quantity of 

monitoring codes with little quality. However, when Martin applied more rational beliefs 

to his endeavors, mainly during the application of integration problem, his monitoring 

focused more consistently on the goal of the problem and led to more productive 

transitions.  

AP Exam Preparation Sessions 

Overview. Since AP exam preparation sessions involved small group 

collaboration, the unit of analysis became participants’ interactions with their respective 

group members. As discussed above, this section will focus mainly on participants’ 

behaviors in the performance control and self-reflection phases while working in groups. 

Thus, participants’ behaviors were coded with respect to participation, or lack thereof, in 

assessments of both personal and group progress toward developing solutions for the 

problem. With increased focus on applying social constructivist ideologies in 

mathematics classrooms, assessments of students’ abilities to work with others in a group 

setting are becoming more important.  

As indicated by Table 8, all participants engaged in some level of group-

monitoring and group-verification, which are synonymous to performance control and 

self-reflection, respectively. To provide deeper analysis, activities were classified as non-
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participatory, participatory, or highly participatory group-regulation and were grouped 

into sets in NVivo Version 8. Non-participatory group-monitoring activities included 

watching and listening and following along since these codes indicated that the 

participant either stopped working or was merely following a plan without participating 

in its development (Artzt & Armour-Thomas, 1992; Goos, Galbraith, & Renshaw, 2002). 

Participatory group-monitoring activities included self-disclosure and feedback request

since these codes indicated assessments focused solely on personal progression toward 

problem solutions (Goos, Galbraith, & Renshaw, 2002). Finally, highly participatory

group monitoring included other-monitoring and verifying solutions since these codes 

indicated assessments focused on whole-group attainment of problem goals (Goos, 

Galbraith, & Renshaw, 2002). Participants’ actions for all other group problem-solving 

codes had varying effects (e.g., both positive and negative) on group problem-solving 

productivity and thus, could not be grouped into sets.  

Overall, the results indicated that beliefs do affect group monitoring and 

verification (see Table 15). Robert, Edwina, and Julia, the three novice MPB participants, 

accounted for the lowest mean for highly participatory codes (M = 2.67) and the highest 

mean for non-participatory codes (M = 5.33). Cameron, the only advanced MPB 

participant, had the highest frequency of highly participatory codes with ten codes and 

zero non-participatory codes. Then, Martin and Olivia had mean highly participatory 

codes (M = 6.50) and mean non-participatory codes (M = 0.50) which were between the 

novice and advanced MPB categorizations but skewed toward Cameron’s figures.   

Novice MPB. The three novice participants engaged in group activities differently 

based on multiple factors. Edwina, who demonstrated the least productive group 
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monitoring, followed along with every idea suggested by her group members without 

monitoring the validity of the assertions. She was on the receiving end of all monitoring 

activities with which she was involved based on self-disclosures and feedback requests

verbalized to her other group members. Finally, she rarely engaged in group assessments 

of goal state. Robert was more involved in his group, which actively engaged in verifying 

solutions. However, Robert was prone to shutting down when he got stumped and 

reducing his actions to watching and listening. Robert rarely engaged in other-

monitoring, but was on the receiving end of many instances of group monitoring based 

on self-disclosures and feedback requests. It should be noted that Edwina and Robert 

were both in groups in which another group member emerged as a de facto leader.

Table 15 

Coding Frequencies for Advanced and Low-Level Group Monitoring 

 and Verification Behaviors

Non- Highly 

Participant Participatory Participatory Participatory

Robert 6 7 5

Edwina 8 5 1

Julia 0 3 2

Olivia 1 3 5

Martin 0 2 8

Cameron 0 1 10
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In stark contrast, Julia was in a group that did not have a clearly-defined leader 

and she did not volunteer herself as such. Her group spent much of its time engaged in 

silent work and only occasionally engaged in group monitoring. Julia’s initiations of 

monitoring mainly involved self-monitoring and group verification of solutions. Due to 

her group’s dynamics, Julia registered the fewest group monitoring codes. Thus, little 

more may be discussed concerning her participation in this portion of the study. Overall, 

participants with novice MPB tended to be very passive and assumed a role as followers, 

rather than actively monitoring group performance.

Emerging MPB. Olivia and Martin played a more active role in their groups’ 

performance control. In fact, Martin assumed the role of de facto leader for his group and 

instigated the monitoring of others’ work on six occasions. His participation in the group 

led to productive discussions, monitoring, and transitions based on conceptualizations of 

the problems. As his narrative indicates, Martin’s availing beliefs emerged during this 

portion of the study. He seemed more comfortable with the problem types and was able 

to develop more logically-based, conceptual ideas based on his monitoring of the 

problem space. Recall that participants’ member-checking interviews indicated that the 

AP exam preparation problems more closely resembled procedures with connections than 

the doing mathematics think-aloud problems. Thus, Martin’s increased comfort level may 

be explained by the change in cognitive demand. This finding is congruent with 

Lodewyk, Winne, and Jamieson-Noel’s (2009) suggestions that high achieving students 

do not require self-regulatory processing to complete a well-structured task, which may 

have resulted in Martin having sufficient time and resources to monitor group 

performance during the AP exam preparation problems. Despite suggesting that 
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educators provide a mixture of well- and ill-structured tasks for students, the authors 

warned that a preponderance of well-structured tasks may lead to boredom and apathy 

amongst high-achievers. This may explain the apathetic appearance of Martin’s group 

during their second observation since it was the last of the twelve in-class AP Calculus 

exam preparation sessions.

Olivia was involved in a group with no overt leader, although one of her group 

members dominated much of the group interaction. She was very active in all group 

interactions and was on both the receiving and giving ends of group-monitoring. Just like 

Martin, her more availing beliefs emerged during this portion of the study and provided 

conceptual tools by which she could convert group-monitoring into productive group 

transitions.  

Advanced MPB. Like Martin, Cameron assumed the role of de facto leader for his 

group. Cameron’s availing beliefs were evident in both the AP Calculus exam practice 

sessions and think-aloud problem-solving sessions. He logged the most instances of 

monitoring others of all participants and attempted to provide group members with 

conceptual understanding as well as performance control. Despite providing significant 

feedback, he rarely received feedback since he was able to conceptualize problem 

demands and required little self-monitoring during the sessions. In many cases, Cameron 

single-handedly solved problems and group members merely followed along, content to 

accept his assertions. 

Summary. Participants with availing beliefs displayed more productive group-

monitoring behaviors. This may be explained by a significant decline in self-regulatory 

processing for students with availing beliefs compared to the more ill-structured, doing 
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mathematics think-aloud session problems. All AP exam problems used in this study 

contained multiple parts (see Appendix E). For the first parts of AP exam problems, the 

general pattern of engagement was prior knowledge activation, set-up equations, apply 

procedures, and verify results. Then, the latter parts of the problems required significant 

metacognitive monitoring and critical thinking.

Cameron, whose beliefs and self-regulatory skills remained at an optimal level for 

the duration of the study, was a productive and active monitor for the group. For Olivia 

and Martin, the lower cognitive demand of the AP questions appeared to foster the more 

availing aspects of their beliefs than the higher cognitive demand think-aloud problems. 

With the decrease in abstraction, Olivia and Martin more readily connected problems to 

concepts and engaged in logically-based discussions. Then, with a more manageable 

problem to monitor, Olivia and Martin’s self-regulatory skills could be applied in the 

group setting as needed. Unfortunately, the decrease in cognitive demand was insufficient 

in eliciting availing beliefs and productive regulatory behaviors from Robert, Edwina, 

and Julia. Although some variation existed between their individual results, an overall 

qualitative assessment revealed that all three participants generated limited behaviors 

indicative of collaborative group monitoring. 

 Group dynamics provide an alternative perspective for analyzing participants’ 

group-monitoring behaviors. When asked to comment on the overall group-work 

experience, all participants except Robert made some reference to either disliking group 

work altogether or having problems with one or more group members. Specifically, 

Edwina did not feel comfortable asking a preponderance of questions of her group 

members because she felt that her questions would interrupt their development of a 
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problem solution. Julia was not used to working in groups that do not interact but did not 

feel comfortable taking the leadership role since she was not the highest performer in her 

group. Martin felt that one of his group members could have interacted more. Olivia and 

Cameron stated that they have never enjoyed group work. Additionally, Olivia stated that 

she had never worked well with one of her group members. From a social cognitive 

perspective, participants’ statements merged with their actions provided further evidence 

of the degree of their self-regulatory prowess. Zimmerman (2000), discussing the self-

control aspect of performance control, stated, “Attention focusing is designed to improve 

one’s concentration and screen out other covert processes or external events” (p. 19). 

Thus, at the theoretical level, group dynamics provide self-regulating students further 

opportunities to apply their adaptive skills.

Analysis of Time Allocation During Think-Aloud Sessions 

To further illustrate the differences in overall SRL processing, participants’ 

actions in each phase of Schoenfeld’s (1985) problem-solving framework will be 

analyzed. Participants engaged in definition of the task and forethought phase behaviors 

predominantly during reading and analysis episodes. Performance control phase 

behaviors were distributed throughout analysis, exploration, and implementation 

episodes. The highest frequencies of low-level monitoring occurred during the 

exploration stage. All self-reflection phase behaviors occurred during verification 

episodes.

Differences in time allocation during the think-aloud sessions were noted among 

the three MPB categorizations. Edwina, a novice MPB participant, spent all of her time 

engaged in the reading, analysis, and exploration episodes (see Figure 8). Since most of 
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her time was spent in exploration, she did not engage in advanced monitoring and 

transitions that became the mark of more successful problem-solving endeavors. Findings 

suggest that Edwina’s struggles with self-regulatory behaviors are derived from low-level 

MPB and a lack of necessary mathematical resources.  

Figure 8. Time Line Representations for Edwina’s Think-Aloud Problem-Solving 

Sessions.

Martin was categorized as an emerging MPB participant based on his actions and 

verbalizations during this study. Taken separately, his think-aloud sessions presented two 

completely divergent interpretations of Martin’s problem-solving prowess (see Figure 9). 

Taken as a whole, Martin’s mathematical problem-solving and self-regulatory skills are 

revealed. Based on the expectation of a procedural problem with a unique solution, 

Martin spent the majority of the first session engaged in an exploration of the problem 

space that led to very little progress toward the desired solution. Very little self-
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regulatory skill was demonstrated as multiple assessments of monitoring progress went 

unheeded. Thus, Martin entered the second session with the daunting task of needing 

solutions for both tasks. In a flurry of nonlinear-SRL activity, Martin engaged in well-

managed solution paths, heeded monitoring, and transitioned to new plans based on 

conceptual assessments of problem conditions and goals. The only negative aspect of 

Martin’s second session was that lack of verification cost him points that could have 

easily been salvaged.

  

Figure 9. Time Line Representations for Martin’s Think-Aloud Problem-Solving 

Sessions.

 Cameron, the only advanced MPB participant, successfully applied Schoenfeld’s 

(1985) framework during both sessions. Cameron had not been taught the framework 

directly; his problem-solving techniques manifested naturally in the manner visually 
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described by Figure 10. During the first session, he had initial difficulty with part (a) of 

the application of differentiation task (see Appendix F). However, unlike participants 

who held non-availing beliefs, Cameron heeded the internal feedback provided by 

monitoring and applied conceptual, interrelated plans to solve the problem. Cameron’s 

second session was more indicative of an expert solving a problem. However, he still 

relied on self-regulatory processing to guide his efforts. Cameron also differed from the 

other participants in time spent verifying solutions. Self-reflection is a critical phase in the 

SRL process and Cameron was the only participant who regularly applied it. Overall, this 

time analysis provides further evidence of the relationships between epistemological 

beliefs, SRL processing, and mathematical problem solving.  

   

Figure 10. Time Line Representations for Cameron’s Think-Aloud Problem-Solving 

Sessions.
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Beliefs Related to Heuristic Strategy Use

 During this study, participants applied five heuristic strategies while engaged in 

mathematical problem solving. The heuristics applied were draw a picture, recall a 

similar problem, restate the problem, set up equations, and establish subgoals. All 

participants used heuristic strategies to a certain degree during this study (see Table 16). 

Robert, Julia, Martin, and Cameron registered higher frequencies of codes for heuristics 

than Edwina and Olivia. Thus, deeper analysis was required to determine whether 

relationships existed between epistemological beliefs and heuristic strategy use. 

Using NVivo Version 8, heuristic strategy use was analyzed with respect to 

availing and non-availing beliefs sets (see Table 16). Recall that the availing and non-

availing beliefs sets contained all instances coded for the respective belief regardless of 

participants’ overall MPB categorization. Since participants demonstrated a combination 

of availing and non-availing beliefs during this study (e.g., exhibiting a conceptual 

approach to problem solving while empirically testing conjectures), discrepancies may be 

noted between frequency totals for by belief categorization values and by participant

values in Table 16. Rather surprisingly, frequencies of heuristic strategy use were higher 

for participants demonstrating non-availing beliefs than availing beliefs. 

 Upon deeper qualitative analysis, differences in the application of heuristic 

strategies were noted based on participants’ MPB categorizations. Specifically, Robert 

and Martin, novice and emerging MPB participants respectively, each applied the 

heuristic setting up an equation on seven instances. The majority of these codes were 

registered while Robert and Martin were attempting to apply systems of equations to 

solve for a, b, c, and d in part (a) of the application of differentiation problem (see 
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Appendix F). Neither participant was able to utilize the development of equations to 

solve the given problem. Both participants cited beliefs in unique problem solutions and 

procedural problem-solving approaches as sources of their lack of success but Robert 

also cited the inability to access additional mathematical resources as a barrier to success. 

The relationship between heuristic strategy use and accessibility to mathematical 

resources is consistent with Schoenfeld’s (1985) findings: 

 Often the successful implementation of a heuristic strategy depends heavily on a 

 firm foundation of domain-specific resources. It is unrealistic to expect too much 

of these strategies. (pp. 73–74) 

 Cameron, the only advanced MPB participant, also applied the setting up an 

equation heuristic seven times. The difference in his application of the heuristic was that 

equations were not developed to find a final solution for the think-aloud problems but 

were developed as the problem unfolded and assessments of the current state necessitated 

further conditions. In fact, his equations were generally developed to further his 

application of the establishing subgoals heuristic. The ability to apply multiple heuristics 

while engaged in problem solving is demonstrative of a sophisticated level of functioning 

(Schoenfeld, 1985). During his second think-aloud session, Martin also demonstrated this 

high level of sophistication by incorporating three of his setting up an equation heuristic 

codes into an establishing subgoals heuristic strategy. For both Martin and Cameron, 

applications of multiple heuristic strategies led to productive advancement toward 

problem goals. In sum, participants who held non-availing beliefs applied heuristic 

strategies more frequently but participants who held availing beliefs tended to be more 

productive in their application of heuristic strategies. Access to mathematical resources 
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and adherence to epistemological beliefs appear to be jointly related to the application of 

heuristic strategies.

Table 16 

Coding Frequencies for Heuristic Strategy Use

Source DP RP RS EQ ES

By belief categorization

Availing 6 2 1 12 4

Non-availing 14 4 1 18 4

By participant 

Robert 3 1 0 7 2

Edwina 4 0 0 1 0

Julia 6 3 0 3 2

Olivia 2 0 0 2 0

Martin 2 1 1 7 1

Cameron 3 1 1 7 3

Note. DP = draw a picture; RP = recall a similar problem; RS = restate the

problem; EQ = set up equations; ES = establish subgoals 

  

Beliefs and SRL Related to Overall Performance 

 The results of this study indicated that epistemological beliefs and SRL are 

interrelated. Additionally, participants’ beliefs categorizations were related to their 

overall performance (see Table 17). This finding is congruent with Cano’s (2005) 
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structural equation modeling results, which suggested that students’ performance was 

directly affected by epistemological beliefs. For both AP Calculus exam preparation and 

think-aloud sessions, participants’ performance increased progressively from novice to 

advanced beliefs categorizations. Although certainly not conclusive, findings from this 

study indicate that availing beliefs and quality SRL processing affect students’ 

performance in solving mathematical problems. 

A Disconnect Existed Between Idealized Beliefs and Realized Practice

While analyzing member-checking transcriptions, a discrepancy was discovered 

between novice MPB participants’ responses concerning the importance of a conceptual 

approach to problem solving, other interview responses, and their categorizations from 

behaviors exhibited during this study. Specifically, when Julia was asked directly 

whether conceptual or procedural knowledge was more important to problem solving, she 

stated that conceptual knowledge was more important. However, later in the interview 

when asked about her struggles with the arbitrary constants, Julia lamented a lack of 

procedural means for solving for the constants and further stated that the source of her 

woes originated from always learning procedural steps when studying for exams. 

Similarly, Robert stated that a conceptual approach to problem solving would be more 

appropriate but later stated that his approach to the arbitrary variables was based on 

procedures he applied in previous courses. Finally, Edwina believed that a conceptual 

approach would be more conducive to solving mathematical problems but blamed the 

educational system itself for instilling a procedural, cookie-cutter approach to 

mathematical problem-solving into her. Her previous mathematics teachers had always 

taught her shortcuts and step-by-step means for solving problems until Algebra 2. Not 
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armed with any other skills, she had applied the procedural approach and memorized 

steps for all high school mathematics courses.

Table 17 

Participant Performance By Mathematical 

Problem-Solving Beliefs Categorization

Mean

AP Exam Think- 

Participant Preparation Aloud 

Novice 

Robert 4.50 20

Edwina 4.17 28

Julia 5.30 46

Emerging 

Olivia 4.86 45

Martin 6.10 65

Advanced 

Cameron 7.50 80
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Two results may be derived from these interview data. First, the novice beliefs 

participants may be farther from the procedural end of the continuum than reported here. 

Certainly their beliefs continue to manifest in their realized problem solving approaches 

as procedural but acknowledgement that conceptual approaches are more ideal may 

indicate a progression toward a realized conceptual belief. Second, participants’ 

perceptions of their epistemological beliefs did not always coincide with their practice 

due to both personally- and institutionally-based habits of the mind. Edwina’s responses 

imply that mathematics teachers can play a major role in the development of students’ 

beliefs and subsequently, their ability to apply SRL processing to mathematical problem-

solving. 

Conclusion 

Since this study involved advanced mathematics students, all participants were 

motivated to perform and engaged in some form of SRL processing. Thus, participants 

who demonstrated little purposeful control received codes indicative of SRL processing. 

It became apparent that an accurate rendition of events necessitated analysis and 

discussion of the quality of SRL processing. This finding was not a complete surprise, as 

Goos, Galbraith, and Renshaw (2002) encountered a similar issue in their study 

investigating group metacognition. Focusing on quality rather than quantity, the current

study became an investigation into participants’ levels of self-regulatory skills. 

Zimmerman (2000) suggested that an individual’s level of self-regulatory skill is based 

on “social as well as self sources of influence” (p. 29). Hence, educators may have an 

influence on developing students’ self-regulatory mathematical problem-solving skill 

level.
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Upon careful consideration of the findings, Zimmerman’s (2000) levels of self-

regulatory skill may be applied to participants’ behaviors with respect to the skill 

required to solve the problems. Zimmerman identified four levels of self-regulatory skill, 

as follows: (1) observation, (2) emulation, (3) self-control, and (4) self-regulation. Since 

they were able to “ systematically adapt their performance to changing . . . contextual 

conditions” of the problems, Martin and Cameron were identified as demonstrating self-

regulated skill during the study (p. 30). Robert, Julia, and Olivia were identified as 

demonstrating the self-controlled level of skill development since they were able to apply 

self-regulatory processing of their skills “in structured settings outside the presence of 

models” but had difficulty adapting their skills to the problems in the study (p. 30). It 

should be noted that Martin would have been categorized as demonstrating the self-

control level based solely on his first think-aloud. His behaviors during the second think-

aloud session earned him the next level for this study. Finally, Edwina’s behaviors 

demonstrated an emulation level of skill for the problems in the study. She was unable to 

navigate any of the problem spaces alone, lamented the lack of a procedural model to 

follow, and was only successful when an expert explained a problem to her during the 

interim between think-aloud sessions. As will be discussed further in the following 

chapter, educators may have a significant influence over students’ self-regulatory skill 

development and the underlying epistemological beliefs that seem to partially determine 

self-regulatory development.



281

CHAPTER VI

DISCUSSION, CONCLUSIONS, AND IMPLICATIONS

 The purpose of this multiple-case study was to explore relationships between 

students’ epistemological beliefs and self-regulated learning (SRL) processing while 

engaged in mathematical problem-solving. Digressing from conventional SRL studies 

involving students with academic struggles (e.g., Cleary & Zimmerman, 2004), this study 

focused on advanced students in an effort to inform the gifted education community. The 

specific research questions addressed by this study were: 

1. How are students’ epistemological beliefs related to self-regulatory processing 

practices during engagement in mathematical problem-solving  tasks?

2. What self-regulation strategies do AP Calculus students employ while 

preparing for the AP exam and engaging in problem-solving episodes? 

3. What epistemological beliefs influence students’ choice and use of heuristic 

strategies to solve mathematical problems?

4. How are self-regulated learning strategies and epistemological beliefs related 

to student performance on problem-solving tasks? 

Based on the findings from this study, conclusions are drawn for each research question. 

A discussion of each conclusion ensues and is grounded in the findings of this study and 

the current literature. The discussion follows the order of the research questions and is 

laid out as follows: (1) relationships between SRL and epistemological beliefs, (2) SRL 

processing strategies based on task demand, (3) relationships between epistemological
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beliefs and heuristic strategies, (4) effects of SRL and epistemological beliefs on 

performance, and (5) disconnect between beliefs and practice. Discussion point (5) was 

not included in the research questions but emerged as a theme from the findings. Finally, 

the chapter concludes with a discussion of the limitations of the study, implications for 

practice and further research, and researcher reflections.

Discussion of Findings

Relationships Between SRL and Epistemological Beliefs

Definition of the Task 

Findings from this study indicate that participants’ unique and arbitrary beliefs 

regarding problem solutions manifested during think-aloud sessions affect their actions in 

the definition of the task phase. When faced with a task involving arbitrary constants or 

variables, students with unique beliefs may struggle with the role of the arbitrary

constants, whereas students with arbitrary beliefs will tend to develop a more appropriate 

definition of the task. The expectation that such problems should have unique solutions 

places a barrier between the student and appropriate understanding of the problem. As 

suggested previously, “students who . . . seek single answers, avoid ambiguity . . . tend to 

experience more difficulty with the ambiguous features of tasks that call for reflective 

judgments, perseverance, and appropriate self-regulated learning” (Lodewyk, 2007, p. 

324). Although Lodewyk has examined some facets of SRL, he has not analyzed 

students’ actions in the definition of the task phase. The finding that unique and arbitrary 

beliefs affect the definition of the task phase provides an extension to Lodewyk’s general 

assertion.  
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Forethought 

 Based on the results of this study, all three sets of beliefs affect participants’ 

actions in the forethought phase, particularly with respect to problem-solving planning. A 

commonly-recurring theme was the difference in planning based on procedures learned in 

prior courses and planning based on conceptual aspects of the particular problem being 

presented. Participants who developed plans based solely on procedural recall were 

unable to work past a certain point in each problem. Thus, it can be concluded that sole 

reliance on a procedural belief in mathematical problem solving may be insufficient in 

effective processing through the forethought phase while engaged in ill-structured, doing 

mathematics tasks. 

 Schoenfeld (1992) identified students’ expectations of procedural methods for 

solving problems as a non-availing belief. Despite a national focus on mathematical 

problem solving suggested by NCTM (2000) a decade ago, five of the six advanced 

mathematics students in this study expected a procedurally-based task when they 

approached the think-aloud problems and subsequently developed procedural problem-

solving plans. When probed as to the source of their procedural allegiance, participants 

cited experiences in prior mathematics courses as the primary source. Thus, a further 

conclusion to be drawn from this study is that mathematics educators may not effectively 

facilitate problem-solving habits of mind (Schoenfeld, 1985) in students to the degree 

recommended by the NCTM (2000).  

Performance Control 

Participants’ actions in the performance control phase became a major focus of 

this study. The results of this study indicated that all three sets of epistemological beliefs 
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are related to participants’ processing in the performance control phase. The belief that 

problems with arbitrary constants had unique solutions led participants through fruitless 

explorations devoid of purposeful transitions or elicited low-level monitoring of flawed 

plans for procedural accuracy. In contrast, participants who exhibited arbitrary beliefs 

regarding problem solutions in this study tended to make more purposeful transitions as 

problem navigation informed the changing nature of the constants. Since Cameron was 

the only participant in the advanced mathematics course to consistently demonstrate 

arbitrary beliefs, one might conclude that secondary students are not receiving sufficient 

exposure to arbitrary variables and constants or may be developing unique beliefs from 

patterns within the secondary mathematics curriculum itself. 

In this study, performance control was related to participants’ beliefs regarding 

conceptual or procedural approaches to problem solving. Yet again, availing beliefs that 

concepts are interrelated typically led to meaningful transitions based on problem 

assessments; whereas the non-availing, simple belief that procedures are available for all 

problems typically led to dead-ends when the procedures had to be modified to account 

for problem assessments. Edwina’s overt assertion as well as other participants’ 

implications that mathematics teachers use too many cookie-cutter problems led to the 

following conclusion: secondary mathematics educators may be focusing too much time 

and energy developing procedures for mathematical exercises and not enough time and 

energy developing conceptual understanding. In that that the nature of reform 

mathematics and any constructivist-oriented curricula implies that mathematical problem 

solving is one medium for learning (NCTM, 2000), continued focus on procedural 

aspects of problems at the expense of conceptual understanding seems counterproductive 
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to the constructivist-oriented cause. Based on the findings of this study, a further 

conclusion can be that the development of beliefs that foster SRL processing should 

supersede, or at least coincide with, the implementation of constructivist-oriented

mathematics initiatives.  

Finally, the results of this study indicated that students’ rational and empirical

approaches to mathematical problem solving are related to processing during the 

performance control phase. As shown by the example above, participants demonstrating 

the more availing, logic-based rational beliefs tended to yield more productive self-

monitoring than their non-availing, perceptual-based empirical counterparts. The findings 

from this study also indicated that epistemological beliefs are interrelated, as suggested 

by Hofer (2004a). As evidenced in previous chapters, novice MPB participants 

implemented and monitored procedural plans based on the expectation of a unique

solution and upon the failure of the initial plan, began serially testing alternate procedures 

in an empirical fashion. In contrast, Cameron, basing his plans on the possibility of 

ambiguous solutions to the mathematical problems, assessed problem progress at a more 

conceptual level and transitioned logically and rationally as consideration of conditions 

moved toward problem goals. Although not consistent throughout the study, the presence 

of this progression indicates that epistemological beliefs may be interrelated and may also 

explain the preponderance of evidence obtained via axial coding of beliefs and SRL 

processing. Additionally, the myriad empirical codes generated by the advanced 

mathematics students in this study suggest that logic has been omitted or deemphasized 

in secondary mathematics curricula. Prior research has suggested that overt emphasis on 
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surface features of problems and pattern recognition may lead to empirical, as opposed to 

logical and rational, navigation of a problem space (Schoenfeld, 1988, 1989).  

Self-Reflection

Since most participants were unable to finish the problems, it was not possible to 

assess the self-reflection phase of SRL. The few codes that were obtained appeared to 

indicate that participants who held non-availing beliefs assigned ability-focused causal 

attributions to their failures, which promote further negative attitudes toward learning 

(Zimmerman, 2000). Future research is needed to investigate the relationships between 

epistemological beliefs and the self-reflection phase of SRL.

Mathematical Resources 

Findings from this study indicate that mathematical resources and epistemological 

beliefs work in tandem in relation to students’ SRL processing of problem-solving tasks. 

All participants passed the prerequisite course, AP Calculus AB, which dealt with topics 

presented in both the think-aloud and AP Calculus exam preparation problem-solving 

sessions. However, exposure to mathematical content does not imply accessibility 

(Schoenfeld, 1985, 1992). I assert that epistemological beliefs are indirectly related to 

the accessibility of mathematical resources. Edwina had the most notable deficiency in 

accessing appropriate mathematical resources to solve the think-aloud problems. She also 

stated that she had been converting mathematical knowledge to prescriptive procedures 

since entering high school. Thus, my assertion is that certain non-availing beliefs 

exacerbate students’ inability to conceptualize mathematical content, which in turn leads 

to deficiencies in recalling necessary content. Recall that Julia, who seemed more 

comfortable recalling appropriate calculus content for the application of integration 
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problem (see Appendix F), continuously applied procedures that carried her closer to a 

solution. However, she ultimately failed to make conceptual connections and thus, was 

unable to complete the problems. I further assert that developing students’ beliefs in 

conceptual approaches to mathematical problems will lead to improved access to 

mathematical resources. Further research is needed to investigate relationships between 

epistemological beliefs and students’ access to mathematical resources.

A Model for SRL, Epistemological Beliefs, and Mathematical Problem-Solving 

 Based on the findings of this study, the model suggested in the theoretical 

framework should be updated to include relational connections between epistemological 

beliefs and SRL processing (see Figure 11). Based on the findings in this study, 

unidirectional connections were utilized representing the hypothesis that epistemological 

beliefs affect certain phases of SRL. Future research is needed to determine whether 

Muis’ (2007) hypothesized reciprocal relationship between SRL and epistemological 

beliefs may be confirmed for the mathematical problem-solving domain. Prior research 

and literature has indicated that mathematics students enter a problem space with certain 

beliefs (Muis, 2004, 2008; Schoenfeld, 1983, 1985, 1992). Based on the findings of this 

study, I suggest that these mathematical problem-solving beliefs (MPB) are variant 

attributes that affect SRL processing during problem solution attempts. The term variant 

attributes indicates that each set of beliefs lies on a continuum from availing to non-

availing and student expressions of beliefs may be inconsistent based on a plethora of 

factors, possibly including social and motivational issues (Muis, 2004). 

Additionally, it should be noted that Muis and Franco (2009) have applied 

structural equation modeling to determine relationships between Hofer and Pintrich’s 
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(1997) epistemological beliefs dimensions and college students’ self-reported SRL 

processing and achievement in a college-level educational psychology course. Assuming 

a domain-specific theory of epistemological beliefs, a goal of this study was to produce 

compelling evidence for relationships between possible mathematics-specific 

epistemological beliefs and SRL processes to inform the development of a study 

involving such methods as grounded theory or structural equation modeling (Hofer & 

Pintrich, 1997; Muis, 2004; Muis, Bendixen, & Haerle, 2006). The findings of this study 

suggest that relationships exist between epistemological beliefs and SRL processing. 

Thus, the researcher recommends that future studies continue this work by employing 

such methods as grounded theory or structural equation modeling.  

Figure 11. Updated Model of Epistemology and SRL for Mathematical Problem Solving.
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SRL Processing Strategies Based on Task Demand 

In this study, participants who had emerging and availing MPBs required less 

cognitive and metacognitive regulation for the well-structured AP exam preparation 

problems than the ill-structured think-aloud problems. The lower cognitive demand of the 

AP exam preparation tasks allowed the availing MPB participants to engage in more 

productive group-monitoring than their novice MPB counterparts. This finding suggests 

that the inclusion of more ill-structured tasks into curricula promotes self-regulatory 

practices for well-attuned advanced mathematics students. However, for advanced 

students with novice MPB, more scaffolding may be required before a preponderance of 

ill-structured tasks are introduced. In fact, Lodewyk, Winne, and Jamieson-Noel (2009) 

suggested that teachers be cognizant of the cognitive level of tasks since tasks with too 

little cognitive demand promote individual work and tasks with too much cognitive 

demand promote reliance on others and loss of peer-learning opportunities. Hence, 

mathematics teachers should heed the cognitive developmental level of individual 

students and the collective level of groups when designing tasks. Professional 

development will likely be required to achieve this goal as mathematics teachers may 

lack the necessary skills to assess students’ cognitive developmental levels and the 

cognitive levels of tasks.  

Relationships Between Epistemological Beliefs  and Heuristic Strategies

In this study, participants who held non-availing beliefs applied more heuristic 

strategies while solving mathematical problems, but participants who held availing 

beliefs tended to be more productive in their application of heuristic strategies. This 

finding may be explained by considering participants’ prior experiences and the 
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definition of heuristic strategies. First, all participants had passed the previous course, 

AP Calculus AB. This course introduced participants to all of the heuristics which were 

needed in this study. Additionally, successful navigation through assessments in the AP 

Calculus AB course required students to apply heuristics. Second, Schoenfeld (1985) 

defined heuristic strategies as “techniques used by problem solvers when they run into 

difficulty” (p. 74). Participants in this study who held non-availing beliefs ran into 

difficulty more often than participants who held availing beliefs. Thus, it follows that 

participants who held non-availing beliefs would require the use of heuristics at a higher 

frequency than participants who held availing beliefs. Research may be warranted to 

investigate whether this pattern holds for mathematics students who are not on an 

advanced track. 

 Findings regarding the productivity of heuristic strategy use for participants who 

held availing beliefs further suggest that epistemological beliefs and access to 

mathematical resources are both related to SRL processing. The successful adaptation of 

heuristic strategies to mathematical problem-solving tasks is evidence of the performance 

control phase of SRL. The existence of a framework relating beliefs and resources to 

successful heuristic strategy usage may explain the lack of successful implementation of 

heuristics into American mathematics classrooms (Schoenfeld, 1985, 2007). It may be 

that the introduction of heuristic strategy usage into mathematics curricula and teachers’ 

pedagogical practices is more difficult than Schoenfeld (2007) has indicated.  

Effects of SRL and Epistemological Beliefs  on Performance 

The results of this case study indicate that problem solving performance is related 

to participants’ epistemological beliefs and SRL processing. This finding is congruent 
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with other studies that investigated SRL, beliefs, and performance (Cano, 2005; Lerch, 

2004; Lodewyk, 2007; Muis, 2008; Schoenfeld, 1982, 1985). A conclusion that may be 

drawn from this finding is that students with availing mathematical problem-solving 

beliefs (MPB) and, subsequently, either a self-control or self-regulated level of SRL 

mathematical problem-solving skill may be more successful in adapting to constructivist-

oriented mathematics curricula. The ability to make purposeful transitions based on 

logical, conceptual assessments of task progression appears to be an important 

component to successful navigation of mathematical problems, which is one component 

of constructivist-oriented mathematics curricula. As this study has indicated, such beliefs 

and skills may not come naturally to advanced mathematics students and the system itself 

may be promoting non-availing beliefs and then indirectly, reducing self-regulatory skill. 

As will be discussed further below, mathematics educators may potentially play a crucial 

role in students’ development of more availing beliefs and higher levels of self-regulatory 

skill. 

Disconnect Between Beliefs and Practice

 A further finding that emerged from this study is that participants’ verbalized, 

idealized problem-solving beliefs are not always consistent with their problem-solving 

practices. This finding was most prominent among novice MPB participants, who 

professed that conceptual problem-solving beliefs were preferable to procedural beliefs 

during their member-checking interviews, yet adhered to procedural approaches 

throughout the study. Additionally, the novice MPB participants made both explicit and 

implicit statements during interviews indicating procedural beliefs in problem solving.
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 One conclusion from this finding is that mere awareness that an epistemological 

belief is preferable may not imply adherence to that belief. A ramification of this 

conclusion is that students may need more than exposure to availing mathematical 

problem-solving beliefs. The participants in this study were taught in a calculus course 

that emphasized the conceptual over the procedural, yet this exposure was insufficient in 

breaking the cycle of procedural adherence which had been developed in previous 

mathematics courses. Thus, mathematics educators may need to develop alternative 

methods for scaffolding conceptual beliefs in problem-solving through creative and 

research-based pedagogical interventions. 

 An additional conclusion that may be gleaned from this finding is that self-

regulatory problem-solving skill may be more dependent upon the manifestation of 

students’ internally held epistemological beliefs than the external, verbalized expressions 

of their beliefs. This relationship explicates the findings from this study. Applying the 

assumption that each set of beliefs in this study lies on a continuum, we may assume that 

novice MPB participants were near the procedural end of the continuum (Hofer, 2000; 

Hofer & Pintrich, 1997; Muis, 2004; Schommer, 1990). Their idealized beliefs in a 

conceptual approach to mathematical problem-solving emerged when probed during 

interviews but the overwhelming power of ingrained procedurally-based mathematical 

practices may have hampered conceptualization of the problem space and thus, led to 

their lack of control demonstrated during the study. Mathematics educators and 

researchers need to be cognizant that expressed, self-reported availing beliefs should be 

tempered with actual students’ behaviors and alternative means of measuring the 

manifestations of epistemological beliefs may need to be considered.
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 Uncovering a disconnect between students’  beliefs and practice may not be 

surprising to the mathematics education community because studies indicating a 

disconnect between teachers’ beliefs and practice proliferate the body of literature 

(Philipp, 2007; Thompson, 1992). Similar to findings regarding sources of non-availing 

beliefs, research suggests that the source of teachers’ disconnect between beliefs and 

practice is the system itself. Specifically, time constraints, classroom-management issues, 

and political, social, and parental pressures cause teachers to abandon their beliefs about 

mathematics teaching and learning and assume a more constrained, traditional teaching 

role.

Limitations

The design of this study necessitated a small sample size and the establishment of 

specific, closed boundaries, which provided thick, rich descriptive results for the 

purposes of exploration. This design was effective since the study sought a deeper 

understanding of specific phenomena than may be obtained by more general studies of 

larger samples. Thus, the findings reported in this study cannot be generalized beyond the 

bounded case setting presented. Additionally, an unfortunate side effect to the sampling 

strategy was that only one participant, Cameron, was found to display advanced MPB 

throughout the study. Thus, findings involving Cameron’s data must be tempered with 

the fact that no corroborating cases were available. Although Olivia and Martin provided 

some availing beliefs data for the purposes of triangulation, no participants demonstrated 

availing beliefs throughout the entire duration of the study to directly and globally 

compare with Cameron’s achievements.
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An additional limitation to this study was the use of the think-aloud methodology. 

Although successfully applied to studies of epistemological beliefs (Hofer, 2004a; Muis, 

2008) and SRL (Greene & Azevedo, 2009; Muis, 2008), the think-aloud technique does 

not produce a complete depiction of participants’ cognitive processing while engaged in a 

task (Ericsson & Simon, 1993). According to Ericsson and Simon (1993), the Type II 

think-aloud and retrospective report technique that was applied to the study only incurs a 

small effect on problem-solving processes but may not provide a fully consistent or 

complete representation of participants’ cognitive and metacognitive activities. 

Additionally, Olivia struggled with the think-aloud process despite working every 

practice problem available to her. As mentioned in the previous chapter, her 

verbalizations were often vague and somewhat incoherent. She was coaxed during the 

think-loud sessions to keep talking but still was unable to produce a complete cognitive 

report. Consequently, findings became more inferential based on a combination of her 

written work, think-aloud verbalizations, and retrospective reports. 

An argument may be developed asserting that issues of group dynamics limited 

the findings of the study during the AP exam preparation sessions. However, as discussed 

in the previous chapter, issues of group dynamics provided an additional opportunity to 

assess participants’ abilities to regulate their learning environment. Zimmerman (2000) 

cited “attention focusing” as a self-control mechanism that can be invoked during the 

performance control phase to overcome both covert and overt distractions (p. 19). 

Participants who mentioned having problems with group dynamics but whose results 

indicated they had overcome them demonstrated application of attention focusing

processing. However, participants who allowed issues of group dynamics to affect their 
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group-regulatory participation and performance were focusing on deficits in their 

learning process, which Zimmerman claims eventually may lead to adverse effects on 

learning.

 Finally, researcher bias based on personal, underlying assumptions may have 

influenced interpretations of the results in this study. I do not issue an apology for this 

bias but rather embrace it as a necessary mechanism for conducting qualitative research. I 

have intentionally provided an interpretation of the findings of this study based on a 

constructivist approach to learning mathematics grounded in social cognitive theory. 

Additionally, methodological tools (i.e., maximum variation sampling, multiple sources 

of data, member-checking interviews) were employed in order to enhance internal 

validity. Researchers who approach my data from differing philosophical orientations 

may draw different conclusions from the findings. Hence, the findings of this exploratory 

case study should be assessed from the viewpoint that mathematical knowledge may be 

developed by students of their own volition in tandem with peers. In my opinion, this 

viewpoint on learning mathematics necessitated further understanding of students’ 

abilities to self-regulate their learning in authentic mathematical problem-solving settings 

and provided a justification for the study. 

Implications for Practice

 After the NCTM (2000) introduced recommendations for reforming the teaching 

of mathematics, school districts across America altered curricula to adhere to a more 

constructivist, problem-solving-based approach to teaching and learning mathematics. 

Unfortunately, many states have already abandoned constructivist-oriented curricula and 

reverted to traditional, back-to-basics mathematics instruction due to political pressures 
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that seem to ignore the failures of the most recent national back-to-basics movement 

(Schoenfeld, 2007). The results of this exploratory multiple-case study inform problem-

solving-based pedagogy. These insights into problem-solving-based pedagogy may help 

mathematics educators implement constructivist-oriented curricula and shed light on 

future constructivist-oriented movements, which Schoenfeld (2007) predicted will 

eventually return in the typical cyclic fashion of educational reform.  

All participants in this case study were on a highly-advanced mathematics track. 

Specifically, five of the six participants registered for the multivariable calculus course 

offered at the school during their senior year. Edwina was in her senior year while taking 

the course involved in this study and thus, did not have the option of taking the 

multivariable calculus course. The multivariable calculus course is aligned with course 

descriptions from local universities’ third-semester calculus courses. Despite their 

successful navigation through advanced secondary mathematics courses, five of the six 

participants struggled when presented with a novel problem to solve during the think-

aloud sessions. Although not generalizable, this finding provides compelling evidence 

that even successful secondary mathematics students are not learning with conceptual 

understanding. The findings of this study suggest that the development of availing MPB 

in conjunction with self-regulatory processing skills influence successful problem solving 

and thus, influence implementation of constructivist-oriented mathematics curricula.   

Based on the discussion above, recommendations for practicing mathematics 

educators, school administrators, and curriculum developers follow: 

1. Mathematics educators should evaluate students’ MPB early in the course. Such 

assessment may be done by self-report instrument or qualitative probing. 
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Educators should assess qualitatively since instrument completion consumes 

valuable class time and findings from self-report instruments may be unreliable 

(Hofer & Pintrich, 1997; Muis, Winne, & Jamieson-Noel, 2007; Winne & Perry, 

2000). Qualitative assessments may be made via individual conversations with 

students as they complete class work and assessments of student work. 

Curriculum developers and school administrators should consider providing 

mathematics teachers appropriate training regarding epistemological beliefs so 

that assessments may be developed and implemented appropriately. 

2. Based on student evaluations of beliefs, mathematics educators should incorporate 

the development of availing MPB into their pedagogy. Specifically, mathematics 

educators should align learning goals, instructional habits, and authentic 

assessments with the availing beliefs discussed in this study. Cano (2005) 

suggested that merely informing students of availing beliefs is insufficient; rather, 

pedagogy should be in constant and consistent agreement with espoused beliefs. 

To facilitate sustainability of any implemented initiatives, assessment of the 

effectiveness of developing students’ beliefs may be distributed to teachers via 

collaborative communities of professional learning and growth (Hargreaves & 

Fink, 2006; Harris, 2006; Katzenmeyer & Moller, 2001).  

3. Despite the findings of this study, mathematics educators should not assume that 

developing availing MPB in students will naturally lead to the development of 

self-regulatory skill in mathematical problem solving (Zimmerman, 2000). 

Zimmerman suggested that self-regulatory skill development depends on 

significant social influences during the observation and emulation levels.
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However, social influences should taper off as student behaviors indicate 

attainment of the self-control and self-regulation levels. Thus, it is recommended

that mathematics educators incorporate self-regulatory skill development into 

their pedagogy and differentiate pedagogical decision making (e.g., teacher-based 

assistance, group assignments, cognitive level of tasks) based on assessments of 

individual students’ self-regulatory prowess. Initially, school administrators 

should provide sufficient professional development to teachers based on their 

level of understanding of SRL. Then, assessments of the implementation of 

initiatives may be monitored via professional learning communities. 

4. Finally, Perels, Gürtler, and Schmitz (2005) suggested that combining formal 

SRL training with formal problem-solving skill training for students may provide 

the optimal means for developing students’ mastery of both skills. It is further 

recommended that students’ MPB be added to any such developmental program. 

Based on the findings of this study and Perels, Gürtler, and Schmitz’s study, it is 

recommended that school systems adopting, or currently implementing, 

constructivist-oriented curricula use the combined resources of mathematics 

teachers and curriculum developers to infuse a combination of SRL, MPB, and 

problem-solving skills training into secondary mathematics courses. This addition 

would not add to the curriculum but serve as a way to introduce process standards 

to complement the curriculum and provide an alternative engine for pedagogical 

practice to the current, more direct approach that is once again prevailing in many 

secondary mathematics classrooms (Schoenfeld, 2007).  
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Implications for Future Research

Based on the results of this study, recommendations are made for future research. 

This multiple-case study explored the relationships between epistemological beliefs and 

SRL processing during mathematical problem-solving in an effort to inform possible 

extensions on research along this vein (Schoenfeld, 1985; Muis, 2008). Upon deep 

reflection of the results and conclusions derived from this study, the following 

recommendations for future research are provided:

1. The majority of findings in this study converged on the performance control phase 

of SRL. Future research should investigate deeper the effects of epistemological 

beliefs on the definition of the task, forethought, and self-reflection phases of SRL

during mathematical problem solving. 

2. Similar to the suggestion above, further research should investigate the effects of 

source of knowledge and justification of knowing on SRL processing during 

mathematical problem-solving, as little data emerged from the current study to 

inform these sets of beliefs. Qualitative or mixed methods approaches seem most 

appropriate to this task as we still know little about how beliefs affect self-

regulatory skill in problem-solving and self-report instruments continue to 

demonstrate insufficient reliability.

3. Since this study investigated advanced mathematics students, it is recommend that 

future researchers replicate or adapt this study to investigate mathematics students 

at other levels of achievement. To better inform productive change in the 

development of mathematics education initiatives, input is needed as to which 
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results from this study converge and which results diverge with respect to other 

populations of mathematics students.  

4. To address issues of researcher bias and additional limitations inherent in the 

design of this study, a call for research on larger populations is suggested to 

assess the transferability and generalizability of findings to other populations of 

advanced mathematics students. Similar studies may also be merited on other 

populations once qualitative studies, as advised above, are conducted. I suggest 

that two types of studies may sufficiently address such a request: (a) grounded 

theory study on a larger population to determine if similar findings emerge, and 

(b) mixed methods study with a large population combining a case study similar 

to the current study with a subset of the sample and structural equation modeling 

for the entire sample. 

My final call for research is presented in prose form as it is nearer to my heart and 

based on a deeper level of meditation and reflection on the findings of this study. I call 

for a new generation of researchers, a generation that conducts studies in the trenches. I 

call for research to emerge from those who sit side-by-side with the participants daily 

and know them better than anyone else. It is time to truly merge theory and practice and 

who better suited to do so than the practitioners! Why do my findings echo those of other 

researchers preceding me by three decades? Are the engines of change in education truly 

that rusty or are we (teachers) failing to provide the necessary propulsion? It is our 

classroom. It is our hour. It is our semester. Are we willing to construct the knowledge 

necessary to implement positive change in the mathematics classroom or are we merely
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hypocrites who cannot practice what we preach? It is time to merge theory with practice 

and the responsibility is on us. 

Researcher Reflections

As I reflect on this dissertation research journey, I do so with solemnity and awe. 

I have attempted through this study to provide an accurate and revealing glimpse into the 

lived experiences of select advanced secondary mathematics students as they solved 

problems. The qualitative research paradigm has, in my opinion, provided an appropriate 

medium for analyzing this phenomenon. My students have voluntarily spoken for 

themselves and I have attempted to capture the essence of their voices, both the overt and 

the covert. I am hopeful that each participant took away from his or her personal 

experiences further insights into his or her role as a learner and crafter of mathematical 

knowledge.  

 In conducting this research and reporting my findings, my goal was to provide the 

larger research community with a clear depiction of the relationships that exist amongst 

the three converging constructs studied: self-regulated learning, epistemological beliefs, 

and mathematical problem solving. I feel confident that this study will place another 

brick in the wall that represents mathematics-education research and hope that future 

researchers, possibly even teacher researchers, are able to continue building onto my 

portion of the wall. I am a firm believer that mathematics education needs to continue on 

the reform path explicated by NCTM (2000) and that the constructivist philosophy needs 

to be infused into more curricula and pedagogy. I have conducted research that informs 

pedagogical and institutional changes necessary for the furtherance of the mathematics 

education reform. In doing so, I have gained significant insights into the needs of my own 
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students that will inform and enhance my practice as a secondary mathematics teacher. 

Locally, I plan to place added focus on students’ beliefs as I assess progress and promote 

availing beliefs practices amongst my students. Globally, I plan to share my findings via 

communities of learning at my school and larger forums, such as conferences and 

convocations. I also intend to continue providing research from the trenches and provide 

an outlet for student voices in the hopes that someone is listening.
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Participant Consent Form

My signature below indicates that I have read the information provided and have decided to participate in 

the study titled Epistemological Beliefs and Self-Regulated Learning: A Case Study of AP Calculus Test 

Preparation and Advanced Problem Solving to be conducted at school between the dates of January 5, 

2010 and March 31, 2010.  I understand that the signature of the principal and classroom teacher 

indicates they have agreed to allow student participation in this research project.   

 

I understand the purpose of the research project will be to determine why and how mathematical beliefs 

affect self-regulation of problem-solving tasks and that I will participate in the following manner:  

 

1. All students will complete AP Calculus exam practice problems in a journal. 

2. If your are one of six students chosen for the case study, two additional problem solving sessions of 

one-hour duration will be completed after school. 

3. For confirmation of data, your may be asked to participate in an interview after school of approximately 

30-minute duration. 

 

Potential benefits of the study are: increased performance on AP exam, increased performance in the 

course, increased performance in mathematical problem solving, development of self-regulatory skills, 

and development of problem-solving strategies. 

 

I agree to the following conditions with the understanding that I can withdraw from the study at any time 

should I choose to discontinue participation.   

 

! The identity of participants will be protected. No student names will appear in any of the data 

collected or in the final report of the findings. Additionally, all data will be destroyed within five 

years of the completion of the study. 

 

! Information gathered during the course of the project will become part of the data analysis and 

may contribute to published research reports and presentations.  

 

! There are no foreseeable inconveniences or risks involved in participating in the study.  

 

! Participation in the study is voluntary and will not affect either student grades or placement 

decisions. Students who do not participate in the study will continue to participate in classroom 

activities and receive the same AP exam practice as their peers, but no data will be collected as a 

result of their work. If I decide to withdraw permission after the study begins, I will notify the 

school of my decision.  

 

If further information is needed regarding the research study, I can contact James Clinton Stockton at 

james.stockton@cobbk12.org or (678) 594 – 8190, ext. 469.  

 

 

Signature ___________________________________________________________________________ 

     Participant      Date 

 

Signature____________________________________________________________________________ 

     Principal      Date 

 

Signature____________________________________________________________________________ 

     Classroom Teacher/Researcher    Date  
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Parental Consent Form 

My signature below indicates that I have read the information provided and have decided to allow my 

child to participate in the study titled Epistemological Beliefs and Self-Regulated Learning: A Case Study of 

AP Calculus Test Preparation and Advanced Problem Solving to be conducted at my child’s school 

between the dates of January 5, 2010 and March 31, 2010.  I understand that the signature of the 

principal and classroom teacher indicates they have agreed to allow student participation in this research 

project.   

 

I understand the purpose of the research project will be to determine why and how mathematical beliefs 

affect self-regulation of problem-solving tasks and that my child will participate in the following manner:  

 

1. All students will complete AP Calculus exam practice problems in a journal. 

2. If your child is one of six students chosen for the case study, two additional problem solving sessions of 

one-hour duration will be completed after school. 

3. For confirmation of data, your child may be asked to participate in an interview after school of 

approximately 30-minute duration. 

 

Potential benefits of the study are: increased performance on AP exam, increased performance in the 

course, increased performance in mathematical problem solving, development of self-regulatory skills, 

and development of problem-solving strategies. 

 

I agree to the following conditions with the understanding that I can withdraw my child from the study at 

any time should I choose to discontinue participation.   

 

! The identity of participants will be protected. No student names will appear in any of the data 

collected or in the final report of the findings. Additionally, all data will be destroyed within five 

years of the completion of the study. 

 

! Information gathered during the course of the project will become part of the data analysis and 

may contribute to published research reports and presentations.  

 

! There are no foreseeable inconveniences or risks involved to my child participating in the study.  

 

! Participation in the study is voluntary and will not affect either student grades or placement 

decisions. Students who do not participate in the study will continue to participate in classroom 

activities and receive the same AP exam practice as their peers, but no data will be collected as a 

result of their work. If I decide to withdraw permission after the study begins, I will notify the 

school of my decision.  

 

If further information is needed regarding the research study, I can contact James Clinton Stockton at 

james.stockton@cobbk12.org or (678) 594 – 8190, ext. 469.  

 

 

Signature ___________________________________________________________________________ 

     Parent      Date 

 

Signature____________________________________________________________________________ 

     Principal      Date 

 

Signature____________________________________________________________________________  

     Classroom Teacher/Researcher    Date
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Appendix B: Questionnaires
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Indiana Mathematics Beliefs Scale (IMBS; Kloosterman & Stage, 1992) 

1. Memorizing steps is not that useful for learning to solve word problems. 

2. Learning computational skills is more important than learning to solve word 

 problems. 

3. There are word problems that just can’t be solved by following a predetermined 

sequence of steps.

4. If I can’t do a math problem in a few minutes, I probably can’t do it at all.  

5. Computational skills are of little value if you can’t use them to solve word 

 problems. 

6. Mathematics will not be important to me in my life’s work. 

7. Most word problems can be solved by using the correct step-by-step procedure.

8. I find I can do hard math problems if I just hang in there. 

9. By trying hard, one can become smarter in math. 

10. A person who can’t solve word problems really can’t do math. 

11. Working can improve one’s ability in mathematics. 

12. I study mathematics because I know how useful it is. 

13. Ability in math increases when one studies hard. 

14. It’s not important to understand why a mathematical procedure works as long as it 

gives a correct answer.

15. Math classes should not emphasize word problems. 

16. Studying mathematics is a waste of time.

17. Word problems can be solved without remembering formulas. 
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18. A person who doesn’t understand why an answer to a math problem is correct 

hasn’t really solved the problem.

19. Any word problem can be solved if you know the right steps to follow. 

20. I’m not very good at solving math problems that take a while to figure out. 

21. It doesn’t really matter if you understand a math problem if you can get the right 

answer.

22. Hard work can increase one’s ability to do math. 

23. Learning to do word problems is mostly a matter of memorizing the right steps to 

 follow. 

24. In addition to getting a right answer in mathematics, it is important to understand 

why the answer is correct.  

25. I can get smarter in math if I try.

26. Getting a right answer in math is more important than understanding why the 

answer works.

27. Math problems that take a long time don’t bother me. 

28. Knowing mathematics will help me earn a living.

29. Word problems are not a very important part of mathematics. 

30. Time used to investigate why a solution to a math problem works is time well 

 spent. 

31. I can get smarter in math by trying hard. 

32. If I can’t solve a math problem quickly, I quit trying. 

33. Mathematics is of no relevance to my life.

34. Computational skills are useless if you can’t apply them to real life situations.
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35. I feel I can do math problems that take a long time to complete.

36. Mathematics is a worthwhile and necessary subject.
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Psycho-Epistemic Profile (PEP; Mos & Royce, 1980) 
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Appendix C: Approval Correspondences
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College Board Approval to Use AP Questions 

For the purposes of confidentiality, personal information has been omitted. 

09/30/09 
Name : James Stockton
Email:  james.stockton@cobbk12.org 

RE:  2000 - 2009 Calculus AB and BC free response questions 

Dear James Stockton: 

Thank you for your request to reproduce the aforementioned AP Material for the 
purposes indicated below:  

Title of Your Work:  Self-regulation, epistemology, problem solving, gifted students    

Author: James C. Stockton, AP Calculus AB/BC teacher 

Distribution/Audience: Dissertation committee, possible inclusion in educational 
research journal

Distribution date: TBD

Quantity: TBD

Price: N/A

Permission to use the aforementioned Items is granted and is contingent upon the 
following: 

1)Permission is granted on a one-time, non-exclusive, and non-transferable basis.
2)Please include the following credit line, exactly as written below, in each instance 
where the Items appear: 

Source: Copyright Â© 2009. The College Board.  Reproduced with permission.  
http://apcentral.collegeboard.com.

Please refer to the above contract number in any further correspondence.  

Thank you, 

Kelly Fitzsimmons
Assistant Director, AP Policy and Publications
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Email Approval to Use the Indiana Mathematics Belief Scales

For the purposes of confidentiality, personal information has been omitted. 

Clint,
The only restriction on use of the Indiana Scales involves selling them for profit and I 
can’t imagine that’s your aim — you are quite welcome to use them and to include them 
in your appendices.  You do not need to get permission for the Fennema-Sherman 
Usefulness scale.  Good luck with your dissertation. 

Peter Kloosterman 
Professor of Mathematics Education 
School of Education 3274  
Indiana University  
Bloomington, IN 47405  
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Email Approval the Motivated Strategies for Learning Questionnaire 

For the purposes of confidentiality, personal information has been omitted. 

I mail out the MSLQ for a fee of $20.  Make your check payable to the 
University of Michigan.  With this payment, you are allowed to use 
the MSLQ  for your needs  but making sure you give the authors 
credit.   You can copy the MSLQ for your needs and also put it on a  
password protected website for your people but do not distribute it  
outside of your group. 

Also, I am willing to send it out before I receive your 
check so you can get it as soon as possible. Please send me back
your complete address and I will use that as my label.  ...Marie 

___________________________________________

Marie-Anne Bien, Secretary 
The University of Michigan 
Combined Program in Education & Psychology (CPEP)
610 East University, 1413 School of Education 
Ann Arbor, MI 48109-1259 
___________________________________________
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Email Approval to Use the Psycho-Epistemic Profile

For the purposes of confidentiality, personal information has been omitted. 

From  Dr. Leo Mos
To  James Clinton Stockton 
Date   Monday, September 28 
Subject  Re: Request to purchase and use PEP

Hi Clint, I will forward a copy of the PEP if you send me your address. I haven't worked 
with the PEP since the late-60s and certainly have not kept up with the literature. The 
Manual (to which I have copyright) also contains the questionnaire, use it as you deem 
fit. Best wishes on the doctoral research. Leo 
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Appendix D: Distributions of Scores for Questionnaires
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IMBS Belief 1
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Figure 12. Distribution of Scores for the Indiana Mathematics Belief Scales (IMBS): 

Belief 1 Scale (N = 30). 
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Figure 13. Distribution of Scores for the IMBS: Belief 2 Scale (N = 30).
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IMBS Belief 3
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Figure 14. Distribution of Scores for the IMBS: Belief 3 Scale (N = 30).
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Figure 15. Distribution of Scores for the IMBS: Belief 4 Scale (N = 30).
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IMBS Belief 5
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Figure 16. Distribution of Scores for the IMBS: Belief 5 Scale (N = 30). 
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Figure 17. Distribution of Scores for the IMBS: Belief 6 Scale (N = 30). 
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MSLQ: Intrinsic Goal Orientation
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Figure 18. Distribution of Scores for the Motivated Strategies for Learning (MSLQ): 

Intrinsic Goal Orientation Scale (N = 30). 

MSLQ: Extrinsic Goal Orientation
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Figure 19. Distribution of Scores for the MSLQ: Extrinsic Goal Orientation Scale (N =

30). 
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MSLQ: Task Value
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Figure 20. Distribution of Scores for the MSLQ: Task Value Scale (N = 30).

MSLQ: Critical Thinking
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Figure 21. Distribution of Scores for the MSLQ: Critical Thinking Scale (N = 30). 
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MSLQ: Metacognitive Self-Regulation
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Figure 22. Distribution of Scores for the MSLQ: Metacognitve Self-Regulation Scale (N

= 30). 

MSLQ: Peer Learning
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Figure 23. Distribution of Scores for the MSLQ: Peer Learning Scale (N = 30). 
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MSLQ: Help Seeking
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Figure 24. Distribution of Scores for the MSLQ: Help Seeking Scale (N = 30). 

PEP: Rational

12512011511010510095

F
re

q
u

e
n

c
y

6

4

2

0

Figure 25. Distribution of Scores for the Psycho-Epistemological Profile (PEP): Rational 

Scale (N = 30).
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PEP: Empirical
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Figure 26. Distribution of Scores for the PEP: Empirical Scale (N = 30). 

PEP: Metaphorical
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Figure 27. Distribution of Scores for the PEP: Metaphorical Scale (N = 30).
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Appendix E: Advanced Placement (AP) Exam Preparation 
Instrumentation and Protocols



* Source: Copyright © 2010. The College Board.  Reproduced with permission.  
http://apcentral.collegeboard.com.
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AP® Calculus AB Free-Response Questions* Used During This Study  
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AP Exam Preparation Journal Entry Format 
 

Student: As you work, record your thinking, planning, and 

Date: strategy use on this side. Be very detailed and 

AP Question Year and Number: record ALL actions involved in solution 

development.

Solution: Outline of solution development:

a) a)

b) b)

c) c)

d) d)
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Classroom Observation Protocol 
 

Students:   

Date and Time:

AP Question Year and Number:

Sketch of group with relative positioning:   

    

    

    

    

    

Descriptive Notes: Reflective Notes:
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Appendix F: Think-Aloud Session Instrumentation and Protocols 
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Application of Differentiation Problem-Solving Task 

Suppose $ % 3 2 , 0f x ax bx cx d a# ( ( ( ' , represents a family of cubic functions. 

a) If possible, find a, b, c, and d such that f has exactly two horizontal   

 tangents and exactly one root. Justify your solution. 

b) If possible, find a, b, c, and d such that f is concave up on $ %,&7 7 . Justify 

 your solution. 
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Application of Integration Problem-Solving Task 

Let $ % mxh x e&# , where m is a nonzero, positive integer.  

a) Suppose the area, 1A , bounded by h and the lines 0y # , 0x # , and 2x # . Find 

the equation of the vertical line that divides 1A  exactly in half. Justify your 

solution. 

b) Suppose the area, 2A , bounded by h and the lines 1 2y #  and 0x # . Find the 

equation of the horizontal line that divides 2A  exactly in half. Justify your 

solution. 
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Think-Aloud Problem-Solving Session #1 Protocol (Ericsson & Simon, 1993) 

In this experiment I am interested in what you think about when you are working on a 

calculus problem. To explore this, I am going to ask you to THINK ALOUD as you work 

on given problems. What I mean by think aloud is that I want you to tell me 

EVERYTHING you are thinking from the time you first see the problem until you give 

me an answer. I would like you talk aloud CONSTANTLY from the time I present each 

problem until you have given your final answer. I don’t want you to try to plan out what 

you say or try to explain to me what you are saying. Just act as if you are alone in the 

room speaking to yourself. It is most important that you keep talking. If you are silent for 

any long period of time I will ask you to talk. Do you understand what I want you to do? 

PRACTICE PROBLEM # 1

Good, now we will begin with a practice problem. Please solve the following problem 

and think aloud as you do so. 

Give student Practice Problem #1. Student will work the problem and think aloud.

If the student is silent for 10 – 15 seconds, prompt them to “KEEP TALKING.”

Good, now I want to see how much you can remember about what you were thinking 

from the time you read the problem until you gave the answer. I am interested in what 

you actually can REMEMBER rather than what you think you must have thought. If 

possible I would like you to tell about your memories in the sequence in which they 

occurred while working on the problem. Please tell me if you are uncertain about any of 

your memories. I don’t want you to work on solving the problem again, just report what 
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you can remember thinking about when solving the problem. Now tell me what you can 

remember. 

Student will respond.

PRACTICE PROBLEM # 2

Good. Now I will give you one more practice problem before we proceed to the problems 

I will be analyzing. I want you to do the same thing for this problem. I want you to think 

aloud as before as you think about the problem, and after you have answered it I will ask 

you to report all that you can remember about your thinking. Any questions? Here is your 

next problem. 

Give student Practice Problem #2. Student will work the problem and think aloud. 

If the student is silent for 10 – 15 seconds, prompt them to “KEEP TALKING.” 

Now tell me all that you can remember about your thinking.  

Student will respond.

PROBLEMS FOR THE STUDY

Good, now I have two problems that I will be analyzing for the study. You will receive 

an application of differentiation problem first. If you complete it, you may receive an 

application of integration problem if time allows. You will think aloud as you work on 

the problem(s) for thirty minutes. 

Give student the Application of Differentiation problem. Student will work the 

problem and think aloud. If the student is silent for 10 – 15 seconds, prompt them to 

“KEEP TALKING.” If student finishes the problem with sufficient time remaining, 

give them the Application of Integration problem.

Now tell me all that you can remember about your thinking.  
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Student will respond. I will provide cognitive feedback for the purposes of SRL 

processing.

Thank you very much for participating. When you return for your second session, you 

will continue working on the current problem. The second session will be similar to this 

one in terms of structure. You may think about the problem during the interval between 

sessions if you wish. 
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Think-Aloud Problem-Solving Session #2 Protocol (Ericsson & Simon, 1993) 

In this experiment I am interested in what you think about when you are working on a 

calculus problem. To explore this, I am going to ask you to THINK ALOUD as you work 

on given problems. What I mean by think aloud is that I want you to tell me 

EVERYTHING you are thinking from the time you first see the problem until you give 

me an answer. I would like you talk aloud CONSTANTLY from the time I present each 

problem until you have given your final answer. I don’t want you to try to plan out what 

you say or try to explain to me what you are saying. Just act as if you are alone in the 

room speaking to yourself. It is most important that you keep talking. If you are silent for 

any long period of time I will ask you to talk. Do you understand what I want you to do? 

Good, do you need a practice problem for this session?  

PRACTICE PROBLEM # 3 (IF NEEDED)

If yes:  Please solve the following problem and think aloud as you do so. 

Give student Practice Problem #3. Student will work the problem and think aloud.

If the student is silent for 10 – 15 seconds, prompt them to “KEEP TALKING.” 

Good, now I want to see how much you can remember about what you were thinking 

from the time you read the problem until you gave the answer. I am interested in what 

you actually can REMEMBER rather than what you think you must have thought. If 

possible I would like you to tell about your memories in the sequence in which they 

occurred while working on the problem. Please tell me if you are uncertain about any of 

your memories. I don’t want you to work on solving the problem again, just report what 
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you can remember thinking about when solving the problem. Now tell me what you can 

remember.  

Student will respond.

Good. Now, do you need another practice problem?  

PRACTICE PROBLEM # 4 (IF NEEDED)

If yes:  I want you to do the same thing for this problem. I want you to think aloud as 

before as you think about the problem, and after you have answered it I will ask you to 

report all that you can remember about your thinking. Any questions? Here is your next 

problem. 

Give student Practice Problem #4. Student will work the problem and think aloud. 

If the student is silent for 10 – 15 seconds, prompt them to “KEEP TALKING.”

Now tell me all that you can remember about your thinking.  

Student will respond.

PROBLEMS FOR THE STUDY

Good, now let’s return to the problems that I will be analyzing for the study. You will 

think aloud as you work on the problems for thirty minutes. 

Give student appropriate problem solving task. Student will work the problem and 

think aloud. If the student is silent for 10 – 15 seconds, prompt them to “KEEP 

TALKING.” If student finishes the Application of Differentiation problem with 

sufficient time remaining, give them the Application of Integration problem.

Good, now I want to see how much you can remember about what you were thinking 

from the time you read the problem until you gave the answer. I am interested in what 

you actually can REMEMBER rather than what you think you must have thought. If 
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possible I would like you to tell about your memories in the sequence in which they 

occurred while working on the problem. Please tell me if you are uncertain about any of 

your memories. I don’t want you to work on solving the problem again, just report what 

you can remember thinking about when solving the problem. Now tell me what you can 

remember. 

Student will respond. Thank you very much for participating. 
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Appendix G: Follow-Up Interview Protocol

Research Project: Self-regulation and epistemology in complex problem solving 
Student: 
Date:
Time:

“The purpose of this interview is to provide you an opportunity to review my initial 
findings and ensure that my final report will be an accurate representation of your 
experiences.”

Questions: 

1. Please review the following document which summarizes the results of your 
participation in this research project.

Notes:

2. Do you concur with the findings of the study in relation to your participation? 

Notes:

3. Is there a better way these findings could clarify or better describe your 
participation in this study? If so, how? 

Notes:

4. Do you think the results of this study could be used to improve students’ abilities 
to solve mathematical problems? If so, how? 

Notes:

“Thank you very much for your participation in this study.” 
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Appendix H: Code Book

PHASES OF SRL (Winne & Hadwin, 1998; Zimmerman, 2000) 

** Roman numerated items indicate macro-level nodes. Bulleted items indicate 

micro-level codes with suggestions of even more specific, finer-grained codes for 

specific student behaviors. **

I. Definition of Task

! Reading and re-reading the problem (RP) (Schoenfeld, 1985) – noting 

conditions of the problem (NC), identifying goal state (IG), assessment of content 

knowledge based on task (CK) 

! External Feedback (Nicol & Macfarlane-Dick, 2006; Winne & Hadwin, 1995) 

– reaction to peer feedback (PF), reaction to teacher feedback (TF)

! Analysis of the Problem (AP) (Schoenfeld, 1985) – establish relationship(s) 

between conditions and goal (ER)

II. Forethought

! General Planning (GP) (Greene & Azevedo, 2009; Pintrich, 2000) – overt 

evidence of mastery-approach goal orientation (MGAP), overt evidence of 

mastery-avoidance goal orientation (MGAV),overt evidence of performance-

approach goal orientation (PGAP), overt evidence of performance-avoidance goal 

orientation (MGAV), prior knowledge activation (PK), recycle goal in working 

memory (RG)
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! Problem-Solving Planning (PSP) (Schoenfeld, 1985) – assessment of plan (AP), 

inferred planning (IP), overt planning (OP)

III. Performance Control

! Self-control (SC) (Zimmerman, 2000) – self-instruction (SI), imagery (IM), 

attention focusing (AF), task strategies (TS)

! Self-Observation (SO) (Zimmerman, 2000) – evidence of internal feedback 

(IF), performance-focused self-observations (PF), deficit-focused self-observation 

(DF)

! Regulating Motivation (RM) (Garcia & Pintrich, 1994) – self-handicapping 

(SH), defensive pessimism (DP), self-affirmation (SA), attributional style (AT), 

self-consequating (SC), environmental control (EC), interest enhancement (IE), 

performance self-talk (PST), mastery self-talk (MST)

! Exploration of problem space (EXP) (Schoenfeld, 1985) – continuing on “wild 

goose chase” (WGC), monitoring progress (MP), purposeful exploration (PU) 

! Implementation of Problem-Solving Plan (IMP) (Schoenfeld, 1985) – global 

assessment of implementation (GA), local assessment of implementation (LA)

! Strategy Use (SU) (Greene & Azevedo, 2009) – accessing memory (AM), re-

reading problem (RP), inferences (IN), hypothesizing (HY), knowledge 

elaboration (KE) 

! Heuristic Strategies (HS) (Polya, 1957; Schoenfeld, 1985) – draw a picture 

(DP), recall a similar problem (RSP), solve a simpler/similar problem (SP),

subgoals (decomposing and recombining) (DR), introduce appropriate notation 

(NO), restate the problem (RP), set up equations (EQ)
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! Monitoring (MO) (Greene & Azevedo, 2009) – judgment of learning (JL), 

feeling of knowing (FK), self-questioning (SQ), monitor progress toward goals 

(MG), monitor use of strategies (MS)

! Problem-Solving Transitions Based on New Information (TR) (Schoenfeld, 

1985) – assessment of current solution state (AC), attempt to salvage work (SW), 

assessment of appropriateness of new direction (AD), assessment of short- or 

long-term effects of new direction (ED), “jumping in” to new direction (JI) 

! Task Difficulty and Demands (TD) (Greene & Azevedo, 2009) – time and 

effort planning (TE), assessment of task difficulty (TD), expectation of adequacy 

of information (AI)

IV. Self-reflection

! Self-evaluation (SE) (Zimmerman, 2000) – mastery criteria (MC), current 

functioning (CF), past performance (PP), normative criteria (NC)

! Causal Attributions (CA) (Zimmerman, 2000) – ability-focused (AF), strategy-

focused (SF)

! Verification of Solution (VS) (Schoenfeld, 1985) – review of solution (RS), 

testing of solution (TS), assessment of confidence in solution (AC)

! Assessment of Future Use of Methods (FM) (Polya, 1957) – global assessment 

of methods used (GA), discovery of new or better solution for current problem 

(NBS), expression of usefulness of result for future work (UF)
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GROUP REGULATION (Artzt & Armour-Thomas, 1992; Goos, Galbraith, & 

Renshaw, 2002) 

** When solving problems in groups, Schoenfeld’s problem-solving framework, as 

coded above, will suffice for the majority of student behaviors. However, this section 

of the codebook provides codes for group-problem-solving specific behaviors. **

! Group-specific problem-solving behaviors (GPS) – watching and listening 

(WL) 

! Group problem-solving monitoring (GMO) – self-disclosure (SD), feedback 

request (FR), other-monitoring (OM)

! Group problem-solving verification (GPV) – testing solutions (TS) 
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DIMENSIONS OF GENERAL EPISTEMOLOGICAL BELIEFS (Hofer, 2000; 

Hofer & Pintrich, 1997; Muis & Franco, 2009) 

** Roman numerated items indicate macro-level nodes. Bulleted items indicate 

micro-level codes with operational definitions to help identify specific instances of 

students expressing each belief. It should be noted that a dimensionality stance on 

beliefs implies a continuum exists for each dimension. Thus, individuals will express 

differing degrees of beliefs for each dimension, often exhibiting contradictions, and 

typically context-dependent.**

I. Certainty of Knowledge (CE)

! Overt evidence of fixed belief (FI) – def.: knowledge cannot be doubted, 

everyone will develop the same conclusions  

! Overt evidence of fluid belief (FL)– def.: knowledge is not certain, knowledge 

evolves as more info is gathered

II. Simplicity of Knowledge (SI)

! Overt evidence of straightforward belief (ST)– def.: knowledge is one fact after 

another and unrelated

! Overt evidence of interrelated belief (IN) – def.: conceptual meanings are 

complex, relative to others, and contextually dependent 

III. Source of Knowledge (SO)

! Overt evidence of external belief (EX) – def.: knowledge is handed down from 

authority; authority should not be questioned 

! Overt evidence of internal belief (IN) – def.: knowledge constructed by 

interactions, logic, and/or evidence; experts should be questioned 
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IV. Justification of Knowledge (JU)

! Overt evidence of authoritative belief (AU) – def.: knowledge claims are 

accepted if authorities come to consensus

! Overt evidence of personal belief (PE) – def.: knowledge claims are accepted 

based on experience-based logic and/or evidence 

V. Attainability of Truth (ATT)

! Overt evidence in belief of attainability of truth (AT) – def.: every question or 

problem has a solution 

! Overt evidence of belief in non-attainability of truth (NA) – def.: some 

questions and problems have no solution, but should still be explored 
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DIMENSIONS OF MATHEMATICAL PROBLEM-SOLVING BELIEFS

(Kloosterman & Stage, 1992; Muis, 2008; Royce & Mos, 1980; Schoenfeld, 1985) 

** Roman numerated items indicate macro-level nodes. Bulleted items indicate 

micro-level codes with operational definitions to help identify specific instances of 

students expressing each belief. It should be noted that a dimensionality stance on 

beliefs implies a continuum exists for each dimension. Thus, individuals will express 

differing degrees of beliefs for each dimension, often exhibiting contradictions, and 

typically context-dependent.**

I. Empirical/rational problem solving (ER)

! Overt evidence of rational belief (RA) – def.: knowledge is derived and justified 

via reason and logic; use of mathematical argumentation, derived proofs, 

theorems, or facts to solve/justify problems

! Overt evidence of empirical belief (EM) – def.: knowledge is derived and 

justified via direct observation; use of trial-and-error, serial testing of hypotheses, 

perceptual information to solve/justify problems 

II. Problem-solving duration (DU) 

! Overt evidence of duration-conscious belief (DC) – def.: if problems cannot be 

solved quickly, they probably cannot be solved at all 

! Overt evidence of duration-oblivious belief (DO) – def.: some problems take a 

long time to solve, but should still be worked to completion 

III. Procedural/conceptual problem solving (PC)

! Overt evidence of procedural belief (PR) – def.: problems can be solved if the 

right steps are applied
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! Overt evidence of conceptual belief (CO) – def.: problems can be solved by 

understanding the underlying principles; conceptual understanding is important 

even when procedural means are applied

IV. Effort/innate attainment of ability (EI)

! Overt evidence of effort belief (EF) – def.: mathematical ability is attainable via 

effort and hard work 

! Overt evidence of innate belief (IN) – def.: mathematical ability is inherent, 

mathematical geniuses are “born with it”

V. Importance of problem solving (IPS)

! Overt evidence of the degree of importance assigned to problem solving

versus computational skills

VI. Usefulness of mathematics (UM)

! Overt evidence of the degree of belief that mathematics is useful to one’s 

endeavors 
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