
Kennesaw State University
DigitalCommons@Kennesaw State University

Master of Science in Computer Science Theses Department of Computer Science

Summer 7-29-2016

Color Image Segmentation Using the Bee
Algorithm in the Markovian Framework
Vehbi Dragaj
Kennesaw State University

Follow this and additional works at: http://digitalcommons.kennesaw.edu/cs_etd

Part of the Other Computer Sciences Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at DigitalCommons@Kennesaw State University. It has
been accepted for inclusion in Master of Science in Computer Science Theses by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Dragaj, Vehbi, "Color Image Segmentation Using the Bee Algorithm in the Markovian Framework" (2016). Master of Science in
Computer Science Theses. Paper 5.

http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/cs_etd/5?utm_source=digitalcommons.kennesaw.edu%2Fcs_etd%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

COLOR IMAGE SEGMENTATION USING THE BEE ALGORITHM IN

THE MARKOVIAN FRAMEWORK

A Thesis Presented to

The Faculty of the Computer Science Department

by

Vehbi Dragaj

In Partial Fulfillment

of Requirements for the Degree

Masters of Science in Computer Science

Kennesaw State University

July 2016

II

COLOR IMAGE SEGMENTATION USING THE BEE ALGORITHM IN

THE MARKOVIAN FRAMEWORK

III

In presenting this thesis as a partial fulfillment of the requirements for an advanced

degree from Kennesaw State University, I agree that the university library shall make it

available for inspection and circulation in accordance with its regulations governing

materials of this type. I agree that permission to copy from, or to publish, this thesis may

be granted by the professor under whose direction it was written, or, in his absence, by the

dean of the appropriate school when such copying or publication is solely for scholarly

purposes and does not involve potential financial gain. It is understood that any copying

from or publication of, this thesis which involves potential financial gain will not be

allowed without written permission.

Vehbi Dragaj

IV

STATAT E M E N T T O B O R R O W E R S

Unpublished theses deposited in the Library of Kennesaw State University must be

used only in accordance with the stipulations prescribed by the author in the

preceding statement.

The author of this thesis is:

Vehbi Dragaj

vehbi.dragaj@gmail.com

The director of this thesis is:

Dr. Chih-Cheng Hung

chung1@kennesaw.edu

Users of this thesis not regularly enrolled as students at Kennesaw State University

are required to attest acceptance of the preceding stipulations by signing below.

Libraries borrowing this thesis for the use of their patrons are required to see that

each user records here the information requested.

Name of user Address Date Type of use (examination only or copying)

V

COLOR IMAGE SEGMENTATION USING THE BEE ALGORITHM IN

THE MARKOVIAN FRAMEWORK

An Abstract of

A Thesis Presented to

The Faculty of the Computer Science Department

by

Vehbi Dragaj

Bachelor of Science in Computer Science, The Georgia Institute of Technology, 2006

In Partial Fulfillment

of Requirements for the Degree

Masters of Science in Computer Science

VI

Kennesaw State University

July 2016

Abstract

 This thesis presents color image segmentation as a vital step of image analysis in

computer vision. A survey of the Markov Random Field (MRF) with four different

implementation methods for its parameter estimation is provided. In addition, a survey of

swarm intelligence and a number of swarm based algorithms are presented. The MRF

model is used for color image segmentation in the framework. This thesis introduces a

new image segmentation implementation that uses the bee algorithm as an optimization

tool in the Markovian framework. The experiments show that the new proposed method

performs faster than the existing implementation methods with about the same

segmentation accuracy.

VII

COLOR IMAGE SEGMENTATION USING THE BEE ALGORITHM IN

THE MARKOVIAN FRAMEWORK

A Thesis Presented to

The Faculty of the Computer Science Department

by

Vehbi Dragaj

In Partial Fulfillment

of Requirements for the Degree

Masters of Science in Computer Science

Advisor: Dr. Chih-Cheng Hung

Kennesaw State University

July 2016

VIII

Dedication

To my parents.

IX

Acknowledgements

 I would like to express my gratitude to my advisor Dr. Chin-Cheng Hung for

encouraging me to do my thesis and for giving me the idea of what to do my thesis on. I

would also like to thank him for his advice and support throughout my thesis process.

 In addition, I would like to thank Dr. Jeffrey Chastine and Dr. Dan Lo for being in

my committee and for their questions and comments during my thesis defense.

X

TABLE OF CONTENTS

I. Introduction..1

II. Literature Survey..5

2.1 Markov Random Fields...5

2.1.1 What Is A Markov Random Field?...5

2.1.2 Neighbors And Neighborhood...8

2.1.3 Markov Properties..10

2.1.4 Clique...10

2.1.5 Clique Potential..12

2.1.6 Energy Function...12

2.1.7 Equivalence Between Markov Random Fields

 And Gibbs Random Filed....................................12

2.2 Markov Models...13

2.2.1 Markov Chains...13

2.2.2 Ising Model..15

2.3 Swarm Intelligence..16

2.3.1 Particle Swarm Optimization (PSO) Algorithm......................19

2.3.2 Ant colony Optimization..21

2.3.3 Honey Bee Behavior..23

2.3.4 Artificial Bee Colony...25

2.3.5 Improved Bee Colony Algorithm For Multi-Objective

 Optimization (IBMO)..26

2.3.6 Bee Swarm Optimization Algorithm.......................................28

2.3.7 BeeHive Algorithm..29

XI

2.3.8 The Bee Algorithm...31

2.4 Other Algorithm..34

2.4.1 Hill-Climbing Search...35

2.4.2 Simulated Annealing..36

2.4.3 Metropolis..37

2.4.4 ICM..39

2.4.5 Gibbs Sampler..39

2.4.6 MMD..40

2.5 Applications Of MRF And Bee Behavior Algorithms

 In Image Segmentation..41

2.5.1 Color Image Segmentation And Parameter Estimation

 In A Markovian Framework................................41

2.5.1.1 The Model...41

2.5.1.2 Parameter Estimation..42

2.5.1.3 Obtaining initial parameters..44

2.5.1.4 Color Image Segmentation Based On Multiobjective

 Artificial Bee Colony Optimization....................45

III. Proposed Solution..................…………..48

3.1 The Model...48

3.2 Parameter Estimation and Segmentation....................................49

3.3 Parameter Initiation...49

3.4 Bee Algorithm Parameter..50

IV. Experiments And Results...51

4.1 Experiments...51

4.2 Time Comparison..62

XII

4.3 Accuracy Comparison...63

V. Conclusion..68

VI. Appendix A. Probability And Statistical Concepts.............................69

VII. BIBLIOGRAPHY..78

XIII

LIST OF FIGURES

 Figure Caption Page

1 Computer vision applications...2

2 Six by six empty field ...6

3 First throw sixth order MRFs.. 9

4 MRF neighborhood where cells are not directly connected.......9

5 MRF Properties..10

6a First order MRF and its cliques..11

6b Second order MRF and its cliques...11

6c Third order MRF and its cliques..11

7 Unconnected MRF neighborhoods with their

 corresponding cliques..14

8 First order of Marko Chain for weather prediction..................14

9 Weather prediction 2X2 matrix..15

10 Ising model graph...15

11 Natural Swarm Systems...17

12 Artificial Swarm System..18

13 Ant path stimulation...21

14 Waggle dance...24

15 Bees Algorithm's flowchart diagram..34

16 Flower image segmented..51-52

17 Mountain image segmented..52-53

18 Satellite image segmented..53-54

19 Pepper image segmented..55-57

20 Synthetic noise image one segmented................................57-58

XIV

21 Synthetic noise image two segmented................................58-59

22 Texture image one segmented..59-60

23 Texture image two segmented..61-62

24 Time comparison for each algorithm..62

25 Accuracy and KHAT comparison..67

LIST OF ALGORITHM PSEUDO-CODES

 Algorithm Caption Page

1 Pseudo-code for particle swarm optimization..........................20

2 Ant Colony Optimization Pseudo-code...................................22

3 Artificial Bee Colony pseudo-code..26

4 Pseudo-code for IBMO..27

5 Bee Swarm Optimization pseudo-code....................................29

6 BeeHive Pseudo-code..31

7 The bee algorithm pseudo-code...32

8 Hill-climbing algorithm...36

9 Simulated Annealing pseudo-code...37

10 Metropolis pseudo-code...38

11 Pseudo-code for one iteration of Gibbs Sampler.....................40

12 Adaptive segmentation...43

LIST OF TABLES

 Table Caption Page

1 Real and artificial ant differences...22

2 The bee algorithm parameters...32

XV

3 Bee algorithm parameter settings..50

4 Time comparison table..63

5 Error Matrix for Satellite image using Bee Algorithm............64

6 Error Matrix for Satellite image using ICM Algorithm...........65

7 Error Matrix for Satellite image using MMD Algorithm........65

8 Error Matrix for Satellite image using

 Metropolis Algorithm..66

9 Error Matrix for Satellite image using

 Gibbs Sampler...66

10 Accuracy and KHAT comparison for all algorithms...............67

I INTRODUCTION

 Did you know that it is estimated that 25% to 50% or more of human brain

activity is spent in processing visual perceptions? In reality, we make sense of our visual

perceptions intuitively and therefore, without thinking about it, we understand it to be a

simple task. However, making sense of visual feed is a very complex function. Likewise,

mistakenly computer vision was understood to be a simple task because of its influence

from human vision. What exactly is computer vision? "Computer vision is the automatic

analysis of images and videos by computers in order to gain some understanding of the

world" (Dawson-howe, 2014). There are uses of computer vision applications across

many disciplines such as inspection of circuit boards, inspection of labels, inspection of

how full bottles are, reading license plates, biometric security, landmine detection

(Dawson-howe, 2014), and healthcare (Grath, 2003) as shown in Figure 1, to mention a

few.

 (a) (b)

2

 (c) (d)

 (e)

Figure 1: Computer vision applications, a) circuit board inspection, b) biometric security,

c) label inspection, d) inspection of how full glasses are, and e) brain image using CT.

 Many of the computer vision applications are based on one of the early image

analysis tasks known as image segmentation. Image segmentation is a process by which

image pixels are grouped into homogenous groups, causing the image to be segmented or

in other words to be split into homogenous regions known as segments. Homogeneity can

be measured against some characteristics. In our case we are interested in color image

segmentation, which means that color values are used to measure the homogeneity of the

pixels (Kato, 2001). There are other characteristics such as texture and intensity that can

3

also be used to measure homogeneity of image pixels. However, regardless of which

characteristic or combination of characteristics are used in homogeneity measure or what

segmentation techniques are used, segmenting an image with perfect accuracy is a very

difficult task to achieve (Sag, 2015).

 There are many different ways of performing image segmentation. One such way

is to use Markov Random Field (MRF) as image segmentation model. MRF will be

explained in details in chapter two, however, it is important to notice that there are many

different implementations of MRF models that have shown great success in image

segmentation. There are four MRF implementations using Iterated Conditional Model,

Modified Metropolis Dynamic, Metropolis and Gibbs Samper presented in the demo of

(Kato, 2001). It is also important to notice that there are many swarm based algorithms,

including algorithms based on bee swarm intelligence, used to implement image

segmentation which have shown success as well (Sag, 2015). Therefore, it seems natural

to combine these two methods together, especially knowing that MRFs are a great way of

representing images and bee swarm based algorithms are a great optimization tool.

Considering that until the writing of this thesis there does not seem to be a MRF model

implementation based on the bee swarm, in this thesis we introduce an image

segmentation algorithm using the bee algorithm optimization in a Markovian framework.

A number of different images are used to test the solution and presented in chapter four.

 The rest of this thesis is organized as follows. In chapter two, we give a brief

literature survey. In chapter three, we explain our proposed solution. In chapter four, we

go over the experiments and findings. In chapter five, we provide a conclusion. Finally,

4

in Appendix we provide an overview of some of the probability and statistics concepts

related to this thesis.

5

II LITERATURE SURVEY

 In this chapter, we organize the literature survey in a few sections. In the first

section, we review the Markov Random Fields (MRF) and related concepts. In section

two, we provide two examples of MRF models. In section three, we outline the swarm

intelligence in general along with algorithms and then specifically bee swarm behavior

and a few algorithm that are based on bee swarm behavior. In section four, we review a

few other search algorithms. Finally, in section five, we summarize two papers where

MRF and bee swarm are used in image segmentation.

2.1 MARKOV RANDOM FIELDS

 In the next few subsections we will try to explain the Markov Random Fields

(MRF) and its related concepts.

2.1.1 WHAT IS A MARKOV RANDOM FIELD?

 Let us answer this question by considering the following example. Consider that

we have an empty six by six grid, like the one shown in Figure 2, that represents an

image. Now suppose that we want to assign a grayscale value to each one of the

pixels/cells on the image by throwing a coin 255 times for each pixel and then assigning

the number of heads to the given pixel in the image. Here, we randomly assigned

grayscale values to each one of the cells in the field/image and therefore created a

random field. In other words, a random field is a field that is created by performing a

6

random experiment for each of the cells on the field and assigning the outcome of the

experiments to the given cells.

Figure 2: Six by Six Empty Field.

For any given cell the probability p(k) of getting k heads from n throws of the coin is

calculated by using the probability distribution formula in equation 2.1 and 2.2:

 2.1

and

 2.2

Here θ represents the probability of getting a head per given throw.

 Now consider that we ran the above experiment for each of the cells and we

assigned a random generated value to each one of the cells of the grid/image. Once that is

done, imagine that we modified the coin to become biased in such a way that when

7

calculating the grayscale value for each cell, the grayscale values of the neighboring cells

are also taken into consideration. Please notice that only the neighboring cells are used to

impact the value of the given cell and not all the cells. Which cells are considered to be

neighboring cells will be explained later. Let us now assume that we want to modify the

coin in this way as formulated in equation (2.3).

 2.3

Here s represents a function of neighboring cell values. To calculate the bias of the coin,

notice that

p(head | given_values_of_nbrs) = θ and,

p(tail|given_values_of_nbrs) = 1 - θ

Therefore we get equation (2.4).

 2.4

If we use a coin, as the one explained above, to create the grayscale values per each cell

on the grid, we create a Markov Random Field. In other words, a Markov random field is

a random field that has Markovian property. The Markovian property is a property of a

random field that defines the value of a given cell to be directly dependent only on the

values of the neighboring cells and not the others.

8

 For the given example, we obtain a conditional probability function for a given

grayscale value k for any cell given the neighboring cell values as in equation (2.5)

(Petrou, 2006).

 2.5

2.1.2 NEIGHBORS AND NEIGHBORHOOD

 What cells or pixels are considered to be neighbors for a given cell depend on

how neighborhood is defined. Usually neighborhoods are defined as spatial proximities,

meaning the value of a given cell is directly dependent on spatially proximate cells, like

the examples in Figure 3:

9

Figure 3: First order, second order, third order, fourth order, fifth order, and sixth order

MRFs.

However, this is not always the case. In some cases neighborhood is defined to

specifically include cells that are not directly connected but are in some spatial order like

the examples below (Petrou, 2006).

Figure 4: MRF neighborhood where cells are not directly connected.

10

2.1.3 MARKOV PROPERTIES

 Earlier we briefly mentioned MRF properties, but let us take another look. When

we mentioned the function s in equation (2.3), we said that it is a function of neighboring

cell values. So, if we consider a first order Markov random field neighborhood and if we

define the function s as in equation (2.6),

s = a(gl + gr) + b(gt + gb) 2.6

where gl, gr, gt and gb are the grayscale values for left cell, right cell, top cell, bottom

cell respectively, as shown in Figure 5. In this case, parameters a and b are Markov

properties (Petrou, 2006).

 gt

 gl ? gr

 gb

Figure 5: MRF properties.

2.1.4 CLIQUE

11

 A clique is defined as a set of pixels that are neighbors according to the

neighborhood definition. The following figures show different neighborhood structures

with their corresponding cliques. For each neighborhood, a cell is a neighbor of itself.

For every pair of cells they are neighbors of each other as well. On the second order

MRFs we have triple and even quadruple cells that are neighbors. In the higher order

MRFs, the structure of neighboring cells becomes even more complex. A clique that

contains n cells is called nth order clique (Petrou, 2006).

Figure 6: a) First order MRF and its cliques, b) second order MRF and its cliques and c)

third order MRF and its cliques.

12

Figure 7: Unconnected MRF neighborhoods with their corresponding cliques.

2.1.5 CLIQUE POTENTIAL

 Clique potential is defined as a function of cell values of all cells within a clique.

The clique potential defines the relationship of clique cells. The form of the function and

the numerical variables differ based on the clique order. Earlier when we talked about

Markov properties and we defined function s to be s = a(gl + gr) + b(gt + gb), in that case

function s itself is a clique potential (Petrou, 2006).

2.1.6 ENERGY FUNCTION

 When we deal with the Markov random fields in image segmentation the energy

function is the sum of all clique potentials within the same lattice. The value of clique

potentials depends on the clique configurations (Grath, 2003; Li, 2006). The role of

energy function is classified as one of the following two kinds; first, as a global quality

13

measure of the solution in a quantitative way, and second, as a search guide for a minimal

solution (Li, 2006).

2.1.7 EQUIVALENCE BETWEEN MARKOV RANDOM FIELDS AND GIBBS

 RANDOM FIELD

 Markov random fields are characterized by Markovian properties or Markovianity

and Gibbs Random Fields are characterized by Gibbs distribution. Hammersley-Clifford

theorem states that the two are equivalent. There are many proofs for this theorem, one in

(Li, 2006), however, the proof will not be provided in this thesis.

2.2 MARKOV MODELS

 To better understand Markov random fields let us take a look at a couple of

simple yet useful MRF models.

2.2.1 MARKOV CHAINS

 The Markov Chain model is often considered to be the simplest Markov model.

In Markov Chain model, any given sequence of random variables, say X=(X1, X2,...), has

a joint probability distribution as in equation (2.7).

 2.7

14

In other words, in the first order Markov Chain, the probability of any given variable is

directly impacted only by its first direct neighbor. A simple yet powerful example that

helps us better understand Markov Chain is weather prediction model. In the weather

prediction model, the weather at any given day can be either sunny or raining, and we

note that as below.

 2.8

This means that in the simplest form of Markov Chain, the weather at any given day is

explicitly impacted only by the weather on the day before. However, it is implicitly

impacted by many days before by the "knock-on effect." The first order Markov Chain

assumes that:

 2.9

This means that the impact of weather conditions of many days before a given day Xi is

equaled to the impact of the weather condition on day Xi-1. This is graphically illustrated

below.

15

Figure 8: First order of Marko Chain for weather prediction; a) Directed graph

representation of conditional dependencies, b) State transition diagram of weather

forecast and c) Undirected graph representation.

The conditional probability for the weather prediction model is a 2X2 matrix. An

example is given in Figure 9. In this example, if yesterday was raining, the probability of

it being raining today is 0.4 and the probability of it being sunny today is 0.6. However, if

yesterday was sunny, the probability of it being raining today is 0.8 and the probability of

it being sunny today is 0.2

Figure 9: Weather prediction 2X2 matrix

 As we stated earlier in the first order Markov Chain model of weather prediction,

the weather at any given day is implicitly impacted by the weather condition many days

before in the row. So, it is important to notice that the impact that conditions of many

days in advance have on the condition on a given day can be calculated by multiplying

the weather condition matrices in the same order. Another important fact to notice is that

the higher order Markov Chains models can also be used to solve other problems. One

good example is the text prediction. Only one letter is not enough to predict what is the

next letter in a word, however, two letters often can be used to predict the third one. In

this case we have a second order Markov Chain models (Blake, 2011).

16

2.2.2 ISING MODEL

 Ising model is another MRF model. Let us consider Ising model with one

parameter . Its state space is based on Boolean variable and the

energy function . Considering that the energy function takes in a Boolean variable

and produces a real energy value, it is called "Pseudo-Boolean Function (PBF)." The

maximal cliques in a rectangular graph (i.e. field of pixels), as shown in Figure 10, are

the vertical and horizontal connected edges.

Figure 10: Ising model graph.

In this model the cliques are made of two pixels/nodes and therefore their clique

potentials are based on pairs of cliques and are known as "pairwise potentials" and are

represented as . Here increases the energy , and decreases the

joined probability by when adjacent and are different. This increases the

probability of configuring a more homogenous X. In other configurations, X may be

more agreeing or alike adjacent pixel values (Blake, 2011).

17

2.3 SWARM INTELLIGENCE

 Swarm Intelligence is defined somewhat differently by researchers but essentially

it is a collective of many self-organized agents within a decentralized organism to find an

optimal solution to a problem. A swarm intelligent system is made of many simple self-

organized agents that follow simple rules to interact with one another and the

environment at local level and in somewhat random order. Agents interact locally without

a centralized mechanism to control their behavior and without a sense of awareness of the

global impact. This leads to a global dynamic structure or behavior that is known as

swarm intelligence (Yuce, 2013 ; Swarm i., 2016). Swarm Intelligence is usually inspired

by nature, especially, biological systems; however, it now can be found in many artificial

systems as well. Examples of natural swarm intelligent systems include ant colonies, bird

flocking, fish schooling and of course honey bees. See Figures 11 and 12 below for visual

representation of natural and artificial swarm examples (Swarm b., 2016).

 (a) (b)

18

 (c) (d)

Figure 11: Natural Swarm Systems, a) ant colony, b) bird flocking, c) fish schooling, and

d) honey bees swarming.

Figure 12: Artificial Swarm System. One thousand robot swarm, named Kilbot,

developed by Harvard University.

19

 The self-organization of swarm intelligence is made possible as a result of four

characteristics. First rule is positive feedback, which is a set of simple rules helping

generate the structure of swarm intelligent organism. An example of positive feedback is

recruitment of honey bees to flower patches. Second element is negative feedback. It

reduces the effect of positive feedback and helps maintain a balanced mechanism. An

example of negative feedback is a limited number of forgers. Third element is

randomness. It helps create new (and unpredicted) solutions to given problems. The final

element is interaction between local agents. There should be a limited number of agents

who can interact with each other. The combination of the above mentioned four rules or

elements makes possible the creation of a decentralized system or structure. In this

system there is no central control and the hierarchy is only to divide the duties and not to

oversee individual agents. In this way a dynamic and efficient system is created enabling

it to overcome given challenges (Yuce, 2013).

2.3.1 PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM

 Particle swarm optimization algorithm is a search algorithm to find optimal

solution to given problems in n dimensional search space. It is based on the collective

behavior of animals (i.e. swarm intelligence) such as flocking of the birds. PSO is

described through "position" of the swarm in the n-dimensional space and the "velocity"

or the rate of change of the swarm's position. Each member of the population, or swarm

position in the n-dimensional space, is known as a particle, and from that the name

Particle Swarm Optimization comes from. Each particle keeps track of its best position.

20

In addition, it communicates its best position with the neighboring particles. Therefore,

each particle is not only aware of its best positions so far but that of its neighbors as well.

Each particle changes its position and velocity by measuring against a fitness value and

by taking under consideration its historical information and that of its neighboring

particles (Rini, 2011; Ahmed, 2012). The following equations represent velocity and

position (Rini, 2011).

 2.10

Where:

 represents velocity of the particle in the dimension at iteration.

represents position of the particle and dimension and is the particle

itself.

represents best historic position of the particle in the dimension

represents the position swarm's global best particle

 and represent n-dimensional vectors with random number, introducing

randomness to the search

 and are positive constants, known as cognitive and social parameters, respectively,

controlling the importance of individual particle in comparison to that of the global

swarm

Below is the pseudo-code for particle swarm optimization algorithm (Ahmed, 2012).

21

Algorithm 1: Pseudo-code for particle swarm optimization

1. Initialize the swarm by randomly assigning each particle to an arbitrarily initial

velocity and a position in each dimension of the solution space

2. Evaluate the desired fitness function to be optimized for each particle's position

3. For each individual particle, update its historically best position so far, Pi, if its

current position is better than its historically best one

4. Identify/update the swarm's globally best particle that has the swarm's best fitness

value, and set/reset its index as g and its position at Pg.

5. Update the velocities of all the particles using velocity equation

6. Move each particle to its new position using position equation

7. Repeat steps 2 - 6 until convergence or a stopping criterion is met

2.3.2 ANT COLONY OPTIMIZATION

 Ant colony optimization is based on the swarm behavior of ant colonies. Ant

colonies find the shortest path from their nest to the food source by depositing or laying a

substance called pheromone (Selvi, 2010; Ahmed, 2012). Pheromone comes from Greek

word pherein which means to transport and hormone to stimulate. In other words,

pheromone means to stimulate transportation, or in ant colony optimization case to

stimulate the path of transportation (Ahmed, 2012). If an obstacle is placed on the path of

the ants, they will go randomly on the left and the right leaving pheromone on their way.

As more ants go to the food source and back more pheromone will be placed on the

shortest path because the ants will be able to come back faster. As more pheromone is

22

placed on the shortest path, eventually all ants will take the shortest path to the food and

back because they tent to follow the path with more pheromone. A graphical

representation is sketched in Figure 13 (Selvi, 2010; Ahmed, 2012).

Figure 13: Ant path stimulation.

In the case of ant colony optimization, the problem is represented on weighted graph and

the artificial ants move from one node to the other setting weights on graph edges for

path optimization. There are some difference between real ants and artificial ants. The

table below lists some of these differences.

Table 1: Real and artificial ant differences.

23

To pull all of these together let us take a look at the pseudo-code for ant colony

optimization algorithm (Ahmed, 2012).

Algorithm 2: Ant Colony Optimization Pseudo-code

1. Represent the solution space by construction graph

2. Set ACO parameters and initialize pheromone

3. Generate ant solution from each ant's walk on the construction graph mediated by

pheromone trail

4. Update pheromone intensities

5. Go to step 3 and repeat until convergence or termination conditions are met

2.3.3 HONEY BEE BEHAVIOR

 Before we review a number of algorithms inspired by honey bee swarms, let us

first look at the natural behavior of honey bees. Honey bees go over 10 km away in multi-

directions in search for flower patches that have quality pollen or nectar. A number of

honey bees known as scouts go in random directions harvesting and evaluating flower

patches. Once they return to the hive, they deposit the nectar and then go to a place inside

the hive known as the dance floor. There the scouts inform other bees about flower

patches they found through what is known as the waggle dance. The waggle dance takes

its name from the wagging run which produces a loud buzzing sound while bees move

their body from one side to the other. Through this dance scouts inform other bees about

the quality of the flower patch they found, the direction to the patch and how far it is. The

path of waggling dance is shaped as number eight. The scout starts waggling on a

24

straight line which creates an angle to the top of the hive. This represents the angle

between the direction of the sun and the flower patch, giving other bees the direction to

the flower patch. Then, the bee alternates turning right and left. The speed and duration

of the dance indicates the distance of the flower patch. However, the speed of the waggle

and the buzzing sound indicate the quality of the patch. The better the quality the more

bees will be recruited. Once the scout finishes the dance, it goes to the flower patch

again to harvest and evaluate. If the flower patch is still good, the process of recruiting

new bees and going again to the same patch continues. The recruited bees upon return

will do the waggle dance if the flower patch is still evaluated as in good condition (Pham,

2005; Yuce, 2013). To visualize the waggle dance, see Figure 14 below.

 (a) (b)

25

 (c) (d)

Figure 14 : Waggle dance. a) waggle dance angle; b) orientation to the food source,

from the hive utilizing sun to create the angle; c) waggle dance on the dance floor (Yuce,

2013) and d) graph of distance to food source per duration of the waggle(Seeley, 2006).

2.3.4 ARTIFICIAL BEE COLONY (ABC)

 Artificial bee colony (ABC) is one of the optimization algorithms influenced by

the honey bees. In the ABC algorithm, the food source represents a solution in the

solution space and the nectar amount represents the fitness of the given solution. In

addition, there are three groups of bees in the ABC algorithm. First, the employed bees

are the bees that collect the nectar. Second, the onlookers are bees that wait at the dance

floor for employed bees to return. Finally, the scouts are bees that search for solutions,

food sources, randomly. The number of employed bees or onlookers is equals to the

number of solutions in the solution space. There are three parameters to be estimated in

26

the ABC algorithm. First, the population size, SN, or the number of food sources.

Second, the maximum cycle number, MCM, or the maximum number of generations

before the algorithm has to terminate. Finally, the number of times a food source (i.e.

limit) is visited without any improvements before a given food source is abandoned.

Before we give a brief explanation of each step, let us take a look at the pseudo-code for

the ABC algorithm.

Algorithm 3: Artificial Bee Colony pseudo-code

1. Initialize the ABC and problem parameters

2. Initialize the Food Source Memory (FSM)

3. repeat until termination criterion are met

a. Send the employed bees to food source

b. Send the onlookers to select a food source

c. Send the scouts to search possible new food

d. Memorize best food source

 In the first step, solutions are selected at random as well as the population size,

maximum cycle number, and the limit. In the second step, the food source memory is

initialized with information for each food source. Then, the employed bees are assigned

to given food sources. Also, the onlookers are sent to food sources based on the

information from employed bees. Each onlooker selects a food source with highest

probable fitness calculated as below.

 2.11

27

where fiti is the fitness for each food source and SN is similarly defined.

After that, as a food source is abandoned, the employed bees become scouts and

randomly look for new food sources. Finally, at the end of each generation, the best food

source so far is memorized. The process of sending employed bees, onlookers, and scouts

and memorizing the best solution repeats until the maximum number of cycles is met

(Bolaji, 2013; Karaboga, 2009).

2.3.5 IMPROVED BEE COLONY ALGORITHM FOR MULTI-OBJECTIVE

OPTIMIZATION (IBMO)

 The IBMO algorithm is an improvement to ABC for use with multi-objective

optimization that considers "non-dominated sorting strategy and principal concepts of

Pareto-Optimal," and it also includes an improvement step to local search. The algorithm

begins by creating a initial solution through a process known as diversification technique

where the parameter ranges are divided equally in subranges and eachsub range is given a

frequency of zero. Then, the parameters are calculated for each selected subrange by

increasing the frequency by one and the probability of selecting a subrange is inversely

proportional to the frequency. After the initial solution, there are three major steps to each

iteration, the employed, onlooker and scout bee steps. During the employed bee phase for

every solution, a new solution is created between the existing solution and a randomly

selected neighbor from the food set. Then, an improvement step which uses a local search

begins. If the new solution dominates, the new solution is added to the food set in place

of the existing solution. Finally, in employed bee phase, the non-dominated solutions are

28

updated in external archive (EXA). During the onlooker bee phase, the IBMO determines

the neighbors from the EXA and not from food source because the best solutions are

stored in EXA. During the scout phase, for every solution that was not selected by

employed or onlooker phases the trail count is increased by one. If it exceeds a preset

value or there are no improvements, these solutions are regenerated and their trail values

are set to zero. After the scout phase, the foods with EXA are combined and sorted to

create the food set for the next iteration. Below is the pseudo-code for IBMO (Sag, 2015).

Algorithm 4: Pseudo-code for IBMO

2.3.6 BEE SWARM OPTIMIZATION ALGORITHM

 Bee swarm optimization (BSO) is an optimization algorithm based on the food

foraging behavior of the honey bees. In this algorithm there are three kinds of bees:

experienced foragers, onlookers, and scouts, in D-dimensional space . The number

of each type of bees in swarm are set manually; however, the number of experienced

foragers and onlookers is equivalent and the number of scouts is smaller. The swarm is

represented symbolically as . The solution for every bee in D-dimensional

29

space is represented by the vector . The fitness of the

solution (i.e. the quality of the food source) is represent by .

 The algorithm starts by setting the parameters and an initial solution. Once an

initial solution is created for every iteration, the bees are sorted per their fitness. The food

sources for the group of bees with lowest fitness is abandoned and those bees are turned

into scout bees. The scouts are sent in random direction to look for new food sources. The

other bees are divided in the equal number where the group with the highest fitness are

set as experienced foragers and the other half as onlookers. The process continues until

terminating condition is met (Akbari, 2009). The pseudo-code is listed below.

Algorithm 5: Bee Swarm Optimization pseudo-code

30

2.3.7 BEEHIVE ALGORITHM

 BeeHive algorithm is another algorithm based on the behavior of the honey bees.

In BeeHive the dance floor is represented by a routing table where bees arriving at a

given node from different neighbors can exchange information. Bees are grouped into

two groups; short distance forgers, which explore nodes close from the hive, and long

distance forgers which explore nodes farther away. In BeeHive the search space or

network is divided into so called foraging regions. Each foraging region is represented by

a node with the lowest IP address (i.e. closest node). In addition, each node has a foraging

zone which includes all nodes that a short distance bee can go to from a given node. Each

non-representative node sends bee agents to nodes in the bee zone updating the path

information. Likewise, the representative nodes send bee agents to long distance nodes.

In this way each node maintains an up-to-date routing information. The next node on the

path is selected in probabilistic way with accordance to the quality of the neighbors. This

means that not every bee agent is sent through the best possible path, but this helps with

maximizing performance. Below is the pseudo-code (Wedde, 2004).

31

Algorithm 6: BeeHive Pseudo-code

32

2.3.8 THE BEE ALGORITHM

 The bee algorithm is an optimization algorithm inspired by the food forging

behavior of honey bees. The original bee algorithm which is what we use in this thesis

takes in a number of parameters. Before we give a pseudo-code for the algorithm, let us

take a look at each parameter on Table 2 below.

Table 2: The bee algorithm parameters.

Symbol Meaning of parameters

n Number of scouts

m Number of sites selected out of n visited

e Number of best sites

nep Number of bees recruited for best e sites

m-e Number of bees recruited for other sites

nsp Selected sites

ngh Neighborhood size

33

Now that we know what parameters the bee algorithm takes, let us take a look at the

pseudo-code:

Algorithm 7: The bee algorithm pseudo-code

1. Initialize the population with random solutions

2. Evaluate the fitness of the population

3. While (stopping criterion not met) //Forming new population

4. Select sites for neighborhood search

5. Recruit bees for selected sites (more bees for best e sites) and evaluate

 fitness

6. Select the fittest bee from each patch

7. Assign remaining bees to search randomly

8. End while

 As it can be seen above, the algorithm starts by placing n scouts randomly in the

search space and then evaluating the fitness. Then in step 4, bees with highest fitness are

selected and the sites they visited are chosen for neighborhood search. In steps 5 and 6,

the algorithm performs neighborhood search. The bees can be chosen by evaluating the

fitness and the fitness value is used as basis of probabilistic decision. More bees are used

to improve search for the best sites. Important to notice that in step 6 only the best bee is

selected to form the next generation of the population. In step 7, the unselected bees are

placed randomly on search space looking for new flower patches. The process is repeated

until the finishing criteria is met (Pham, 2005). To better understand the algorithm, the

flow chart is given below (Yuce, 2013).

34

Figure 15 : A flowchart diagram of bee algorithms.

2.4 OTHER ALGORITHMS

35

 So far, we have reviewed a number of search algorithms based on swarm

intelligence. Now let us examine a few more search algorithms that are not based on

swarm intelligence but some of them will be used in our thesis.

2.4.1 MARKOV CHAIN MONTE CARLO (MCMC)

 Before we assess a few more algorithms, it is important to notice that Markov

Chain Monte Carlo (MCMC) methods are a set of algorithms based on Markov Chain

model. They are used for sampling data from probability distributions (Markov, 2016).

There are two such methods, Metropolis and Gibbs sampler, used in our literature survey.

They will be explained later in this section.

2.4.2 HILL-CLIMBING SEARCH

 Hill-climbing is a search algorithm that tends to get the best possible solution

through iteration towards the best solution. In each step, it chooses the next best solution

by selecting the neighbor with the highest value. At each iteration, it replaces the current

value with next best value. It iterates until it reaches the "peek" or the point where all its

neighbors have a lower value than the current value. At this case, the algorithm will stop.

Hill-climbing is classified as a greedy algorithm because it picks the next best value

without understanding what happens next. Hill-climbing is usually fast because it is easy

to find the next best solution. However, sometimes it gets stuck at a point that is not the

optimal solution for the following reasons; local maxima issue which is a local maximum

36

or a peek that is higher or better value than all its neighbors but not the best global

solution. Second reason is ridges, which are a series of local maximums. The third is

plateaux issue which is a flat area or a point where the value of the best neighbor is equal

to the current value. Below is the pseudo-code for hill climbing algorithm (Russell,

2009).

Algorithm 8: Pseudo-code for Hill-climbing algorithm

Function Hill-climbing (problem) returns a state that is local maximum

current <- Make-Node(problem.Initial-State)

loop do

 neighbor <- a highest-valued successor of current

 if neighbor.Value <= current.Value then return current.State

 current<-neighbor

2.4.3 SIMULATED ANNEALING

 Simulated annealing is a search algorithm that tries to solve Hill-climing's

problem of getting stuck at a local maximum and still performs efficiently. Let us

consider the pseudo-code.

Algorithm 9: Simulated Annealing pseudo-code

function Simulated-Annealing (problem, schedule) returns a solution state

37

inputs: problem(a problem), schedule (a mapping from time to "temperature")

current <- Make-Node(problem.Initial-State)

for t = 1 to ∞ do

 T <- schedule (t)

 if T = 0 then return current

 next <- a randomly selected successor of current

 ΔE <- next.Value - current.Value

 if ΔE > 0 then current <- value

 else current <- next only with probability

 As it can be seen from the algorithm above, the move is always accepted if the

next value is better than current value. However, unlike the hill-climbing, in simulated

annealing even if the next value is worse than current value, it is accepted based on a

probability value. The amount of allowed worse values to be accepted decreases as the

temperature decreases, making it harder to accept worse values towards the end of the

process (Russell, 2009).

2.4.4 METROPOLIS

 Metropolis algorithm is used as a sampling algorithm to select random samples

out of a random distribution when it is difficult to get direct samples. Metropolis is

38

considered as a Markov Chain Monte Carlo method. Metropolis works in an iterative way

where at each iteration only the current sample value is used to generate the next value,

making it a Markov chain method. The selection of the next value is based on a given

probability, therefore if the new sample has a better probability of being part of the

distribution it is selected and used to generate the next iteration sample, if not it is

discarded and the old value is kept. The Metropolis pseudo-code is listed below.

Algorithm 10: Metropolis pseudo-code

Initialization: Choose an arbitrary point to be the first sample, and choose an

arbitrary probability density which suggests a candidate for the next sample value

x, given the previous sample value y. For the Metropolis algorithm, Q must be

symmetric; in other words, it must satisfy . A usual choice is to let be a

Gaussian distribution centered at y, so that points closer to y are more likely to be visited

next-making the sequence of samples into a random walk. The function g is referred to as

the proposal density or jumping distribution.

1. For each iteration t:

 2.1 Generate a candidate x' for the next sample by picking from the distribution

 2.2 Calculate the acceptance ration , which will be used to decide

 whether to accept or reject the candidate. Because f is proportional to the density

 of P, we have that .

39

 2.3 if , then the candidate is more likely than ; automatically accept the

 candidate by setting . Otherwise, accept the candidate with probability

 ; if the candidate is rejected, set , instead.

 From the pseudo-code above we can see that Metropolis randomly visits through

the search space. In each iteration, it accepts the next selected sample if the probability is

better. In other words, it tends to stay in the higher density regions (Metropolis-Hastings,

2016).

2.4.5 ITERATED CONDITIONAL MODELS (ICM)

 The ICM is an algorithm that uses the greedy strategy to maximize the local

conditional probability in an iterative way. The ICM takes the label d and all other labels

 and updates each label into by maximizing the conditional (posteriori)

probability . To use the conditional probability , the

following two assumptions are made; it assumes that the given function , each

component is conditionally independent and every has the same

conditional density function which means

 2.12

where represents the multiplication. The other assumption is that is a Markovianity,

which means it depends on local neighborhood labels. The two assumptions above and

Bayes theorem give us

40

, which is easier to estimate (Li, 2006).

2.4.6 GIBBS SAMPLER

 Gibbs sampler, like Metropolis, is a Markov Chain Monte Carlo method used to

iteratively generate samples from probability distributions to be used to approximate joint

distributions. Gibbs sampler is used when the conditional distribution of each variable is

known but joint distribution is hard to calculate. Gibbs sampler starts with a given

solution which can be generated at random or by using a specific method and then it

iterates a given number of times (Gibbs, 2016). Below is the pseudo-code for a given

iteration in Gibbs sampling (Garth, 2003).

Algorithm 11: Pseudo-code for one iteration of Gibbs Sampler

repeat

 Select a site i from set S

 Sample the conditional probability density of the label at site i given the labels in

 the neighborhood of site i

 Replace the old label with the label just sampled

until all sites in S have been sampled

2.4.7 MODIFIED METROPOLIS DYNAMIC (MMD)

41

 The MMD is yet another algorithm that can be used for the local energy

optimization. A new label is selected at random using the uniform distribution, however,

the acceptance of the new state is done deterministically. The difference between the

MMD and the original Metropolis algorithm is that in the original method the threshold is

set randomly during each iteration, however, in MMD it is set as a constant at the

beginning of the algorithm (Sziranyi, 2000).

2.5 APPLICATIONS OF MRF AND BEE BEHAVIOR ALGORITHMS FOR IMAGE

SEGMENTATION

 During the research in this study we did not find any papers using bee behavior

algorithms to implement MRF models. However, there are a number of papers that use

MRF models for image segmentation and a few papers that use different bee behavior

algorithms. Below we give a brief overview on how a MRF model is used for the color

image segmentation.

2.5.1 COLOR IMAGE SEGMENTATION AND PARAMETER ESTIMATION IN A

MARKOVIAN FRAMEWORK

 In (Kato, 2001), a Bayesian classification algorithm is provided for color image

segmentation, where multivariate Gaussian distribution is used to represent pixel classes

and the first order Markov Random Field is used as a priori model. The process is

42

presented in three sections below; the model, parameter estimation, and obtaining the

initial parameters. Let us review each section step by step.

2.5.1.1 THE MODEL

 The first decision made in this study is to use L*u*v* color space as the color

representation schema for a color image. Each pixel in the image

consists of three components L*u*v*, represented by vector . They look for labeling

that maximizes the posteriori probability , which is a MAP or a maximum a

posteriori estimation represented by . Here represents the

set of all possible labels. To be able to segment the image into homogenous regions, the

pixel class has to be one of the color patches of the input image. Therefore,

follows Gaussian or normal distribution and pixel classes, , are

represented by the mean vectors and covariance matrices . In addition is a

first order MRF. Per Hammersley-Clifford theorem it follows Gibbs distribution. So,

 2.13

 is the energy function, is the normalizing constant, is

the clique potential of clique having label , and is the set of doubletons.

Important to notice that singletons impact the probability of the label directly without

taking into the consideration of the neighboring pixels. However, doubletons account for

the neighboring pixels. The above model favors similar classes in neighboring pixels and

therefore the energy function of this MRF image segmentation model is:

43

 2.14

where, is 1 when and are different and 0 when they are the same.

controls the homogeneity of the regions. Higher is, more homogenous regions we have

(Kato, 2001).

2.5.1.2 PARAMETER ESTIMATION

 The parameter values, namely mean vector , covariance matrix , and , are

denoted by , and the labeled data set are not known for the above model. Therefore, an

adaptive estimation method is proposed for parameter estimation and image segmentation

simultaneously. The estimation is represented as a MAP below:

 2.15

This can be estimated using and where the first

one is a MAP estimation for the labels and the second is a ML estimation for the

parameters based on label estimations. To solve the above equations, the following

iterative algorithm is provided.

Algorithm 12: Adaptive segmentation

1. Set and initialize

44

2. Maximize using an optimization algorithm, the resulting labeling is

denoted by

3. Update the current estimate of parameters to the ML estimate based on the

current labeling

4. Go to step 2 with until stabilizes

To further explain step 3, the probability at the right-hand side of the ML estimation

equation (2.15) can be written as . The first term is a

Gaussian density and second is a first order MRF. Now consider the log-likelihood

function as below

 2.16

here is the pixel set where . The ML function is minimized when the derivative

 is zero at . The solution is the mean and covariance with respect to and

 respectively:

 2.17

However, with respect to the solution is:

45

 2.18

where represents the number of inhomogeneous cliques in .

This is all estimated through the iterative algorithms (Kato, 2001).

2.5.1.3 OBTAINING INITIAL PARAMETERS

 Initial values for the parameters are required in order to run the estimation process

explained above. It has been empirically proven that an initialization of the mean value

plays an important role on how good the final image segmentation will be, but the other

parameters are not as important. Getting a good initial value for the mean is proven to be

a difficult problem for images that either have sparse histogram or do not have clear

peaks. In this study, a new approach based on pre-segmentation is proposed to solve this

problem. A split-and-merge algorithm is used to obtain an initial segmentation where

color differences are used as a homogenous measure. The Euclidean distance of two color

vectors in the L*u*v* color space is used to obtain the color difference. The average of

original colors is used to represent a region. Two neighboring regions with color

difference smaller than threshold are merged together where is calculated from the

original image. It is set to 25% of the maximum color difference. Once the image is pre-

segmented, then its histogram has clear peaks and it can be used for image analysis.

Considering that each pixel is replaced by the color average of its neighborhood, the

histogram's peaks are around the mean values. Since pre-segmentation can produce

slightly different color average, it can produce more than one peak per pixel class and

46

therefore false mean values. To get rid of the extra peaks, neighboring histogram peaks

are merged together through image quantization. It is shown that 20% color reduction

produces good results to remove extra histogram peaks. Finally, mean vectors are

constructed from top L peaks. This approach of image pre-segmentation is proven to

produce better mean initial values then image pre-segmentation based on K-means

algorithm (Kato, 2001).

2.5.2 COLOR IMAGE SEGMENTATION BASED ON MULTIOBJECTIVE

ARTIFICIAL BEE COLONY OPTIMIZATION

 In the literature an image segmentation method based on the improved bee colony

algorithm for multi-objective optimization (IBMO) is presented. The method proposed

consists of three steps, extraction of features from color image, use of IBMO to find

optimal center points, known as seeds, and optimal similarity values, and applying the

process of region growing. Here the segmentation is performed through seeded region

growing (SRG) process, which groups homogenous pixels into groups or regions. The

SRG process begins at seeds and examines adjacent pixels incorporating homogenous

pixels in the region. Each pixel is assigned a label for the region it belongs to. Then, the

seeds are replaced with the new center pixel in the region which includes the newly

added pixels. The process is repeated until all pixels are assigned to a region.

 The SRG process is explained in four steps; first, a vector with distances between

seeds and pixels in the image is found. Second, the probability of pixel belonging to

seeds is calculated. Third, a binary matrix is created with zero values when the threshold

47

is greater than probability and one otherwise. Finally, a labeling method is applied to the

connected component in the binary matrix for the related seed. The process is repeated

for all seeds and unlabeled pixels. Important to note that the IBMO provides three

improvements to the SRG process. First, it finds optimal positions for seeds. Second, it

determines the threshold values for seeds to be used as homogenous criteria. Third, it

provides the ability to evaluate segmentation quality using multiple criteria for the multi-

objective optimization.

 A post processing step is applied to the pre-segmented image. In this stage, first,

regions that are smaller than a pre-set threshold for region size are assigned to the nearest

region. Then, the SRG process is repeated until all unlabeled images are assigned to a

region (Sag, 2015).

48

III THE PROPOSED SOLUTION

 In this chapter we present the work developed in this thesis. It is based on the

work presented in (Kato, 2001), which we introduce and utilize the Bee algorithm as an

optimization mechanism to perform image segmentation in an iterative process. Below

we explain the segmentation model, the parameter estimation and segmentation,

parameter initialization, and bee algorithm parameter settings.

3.1 THE MODEL

 As it is pointed out above, this thesis is based on the work in (Kato, 2001).

Similarly to (Kato, 2001), we are interested in grouping similar color pixels into

segments. Each pixel in a given image consists of three color components using L*u*v*

color schema which is represented as a vector. We need to estimate labeling that

maximize posteriori probability. Pixels in the segments are replaced by one of the given

labels from the homogenous sections in the original image. Here, the probability of pixel

colors given a labeling follows the Gaussian distributions. Also, mean vectors and

covariance matrices are used to represent pixel classes for each patch. In addition, the

probability of a labeling is a first order MRF and per Hammersley-Clifford theorem

(Kato, 2001), it follows Gibbs distribution. As we have seen in the survey of (Kato,

2001), Gibbs distribution depends on normalizing constant and energy function which in

turn depends on clique potential of cliques for the given pixels. Considering this is a first

order MRF representation, cliques are either singletons or doubletons. This means that in

this model the posteriori probability for pixel labels is impacted by the neighboring pixel

49

labels. This is different from the model used in (Kato, 2001) in which we apply the Bee

Algorithm instead of the algorithms used in (Kato, 2001) such as Metropolis and ICM.

3.2 PARAMETER ESTIMATION AND SEGMENTATION

 In order to use the above model in image segmentation, a number of parameters,

namely mean and covariance for each class, and the normalizing constants have to be

estimated. To estimate these values, we use the following adaptive iteration process.

1. Initialize parameters.

2. Use Bee algorithm for the optimization of the probability of labeling given the

parameters.

3. Update the parameter estimations according to the labeling above.

4. Repeat steps 2 and 3until a change is small.

This adaptive process is the same as in (Kato, 2001) with exception that we use Bee

algorithm for optimizing the labels and parameters instead of other algorithms such as

ICM and Metropolis. It is also important to state that this iterative process at each

iteration produces a new segmented image and calculates new parameter estimations.

3.3 PARAMETER INITIATION

 In the parameter estimation above, we can see that the first step in the iterative

process is to initialize the parameters. In (Kato, 2001), they talk about a process of

initializing parameters; however, in their implementation the user selects a region of the

50

image per class out of which the mean and other parameters are calculated. Our

implementation is built on top of their implementation and the section of parameter

initialization is not modified. The fact that the user selects the regions to represent each

class making this process a supervised method; otherwise, everything else in the process

is unsupervised.

3.4 PARAMETERS IN THE BEE ALGORITHM

 As explained above we use Bee algorithm optimization to implement the above

explained model for image segmentation in an iterative process. In literature survey we

explained that Bee algorithm has several parameters that are usually set by the user.

However, less parameters the user has to provide better it is. Therefore, the parameters in

our process are programmatically set as listed in the table below. Experiments showed

that these are good values for each one of the given parameters.

Table 3: Bee algorithm parameter settings.

Symbol Meaning of parameters Values of parameters

n Number of scouts 2% of number of pixels

m Number of sites selected out of n

visited

All whose fitness is positive

e Number of best sites 20% of scouts

nep Number of bees recruited for best e

sites

25

m-e Number of bees recruited for other sites 1

nsp Selected sites Same as e

ngh Neighborhood size 25

51

IV EXPERIMENTS AND RESULTS

 In this chapter we show the experimental results tested on several images. We

also evaluate the segmentation accuracy and time complexity of the algorithms tested.

4.1 EXPERIMENTS

 We use a number of different images to run our experiments. Each image is tested

using the four existing implementations ICM, HHD, Metropolis, and Gibbs Sampler in

(Kato, 2001) as well as our implementation using Bee Algorithm. Considering that each

one of the implementations is based on the pre-segmentation, we show the original

image, pre-segmented image, and final-segmented image in the order in Figures 16, 17,

18, 19, 20, 21, 22, and 23.

 (a) (b)

 (c) (d)

52

 (e)

Figure 16: Flower image segmented. (a) Using Bee algorithm, number of iterations 3,

CPU time 38 ms; (b) using ICM algorithm, number of iterations 4, CPU time 104 ms; (c)

using MMD algorithm, number of iterations 199, CPU time 649 ms; (d) using Metropolis

algorithm, number of iterations 147, CPU time 629ms; (e) using Gibbs Sampler, number

of iterations 143, CPU time 2174 ms.

 (a) (b)

 (c) (d)

 (e)

Figure 17: Mountain image segmented. (a) Using Bee Algorithm, number of iterations 2,

CPU time 25 ms; (b) using ICM algorithm, number of iterations 3, CPU time 54 ms; (c)

53

using MMD algorithm, number of iterations 148, CPU time 450 ms; (d) using Metropolis

algorithm, number of iterations 97, CPU time 358 ms; (e) using Gibbs Sampler, number

of iterations 35, CPU time 363 ms.

 (a)

 (b)

54

 (c)

 (d)

 (e)

55

Figure 18: Satellite image segmented. (a) Using Bee algorithm, number of iterations 5,

CPU time 367 ms; (b) using ICM algorithm, number of iterations 5, CPU time 620 ms;

(c) using MMD algorithm, number of iterations 281, CPU time 10948 ms; (d) using

Metropolis algorithm, number of iterations 260, CPU time 12835 ms; (e) using Gibbs

Sampler, number of iterations 196, CPU time 16957 ms.

 (a)

 (b)

 (c)

56

 (d)

 (d)

Figure 19: Peppers image segmented. (a) Using Bee algorithm, number of iterations 2,

CPU time 37 ms; (b) using ICM algorithm, number of iterations 3, CPU time 72 ms; (c)

using MMD algorithm, number of iterations 269, CPU time 1661 ms; (d) using

Metropolis algorithm, number of iterations 172, CPU time 1841 ms; (e) using Gibbs

Sampler, number of iterations 109, CPU time 1373 ms.

 (a) (b)

57

 (c) (d)

 (e)

Figure 20: Synthetic noise image one segmented. (a) Using Bee algorithm, number of

iterations 4, CPU time 27 ms; (b) using ICM algorithm, number of iterations 3, CPU time

50 ms; (c) using MMD algorithm, number of iterations 80, CPU time 212 ms; (d) using

Metropolis algorithm, number of iterations 67, CPU time 231ms; (e) using Gibbs

Sampler, number of iterations 77, CPU time 528 ms.

 (a) (b)

 (c) (d)

 (e)

58

Figure 21: Synthetic noise image two segmented. (a) Using Bee algorithm, number of

iterations 5, CPU time 30 ms; (b) using ICM algorithm, number of iterations 5, CPU time

74 ms; (c) using MMD, number of iterations 150, CPU time 430 ms; (d) using Metropolis

algorithm, number of iterations 154, CPU time 503 ms; (d) using Gibbs Sampler, number

of iterations 124, CPU time 836 ms.

 (a)

 (b)

 (c)

59

 (d)

 (e)

Figure 22: Texture image one segmented. (a) Using Bee algorithm, number of iterations

6, CPU time 90 ms; (b) using ICM algorithm, number of iterations 8, CPU time 227 ms;

(c) using MMD algorithm, number of iterations 268, CPU time 1881 ms; (d) using

Metropolis algorithm, number of iterations 243, CPU time 2246 ms; (e) using Gibbs

Sampler, number of iterations 186, CPU time 3550 ms.

 (a)

60

 (b)

 (c)

 (d)

 (e)

61

Figure 23: Texture image two segmented. (a) Using Bee algorithm, number of iterations

6, CPU time 125 ms; (b) using ICM algorithm, number of iterations 10, CPU time 507

ms; (c) using MMD algorithm, number of iterations 274, CPU time 2861 ms; (d) using

Metropolis algorithm, number of iterations 278, CPU time 3733 ms; (e) using Gibbs

Sampler, number of iterations 161, CPU time 5159 ms.

4.2 TIME COMPARISON

 In the table below, we present the time in milliseconds that each algorithm took to

process each image. Then, we take the average of running time for ICM, MMD,

Metropolis and Gibbs. The ICM algorithm is the closest to Bee algorithm in terms of

running time.

Table 4: Time comparison table.

 Bee ICM MMD Metropol

is

Gibbs Avg. of

4

Bee/IC

M ratio

Bee/Av

g. ratio

Flower 38ms 104m

s

649ms 629ms 2174ms 889ms 36.5% 4.3%

Mountai

n

25ms 54ms 450ms 358ms 363ms 306ms 46.3% 8.2%

Satellite 367m

s

620m

s

10948m

s

12835ms 16957m

s

10340m

s

59.2% 3.5%

Pepper 37ms 72ms 1661ms 1841ms 1373ms 1237ms 51.4% 3.0%

Syntheti

c image

1

27ms 50ms 212ms 231ms 528ms 255ms 54% 10.6%

Syntheti

c image

2

30ms 74ms 430ms 503ms 836ms 461ms 40.5% 6.5%

Texture

1

90ms 227m

s

1881ms 2246ms 3550ms 1976ms 40% 4.6%

Texture 125m 507m 2861ms 3733ms 5159ms 3065ms 24.7% 4.1%

62

2 s s

Time comparison can also be represented graphically as in Figure 24.

Figure 24: Time comparison for each algorithm.

 From the table above we can see that Bee algorithm is much faster than all other

algorithms. Comparing to the ICM algorithm which is the closest in time and accuracy to

Bee algorithm, Bee algorithm only took between 25% and 60% of the time of ICM

algorithm. However, if we compare with the average of all other algorithms ICM, MMD,

Metropolis, and Gibbs, Bee algorithm only took about 11% of their average time.

4.3 ACCURACY COMPARISON

0

5000

10000

15000

20000
Fl

o
w

er

M
o

u
n

ta
in

Sa
te

lli
te

Pe
p

p
er

Sy
n

th
et

ic
 …

Sy
n

th
et

ic
 …

Te
xt

u
re

 1

Te
xt

u
re

 2

Bee

ICM

MMD

Metropolis

Gibbs

Avg. of 4

63

 By visually inspection on the results generated by algorithms compared, we can

see that Bee algorithm, performs about the same as all other algorithms, except for the

images with synthetic noise. When it comes to noisy images, we can see clearly that Bee

algorithm does not perform as well as the others. In some other cases like the texture

images, it might even look better. However, in this section we want to compare the

segmented images against the ground truth data. We only have the ground truth data for

the Satellite image, so we are going to compare the segmented images by each algorithm

to the ground truth. Tables 5, 6, 7, 8, and 9 are the list of Error Matrix, and KHAT

statistics for each algorithm. The formula for KHAT statistics is listed below.

k =

 4.1

where N is the number of pixels; r is the number of labels, Xii is the number of pixels

correctly classified; Xi+ and X+i are the numbers of misclassified pixels.

Table 5: Error Matrix for Satellite image using Bee Algorithm.

Classification data Mountain River Village Row Total

Mountain 186474 8916 1863 197253

River 839 61708 128 62675

Village 804 21 1391 2216

Column total 188117 70645 3382 262144

Producer's Accuracy User's Accuracy

Mountain = 186474/188117 = 99%

River = 61708/70645 = 87%

Village = 1391/3382 = 41%

Mountain = 186474/197253 = 95%

River = 61708/62675 = 98%

Village = 1391/2216 = 63%

Overall accuracy = (186474 + 61708 + 1391)/262144 = 95%

k =

 = 0.8787

64

So KHAT statistics for the satellite image segmented using Bee algorithm is about .88 or

about 7% lower than overall accuracy.

Table 6: Error Matrix for Satellite image using ICM Algorithm.

Classification data Mountain River Village Row Total

Mountain 186832 8969 2208 198009

River 596 61631 36 62263

Village 689 45 1138 1872

Column total 188117 70645 3382 262144

Producer's Accuracy User's Accuracy

Mountain = 186832/188117 = 99%

River = 61631/70645 = 87%

Village = 1138/3382 = 34%

Mountain = 186832/198009=94%

River = 61631/62263 = 99%

Village = 1138/1872 = 61%

Overall accuracy = (186832 + 61631 + 1138)/262144 = 95%

k =

 = 0.8785

So KHAT statistics for the satellite image segmented using ICM algorithm is about .88 or

about 7% lower than overall accuracy.

Table 7: Error Matrix for Satellite image using MMD Algorithm.

Classification data Mountain River Village Row Total

Mountain 186918 9123 2237 198278

River 460 61480 13 61953

Village 739 42 1132 1913

Column total 188117 70645 3382 262144

Producer's Accuracy User's Accuracy

Mountain = 186918/188117 = 99%

River = 61480/70645 = 87%

Mountain = 186918/198278 = 94%

River = 61480/61953 = 99%

65

Village = 1132/3382 = 33% Village = 1132/1913 = 59%

Overall accuracy = (186918 + 61480 + 1913)/262144 = 95%

k =

 = 0.8776

So KHAT statistics for the satellite image segmented using MMD algorithm is about .88

or about 7% lower than overall accuracy.

Table 8: Error Matrix for Satellite image using Metropolis Algorithm.

Classification data Mountain River Village Row Total

Mountain 187115 9040 2349 198504

River 478 61598 30 62106

Village 524 7 1003 1534

Column total 188117 70645 3382 262144

Producer's Accuracy User's Accuracy

Mountain = 187115/188117 = 99%

River = 61598/70645 = 87%

Village = 1003/3382 = 30%

Mountain = 187115/198504 = 94%

River = 61598/62106 = 99%

Village = 1003/1534 = 65%

Overall accuracy = (187115 + 61598 + 1003)/ 262144 = 95%

k =

 = 0.8792

So KHAT statistics for the satellite image segmented using Metropolis algorithm is about

.88 or about 7% lower than overall accuracy.

Table 9: Error Matrix for Satellite image using Gibbs Sampler.

Classification data Mountain River Village Row Total

Mountain 187068 8974 2239 198281

River 475 61656 16 62147

Village 574 15 1127 1716

Column total 188117 70645 3382 262144

66

Producer's Accuracy User's Accuracy

Mountain = 187068/188117 = 99%

River = 61656/70645 = 87%

Village = 1127/3382 = 33%

Mountain = 187068/198281 = 94%

River = 61656/62147 = 99%

Village = 1127/1716 = 66%

Overall accuracy = (187068 + 61656 + 1127)/262144 = 95%

k =

 = 0.8807

So KHAT statistics for the satellite image segmented using Gibbs Sampler algorithm is

about .88 or about 7% lower than overall accuracy.

 As we see in the tables above, all algorithms including our bee implementation

have about the same accuracy and KHAT statistical values, with some small exception

when it comes to any of the given individual classes. However, the overall accuracy and

KHAT statistics value are about the same for all algorithms. A comparison among all

algorithms tested is listed in Table 10.

Table 10: Accuracy and KHAT comparison for all algorithms.

 Bee ICM MMD Metropolis Gibbs

P.A. Mountain 99% 99% 99% 99% 99%

P.A. River 87% 87% 87% 87% 87%

P.A. Village 41% 34% 33% 30% 33%

U.A. Mountain 95% 94% 94% 94% 94%

U.A. River 98% 99% 99% 99% 99%

U.A. Village 63% 61% 59% 65% 66%

Overall

Accuracy

95% 95% 95% 95% 95%

KHAT .88 .88 .88 .88 .88

Accuracy and KHAT comparisons can also be represented graphically as in Figure 25.

67

Figure 25: Accuracy and KHAT comparisons.

0

5000

10000

15000

20000

Fl
o

w
er

M
o

u
n

ta
in

Sa
te

lli
te

Pe
p

p
er

Sy
n

th
et

ic
 …

Sy
n

th
et

ic
 …

Te
xt

u
re

 1

Te
xt

u
re

 2

Bee

ICM

MMD

Metropolis

Gibbs

Avg. of 4

68

V CONCLUSION

 Computer vision is widely used across many disciplines making our daily lives

easier in ways that we either take for granted or do not even fully understand the

importance of, and image segmentation is a vital step in making that possible. In the

literature survey, we showed some methods of performing image segmentation. We

explained Markov Random Field and a few ways of implementing MRF models in image

segmentation. We also talked about swarm intelligence and explained a number of swarm

based algorithms and provided an example of a swarm based image segmentation

method.

 In this thesis we proposed a new algorithm based on the bee algorithm to perform

the optimization of image segmentation in a Markov Random Field model. We showed

through our experiments and results that its accuracy is just as good as the other

algorithms, if not better in some cases, with exception of noisy images. However, our

proposed algorithm performed much faster than existing solutions.

 Considering that image segmentation is a complex problem to get exactly correct,

it remains as an active area of research. One disciple that is gaining popularity and seems

to have a lot of potential to solve different problems, including image segmentation, is

deep learning. It would make a very interesting study on the image segmentation method

to apply deep learning techniques and MRF models.

69

VI APPENDIX

 To better understand image segmentation, it is important to understand different

probability distributions and a few other probability and statistical concepts. Therefore,

let us do a brief review.

A.1 MAXIMUM LIKELIHOOD AND LOG LIKELIHOOD

 We represent a probability density function that depends on some parameters by

p(x|Ω), where Ω represents a vector of various parameters in p(x). For now, let us say

that p(x) depends only on one parameter, ω, also let us say that we observe one value for

variable x, x = x1. If we decide to select ω such that it maximizes the probability of

observing x1, it is called maximum likelihood. However, if we have n distinct

observations for x, we can calculate the likelihood p(Data| Ω) as shown in equation A.1.

 A.1

Here, we select an Ω to maximize p(Data| Ω). However, in sometimes in practice

causes underflow, so we computer the log-likelihood as in equation A.2.

 A.2

70

Where N is the number of observations. Finally, we maximize the log-likelihood instead

(Petrou, 2006).

A.2 PRIOR AND POSTERIOR PROBABILITY DISTRIBUTIONS

 In Bayesian statistics prior probability distribution (prior), refers to the probability

distribution before taking into account any evidence. However, posterior probability

distribution is the conditional probability distribution after taking into account the

evidence (Prior probability 2016, Posterior probability 2016).

A.3 LINEAR COMBINATION

 Linear combination is the sum of multiplications of terms by constants. For

example given terms x and y and constants a and b, the linear combination would be ax +

by. Here is a more precise definition from Wikipedia:

 Suppose that K is a field (for example, the real numbers) and V is a vector space

 over K. As usual, we call elements of V vectors and call elements of K scalars. If

 v1,...,vn are vectors and a1,...,an are scalars, then the linear combination of those

 vectors with those scalars as coefficients is

(Linear combination, 2015).

https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Scalar_%28mathematics%29

71

A.4 DISCRETE AND CONTINUES VARIABLES

 Discrete variables are variables that can only take discrete or distinct values, such

as 0 or 1. However, they cannot take all values between 0 and 1. On the other hand,

continuous variables are variables that if they can take two distinct values say a and b,

they can also take all the values between a and b. Their value set, from a to b, is

uncountable, it is ongoing. Therefore, they are called continues (Continues, 2015).

A.5 STANDARD DEVIATION AND VARIANCE

 In probability and statistics, standard deviation is used to measure the variation of

a given set of data. In other words, given the set of data, standard deviation tells us how

close to each other or how apart from each other they are. When standard deviation is

small the data are closer to each other, closer to the mean; greater the standard deviation

more variant data we have. If a discrete random variable has random values such as x1,

x2, ..., xn with equal probability, then standard deviation can be calculated as shown in

equation A.3.

 A.3

This can also be written using sigma notation as in equation A.4.

 A.4

72

Likewise for continues random variables standard deviation can be calculated as shown

in equation A.5.

 A.5

Here, the limits of the integral are set from the lowest possible value of x to the highest

possible value of x. It is also important to notice that in addition to measuring the

variation of random variables, standard deviation can also be used to measure the

confidence of given conclusions to statistical measures (Standard, 2016).

 Likewise, variance is a measure of how different the given data are. It is equals to

the standard deviation squared. For discrete random variables, if the random variables

are not equally likely then standard deviation can be written as in equation A.6.

 A.6

 is the mean or expected value and it is equals to :

 A.7

Likewise for continues variables, standard deviation is calculated as follows:

 A.8

And

73

 A.9

 (Variance, 2016).

A.6 BAYES' THEOREM AND NAIVE BAYES CLASSIFIER OR BAYESIAN

CLASSIFIER

 Bayes' theorem is used to find conditional probability of an event given certain

conditions. Mathematically Bayes' theorem is expressed as shown in equation A.10.

 A.10

P(A) and P(B) are probabilities of two independent events A and B respectively.

P(A|B) is the conditional probability of A given condition B is met.

P(B|A) is the conditional probability of B given condition A is met.

And of course, P(B) cannot be zero (Bayes, 2016).

 Naive Bayes classifiers, also known as Bayesian classifiers in computer science

are probabilistic classifiers based on Bayes' theorem. Classifiers are methods used to

assign classes to different problem instances. Each classifier can be trained using

different algorithms and there is always a finite number of classes. Given n features, or

independent variables, for a problem instance, represented by X = (x1, x2,...,xn), the Naive

Bayes as a conditional probability model assign probabilities for each of the possible

class outcomes as shown in equation A.11.

74

 A.11

However, if the number of features is large or if the number of the values each feature

can have is high, assigning the probabilities becomes hard to achieve. Therefore, Bayes'

theorem is used and it takes the following form:

 A.12

This can be expressed in more simple terms to understand as follows:

 A.13

Naive Bayes' classifier has wide range of uses including text classification and retrieval

(Naive, 2016).

A.7 BINOMIAL DISTRIBUTION

 Binomial distribution is a discrete probability distribution. It shows the

probability of outcome for n experiments. Each one of which has two possible outcomes,

such as yes or no, with equal probability p. Binomial distribution is used to module cases

when a small number of samples are experimented out of a much larger data set. The

probability of getting true k times within n experiments for a random variable x, in

binominal distribution, can be calculated using equation A.14.

 A.14

75

for k = 0, 1,2, ..., n and

 A.15

this is knows as binomial coefficient, from which the name of binomial distribution

comes. Wikipedia interprets the formula as: "we want exactly k successes (pk) and n − k

failures (1 − p)n − k. However, the k successes can occur anywhere among the n trials,

and there are different ways of distributing k successes in a sequence of n trials"

(Binomial, 2016).

A.8 GAUSSIAN DISTRIBUTION AND MULTIVARIATE GAUSSIAN

DISTRIBUTION

 Gaussian distribution, also known as normal distribution, is a probability

distribution for continuous random variables whose probability density function is the

following:

 A.16

Note that:

 represents the mean

 represents the standard deviation

 represents variance

76

The shape of the Gaussian distribution is a bell shape, which means that most values are

relatively close to the mean. Smaller the standard deviation, the values are close the

mean. Because of its shape, Gaussian distribution is sometimes called "the bell carve" but

that can be misleading because there are other distributions that have bell shapes. In

probability theory, the Gaussian distribution is considered as a very important

distribution of continuous variables because of its wide applicability. Gaussian or normal

distribution is often used to represent values of random variables with unknown

distributions, both in natural and social sciences (Normal, 2016).

 In addition, multivariate Gaussian distribution or multivariate normal distribution

is a generalization of the Gaussian distribution from one dimension to a higher number of

dimensions. If every linear combination of k-components of a random vector has

Gaussian distribution then the vector has a k-variant Gaussian distribution (Multivariate,

2016).

A.9 GIBBS DISTRIBUTION AND GIBBS RANDOM FIELD

 Gibbs distribution is defined as "a function that specifies, in terms of clique

potentials, the joint probability density function of a particular combination X of values

to exist over the whole grid." The general form of Gibbs distribution is as follows:

 A.17

77

here ck is the number of cells or pixels in a given clique of type k, xij is the value of ijth

pixel or cell in the given clique (see section about clique below), and Uk(xi1xi2...xick) is the

clique potential (see section about clique potential below) of type k. However, Z is the

normalizing constant, also known as partition function which is used to make p(X) a

probability density function. In other words the sum of all possible combination of X

values is equals to 1 and the value for any given combination is between 0 and 1

inclusively (Petrou, 2006). However, Gibbs random filed is a random field that follows

Gibbs distribution (Li, 2009).

78

VII BIBLIOGRAPHY

Ahmed, Hazem, & Glasgow, J. (2012). Swarm Intelligence: Concepts, Models and

 Applications (Research Report No. 858). Retrieved from

 http://ftp.qucis.queensu.ca/TechReports/Reports/2012-585.pdf

Akbari, R., & Mohammadi, A., & Ziarati, K. (2009). A Powerful Bee Swarm

 Optimization Algorithm. IEEE, 13.

Bayes' theorem (2016, June 29). Retrieved from

 https://en.wikipedia.org/wiki/Bayes'_theorem

Binomial distribution (2016, June 6). Retrieved from

 https://en.wikipedia.org/wiki/Binomial_distribution

Blake, A. & Kohli, P. (2011). Introduction To Markov Random Fields. Retrieved from

 https://mitpress.mit.edu/sites/default/files/titles/content/9780262015776_sch_000

 1.pdf

Bolaji, A. L., & Khader, A. T., & Al-Betar, M. A. (2013). Artificial Bee Colony

 Algorithm, Its Variants And Applications: A Survey. Journal of Theoretical and

 Applied Technology. Retrieved from

 http://www.jatit.org/volumes/Vol47No2/2Vol47No2.pdf

Continues And Discrete Variables (2015, November 12). Retrieved from

 https://en.wikipedia.org/wiki/Continuous_and_discrete_variables

79

Dawson-howe, K. (2014). A Practical Introduction To Computer Vision With OpenCV.

 West Sussex, United Kingdom: Wiley.

Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distribution, and the

 Bayesian Restoration of Images. IEEE Transaction on Pattern Analysis and

 Machine Intelligence, 6. Retrieved from

 https://cs.uwaterloo.ca/~mannr/cs886-w10/GemanandGeman84.pdf

Gibbs sampling (2016, June 18). Retrieved from

 https://en.wikipedia.org/wiki/Gibbs_sampling

Grath, M. M. (2003). Markov Random Field Image Modeling (Master Thesis).

Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony

 algorithm. Elsevire, 214. Retrieved from

 http://natcomp.liacs.nl/SWI/papers/artificial.bee.colony.algorithm/a.comparative.s

 tudy.of.abc.algorithm.pdf

Kato, Z. & Pong, T. & Lee, J. C. (2001). Color image segmentation and parameter

 estimation in a markovian framework. Pattern Recognition Letters, 22. Retrieved

 from http://www.inf.u-szeged.hu/~kato/papers/pattreclet2001.pdf

Li, S. Z. (2009). Markov Random Field Modeling in Image Analysis (3rd ed.). London,

 United Kingdom: Springer.

Linear combination (2015, October 10). Retrieved from

 https://en.wikipedia.org/wiki/Linear_combination

80

Markov chain Monte Carlo (2016, May 29).

 https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

Metropolis-Hastings algorithm (2016, July 2). Retrieved from

 https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm

Multivariate Normal Distribution (2016, June 23). Retrieved from

 https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Naive Bayes Classifier (2016, June 28). Retrieved from

 https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Normal Distribution (2016, June 18). Retrieved from

 https://en.wikipedia.org/wiki/Normal_distribution

Petrou, M., & Sevilla, P. G. (2006). Image Processing Dealing with Texture. West

 Sussex, England: Wiley.

Pham, D.T., & Koc, Ghanbarzadeh, A., & Koc, E., & Otri, S., & Rahim, S., & Zaidi, M.

 (2005). The Bees Algorithm - A Novel Tool for Complex Optimization

 Problems. Manufacturing Engineering Center, Cardiff University. Retrieved

 from https://svn-d1.mpi-inf.mpg.de/AG1/MultiCoreLab/papers/Pham06%20-

 %20The%20Bee%20Algorithm.pdf

Posterior probability (2016, June 21). Retrieved from:

 https://en.wikipedia.org/wiki/Posterior_probability

81

Prior probability (2016, May 14). Retrieved from

 https://en.wikipedia.org/wiki/Prior_probability

Rini, D. P., & Shamsuddin, S. M., & Yuhaniz, S. S. (2011). Particle Swarm

 Optimization: Technique, System and Challenges. International Journal of

 Computer Applications, 14. Retrieved from

 http://www.ijcaonline.org/volume14/number1/pxc3872331.pdf

Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd ed.).

 New Jersey: Pearson.

Sag, Tahir, & Cunkas, Mehmet. (2015). Color Image Segmentation Based On

 Multiobjective artificial Bee Colony Optimization. Elsevier, 34. Retrieved from

 http://isiarticles.com/bundles/Article/pre/pdf/46216.pdf

Seeley, T.D., & Visscher, P.K., & Passino, K.M. (2006). Group Decision Making in

 Honey Bee Swarms. American Scientist, 94. Retrieved from

 http://www2.ece.ohio-state.edu/~passino/PapersToPost/GrpDecMakHoneyBees-

 AmSci.pdf

Selvi, V., & Umarani, R. (2010). Comparative Analysis Of Ant Colony And Particle

 Swarm Optimization Techniques. International Journal of Computer

 Applications. Retrieved from

 http://www.ijcaonline.org/volume5/number4/pxc3871286.pdf

Standard Deviation (2016, June 27). Retrieved from

 https://en.wikipedia.org/wiki/Standard_deviation

82

Swarm behavior (2016, June 29). https://en.wikipedia.org/wiki/Swarm_behaviour

Swarm intelligence (2016, June 21). https://en.wikipedia.org/wiki/Swarm_intelligence

Sziranyi, T., & Zerubia, J., & Czuni, L., & Geldreich, D., & Kato, Z. (2000). Image

 Segmentation Using Markov Random Field Model in Fully Parallel Cellular

 Network Architectures. Real- Time Image, 6. Retrieved from http://www.inf.u-

 szeged.hu/rgvc/papers/rti2000.pdf

Variance (2016, June 19). Retrieved from https://en.wikipedia.org/wiki/Variance

Wedde, H. F., & Farooq, M., & Zhang, Y. (2004). BeeHive: An Efficient Fault-

 Tolerant Routing Algorithm Inspired By Honey Bee Behavior. Springer-Verlag

 Berlin Heidelberg. Retrieved from

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.525.4960&rep=rep1&t

 ype=pdf

Yuce, B., & Packianather, M.S., & Mastrocinque, E., & Pham, D.T., & Lambiase, A.

 (2013). Honey Bees Inspired Optimization Method: The Bees Algorithm. Insects,

 4. Retrieved from https://orca-mwe.cf.ac.uk/53653/1/Yuce%25202013.pdf.

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Summer 7-29-2016

	Color Image Segmentation Using the Bee Algorithm in the Markovian Framework
	Vehbi Dragaj
	Recommended Citation

	tmp.1469836552.pdf.GNo7P

