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Abstract 

 This thesis presents color image segmentation as a vital step of image analysis in 

computer vision. A survey of the Markov Random Field (MRF) with four different 

implementation methods for its parameter estimation is provided. In addition, a survey of 

swarm intelligence and a number of swarm based algorithms are presented. The MRF 

model is used for color image segmentation in the framework.  This thesis introduces a 

new image segmentation implementation that uses the bee algorithm as an optimization 

tool in the Markovian framework.  The experiments show that the new proposed method 

performs faster than the existing implementation methods with about the same 

segmentation accuracy.   
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I    INTRODUCTION 

 Did you know that it is estimated that 25% to 50% or more of human brain 

activity is spent in processing visual perceptions? In reality, we make sense of our visual 

perceptions intuitively and therefore, without thinking about it, we understand it to be a 

simple task. However, making sense of visual feed is a very complex function. Likewise, 

mistakenly computer vision was understood to be a simple task because of its influence 

from human vision.  What exactly is computer vision? "Computer vision is the automatic 

analysis of images and videos by computers in order to gain some understanding of the 

world" (Dawson-howe, 2014). There are uses of computer vision applications across 

many disciplines such as inspection of circuit boards, inspection of labels, inspection of 

how full bottles are, reading license plates, biometric security, landmine detection 

(Dawson-howe, 2014), and healthcare (Grath, 2003) as shown in Figure 1, to mention a 

few. 

 

                      (a)                                                      (b)                                   
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                             (c)                                                               (d)                                     

 

                      (e)                        

Figure 1: Computer vision applications, a) circuit board inspection, b) biometric security, 

c) label inspection, d) inspection of how full glasses are, and e) brain image using CT. 

 Many of the computer vision applications are based on one of the early image 

analysis tasks known as image segmentation. Image segmentation is a process by which 

image pixels are grouped into homogenous groups, causing the image to be segmented or 

in other words to be split into homogenous regions known as segments. Homogeneity can 

be measured against some characteristics. In our case we are interested in color image 

segmentation, which means that color values are used to measure the homogeneity of the 

pixels (Kato, 2001). There are other characteristics such as texture and intensity that can 
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also be used to measure homogeneity of image pixels. However, regardless of which 

characteristic or combination of characteristics are used in homogeneity measure or what 

segmentation techniques are used, segmenting an image with perfect accuracy is a very 

difficult task to achieve (Sag, 2015).  

 There are many different ways of performing image segmentation. One such way 

is to use Markov Random Field (MRF) as image segmentation model. MRF will be 

explained in details in chapter two, however, it is important to notice that there are many 

different implementations of MRF models that have shown great success in image 

segmentation. There are four MRF implementations using Iterated Conditional Model, 

Modified Metropolis Dynamic, Metropolis and Gibbs Samper presented in the demo of 

(Kato, 2001).  It is also important to notice that there are many swarm based algorithms, 

including algorithms based on bee swarm intelligence, used to implement image 

segmentation which have shown success as well (Sag, 2015). Therefore, it seems natural 

to combine these two methods together, especially knowing that MRFs are a great way of 

representing images and bee swarm based algorithms are a great optimization tool. 

Considering that until the writing of this thesis there does not seem to be a MRF model 

implementation based on the bee swarm, in this thesis we introduce an image 

segmentation algorithm using the bee algorithm optimization in a Markovian framework. 

A number of different images are used to test the solution and presented in chapter four. 

 The rest of this thesis is organized as follows. In chapter two, we give a brief 

literature survey. In chapter three, we explain our proposed solution. In chapter four, we 

go over the experiments and findings. In chapter five, we provide a conclusion. Finally, 
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in Appendix we provide an overview of some of the probability and statistics concepts 

related to this thesis. 
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II    LITERATURE SURVEY 

 In this chapter, we organize the literature survey in a few sections. In the first 

section, we review the Markov Random Fields (MRF) and related concepts. In section 

two, we provide two examples of MRF models. In section three, we outline the swarm 

intelligence in general along with algorithms and then specifically bee swarm behavior 

and a few algorithm that are based on bee swarm behavior. In section four, we review a 

few other search algorithms. Finally, in section five, we summarize two papers where 

MRF and bee swarm are used in image segmentation. 

 

2.1    MARKOV RANDOM FIELDS 

 In the next few subsections we will try to explain the Markov Random Fields 

(MRF) and its related concepts. 

 

2.1.1    WHAT IS A MARKOV RANDOM FIELD? 

 Let us answer this question by considering the following example. Consider that 

we have an empty six by six grid, like the one shown in Figure 2, that represents an 

image. Now suppose that we want to assign a grayscale value to each one of the 

pixels/cells on the image by throwing a coin 255 times for each pixel and then assigning 

the number of heads to the given pixel in the image. Here, we randomly assigned 

grayscale values to each one of the cells in the field/image and therefore created a 

random field. In other words, a random field is a field that is created by performing a 



6 
 

random experiment for each of the cells on the field and assigning the outcome of the 

experiments to the given cells. 

 

 

 

 

 

Figure 2: Six by Six Empty Field. 

For any given cell the probability p(k) of getting k heads from n throws of the coin is 

calculated by using the probability distribution formula in equation 2.1 and 2.2: 

                                                                           2.1 

and 

                                                                                                2.2 

Here θ represents the probability of getting a head per given throw. 

 Now consider that we ran the above experiment for each of the cells and we 

assigned a random generated value to each one of the cells of the grid/image. Once that is 

done, imagine that we modified the coin to become biased in such a way that when 

      

      

      

      

      

      



7 
 

calculating the grayscale value for each cell, the grayscale values of the neighboring cells 

are also taken into consideration.  Please notice that only the neighboring cells are used to 

impact the value of the given cell and not all the cells.  Which cells are considered to be 

neighboring cells will be explained later.  Let us now assume that we want to modify the 

coin in this way as formulated in equation (2.3). 

                                             2.3 

Here s represents a function of neighboring cell values.  To calculate the bias of the coin, 

notice that 

p(head | given_values_of_nbrs) = θ and,   

p(tail|given_values_of_nbrs) = 1 - θ 

Therefore we get equation (2.4). 

                                                                                       2.4 

If we use a coin, as the one explained above, to create the grayscale values per each cell 

on the grid, we create a Markov Random Field. In other words, a Markov random field is 

a random field that has Markovian property.  The Markovian property is a property of a 

random field that defines the value of a given cell to be directly dependent only on the 

values of the neighboring cells and not the others. 
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 For the given example, we obtain a conditional probability function for a given 

grayscale value k for any cell given the neighboring cell values as in equation (2.5) 

(Petrou, 2006). 

                                          2.5 

 

2.1.2    NEIGHBORS AND NEIGHBORHOOD 

 What cells or pixels are considered to be neighbors for a given cell depend on 

how neighborhood is defined.  Usually neighborhoods are defined as spatial proximities, 

meaning the value of a given cell is directly dependent on spatially proximate cells, like 

the examples in Figure 3: 
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Figure 3: First order, second order, third order, fourth order, fifth order, and sixth order 

MRFs. 

However, this is not always the case. In some cases neighborhood is defined to 

specifically include cells that are not directly connected but are in some spatial order like 

the examples below (Petrou, 2006). 

 

Figure 4: MRF neighborhood where cells are not directly connected. 
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2.1.3    MARKOV PROPERTIES 

 Earlier we briefly mentioned MRF properties, but let us take another look. When 

we mentioned the function s in equation (2.3), we said that it is a function of neighboring 

cell values. So, if we consider a first order Markov random field neighborhood and if we 

define the function s as in equation (2.6), 

s = a(gl + gr) + b(gt + gb)                                                                                                 2.6 

where gl, gr, gt and gb are the grayscale values for left cell, right cell, top cell, bottom 

cell respectively, as shown in Figure 5. In this case, parameters a and b are Markov 

properties (Petrou, 2006). 

      

  gt    

 gl ? gr   

  gb    

      

      

 

Figure 5: MRF properties. 

 

2.1.4    CLIQUE 
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 A clique is defined as a set of pixels that are neighbors according to the 

neighborhood definition.  The following figures show different neighborhood structures 

with their corresponding cliques. For each neighborhood, a cell is a neighbor of itself.  

For every pair of cells they are neighbors of each other as well. On the second order 

MRFs we have triple and even quadruple cells that are neighbors. In the higher order 

MRFs, the structure of neighboring cells becomes even more complex. A clique that 

contains n cells is called nth order clique (Petrou, 2006). 

 

Figure 6: a) First order MRF and its cliques, b)  second order MRF and its cliques and c) 

third order MRF and its cliques. 
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Figure 7: Unconnected MRF neighborhoods with their corresponding cliques. 

 

2.1.5    CLIQUE POTENTIAL 

 Clique potential is  defined as a function of cell values of all cells within a clique. 

The clique potential defines the relationship of clique cells.  The form of the function and 

the numerical variables differ based on the clique order. Earlier when we talked about 

Markov properties and we defined function s to be s = a(gl + gr) + b(gt + gb), in that case 

function s itself is a clique potential (Petrou, 2006). 

 

2.1.6    ENERGY FUNCTION 

 When we deal with the Markov random fields in image segmentation the energy 

function is the sum of all clique potentials within the same lattice. The value of clique 

potentials depends on the clique configurations (Grath, 2003; Li, 2006). The role of 

energy function is classified as one of the following two kinds; first, as a global quality 
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measure of the solution in a quantitative way, and second, as a search guide for a minimal 

solution (Li, 2006).    

 

2.1.7    EQUIVALENCE BETWEEN MARKOV RANDOM FIELDS AND GIBBS 

 RANDOM FIELD 

 Markov random fields are characterized by Markovian properties or Markovianity 

and Gibbs Random Fields are characterized by Gibbs distribution. Hammersley-Clifford 

theorem states that the two are equivalent. There are many proofs for this theorem, one in 

(Li, 2006), however, the proof will not be provided in this thesis. 

 

2.2    MARKOV MODELS 

 To better understand Markov random fields let us take a look at a couple of 

simple yet useful MRF models. 

 

2.2.1    MARKOV CHAINS 

 The Markov Chain model is often considered to be the simplest Markov model.  

In Markov Chain model, any given sequence of random variables, say X=(X1, X2,...), has 

a joint probability distribution as in equation (2.7).  

                                                                                          2.7 
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In other words, in the first order Markov Chain, the probability of any given variable is 

directly impacted only by its first direct neighbor.  A simple yet powerful example that 

helps us better understand Markov Chain is weather prediction model.  In the weather 

prediction model, the weather at any given day can be either sunny or raining, and we 

note that as below. 

                                                                                        2.8 

This means that in the simplest form of Markov Chain, the weather at any given day is 

explicitly impacted only by the weather on the day before.  However, it is implicitly 

impacted by many days before by the "knock-on effect." The first order Markov Chain 

assumes that: 

                                                 2.9 

This means that the impact of weather conditions of many days before a given day Xi is 

equaled to the impact of the weather condition on day Xi-1. This is graphically illustrated 

below. 

 



15 
 

Figure 8: First order of Marko Chain for weather prediction; a) Directed graph 

representation of conditional dependencies, b) State transition diagram of weather 

forecast and c) Undirected graph representation. 

The conditional probability for the weather prediction model is a 2X2 matrix. An 

example is given in Figure 9. In this example, if yesterday was raining, the probability of 

it being raining today is 0.4 and the probability of it being sunny today is 0.6. However, if 

yesterday was sunny, the probability of it being raining today is 0.8 and the probability of 

it being sunny today is 0.2 

 

Figure 9: Weather prediction 2X2 matrix 

 As we stated earlier in the first order Markov Chain model of weather prediction, 

the weather at any given day is implicitly impacted by the weather condition many days 

before in the row.  So, it is important to notice that the impact that conditions of many 

days in advance have on the condition on a given day can be calculated by multiplying 

the weather condition matrices in the same order.  Another important fact to notice is that 

the higher order Markov Chains models can also be used to solve other problems. One 

good example is the text prediction. Only one letter is not enough to predict what is the 

next letter in a word, however, two letters often can be used to predict the third one. In 

this case we have a second order Markov Chain models (Blake, 2011). 
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2.2.2    ISING MODEL 

 Ising model is another MRF model. Let us consider Ising model with one 

parameter . Its state space is based on Boolean variable   and the 

energy function . Considering that the energy function takes in a Boolean variable 

and produces a real energy value, it is called "Pseudo-Boolean Function (PBF)." The 

maximal cliques in a rectangular graph (i.e. field of pixels), as shown in Figure 10, are 

the vertical and horizontal connected edges. 

 

Figure 10: Ising model graph. 

In this model the cliques are made of two pixels/nodes and therefore their clique 

potentials are based on pairs of cliques and are known as "pairwise potentials" and are 

represented as . Here  increases the energy , and decreases the 

joined probability  by  when adjacent  and  are different. This increases the 

probability of configuring a more homogenous X. In other configurations, X may be 

more agreeing or alike adjacent pixel values (Blake, 2011). 
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2.3    SWARM INTELLIGENCE 

 Swarm Intelligence is defined somewhat differently by researchers but essentially 

it is a collective of many self-organized agents within a decentralized organism to find an 

optimal solution to a problem. A swarm intelligent system is made of many simple self-

organized agents that follow simple rules to interact with one another and the 

environment at local level and in somewhat random order. Agents interact locally without 

a centralized mechanism to control their behavior and without a sense of awareness of the 

global impact. This leads to a global dynamic structure or behavior that is known as 

swarm intelligence (Yuce, 2013 ; Swarm i., 2016). Swarm Intelligence is usually inspired 

by nature, especially, biological systems; however, it now can be found in many artificial 

systems as well. Examples of natural swarm intelligent systems include ant colonies, bird 

flocking, fish schooling and of course honey bees. See Figures 11 and 12 below for visual 

representation of natural and artificial swarm examples (Swarm b., 2016). 

    

                                (a)                                                                       (b) 



18 
 

           

                                         (c)                                                                       (d) 

Figure 11: Natural Swarm Systems, a) ant colony, b) bird flocking, c) fish schooling, and 

d) honey bees swarming. 

 

Figure 12: Artificial Swarm System. One thousand robot swarm, named Kilbot, 

developed by Harvard University. 
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 The self-organization of swarm intelligence is made possible as a result of four 

characteristics. First rule is positive feedback, which is a set of simple rules helping 

generate the structure of swarm intelligent organism. An example of positive feedback is 

recruitment of honey bees to flower patches.  Second element is negative feedback. It 

reduces the effect of positive feedback and helps maintain a balanced mechanism. An 

example of negative feedback is a limited number of forgers. Third element is 

randomness. It helps create new (and unpredicted) solutions to given problems. The final 

element is interaction between local agents.  There should be a limited number of agents 

who can interact with each other. The combination of the above mentioned four rules or 

elements makes possible the creation of a decentralized system or structure.  In this 

system there is no central control and the hierarchy is only to divide the duties and not to 

oversee individual agents.  In this way a dynamic and efficient system is created enabling 

it to overcome given challenges (Yuce, 2013). 

 

2.3.1    PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM 

 Particle swarm optimization algorithm is a search algorithm to find optimal 

solution to given problems in n dimensional search space. It is based on the collective 

behavior of animals (i.e. swarm intelligence) such as flocking of the birds. PSO is 

described through "position" of the swarm in the n-dimensional space and the "velocity" 

or the rate of change of the swarm's position.  Each member of the population, or swarm 

position in the n-dimensional space, is known as a particle, and from that the name 

Particle Swarm Optimization comes from. Each particle keeps track of its best position.  
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In addition, it communicates its best position with the neighboring particles.  Therefore, 

each particle is not only aware of its best positions so far but that of its neighbors as well.  

Each particle changes its position and velocity by measuring against a fitness value and 

by taking under consideration its historical information and that of its neighboring 

particles (Rini, 2011; Ahmed, 2012). The following equations represent velocity and 

position (Rini, 2011). 

                         2.10 

Where: 

 represents velocity of the  particle in the dimension at  iteration. 

represents position of the particle and  dimension and  is the  particle 

itself. 

represents best historic position of the particle in the  dimension 

represents the position swarm's global best particle   

 and  represent n-dimensional vectors with random number, introducing 

randomness to the search 

 and  are positive constants, known as cognitive and social parameters, respectively, 

controlling the importance of individual particle in comparison to that of the global 

swarm 

Below is the pseudo-code for particle swarm optimization algorithm (Ahmed, 2012). 
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Algorithm 1: Pseudo-code for particle swarm optimization 

1. Initialize the swarm by randomly assigning each particle to an arbitrarily initial 

velocity and a position in each dimension of the solution space 

2. Evaluate the desired fitness function to be optimized for each particle's position 

3. For each individual particle, update its historically best position so far, Pi, if its 

current position is better than its historically best one 

4. Identify/update the swarm's globally best particle that has the swarm's best fitness 

value, and set/reset its index as g and its position at Pg. 

5. Update the velocities of all the particles using velocity equation 

6. Move each particle to its new position using position equation 

7. Repeat steps 2 - 6 until convergence or a stopping criterion is met 

 

2.3.2    ANT COLONY OPTIMIZATION 

 Ant colony optimization is based on the swarm behavior of ant colonies.  Ant 

colonies find the shortest path from their nest to the food source by depositing or laying a 

substance called pheromone (Selvi, 2010; Ahmed, 2012). Pheromone comes from Greek 

word pherein which means to transport and hormone to stimulate. In other words, 

pheromone means to stimulate transportation, or in ant colony optimization case to 

stimulate the path of transportation (Ahmed, 2012). If an obstacle is placed on the path of 

the ants, they will go randomly on the left and the right leaving pheromone on their way. 

As more ants go to the food source and back more pheromone will be placed on the 

shortest path because the ants will be able to come back faster. As more pheromone is 
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placed on the shortest path, eventually all ants will take the shortest path to the food and 

back because they tent to follow the path with more pheromone.  A graphical 

representation is sketched in Figure 13 (Selvi, 2010;  Ahmed, 2012). 

 

Figure 13: Ant path stimulation. 

In the case of ant colony optimization, the problem is represented on weighted graph and 

the artificial ants move from one node to the other setting weights on graph edges for 

path optimization.  There are some difference between real ants and artificial ants. The 

table below lists some of these differences. 

Table 1: Real and artificial ant differences. 
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To pull all of these together let us take a look at the pseudo-code for ant colony 

optimization algorithm (Ahmed, 2012). 

Algorithm 2: Ant Colony Optimization Pseudo-code 

1. Represent the solution space by construction graph 

2. Set ACO parameters and initialize pheromone  

3. Generate ant solution from each ant's walk on the construction graph mediated by 

pheromone trail 

4. Update pheromone intensities 

5. Go to step 3 and repeat until convergence or termination conditions are met 

 

2.3.3    HONEY BEE BEHAVIOR 

 Before we review a number of algorithms inspired by honey bee swarms, let us 

first look at the natural behavior of honey bees. Honey bees go over 10 km away in multi-

directions in search for flower patches that have quality pollen or nectar. A number of 

honey bees known as scouts go in random directions harvesting and evaluating flower 

patches. Once they return to the hive, they deposit the nectar and then go to a place inside 

the hive known as the dance floor. There the scouts inform other bees about flower 

patches they found through what is known as the waggle dance.  The waggle dance takes 

its name from the wagging run which produces a loud buzzing sound while bees move 

their body from one side to the other. Through this dance scouts inform other bees about 

the quality of the flower patch they found, the direction to the patch and how far it is. The 

path of waggling dance is shaped as number eight.  The scout starts waggling on a 
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straight line which creates an angle to the top of the hive. This represents the angle 

between the direction of the sun and the flower patch, giving other bees the direction to 

the flower patch.  Then, the bee alternates turning right and left. The speed and duration 

of the dance indicates the distance of the flower patch. However, the speed of the waggle 

and the buzzing sound indicate the quality of the patch.   The better the quality the more 

bees will be recruited.  Once the scout finishes the dance, it goes to the flower patch 

again to harvest and evaluate. If the flower patch is still good, the process of recruiting 

new bees and going again to the same patch continues.  The recruited bees upon return 

will do the waggle dance if the flower patch is still evaluated as in good condition (Pham, 

2005; Yuce, 2013). To visualize the waggle dance, see Figure 14 below. 

 

                               (a)                                                                           (b) 
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                                       (c)                                                                          (d) 

Figure 14 : Waggle dance.  a) waggle dance angle; b) orientation to the food source, 

from the hive utilizing sun to create the angle; c) waggle dance on the dance floor (Yuce, 

2013)  and d) graph of distance to food source per duration of the waggle(Seeley, 2006). 

 

2.3.4    ARTIFICIAL BEE COLONY (ABC) 

 Artificial bee colony (ABC) is one of the optimization algorithms influenced by 

the honey bees.  In the ABC algorithm, the food source represents a solution in the 

solution space and the nectar amount represents the fitness of the given solution. In 

addition, there are three groups of bees in the ABC algorithm. First, the employed bees 

are the bees that collect the nectar. Second, the onlookers are bees that wait at the dance 

floor for employed bees to return. Finally, the scouts are bees that search for solutions, 

food sources, randomly. The number of employed bees or onlookers is equals to the 

number of solutions in the solution space. There are three parameters to be estimated in 
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the ABC algorithm. First, the population size, SN, or the number of food sources. 

Second, the maximum cycle number, MCM, or the maximum number of generations 

before the algorithm has to terminate. Finally, the number of times a food source (i.e. 

limit) is visited without any improvements before a given food source is abandoned. 

Before we give a brief explanation of each step, let us take a look at the pseudo-code for 

the ABC algorithm. 

Algorithm 3: Artificial Bee Colony pseudo-code 

1. Initialize the ABC and problem parameters 

2. Initialize the Food Source Memory (FSM) 

3. repeat until termination criterion are met 

a. Send the employed bees to food source 

b. Send the onlookers to select a food source 

c. Send the scouts to search possible new food 

d. Memorize best food source 

 In the first step, solutions are selected at random as well as the population size, 

maximum cycle number, and the limit. In the second step, the food source memory is 

initialized with information for each food source. Then, the employed bees are assigned 

to given food sources.  Also, the onlookers are sent to food sources based on the 

information from employed bees. Each onlooker selects a food source with highest 

probable fitness calculated as below. 

                                                                                                                 2.11 
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where fiti is the fitness for each food source and SN is similarly defined. 

After that, as a food source is abandoned, the employed bees become scouts and 

randomly look for new food sources. Finally, at the end of each generation, the best food 

source so far is memorized. The process of sending employed bees, onlookers, and scouts 

and memorizing the best solution repeats until the maximum number of cycles is met 

(Bolaji, 2013; Karaboga, 2009). 

 

2.3.5    IMPROVED BEE COLONY ALGORITHM FOR MULTI-OBJECTIVE 

OPTIMIZATION (IBMO) 

 The IBMO algorithm is an improvement to ABC for use with multi-objective 

optimization that considers "non-dominated sorting strategy and principal concepts of 

Pareto-Optimal," and it also includes an improvement step to local search. The algorithm 

begins by creating a initial solution through a process known as diversification technique 

where the parameter ranges are divided equally in subranges and eachsub range is given a 

frequency of zero. Then, the parameters are calculated for each selected subrange by 

increasing the frequency by one and the probability of selecting a subrange is inversely 

proportional to the frequency. After the initial solution, there are three major steps to each 

iteration, the employed, onlooker and scout bee steps. During the employed bee phase for 

every solution, a new solution is created between the existing solution and a randomly 

selected neighbor from the food set. Then, an improvement step which uses a local search 

begins. If the new solution dominates, the new solution is added to the food set in place 

of the existing solution. Finally, in employed bee phase, the non-dominated solutions are 
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updated in external archive (EXA). During the onlooker bee phase, the IBMO determines 

the neighbors from the EXA and not from food source because the best solutions are 

stored in EXA. During the scout phase, for every solution that was not selected by 

employed or onlooker phases the trail count is increased by one. If it exceeds a preset 

value or there are no improvements, these solutions are regenerated and their trail values 

are set to zero. After the scout phase, the foods with EXA are combined and sorted to 

create the food set for the next iteration. Below is the pseudo-code for IBMO (Sag, 2015). 

Algorithm 4: Pseudo-code for IBMO 

   

 

2.3.6    BEE SWARM OPTIMIZATION ALGORITHM 

 Bee swarm optimization (BSO) is an optimization algorithm based on the food 

foraging behavior of the honey bees.  In this algorithm there are three kinds of bees: 

experienced foragers, onlookers, and scouts, in D-dimensional space . The number 

of each type of bees in swarm  are set manually; however, the number of experienced 

foragers and onlookers is equivalent and the number of scouts is smaller.  The swarm is 

represented symbolically as . The solution for every bee in D-dimensional 
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space  is represented by the vector . The fitness of the 

solution (i.e. the quality of the food source) is represent by . 

 The algorithm starts by setting the parameters and an initial solution. Once an 

initial solution is created for every iteration, the bees are sorted per their fitness. The food 

sources for the group of bees with lowest fitness is abandoned and those bees are turned 

into scout bees. The scouts are sent in random direction to look for new food sources. The 

other bees are divided in the equal number where the group with the highest fitness are 

set as experienced foragers and the other half as onlookers. The process continues until 

terminating condition is met (Akbari, 2009). The pseudo-code is listed below. 

Algorithm 5: Bee Swarm Optimization pseudo-code 

 



30 
 

 

  

2.3.7    BEEHIVE ALGORITHM 

 BeeHive algorithm is another algorithm based on the behavior of the honey bees. 

In BeeHive the dance floor is represented by a routing table where bees arriving at a 

given node from different neighbors can exchange information. Bees are grouped into 

two groups; short distance forgers, which explore nodes close from the hive, and long 

distance forgers which explore nodes farther away. In BeeHive the search space or 

network is divided into so called foraging regions. Each foraging region is represented by 

a node with the lowest IP address (i.e. closest node). In addition, each node has a foraging 

zone which includes all nodes that a short distance bee can go to from a given node. Each 

non-representative node sends bee agents to nodes in the bee zone updating the path 

information. Likewise, the representative nodes send bee agents to long distance nodes. 

In this way each node maintains an up-to-date routing information. The next node on the 

path is selected in probabilistic way with accordance to the quality of the neighbors. This 

means that not every bee agent is sent through the best possible path, but this helps with 

maximizing performance. Below is the pseudo-code (Wedde, 2004). 
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Algorithm 6: BeeHive Pseudo-code 
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2.3.8    THE BEE ALGORITHM 

 The bee algorithm is an optimization algorithm inspired by the food forging 

behavior of honey bees. The original bee algorithm which is what we use in this thesis 

takes in a number of parameters. Before we give a pseudo-code for the algorithm, let us 

take a look at each parameter on Table 2 below. 

Table 2: The bee algorithm parameters. 

Symbol  Meaning of parameters 

n Number of scouts 

m Number of sites selected out of n visited 

e Number of best sites 

nep Number of bees recruited for best e sites 

m-e Number of bees recruited for other sites 

nsp Selected sites  

ngh Neighborhood size 
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Now that we know what parameters the bee algorithm takes, let us take a look at the 

pseudo-code: 

Algorithm 7: The bee algorithm pseudo-code 

1. Initialize the population with random solutions 

2. Evaluate the fitness of the population 

3. While (stopping criterion not met) //Forming new population 

4.  Select sites for neighborhood search 

5.   Recruit bees for selected sites (more bees for best e sites) and evaluate 

 fitness 

6.  Select the fittest bee from each patch 

7.  Assign remaining bees to search randomly 

8. End while 

 As it can be seen above, the algorithm starts by placing n scouts randomly in the 

search space and then evaluating the fitness. Then in step 4, bees with highest fitness are 

selected and the sites they visited are chosen for neighborhood search. In steps 5 and 6, 

the algorithm performs neighborhood search.  The bees can be chosen by evaluating the 

fitness and the fitness value is used as basis of probabilistic decision. More bees are used 

to improve search for the best sites. Important to notice that in step 6 only the best bee is 

selected to form the next generation of the population.  In step 7, the unselected bees are 

placed randomly on search space looking for new flower patches. The process is repeated 

until the finishing criteria is met (Pham, 2005).  To better understand the algorithm, the 

flow chart is given below (Yuce, 2013). 
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Figure 15 : A flowchart diagram of bee algorithms. 

 

2.4    OTHER ALGORITHMS 
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 So far, we have reviewed a number of search algorithms based on swarm 

intelligence. Now let us examine a few more search algorithms that are not based on 

swarm intelligence but some of them will be used in our thesis. 

 

2.4.1    MARKOV CHAIN MONTE CARLO (MCMC) 

 Before we assess a few more algorithms, it is important to notice that Markov 

Chain Monte Carlo (MCMC) methods are a set of algorithms based on Markov Chain 

model. They are used for sampling data from probability distributions (Markov, 2016). 

There are two such methods, Metropolis and Gibbs sampler, used in our literature survey. 

They will be explained later in this section.  

 

2.4.2    HILL-CLIMBING SEARCH 

 Hill-climbing is a search algorithm that tends to get the best possible solution 

through iteration towards the best solution. In each step, it chooses the next best solution 

by selecting the neighbor with the highest value. At each iteration, it replaces the current 

value with next best value. It iterates until it reaches the "peek" or the point where all its 

neighbors have a lower value than the current value. At this case, the algorithm will stop. 

Hill-climbing is classified as a greedy algorithm because it picks the next best value 

without understanding what happens next.  Hill-climbing is usually fast because it is easy 

to find the next best solution. However, sometimes it gets stuck at a point that is not the 

optimal solution for the following reasons; local maxima issue which is a local maximum 
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or a peek that is higher or better value than all its neighbors but not the best global 

solution. Second reason is ridges, which are a series of local maximums. The third is  

plateaux issue which is a flat area or a point where the value of the best neighbor is equal 

to the current value. Below is the pseudo-code for hill climbing algorithm (Russell, 

2009). 

Algorithm 8: Pseudo-code for Hill-climbing algorithm 

Function Hill-climbing (problem) returns a state that is local maximum 

current <- Make-Node(problem.Initial-State) 

loop do 

 neighbor <- a highest-valued successor of current 

 if neighbor.Value <= current.Value then return current.State 

 current<-neighbor  

 

2.4.3    SIMULATED ANNEALING 

 Simulated annealing is a search algorithm that tries to solve Hill-climing's 

problem of getting stuck at a local maximum and still performs efficiently. Let us 

consider the pseudo-code. 

Algorithm 9: Simulated Annealing pseudo-code 

function Simulated-Annealing (problem, schedule) returns a solution state 
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inputs: problem(a problem), schedule (a mapping from time to "temperature") 

current <- Make-Node(problem.Initial-State) 

for t = 1 to ∞ do 

 T <- schedule (t) 

 if T = 0 then return current 

 next <- a randomly selected successor of current 

 ΔE <- next.Value - current.Value 

 if ΔE > 0 then current <- value 

 else current <- next only with probability  
  

  

 As it can be seen from the algorithm above, the move is always accepted if the 

next value is better than current value. However, unlike the hill-climbing, in simulated 

annealing even if the next value is worse than current value, it is accepted based on a 

probability value.  The amount of allowed worse values to be accepted decreases as the 

temperature decreases, making it harder to accept worse values towards the end of the 

process (Russell, 2009). 

 

2.4.4    METROPOLIS 

 Metropolis algorithm is used as a sampling algorithm to select random samples 

out of a random distribution  when it is difficult to get direct samples. Metropolis is 
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considered as a Markov Chain Monte Carlo method. Metropolis works in an iterative way 

where at each iteration only the current sample value is used to generate the next value, 

making it a Markov chain method.  The selection of the next value is based on a given 

probability, therefore if the new sample has a better probability of being part of the 

distribution it is selected and used to generate the next iteration sample, if not it is 

discarded and the old value is kept. The Metropolis pseudo-code is listed below. 

Algorithm 10: Metropolis pseudo-code 

Initialization: Choose an arbitrary point  to be the first sample, and choose an 

arbitrary probability density  which suggests a candidate for the next sample value 

x, given the previous sample value y. For the Metropolis algorithm, Q must be 

symmetric; in other words, it must satisfy . A usual choice is to let  be a 

Gaussian distribution centered at y, so that points closer to y are more likely to be visited 

next-making the sequence of samples into a random walk. The function g is referred to as 

the proposal density or jumping distribution.  

1. For each iteration t: 

 2.1 Generate a candidate x' for the next sample by picking  from the distribution 

  

 2.2 Calculate the acceptance ration , which will be used to decide 

 whether to accept or reject the candidate. Because f is proportional to the density 

 of P, we have that . 
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 2.3 if , then the candidate is more likely than ; automatically accept the  

 candidate by setting . Otherwise, accept the candidate with probability  

 ; if the candidate is rejected, set , instead. 

 From the pseudo-code above we can see that Metropolis randomly visits through 

the search space. In each iteration, it accepts the next selected sample if the probability is 

better. In other words, it tends to stay in the higher density regions (Metropolis-Hastings, 

2016). 

 

2.4.5 ITERATED CONDITIONAL MODELS (ICM) 

 The ICM is an algorithm that uses the greedy strategy to maximize the local 

conditional probability in an iterative way. The ICM takes the label d and all other labels 

 and updates each label  into by maximizing the conditional (posteriori) 

probability . To use the conditional probability , the 

following two assumptions are made; it assumes that the given function , each 

component  is conditionally independent and every  has the same 

conditional density function   which means 

                                                                                            2.12 

where  represents the multiplication. The other assumption is that  is a Markovianity, 

which means it depends on local neighborhood labels.   The two assumptions above and 

Bayes theorem give us 
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, which is easier to estimate (Li, 2006).  

 

2.4.6    GIBBS SAMPLER  

 Gibbs sampler, like Metropolis, is a Markov Chain Monte Carlo method used to 

iteratively generate samples from probability distributions to be used to approximate joint 

distributions. Gibbs sampler is used when the conditional distribution of each variable is 

known but joint distribution is hard to calculate. Gibbs sampler starts with a given 

solution which can be generated at random or by using a specific method and then it 

iterates a given number of times (Gibbs, 2016). Below is the pseudo-code for a given 

iteration in Gibbs sampling (Garth, 2003). 

Algorithm 11: Pseudo-code for one iteration of Gibbs Sampler 

repeat 

 Select a site i from set S 

 Sample the conditional probability density of the label at site i given the labels in 

 the neighborhood of site i 

 Replace the old label with the label just sampled 

until all sites in S have been sampled 

 

2.4.7    MODIFIED METROPOLIS DYNAMIC (MMD) 
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 The MMD is yet another algorithm that can be used for the local energy 

optimization. A new label is selected at random using the uniform distribution, however, 

the acceptance of the new state is done deterministically. The difference between the 

MMD and the original Metropolis algorithm is that in the original method the threshold is 

set randomly during each iteration, however, in MMD it is set as a constant at the 

beginning of the algorithm (Sziranyi, 2000). 

 

2.5    APPLICATIONS OF MRF AND BEE BEHAVIOR ALGORITHMS FOR IMAGE                   

SEGMENTATION 

 During the research in this study we did not find any papers using bee behavior 

algorithms to implement MRF models. However, there are a number of papers that use 

MRF models for image segmentation and a few papers that use different bee behavior 

algorithms. Below we give a brief overview on how a MRF model is used for the color 

image segmentation. 

  

2.5.1 COLOR IMAGE SEGMENTATION AND PARAMETER ESTIMATION IN A 

MARKOVIAN FRAMEWORK 

 In (Kato, 2001), a Bayesian classification algorithm is provided for color image 

segmentation, where multivariate Gaussian distribution is used to represent pixel classes 

and the first order Markov Random Field is used as a priori model. The process is 
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presented in three sections below; the model, parameter estimation, and obtaining the 

initial parameters. Let us review each section step by step. 

 

2.5.1.1    THE MODEL 

 The first decision made in this study is to use  L*u*v* color space as the color 

representation schema for a color image.  Each pixel  in the image   

consists of three components L*u*v*, represented by vector . They look for labeling  

that maximizes the posteriori probability , which is a MAP or a maximum a 

posteriori estimation represented by . Here represents the 

set of all possible labels. To be able to segment the image into homogenous regions, the 

pixel class  has to be one of the color patches of the input image. Therefore,  

follows Gaussian or normal distribution and pixel classes, , are 

represented by the mean vectors  and covariance matrices . In addition  is a 

first order MRF. Per Hammersley-Clifford theorem it follows Gibbs distribution. So, 

                                                        2.13 

 is the energy function,  is the normalizing constant,  is 

the clique potential of clique having label , and is the set of doubletons. 

Important to notice that singletons impact the probability of the label directly without 

taking into the consideration of the neighboring pixels. However, doubletons account for 

the neighboring pixels. The above model favors similar classes in neighboring pixels and 

therefore the energy function of this MRF image segmentation model is: 
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                                                              2.14 

where,  is 1 when  and are different and 0 when they are the same.  

controls the homogeneity of the regions. Higher  is, more homogenous regions we have 

(Kato, 2001). 

 

2.5.1.2    PARAMETER ESTIMATION 

 The parameter values, namely mean vector , covariance matrix , and , are 

denoted by , and the labeled data set are not known for the above model. Therefore, an 

adaptive estimation method is proposed for parameter estimation and image segmentation 

simultaneously. The estimation is represented as a MAP below: 

                                                                                2.15 

This can be estimated using  and where  the first 

one is a MAP estimation for the labels and the second is a ML estimation for the 

parameters based on label estimations. To solve the above equations, the following 

iterative algorithm is provided. 

Algorithm 12: Adaptive segmentation 

1. Set  and initialize  
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2. Maximize  using an optimization algorithm, the resulting labeling is 

denoted by  

3. Update the current estimate of parameters  to the ML estimate based on the 

current labeling  

4. Go to step 2 with  until  stabilizes 

To further explain step 3, the probability at the right-hand side of the ML estimation 

equation (2.15) can be written as . The first term is a 

Gaussian density and second is a first order MRF. Now consider the log-likelihood 

function as below 

                                                                               2.16 

here is the pixel set where . The ML function is minimized when the derivative 

 is zero at . The solution is the mean and covariance with respect to  and 

 respectively: 

                                                                                 2.17 

However, with respect to  the solution is: 
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                                                                       2.18 

where represents the number of inhomogeneous cliques in . 

This is all estimated through the iterative algorithms (Kato, 2001). 

 

2.5.1.3    OBTAINING INITIAL PARAMETERS 

 Initial values for the parameters are required in order to run the estimation process 

explained above. It has been empirically proven that an initialization of the mean value 

plays an important role on how good the final image segmentation will be, but the other 

parameters are not as important. Getting a good initial value for the mean is proven to be 

a difficult problem for images that either have sparse histogram or do not have clear 

peaks. In this study, a new approach based on pre-segmentation is proposed to solve this 

problem. A split-and-merge algorithm is used to obtain an initial segmentation where 

color differences are used as a homogenous measure. The Euclidean distance of two color 

vectors in the L*u*v* color space is used to obtain the color difference. The average of 

original colors is used to represent a region. Two neighboring regions with color 

difference smaller than threshold  are merged together where  is calculated from the 

original image. It is set to 25% of the maximum color difference. Once the image is pre-

segmented, then its histogram has clear peaks and it can be used for image analysis. 

Considering that each pixel is replaced by the color average of its neighborhood, the 

histogram's peaks are around the mean values. Since pre-segmentation can produce 

slightly different color average, it can produce more than one peak per pixel class and 
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therefore false mean values. To get rid of the extra peaks, neighboring histogram peaks 

are merged together through image quantization. It is shown that 20% color reduction 

produces good results to remove extra histogram peaks. Finally, mean vectors are 

constructed from top L peaks. This approach of image pre-segmentation is proven to 

produce better mean initial values then image pre-segmentation based on K-means 

algorithm (Kato, 2001). 

 

2.5.2    COLOR IMAGE SEGMENTATION BASED ON MULTIOBJECTIVE 

ARTIFICIAL BEE COLONY OPTIMIZATION 

 In the literature an image segmentation method based on the improved bee colony 

algorithm for multi-objective optimization (IBMO) is presented. The method proposed 

consists of three steps, extraction of features from color image, use of IBMO to find 

optimal center points, known as seeds, and optimal similarity values, and applying the 

process of region growing. Here the segmentation is performed through seeded region 

growing (SRG) process, which groups homogenous pixels into groups or regions. The 

SRG process begins at seeds and examines adjacent pixels incorporating homogenous 

pixels in the region. Each pixel is assigned a label for the region it belongs to. Then, the 

seeds are replaced with the new center pixel in the region which includes the newly 

added pixels.  The process is repeated until all pixels are assigned to a region.    

 The SRG process is explained in four steps; first, a vector with distances between 

seeds and pixels in the image is found. Second, the probability of pixel belonging to 

seeds is calculated. Third, a binary matrix is created with zero values when the threshold 
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is greater than probability and one otherwise. Finally, a labeling method is applied to the 

connected component in the binary matrix for the related seed. The process is repeated 

for all seeds and unlabeled pixels. Important to note that the IBMO provides three 

improvements to the SRG process. First, it finds optimal positions for seeds. Second, it 

determines the threshold values for seeds to be used as homogenous criteria. Third, it 

provides the ability to evaluate segmentation quality using multiple criteria for the multi-

objective optimization. 

 A post processing step is applied to the pre-segmented image. In this stage, first, 

regions that are smaller than a pre-set threshold for region size are assigned to the nearest 

region. Then, the SRG process is repeated until all unlabeled images are assigned to a 

region (Sag, 2015).  
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III    THE PROPOSED SOLUTION 

 In this chapter we present the work developed in this thesis. It is based on the 

work presented in (Kato, 2001), which we introduce and utilize the Bee algorithm as an 

optimization mechanism to perform image segmentation in an iterative process. Below 

we explain the segmentation model, the parameter estimation and segmentation, 

parameter initialization, and bee algorithm parameter settings. 

 

3.1    THE MODEL 

 As it is pointed out above, this thesis is based on the work in (Kato, 2001). 

Similarly to (Kato, 2001), we are interested in grouping similar color pixels into 

segments. Each pixel in a given image consists of three color components using L*u*v* 

color schema which is represented as a vector. We need to estimate labeling that 

maximize posteriori probability. Pixels in the segments are replaced by one of the given 

labels from the homogenous sections in the original image. Here, the probability of pixel 

colors given a labeling follows the Gaussian distributions. Also, mean vectors and 

covariance matrices are used to represent pixel classes for each patch. In addition, the 

probability of a labeling is a first order MRF and per Hammersley-Clifford theorem 

(Kato, 2001), it follows Gibbs distribution. As we have seen in the survey of (Kato, 

2001), Gibbs distribution depends on normalizing constant and energy function which in 

turn depends on clique potential of cliques for the given pixels. Considering this is a first 

order MRF representation, cliques are either singletons or doubletons. This means that in 

this model the posteriori probability for pixel labels is impacted by the neighboring pixel 
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labels. This is different from the model used in (Kato, 2001) in which we apply the Bee 

Algorithm instead of the algorithms used in (Kato, 2001) such as Metropolis and ICM.     

 

3.2    PARAMETER ESTIMATION AND SEGMENTATION 

 In order to use the above model in image segmentation, a number of parameters, 

namely mean and covariance for each class, and the normalizing constants have to be 

estimated. To estimate these values, we use the following adaptive iteration process. 

1. Initialize parameters. 

2. Use Bee algorithm for the optimization of the probability of labeling given the 

parameters. 

3. Update the parameter estimations according to the labeling above. 

4. Repeat steps 2 and 3until a change is small. 

This adaptive process is the same as in (Kato, 2001) with exception that we use Bee 

algorithm for optimizing the labels and parameters instead of other algorithms such as 

ICM and Metropolis. It is also important to state that this iterative process at each 

iteration produces a new segmented image and calculates new parameter estimations. 

 

3.3    PARAMETER INITIATION 

 In the parameter estimation above, we can see that the first step in the iterative 

process is to initialize the parameters. In (Kato, 2001), they talk about a process of 

initializing parameters; however, in their implementation the user selects a region of the 
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image per class out of which the mean and other parameters are calculated. Our 

implementation is built on top of their implementation and the section of parameter 

initialization is not modified. The fact that the user selects the regions to represent each 

class making this process a supervised method; otherwise, everything else in the process 

is unsupervised. 

 

3.4    PARAMETERS IN THE BEE ALGORITHM    

 As explained above we use Bee algorithm optimization to implement the above 

explained model for image segmentation in an iterative process. In literature survey we 

explained that Bee algorithm has several parameters that are usually set by the user.   

However, less parameters the user has to provide better it is. Therefore, the parameters in 

our process are programmatically set as listed in the table below. Experiments showed 

that these are good values for each one of the given parameters. 

Table 3: Bee algorithm parameter settings. 

Symbol  Meaning of parameters Values of parameters 

n Number of scouts 2% of number of pixels 

m Number of sites selected out of n 

visited 

All whose fitness is positive 

e Number of best sites 20% of scouts 

nep Number of bees recruited for best e 

sites 

25 

m-e Number of bees recruited for other sites 1 

nsp Selected sites  Same as e 

ngh Neighborhood size 25 
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IV    EXPERIMENTS AND RESULTS 

 In this chapter we show the experimental results tested on several images. We 

also evaluate the segmentation accuracy and time complexity of the algorithms tested. 

  

4.1    EXPERIMENTS 

 We use a number of different images to run our experiments. Each image is tested 

using the four existing implementations ICM, HHD, Metropolis, and Gibbs Sampler in 

(Kato, 2001) as well as our implementation using Bee Algorithm. Considering that each 

one of the implementations is based on the pre-segmentation, we show the original 

image, pre-segmented image, and final-segmented image in the order in Figures 16, 17, 

18, 19, 20, 21, 22, and 23.  

          

                          (a)                                                            (b) 

           

                           (c)                                                            (d) 
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                          (e) 

Figure 16: Flower image segmented. (a) Using Bee algorithm, number of iterations 3, 

CPU time 38 ms; (b) using ICM algorithm, number of iterations 4, CPU time 104 ms; (c) 

using MMD algorithm, number of iterations 199, CPU time 649 ms; (d) using Metropolis 

algorithm, number of iterations 147, CPU time 629ms; (e) using Gibbs Sampler, number 

of iterations 143, CPU time 2174 ms. 

          

                              (a)                                                                    (b) 

           

                               (c)                                                                     (d) 

 

                              (e) 

Figure 17: Mountain image segmented. (a) Using Bee Algorithm, number of iterations 2, 

CPU time 25 ms; (b) using ICM algorithm, number of iterations 3, CPU time 54 ms; (c) 
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using MMD algorithm, number of iterations 148, CPU time 450 ms; (d) using Metropolis 

algorithm, number of iterations 97, CPU time 358 ms; (e) using Gibbs Sampler, number 

of iterations 35, CPU time 363 ms. 

 

 

                                                                     (a) 

 

                                                                       (b) 
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                                                                     (c) 

 

                                                                        (d) 

 

                                                                        (e) 
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Figure 18: Satellite image segmented. (a) Using Bee algorithm, number of iterations 5, 

CPU time 367 ms; (b) using ICM algorithm, number of iterations 5, CPU time 620 ms; 

(c) using MMD algorithm, number of iterations 281, CPU time 10948 ms; (d) using 

Metropolis algorithm, number of iterations 260, CPU time 12835 ms; (e) using Gibbs 

Sampler, number of iterations 196, CPU time 16957 ms. 

     

                                           (a) 

 

                                             (b) 

 

                                             (c) 
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                                             (d) 

 

                                             (d) 

Figure 19: Peppers image segmented. (a) Using Bee algorithm, number of iterations 2, 

CPU time 37 ms; (b) using ICM algorithm, number of iterations 3, CPU time 72 ms; (c) 

using MMD algorithm, number of iterations 269, CPU time 1661 ms; (d) using 

Metropolis algorithm, number of iterations 172, CPU time 1841 ms; (e) using Gibbs 

Sampler, number of iterations 109, CPU time 1373 ms. 

         

                           (a)                                                            (b) 
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                           (c)                                                                (d) 

 

                           (e) 

Figure 20: Synthetic noise image one segmented. (a) Using Bee algorithm, number of 

iterations 4, CPU time 27 ms; (b) using ICM algorithm, number of iterations 3, CPU time 

50 ms; (c) using MMD algorithm, number of iterations 80, CPU time 212 ms; (d) using 

Metropolis algorithm, number of iterations 67, CPU time 231ms; (e) using Gibbs 

Sampler, number of iterations 77, CPU time 528 ms. 

             

                            (a)                                                             (b) 

               

                           (c)                                                               (d) 

 

                          (e) 
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Figure 21: Synthetic noise image two segmented. (a) Using Bee algorithm, number of 

iterations 5, CPU time 30 ms; (b) using ICM algorithm, number of iterations 5, CPU time 

74 ms; (c) using MMD, number of iterations 150, CPU time 430 ms; (d) using Metropolis 

algorithm, number of iterations 154, CPU time 503 ms; (d) using Gibbs Sampler, number 

of iterations 124, CPU time 836 ms. 

 

                                             (a) 

 

                                             (b) 

 

                                             (c) 
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                                             (d) 

 

                                             (e) 

Figure 22: Texture image one segmented. (a) Using Bee algorithm, number of iterations 

6, CPU time 90 ms; (b) using ICM algorithm, number of iterations 8, CPU time 227 ms; 

(c) using MMD algorithm, number of iterations 268, CPU time 1881 ms; (d) using 

Metropolis algorithm, number of iterations 243, CPU time 2246 ms; (e) using Gibbs 

Sampler, number of iterations 186, CPU time 3550 ms. 

 

                                                 (a) 
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                                                 (b) 

 

                                                 (c) 

 

                                                 (d) 

 

                                                 (e) 
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Figure 23: Texture image two segmented. (a) Using Bee algorithm, number of iterations 

6, CPU time 125 ms; (b) using ICM algorithm, number of iterations 10, CPU time 507 

ms; (c) using MMD algorithm, number of iterations 274, CPU time 2861 ms; (d) using 

Metropolis algorithm, number of iterations 278, CPU time 3733 ms; (e) using Gibbs 

Sampler, number of iterations 161, CPU time 5159 ms. 

 

4.2    TIME COMPARISON 

 In the table below, we present the time in milliseconds that each algorithm took to 

process each image. Then, we take the average of running time for ICM, MMD, 

Metropolis and Gibbs. The ICM algorithm is the closest to Bee algorithm in terms of 

running time.  

Table 4: Time comparison table. 

 Bee ICM MMD Metropol

is 

Gibbs Avg. of 

4 

Bee/IC

M ratio 

Bee/Av

g. ratio 

Flower 38ms 104m

s 

649ms 629ms 2174ms 889ms 36.5% 4.3% 

Mountai

n 

25ms 54ms 450ms 358ms 363ms 306ms 46.3% 8.2% 

Satellite 367m

s 

620m

s 

10948m

s 

12835ms 16957m

s 

10340m

s 

59.2% 3.5% 

Pepper  37ms 72ms 1661ms 1841ms 1373ms 1237ms 51.4% 3.0% 

Syntheti

c image 

1 

27ms 50ms 212ms 231ms 528ms 255ms 54% 10.6% 

Syntheti

c image 

2 

30ms 74ms 430ms 503ms 836ms 461ms 40.5% 6.5% 

Texture 

1 

90ms 227m

s 

1881ms 2246ms 3550ms 1976ms 40% 4.6% 

Texture 125m 507m 2861ms 3733ms 5159ms 3065ms 24.7% 4.1% 
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2 s s 

 

Time comparison can also be represented graphically as in Figure 24. 

 

Figure 24: Time comparison for each algorithm. 

 From the table above we can see that Bee algorithm is much faster than all other 

algorithms. Comparing to the ICM algorithm which is the closest in time and accuracy to 

Bee algorithm, Bee algorithm only took between 25% and 60% of the time of ICM 

algorithm. However, if we compare with the average of all other algorithms ICM, MMD, 

Metropolis, and Gibbs, Bee algorithm only took about 11% of their average time.  

 

4.3    ACCURACY COMPARISON 
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 By visually inspection on the results generated by algorithms compared, we can 

see that Bee algorithm, performs about the same as all other algorithms, except for the 

images with synthetic noise. When it comes to noisy images, we can see clearly that Bee 

algorithm does not perform as well as the others. In some other cases like the texture 

images, it might even look better. However, in this section we want to compare the 

segmented images against the ground truth data. We only have the ground truth data for 

the Satellite image, so we are going to compare the segmented images by each algorithm 

to the ground truth. Tables 5, 6, 7, 8, and 9 are the list of Error Matrix, and KHAT 

statistics for each algorithm. The formula for KHAT statistics is listed below. 

k = 
       

       
  

   
  

  
   

        
  

   
  

  
   

                                                                                             4.1 

where N is the number of pixels; r is the number of labels, Xii is the number of pixels 

correctly classified; Xi+ and X+i are the numbers of misclassified pixels. 

Table 5: Error Matrix for Satellite image using Bee Algorithm. 

Classification data Mountain River Village Row Total 

Mountain 186474 8916 1863 197253 

River 839 61708 128 62675 

Village 804 21 1391 2216 

Column total 188117 70645 3382 262144 

 

Producer's Accuracy User's Accuracy 

Mountain = 186474/188117 = 99% 

River = 61708/70645 = 87% 

Village = 1391/3382 = 41% 

Mountain = 186474/197253 = 95% 

River = 61708/62675 = 98% 

Village = 1391/2216 = 63% 

Overall accuracy = (186474 + 61708 + 1391)/262144 = 95% 

k = 
                                                                           

                                                     
 = 0.8787 
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So KHAT statistics for the satellite image segmented using Bee algorithm is about .88 or 

about 7% lower than overall accuracy. 

Table 6: Error Matrix for Satellite image using ICM Algorithm. 

Classification data Mountain River Village Row Total 

Mountain 186832 8969 2208 198009 

River 596 61631 36 62263 

Village 689 45 1138 1872 

Column total 188117 70645 3382 262144 

 

Producer's Accuracy User's Accuracy 

Mountain = 186832/188117 = 99% 

River = 61631/70645 = 87% 

Village = 1138/3382 = 34% 

Mountain = 186832/198009=94% 

River = 61631/62263 = 99% 

Village = 1138/1872 = 61% 

Overall accuracy = (186832 + 61631 + 1138)/262144 = 95% 

  

k = 
                                                                           

                                                     
 = 0.8785 

So KHAT statistics for the satellite image segmented using ICM algorithm is about .88 or 

about 7% lower than overall accuracy. 

Table 7: Error Matrix for Satellite image using MMD Algorithm. 

Classification data Mountain River Village Row Total 

Mountain 186918 9123 2237 198278 

River 460 61480 13 61953 

Village 739 42 1132 1913 

Column total 188117 70645 3382 262144 

 

Producer's Accuracy User's Accuracy 

Mountain = 186918/188117 = 99% 

River = 61480/70645 = 87% 

Mountain = 186918/198278 = 94% 

River = 61480/61953 = 99% 
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Village = 1132/3382 = 33% Village = 1132/1913 = 59% 

Overall accuracy = (186918 + 61480 + 1913)/262144  = 95% 

k = 
                                                                           

                                                     
 = 0.8776 

So KHAT statistics for the satellite image segmented using MMD algorithm is about .88 

or about 7% lower than overall accuracy. 

Table 8: Error Matrix for Satellite image using Metropolis Algorithm. 

Classification data Mountain River Village Row Total 

Mountain 187115 9040 2349 198504 

River 478 61598 30 62106 

Village 524 7 1003 1534 

Column total 188117 70645 3382 262144 

 

Producer's Accuracy User's Accuracy 

Mountain = 187115/188117 = 99% 

River = 61598/70645 = 87% 

Village = 1003/3382 = 30% 

Mountain = 187115/198504 = 94% 

River = 61598/62106 = 99% 

Village = 1003/1534 = 65% 

Overall accuracy = (187115 + 61598 + 1003)/ 262144 = 95% 

k = 
                                                                           

                                                     
 = 0.8792 

So KHAT statistics for the satellite image segmented using Metropolis algorithm is about 

.88 or about 7% lower than overall accuracy. 

Table 9: Error Matrix for Satellite image using Gibbs Sampler. 

Classification data Mountain River Village Row Total 

Mountain 187068 8974 2239 198281 

River 475 61656 16 62147 

Village 574 15 1127 1716 

Column total 188117 70645 3382 262144 
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Producer's Accuracy User's Accuracy 

Mountain = 187068/188117 = 99% 

River = 61656/70645 = 87% 

Village = 1127/3382 = 33% 

Mountain = 187068/198281 = 94% 

River = 61656/62147 = 99% 

Village = 1127/1716 = 66% 

Overall accuracy = (187068 + 61656 + 1127)/262144 = 95% 

k = 
                                                                           

                                                     
 = 0.8807 

So KHAT statistics for the satellite image segmented using Gibbs Sampler algorithm is 

about .88 or about 7% lower than overall accuracy. 

 As we see in the tables above, all algorithms including our bee implementation 

have about the same accuracy and KHAT statistical values, with some small exception 

when it comes to any of the given individual classes. However, the overall accuracy and 

KHAT statistics value are about the same for all algorithms. A comparison among all 

algorithms tested is listed in Table 10. 

Table 10: Accuracy and KHAT comparison for all algorithms. 

 Bee ICM MMD Metropolis  Gibbs 

P.A. Mountain 99% 99% 99% 99% 99% 

P.A. River 87% 87% 87% 87% 87% 

P.A. Village 41% 34% 33% 30% 33% 

U.A. Mountain 95% 94% 94% 94% 94% 

U.A. River  98% 99% 99% 99% 99% 

U.A. Village 63% 61% 59% 65% 66% 

Overall 

Accuracy 

95% 95% 95% 95% 95% 

KHAT .88 .88 .88 .88 .88 

 

Accuracy and KHAT comparisons can also be represented graphically as in Figure 25. 
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Figure 25:  Accuracy and KHAT comparisons. 
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V    CONCLUSION 

 Computer vision is widely used across many disciplines making our daily lives 

easier in ways that we either take for granted or do not even fully understand the 

importance of, and image segmentation is a vital step in making that possible. In the 

literature survey, we showed some methods of performing image segmentation. We 

explained Markov Random Field and a few ways of implementing MRF models in image 

segmentation. We also talked about swarm intelligence and explained a number of swarm 

based algorithms and provided an example of a swarm based image segmentation 

method.    

 In this thesis we proposed a new algorithm based on the bee algorithm to perform 

the optimization of image segmentation in a Markov Random Field model. We showed 

through our experiments and results that its accuracy is just as good as the other 

algorithms, if not better in some cases, with exception of noisy images. However, our 

proposed algorithm performed much faster than existing solutions. 

 Considering that image segmentation is a complex problem to get exactly correct, 

it remains as an active area of research. One disciple that is gaining popularity and seems 

to have a lot of potential to solve different problems, including image segmentation, is 

deep learning. It would make a very interesting study on the image segmentation method 

to apply deep learning techniques and MRF models.    

 

 



69 
 

VI    APPENDIX 

 To better understand image segmentation, it is important to understand different 

probability distributions and a few other probability and statistical concepts. Therefore, 

let us do a brief review. 

 

A.1    MAXIMUM LIKELIHOOD AND LOG LIKELIHOOD 

 We represent a probability density function that depends on some parameters by 

p(x|Ω), where Ω represents a vector of various parameters in p(x). For now, let us say 

that p(x) depends only on one parameter, ω, also let us say that we observe one value for 

variable x, x = x1. If we decide to select ω such that it maximizes the probability of 

observing x1, it is called maximum likelihood. However, if we have n distinct 

observations for x, we can calculate the likelihood p(Data| Ω) as shown in equation A.1. 

                                                                          A.1 

Here, we select an Ω to maximize p(Data| Ω).  However, in sometimes in practice 

causes underflow, so we computer the log-likelihood as in equation A.2. 

                                                                          A.2 
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Where N is the number of observations.  Finally, we maximize the log-likelihood instead 

(Petrou, 2006). 

 

A.2    PRIOR AND POSTERIOR PROBABILITY DISTRIBUTIONS 

 In Bayesian statistics prior probability distribution (prior), refers to the probability 

distribution before taking into account any evidence. However, posterior probability 

distribution is the conditional probability distribution after taking into account the 

evidence (Prior probability 2016, Posterior probability 2016). 

 

A.3    LINEAR COMBINATION 

 Linear combination is the sum of multiplications of terms by constants.  For 

example given terms x and y and constants a and b, the linear combination would be ax + 

by.  Here is a more precise definition from Wikipedia: 

 Suppose that K is a field (for example, the real numbers) and V is a vector space 

 over K. As usual, we call elements of V vectors and call elements of K scalars. If 

 v1,...,vn are vectors and a1,...,an are scalars, then the linear combination of those 

 vectors with those scalars as coefficients is

  

(Linear combination, 2015). 

 

https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Scalar_%28mathematics%29
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A.4    DISCRETE AND CONTINUES VARIABLES 

 Discrete variables are variables that can only take discrete or distinct values, such 

as 0 or 1. However, they cannot take all values between 0 and 1.  On the other hand, 

continuous variables are variables that if they can take two distinct values say a and b, 

they can also take all the values between a and b. Their value set, from a to b, is 

uncountable, it is ongoing. Therefore, they are called continues (Continues, 2015). 

 

A.5    STANDARD DEVIATION AND VARIANCE 

 In probability and statistics, standard deviation is used to measure the variation of 

a given set of data.  In other words, given the set of data, standard deviation tells us how 

close to each other or how apart from each other they are. When standard deviation is 

small the data are closer to each other, closer to the mean; greater the standard deviation 

more variant data we have.  If a discrete random variable has random values such as x1, 

x2, ..., xn with equal probability, then standard deviation can be calculated as shown in 

equation A.3. 

         A.3 

This can also be written using sigma notation as in equation A.4. 

                                                               A.4 
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Likewise for continues random variables standard deviation can be calculated as shown 

in equation A.5. 

                                                           A.5 

Here, the limits of the integral are set from the lowest possible value of x to the highest 

possible value of x.  It is also important to notice that in addition to measuring the 

variation of random variables, standard deviation can also be used to measure the 

confidence of given conclusions to statistical measures (Standard, 2016). 

 Likewise, variance is a measure of how different the given data are. It is equals to 

the standard deviation squared.  For discrete random variables, if the random variables 

are not equally likely then standard deviation can be written as in equation A.6. 

                                                                                                 A.6 

 is the mean or expected value and it is equals to : 

                                                                                                                    A.7 

Likewise for continues variables, standard deviation is calculated as follows: 

                                                          A.8 

And 
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                                                                                                               A.9   

 (Variance, 2016). 

 

A.6    BAYES' THEOREM AND NAIVE BAYES CLASSIFIER OR BAYESIAN 

CLASSIFIER 

 Bayes' theorem is used to find conditional probability of an event given certain 

conditions.  Mathematically Bayes' theorem is expressed as shown in equation A.10. 

                                                                                              A.10 

P(A) and P(B) are probabilities of two independent events A and B respectively.   

P(A|B) is the conditional probability of A given condition B is met.  

P(B|A) is the conditional probability of B given condition A is met. 

And of course, P(B) cannot be zero (Bayes, 2016). 

 Naive Bayes classifiers, also known as Bayesian classifiers in computer science 

are probabilistic classifiers based on Bayes' theorem. Classifiers are methods used to 

assign classes to different problem instances.  Each classifier can be trained using 

different algorithms and there is always a finite number of classes.  Given n features, or 

independent variables, for a problem instance, represented by X = (x1, x2,...,xn), the Naive 

Bayes as a conditional probability model assign probabilities for each of the possible 

class outcomes as shown in equation A.11. 
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                                                                                                      A.11 

However, if the number of features is large or if the number of the values each feature 

can have is high, assigning the probabilities becomes hard to achieve. Therefore, Bayes' 

theorem is used and it takes the following form: 

                                                                                             A.12 

This can be expressed in more simple terms to understand as follows: 

                                                                                   A.13 

Naive Bayes' classifier has wide range of uses including text classification and retrieval 

(Naive, 2016). 

 

A.7    BINOMIAL DISTRIBUTION 

 Binomial distribution is a discrete probability distribution. It shows the 

probability of outcome for n experiments. Each one of which has two possible outcomes, 

such as yes or no, with equal probability p. Binomial distribution is used to module cases 

when a small number of samples are experimented out of a much larger data set.  The 

probability of getting true k times within n experiments for a random variable x, in 

binominal distribution, can be calculated using equation A.14. 

                                                        A.14 
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for k = 0, 1,2, ..., n and 

                                                                                                       A.15 

this is knows as binomial coefficient, from which the name of binomial distribution 

comes. Wikipedia interprets the formula as: "we want exactly k successes (pk) and n − k 

failures (1 − p)n − k. However, the k successes can occur anywhere among the n trials, 

and there are different ways of distributing k successes in a sequence of n trials" 

(Binomial, 2016). 

 

A.8    GAUSSIAN DISTRIBUTION AND MULTIVARIATE GAUSSIAN 

DISTRIBUTION 

 Gaussian distribution, also known as normal distribution, is a probability 

distribution for continuous random variables whose probability density function is the 

following: 

                                                                                    A.16 

Note that: 

 represents the mean 

 represents the standard deviation  

 represents variance 
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The shape of the Gaussian distribution is a bell shape, which means that most values are 

relatively close to the mean. Smaller the standard deviation, the values are close the 

mean. Because of its shape, Gaussian distribution is sometimes called "the bell carve" but 

that can be misleading because there are other distributions that have bell shapes. In 

probability theory, the Gaussian distribution  is considered as a very important 

distribution of continuous variables because of its wide applicability.  Gaussian or normal 

distribution is often used to represent values of random variables with unknown 

distributions, both in natural and social sciences (Normal, 2016). 

 In addition, multivariate Gaussian distribution or multivariate normal distribution 

is a generalization of the Gaussian distribution from one dimension to a higher number of 

dimensions. If every linear combination of k-components of a random vector has 

Gaussian distribution then the vector has a k-variant Gaussian distribution (Multivariate, 

2016). 

 

A.9    GIBBS DISTRIBUTION AND GIBBS RANDOM FIELD 

 Gibbs distribution is defined as "a function that specifies, in terms of clique 

potentials, the joint probability density function of a particular combination X of values 

to exist over the whole grid." The general form of Gibbs distribution is as follows: 

     A.17 
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here ck is the number of cells or pixels in a given clique of type k, xij is the value of ijth 

pixel or cell in the given clique (see section about clique below), and Uk(xi1xi2...xick) is the 

clique potential (see section about clique potential below) of type k.  However, Z is the 

normalizing constant, also known as partition function which is used to make p(X) a 

probability density function. In other words the sum of all possible combination of X 

values is equals to 1 and the value for any given combination is between 0 and 1 

inclusively (Petrou, 2006). However, Gibbs random filed is a random field that follows 

Gibbs distribution (Li, 2009). 
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