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Abstract 

Globally, amphibian species are experiencing declines at an alarming rate largely 

due to habitat loss, disease and climate change. Species with limited ranges are at an 

elevated risk of a significant decline in population numbers and extinction because 

of the inability to avoid and recover from these impacts. Long-term management 

plans are critical for conservation of species with small ranges; however, the 

knowledge required to develop effective plans is absent from the literature for many 

species. One such species is the Pigeon Mountain Salamander. The distribution of 

the Pigeon Mountain Salamander, Plethodon petraeus, is restricted to roughly 17 

kilometers along the eastern flank of Pigeon Mountain in northwest Georgia. 

Consequently, P. petraeus is highly vulnerable to the impacts associated with 

amphibian declines, a fact that placed the salamander on the list of rare and 

protected species in Georgia. The distribution of P. petraeus is highly correlated with 

patchily distributed rocky outcrops, which provides an efficient management target. 

However, the development of an effective, long-term management plan requires an 

understanding of genetic population structure, gene flow, and habitat use patterns. 

Robust design mark-recapture methods and population genetics with cross-

amplified microsatellites were used to further our knowledge of how this species is 

distributed. Mark recapture results indicated high site fidelity of recaptured 

salamanders and abundance estimates (average number of total salamander 

abundance in a single plot, 57.8) within two 25 x 25 meter study areas. Population 

genetic results revealed four distinct populations across the known range of P. 

petraeus and significant isolation by distance genetic structuring.  
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CHAPTER 1 

INTRODUCTION 

Study Organism   

360 million years ago the ancestors of modern amphibians first evolved. This 

ancient group of vertebrates reached their peak diversity around 200 million years 

ago (Petranka 2010). Today there are over 4600 known species of classified 

amphibians including frogs, caecilians, and salamanders. Around 10% of this total is 

made up of species of salamanders, and the region in the world with the greatest 

diversity of salamander is the southeastern United States. Seven families, 19 genera, 

and over 75 species are represented (Petranka 1998). To date, Georgia is known to 

be home to a total of 57 species (Jensen et al. 2008). Two of these are endemic to the 

state- Plethodon savannah, commonly known as the Savannah Slimy Salamander, 

and P. petraeus, commonly known as the Pigeon Mountain Salamander. 

 

P. petraeus is a recently discovered species. The first specimen was documented 

from Pettijohn Cave in 1972 by Carol Ruckdeschel of Georgia DNR (Jensen et al. 

2002) The new species was later described in 1986 (Wynn et al. 1988). The species 

is a large Plethodontid salamander that is fully terrestrial. Individuals are easily 

distinguished from other salamanders within their range due to distinct toes and 

feet, elongated legs and dorsal coloration. Specifically, the fourth toe on the front 
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feet and the fifth toe on the hind feet are longer than in species of similar size and 

are distinctive webbing is present between all digits (Wynn et al. 1988). The 

coloration of Pigeon Mountain Salamanders is black with an irregular reddish 

brown dorsal pattern that extends the length of the body. White iradospore spots or 

brassy flecks are often common along the body. Recent molecular phylogenetic 

studies indicate that P. petraeus falls within the Plethodon glutinosus group of 

salamanders (Highton et al. 2012). 

 

Since its discovery, the salamander has been documented in 11 locations within its 

highly restricted range (John Jensen, personal correspondence). All of the known 

locations of the species are caves, outcrops, and rocky areas on eastern slopes of 

Pigeon Mountain in Walker and Chattooga counties in northwest Georgia (Jensen et 

al. 2002; Wynn et al. 1988). The specific scientific name, petraeus, is Greek meaning 

among rocks or rock dwelling and was chosen for this species based on its affinity for 

these locations. This habitat provides sufficient moisture year round for survival and 

reproduction but is not continuous throughout its small range, resulting in a patchy 

distribution of the species (Jensen et al. 2002). As a lungless, terrestrial salamander, 

the species requires damp microenvironments such as rock crevices provide to 

maintain moist skin for gas exchange. Based on the brooding preferences of members 

of the closely related slimy salamander complex and other crevice dwelling species, 

it is presumed that the P. petraeus females lay egg clutches within caves and rock 

crevices. No clutch has been seen in the wild, but in 2014 a female P. petraeus in 
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captivity at the Toledo Zoo laid a small clutch of eggs in part of an enclosure that is 

blacked out and always dark. Although possibly an artifact of captivity, they were laid 

right at the water's edge, with some of the eggs actually resting in the water. It is 

uncommon for Plethodon species to lay eggs in water (Petranka 2010). The female 

tended them for a day or two before abandoning the non-viable eggs (Tim Herman, 

personal correspondence).  

 

Even though it is a rare species based on its limited distribution, P. petraeus is 

abundant where it is found and even outnumbers sympatric salamanders at some 

locations (Jensen 2000; Jensen et al. 2002; Wynn et al. 1988). Finding individuals 

foraging on the forest floor is rare and only observed during or after a recent rainfall 

when the leaf litter is wet (Jensen et al. 2002, personal observation). Due to the 

generally low dispersal rate of terrestrial salamanders (Ousterhout & Liebgold 

2010; Liebgold et al. 2011) it is possible that P. petraeus does not exist as a 

continuous, connected population throughout its range. Gene flow between habitats 

could be limited not only by distance between the patchily distributed habitats but 

by competition with a sympatric species. The Northern Slimy Salamander, Plethodon 

glutinosus, is distributed widely on the forest floor but is a poor climber compared 

to the Pigeon Mountain Salamander (Marshall et al. 2004). When the leaf litter dries, 

the competition for refuge under cover objects such as rocks and logs where 

moisture levels remain high would increase. The more aggressive P. glutinosus has 

been shown to win territory disputes and evict P. petraeus individuals from cover 
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objects in a laboratory study. The absence of available cover objects for P. petraeus 

to use during movements across the forest floor could effectively interrupt 

movement between distant patches (Marshall et al. 2004).   

Study Area 

 

The study area was located on Pigeon Mountain at approximately N 34° 39’ 41” W 

85° 21’ 17” in Walker and Chattooga counties in Northwest Georgia, USA. The 

mountain is the southernmost extension of the Cumberland Plateau into Georgia. 

The Cumberland Plateau is characterized by karst geology, and Pigeon Mountain has 

numerous cave entrances and extensive sandstone and limestone outcroppings. A 

mesic deciduous forest composed primarily of oak and hickory trees covers the 

majority of the landscape. The mountain is within the boundary of the 20,657 acre 

Crockford-Pigeon Mountain Wildlife Management Area (CMWMA). It is well known 

by recreationists and naturalists for its cave systems and several rare species of 

flora and fauna, including the Pigeon Mountain Salamander. All known locations of 

P. petraeus exist in or around this Wildlife Management Area (WMA). All sites to be 

included in this study are found within the WMA other than the most recently 

discovered location. This site is the most southern known location and is on a 

private land track accessible through an agreement with the landowners and The 

Nature Conservancy of Georgia (TNC). 
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The habitat that P. petraeus can be found occupying tends to be limestone or 

sandstone outcrops and other rock formations, including caves and cliffs. During 

and after rain P. petraeus individuals are commonly found on the forest floor in 

areas where boulders and rocks are scattered. 

 

Integration of the Thesis 

 

Globally, amphibian species are experiencing declines at an alarming rate (Houlahan 

et al. 2000; Grant et al. 2016; Mendelson et al. 2006) largely due to habitat loss, 

disease, and climate change (Stuart et al. 2004). Species with limited ranges are at 

an elevated risk of a significant decline in population numbers and extinction 

because of the inability to avoid and recover from these impacts (Bayer et al. 2012). 

Long-term management plans are critical for conservation of species with small 

ranges; however, the knowledge required to develop effective plans is absent from 

the literature for many species. The Pigeon Mountain Salamander has one of the 

smallest ranges of any terrestrial vertebrate in North America. Consequently, P. 

petraeus is highly vulnerable to the impacts associated with amphibian declines, a 

fact that placed the salamander on the list of rare and protected species in Georgia. 

The distribution of P. petraeus is highly correlated with patchily distributed rocky 

outcrops, which provides an efficient management target. However, the 

development of an effective, long-term management plan requires an understanding 

of natural history and population genetics.  
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It is not difficult to see how the goals of integrated biology can be applied to the 

conservation of rare and endangered species. Conservation biology and the applied 

field of resource management face a multitude of hurdles, beginning with research 

that could lead to policy and lawmaking at state and federal levels. Incorporating 

many disciplines across biology and those relevant outside science, including 

economic, education and government policy, is necessary due to the complexity of 

conservation issues. The inherently integrated nature of conservation makes this 

project suitable research to complete for a Master’s of Science in Integrated Biology. 

Here we present research that uses methods within the fields of ecology and 

population genetics to advance the scientific knowledge of P. petraeus for the 

purpose of conservation.  

Objectives 

 

Due to the limited range of Pigeon Mountain Salamanders this rare species is more 

vulnerable to perturbations in its environment. Although studies have investigated 

several different aspects of this species’ life history, much is still unknown about the 

species, and further research will benefit its conservation.  The goal of this study is 

to delineate the genetic structure and diversity of P. petraeus using genomic DNA 

profiles and establish a mark recapture study to estimate local population size and 

monitor contemporary movement patterns within a selected location. To achieve 

these goals we: a) identify polymorphic microsatellite markers for P. petraeus via 

cross amplification, b) determine the genetic structure of P. petraeus with genomic 
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DNA profiles from polymorphic microsatellite loci to delineate population structure 

and c) investigate species abundance and dispersal by establishing a mark recapture 

program using Visual Implant Elastomer (VIE) tag methods. Based on the current 

scientific record about P. petraeus and the results of population genetics studies of 

other Plethodon species, we predict that genetic structure exists within the range of 

the species. The outcome of this project is significant for the conservation of this 

rare endemic species and will contribute to future management planning. 
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CHAPTER 2 

Visual Implant Elastomer (VIE) Tagging Trial in a large terrestrial salamander, 

Plethodon glutinosus. 

Introduction 

Mark-recapture studies allow researchers to monitor a species of interest and 

estimate population level trends such as abundance and survivorship. Effectively 

marking individuals is necessary for the success of any mark-recapture study. 

Visible Implant Elastomer (VIE) tags, originally developed to tag fish (Northwest 

Marine Technology Inc., Shaw Island, Washington), are now used to mark a number 

of small animals including salamanders in the genus Plethodon (Heemeyer & 

Homyack 2007). VIE tags are often favored over other marking techniques because 

the are easily readable, have minimal or no negative impact on species’ health or 

survival, and are durable.  

 

Non-invasive mark-recapture techniques are important in conservation work, 

especially when working with threatened and endangered species. The use of VIE 

marking is an effective and less invasive alternative to toe clipping amphibians 

(Sapsford et al. 2014). This technique was judged too invasive for use in P. petraeus 

due to this species’ specialized toes. Their elongated toes and broadened toe pads, 

compared to other terrestrial salamanders in the genus Plethodon, may facilitate 
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climbing and foraging within the crevices of rock where they are commonly found 

(Wynn et al. 1988).  

Prior to utilizing VIE tags in P. petraeus, a preliminary study of tag retention and 

visibility was conducted using captive Northern Slimy Salamanders, Plethodon 

glutinosus. This species was selected as model because it is common in Georgia and 

similar in size and coloration. Adults of both species have darkly pigmented 

coloration that can make VIE tag detection difficult.  

 

The objectives of this study were to a) assess the retention of VIE tags in juvenile 

and adult Northern Slimy Salamanders, b) compare the tag readability in adults 

across time, three colors and three tagging locations. Results were used to 

determine if VIE tagging might be a viable technique for marking related species, 

notably Plethodon petraeus.  

 

Methods 

 

Collection and Animal Care 

 

Northern Slimy Salamanders were collected in October 2015 and housed at 

Kennesaw State University, Kennesaw, Georgia, USA through April 2016.  We hand 
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captured 15 juvenile (SVL < 40 mm) and 19 adult salamanders in the Crockford-

Pigeon Mountain Wildlife Management Area, Walker County, Georgia. Prior to 

tagging, individuals were weighed and measured (SVL) and assigned an 

identification number (1 to 25). Within age categories, juvenile or adult 

salamanders were randomly assigned one of three dorsal tag placement patterns. 

Six ventral tagging locations were utilized, one tag on each side of the body at the 

anterior body location, posterior body location, and at the base of the tail on either 

side of the cloaca (Fig 1.) Three tag placement patterns were applied by rotating 

colors at tagging locations so replicate tags of each color at each location were 

present (Fig. 2).  

 

Salamanders were individually housed in Sterlite 6Q plastic containers with a 

dampened paper towel and Zoomed moss as substrate. Enclosures were kept on 

shelves in a temperature-controlled room held between 14-17 degrees Celsius. 

Enclosures were cleaned on a biweekly schedule. 1-2 crickets were offered as food 

by adding them to salamander enclosures for 24 hours once a week. Uneaten 

crickets were removed after the allotted foraging time.  

 

The enclosures were closed with the plastic lid that came with the containers; 

however, within the first week of the experiment, this was found to be an 

inadequate method for keeping in juvenile and even small adult salamanders. The 

slightest gap between the lid and the rim of the enclosure created an opportunity for 
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salamanders to escape. Further losses were minimized by wrapping rubber bands 

around the containers and lids to decrease the chance of space for a salamander to 

squeeze between the two. This prevented further escapes by adults but not 

juveniles. To prevent more juveniles from escaping, they were transferred to empty 

pipette tip boxes, roughly 9 cm x 5 cm enclosures. The lids of these containers 

overlapped with their the walls preventing further escapes but did not have a tight 

seal so air could still enter. This change prevented further losses of juvenile 

salamanders from the study. In total, two juveniles and five adults escaped over the 

course of the study, so sample sizes are smaller in later time periods.  

 

VIE Tagging and Monitoring 

 

One researcher (KCD) injected VIE tags using a 1 cc insulin syringe in the six 

locations underneath under the ventral dermis of each salamander (Fig 1). Exact 

placements varied slightly due to the amount of the elastomer injected and the size 

of the salamander. Adults and juveniles were anaesthetized prior to injections in a 

concentration of 500 mg/L or 250mg/L of Tricaine methanesulfonate (MS-222) in 

de-chlorinated water, respectively.   To achieve a neutral pH so not to irritate the 

salamander’s skin, the solution was buffered with sodium bicarbonate (Osbourn et 

al. 2011). Salamanders were placed in the anesthetic bath until unresponsive to 

gentle prodding and unable to right themselves when placed on their backs. Once 

tagged, salamanders were placed in water baths to recover from the anesthetic.  
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Tag visibility under UV light was first recorded immediately after the tags were 

placed and then weekly for the first month.  After a month with no tag loss the 

monitoring schedule was changed to once a month to reduce the amount of handling 

stress on the salamanders. The visibility of VIE tags was assessed based on their 

difficulty to read using the 1- 4 scale as described in Heemeyer et al. (2007). A score 

of 4 indicated a tag that could be “easily read” by the observer under UV light with 

no manipulation of the salamander’s body.  On this scale tag visibility decreases 

from 4 to an “absent” or not visible tag represented by a score of 1. Three separate 

researchers who had been trained to observe VIE tags recorded results over the 

course of the study.  

 

Data Analysis 

 

We examined the effects of age cohort and time on tag visibility across months. The 

first measurement taken after tagging was used in analysis to represent the first 

monitoring period since multiple reading were taken during this month. Due to a 

significant difference in tag readability between age cohorts, we examined the 

outcome of VIE color, tag placement, and time interactions within tagged adults. The 

Kruskal-Wallis test, which is a non-parametric alternative to the One-Way ANOVA 

test that follows the assumption of normality of the residuals, was used for in the 
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analysis because of the numbered ordinal nature of the tag visibility. Although the 

data could not fit the parametric assumption of normality for ANOVA, it has been 

suggested that parametric tests can be a valid approximation of trends. We also 

preformed a one-way repeated-measure ANOVA on the ranked data (Conover 

1999). Results were compared to the non-parametric analysis for similarities of 

results. For each analysis a p-value of < 0.05 was considered significant.  

 

Results   

 

After of results between the parametric and non-parametric tests closely fit each 

other. The results presented are from the parametric version of the analysis. The 

mean visibility of tags was greater in juveniles than adults (Average diff. = 0.290, p = 

0.035) (Fig. 3). There was not a significant difference between mean tag visibility 

when comparing the start and the end of the study within age categories (juveniles, 

p = 0.501, adults, p = 0.421) (Fig. 4). Migration of VIE marks occurred in only two 

juvenile salamanders (13% of individuals and less than 1% of placed tags). The 

movement that occurred was from anterior body tagging locations. The tags were 

still visible but had moved to the posterior body position on the same side as the 

placement.   
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For the analysis of adult marked salamanders, the influence of color and tag 

placement was investigated. There was no difference in the mean readability of tags 

between color (p =0.532) and location (p = 0.059) (Fig 5 and 6). However, there was 

a significant difference in orange tag readability between initial and final monitoring 

periods (Red; p = 0.758, Yellow; p = 0.078, Orange; p = 0.001).    Tail average 

readability was the only parameter that actually increased over the course of the 

study but the difference was not significant.  

 

The visibility of tags varied with the interaction of color and tag location. The three 

VIE colors significantly differed within tagging locations (Anterior; p < 0.001, 

Posterior; p < 0.001, Tail; p < 0.001) and each single color was significantly different 

across each tagging location (Red; p = 0.005, Yellow; p < 0.001, Orange; p < 0.001) 

(Fig.  7).  

  

Discussion 

The results of our experiment suggest that VIE tags are appropriate for use in P. 

glutinosus for up to six months and therefore may be viable in other large terrestrial 

woodland salamanders within the slimy salamander phylogenetic complex.  It is 

possible, however, that tag movement may increase in field experiments. The 

salamanders used in the study did not have the opportunity to move as they may 

have if they had been returned to their location of capture after tagging.  Species 
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within the genus Plethodon can be found in a variety of habitats and may burrow 

underground, climb vegetation or rocks, and squeeze into crevices or under cover 

objects. The movement of a salamander through its natural habitat may put 

pressure on tags causing them to migrate that was not replicated in captivity. 

 

Tags placed in adults were less visible than tags in juvenile salamander (Fig.3).  The 

darker ventral pigmentation of adults made detection more difficult. However, the 

mean tag readability never dropped below a measure of 3, easily visible under VI 

light. Overall readability of tags regardless of color or tagging position did not 

change significantly over the course of the study within juvenile or adult groups 

(Fig. 4). Despite the finding that VIE colors varied significantly within and across 

tagging locations, no clear pattern of a single more visible color or easier read 

tagging location was identified. The variation that is present might be due to 

researchers experience and consistency with VIE tag placement.  The researcher 

who injected the salamanders for the study had moderate experience with the 

technique (< 100 salamanders previously tagged) so these results could be 

comparable to a biologist who has been previously introduced to method but is still 

becoming proficient.  

 

Tags were easier to see in juveniles due to lightly pigmented ventral dermis. 

However, tag movement only occurred in juveniles.   If juvenile terrestrial 

salamanders are to be included in a mark-recapture study, researchers should take 
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this into consideration. Extra effort could be taken to design a coding system that 

would make the identification of moved tags easily recognizable. For instance, the 

number of VIE tags used per individual could be kept constant. Also, the insertion of 

two tags at the same location could be avoided in juveniles. If two tags are visible at 

the same location it would be obvious one had become displaced.   

 

If there is concern about tag migration, preferential usage of the tail location for 

tagging could be considered.  The risk of inserting a tag too deep under the skin and 

into the body cavity is not present when tagging into the muscle at the base of the 

tail. However, the long-term results of visibility and retention of tags placed at this 

location should be investigated in juveniles and adults.  Future research should also 

monitor the readability and retention of tags in juveniles as they grow into adults 

and their ventral dermis darkens. Also, tags placed in juveniles tended to be much 

smaller than those placed in adults. This could result in a decrease in detection 

ability as they grow. 

 

Overall, this study offered additional support for the use of florescent colored VIE 

tags in the genus Plethodon and their success in juvenile salamanders and 

individuals with dark pigmentation. These results are similar to other studies that 

investigated the retention rates and visibility of marks.  For example, when the same 

colors were used to tag Redbacked Salamanders over the course of a year the 

average readability stayed consistent over time and stayed within a readability 
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score between 3-4 (Heemeyer & Homyack 2007). VIE tags have also been shown to 

be less detrimental than toe clipping of terrestrial salamanders to create unique 

patterns used for identification (Perry et al. 2011; Johnson et al. 2009). In a field 

trial, recaptured Western Red-backed Salamanders that had had toes clipped had 

gained significantly less weight than recaptured VIE tagged salamanders, suggesting 

toe clipping interfered with foraging behavior (David and Ovaska, 2001).  Despite 

the potential draw backs of VIE tagging, including a risk of loss of tags or migration, 

relatively extensive handling time of salamanders for tags to be placed (5+ minutes 

per individual including anesthesia) and costs associated with the purchase of VIE 

materials, this technique has been shown to be a effective when it is necessary to 

identify individuals within a population. 
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CHAPTER TWO FIGURES AND TABLES 

 

 

 

a. b.  c.  

Figure 1. Six ventral tagging locations. 
Anterior tags (1 & 2) were placed behind 
front legs. Posterior tags (3 & 6) were 
placed in front of hind legs. Tail tags (4 & 
5) were placed on either side of the 
cloaca at the base of the tail.  
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Figure 2. Tagged juvenile salamanders. The three tagging arrangements are represented on the three individuals, from 
anterior to tail tagging locations, a. yellow-orange-red, b. orange-red-yellow, c. red-yellow-orange.   
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Chapter 2: Figures cont… 
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Figure 3. Readability of VIE marks. Readability of VIE 
marks was greater in marked juveniles (dark circles) 
than adults (open circles). Readability ranged from 1 
(mark absent) to 4 (mark easily under florescent light).  
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Chapter 2: Figures cont… 
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Figure 4. Readability of all VIE marks in P. glutinosus adults and 
juveniles compared from the beginning of the study to six months 
post placement. There was not a significant difference between 
mean tag readability between the first and last observations made 
for either juveniles or adults. Readability ranged from 1 (mark 
absent) to 4 (mark easily under florescent light).  
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Chapter 2: Figures cont… 

 

 

 

 

 

 

Change in Tag Color Readability in Adults 

Figure 5. Readability of three different florescent colored VIE marks in P. glutinosus adults observed up to six months 
post-tagging. There was not a significant difference between mean tag readability of the three colors. Readability ranged 
from 1 (mark absent) to 4 (mark easily under florescent light).  
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Chapter 2: Figures cont… 

 

 

 

 

Figure 6. Readability of VIE marks in P. glutinosus adults at three tagging locations observed up to up to six months post-
tagging. There was not a significant difference between mean tag readability of the three colors. Readability ranged from 
1 (mark absent) to 4 (mark easily under florescent light).  
   

Change in Tag Position Readability in Adults 
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Chapter 2: Figures cont… 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

Anterior Posterior Tail

M
e

a
n

 R
e

a
d

a
b

il
ty

, S
.E

Effects of Tag Color and 
Placement on Visibility 

Red

Yellow

Orange

Figure 7. Readability of three florescent colors used for VIE tags 
placed at three tagging locations in P. glutinosus adults at month six. 
Within tagging locations, the three colors are significantly different. 
The same colors across all tagging locations are also significantly 
different. Despite this variation, no clear pattern regarding a less 
visible color or less effective tagging location was obvious. Readability 
ranged from 1 (mark absent) to 4 (mark easily under florescent light).  
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CHAPTER 3 
 

Mark-Recapture Monitoring of Terrestrial Salamanders within the Crockford-
Pigeon Mountain Wildlife Management Area. 

 
Introduction 
 

Global amphibian populations are declining at an alarmingly high rate 

(Houlahan et al. 2000; Mendelson et al. 2006). In North America, amphibians are 

experiencing declines individuals from metapoplations at an estimated rate of 

3.79% annually (Grant et al. 2016). Establishing monitoring programs for at risk 

species should be a priority to detect decreases in populations and identify 

underlying causes. Although often time consuming and difficult for cryptic 

amphibian species, estimating population size should be a goal for monitoring 

projects. This basic quantitative measure is often required for the conservation 

planning of rare, threatened and endangered species. Effective monitoring can allow 

managers to appropriately implement recovery plans and monitor the long-term 

effects on the population (Seber 1986; Williams et al. 2002). However, many 

amphibian-monitoring studies focus on species detection and richness. Accurate 

estimates of population size and structure, such as age and sex, before a population 

is impacted could be valuable knowledge for conservationists and provide 

benchmarks for management plans. Also, long-term monitoring could detect early 

declines in a population allowing managers to respond quickly to a conservation 

need (Bell et al. 2004).  

 

The southeastern United States is considered a “hotspot” of salamander diversity. 

Many of the species of salamander that make up this biodiversity are terrestrial 
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woodland salamanders. These species tend to have direct development (without a 

larval stage), have lower fecundity when compared to other amphibians, are slow to 

mature, and are relatively long lived (Petranka 2010). These life history traits, 

combined with their sensitive permeable skin that is used for both respiration and 

osmogrulation, make them susceptible to environmental perturbations. This makes 

them excellent bio-indicators of habitat quality but also particularly vulnerable to 

population declines (Welsh & Droege 2001). Across the southeast, several species of 

salamander are protected at the state and federal level.  

 

The Pigeon Mountain Salamander, P. petraeus, is one of these species of 

conservation concern and protected by the state of Georgia due to its small range 

(<20 km distribution). This large terrestrial species is known to be abundant at 

several locations across its small range but only has been found along the southeast-

facing slope of the southernmost extension of the Cumberland Plateau into 

Northwest Georgia. A habitat preference has clearly been established in the 

literature and even in the species chosen Latin name, petraeus, meaning ‘among the 

rocks’. Due to the patchy availability of rocky habitats throughout its range, the 

interconnectedness of populations depends on the species dispersal capability. A 

more complete understanding of how the species utilizes the rocky environment it 

inhabits and the full extent of its abundance would be useful when considering long 

term management and conservation goals.  

 
 



 36 

Ongoing monitoring has taken place for P. petraeus within the openings of two caves 

the species is known to occupy (Camp & Jensen 2007). Population size estimates can 

be made with this type of data. However, estimates made from simple count data 

have been shown to be inaccurate, particularly when extrapolated across varying 

habitat types (Slade & Blair 2000). The Pigeon Mountain Salamander is found in a 

variety of habitats other than cave entrances such as cliff faces, outcrops, rocky 

ground cover, and woody debris. A comprehensive understanding of how this 

species is currently distributed across various habitats and its abundance at these 

locations will help in future conservation planning for this species.  

 

Accurate estimates of populations can be difficult for species that are semi-fossorial 

and therefore may be regularly unavailable for sampling. Plethodontid salamanders 

are notoriously cryptic and generally have low detection probabilities (Bailey et al. 

2004). Estimation of population parameters for terrestrial salamanders therefore 

requires intensive sampling designs. Due to the large proportion of salamanders 

unavailable for sampling at any given time an indirect method of estimating 

abundance needs to be implemented.  The prevailing sampling method used for 

estimating population abundance of salamanders is the robust design (Bailey et al. 

2004b). This capture-recapture method involves a combination of both open and 

closed models, with sampling over both long term (open) and short term (closed) 

time frames, also referred to as primary and secondary sampling periods 

respectively (Pollock 1982) (Table 1).  
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This method has been demonstrated to be the most flexible approach and provides 

more precise estimates of population density than traditional count methods (Bailey 

et al. 2004). Sampling between primary periods is assumed to be open. The concept 

of open time period refers to the possibility of salamander emigration and 

immigration to the survey area. Therefore, primary sampling periods for terrestrial 

salamander species can be separated by a few weeks, months, or even years. Across 

secondary sampling events within a primary period no movement from or to the 

study area is assumed.  For this assumption to be met for salamanders within the 

genus Plethodon, secondary sampling occasions are planned within one or two days 

of each other.  Therefore, capture and recapture probabilities can be assumed to be 

constant during secondary sampling periods and vary between primary periods 

(Kendall et al. 1997).   

 

Due to this sampling designs statistical strength, robust design mark recapture 

studies have been useful in furthering our understanding of terrestrial salamander 

ecology.   Not only is it effective at determining abundance, the robust design can be 

used to estimate other parameters including rates of temporary emigration and 

capture and recapture probabilities across age, sex, or other classes of interest 

(Bailey et al. 2004; Wen et al. 2013; Kendall et al. 1997). In regards to the Pigeon 

Mountain Salamander, a protected species of conservation concern, there is still 

much that is unknown about its life history and ecology. The application of not only 

an intensive mark recapture study but also one that utilizes the robust design has 
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the potential to greatly expand the knowledge of the species and inform 

management.   

 

Objectives 
 
 
We conducted a mark-recapture trial using a robust design sampling structure to 

investigate several species-specific population estimates for P. petraeus including 

abundance, capture probability, and movement.  Across all species, we also 

estimated total salamander abundance, capture probability, and made comparisons 

of microhabitat use.  

 
Methods 
 
 
Study Area 

Fieldwork was conducted during the Fall of 2015 and Spring 2016 within the 

Crockford-Pigeon Mountain Wildlife Management Area in Walker County, Georgia, 

USA. Two 25 x 25 meter plots were established approximately 25 meters apart on a 

NW-facing slope of a ravine (Fig. 1).  Plot 1 was established in 2015, and Plot 2 was 

added to the study in 2016. Each plot was divided into 25, 5 x 5 meter quadrants. 

The vegetation at the site was a mature mixed deciduous forest containing.  Across 

both plots the forest floor was covered with leaf litter, rocks, rock outcrops, and 

woody debris of various sizes from decaying entire trees to stumps, logs, branches, 

and bark. Notable differences in the terrain included a small drainage that ran 

through the center of Plot A. This remained dry most of the year except in the late 
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winter and immediately after heavy rain events. The survey area was selected based 

on known occurrences of P. petraeus from the location and the heterogeneity of the 

terrain. The mixture of ground cover is characteristic of the several terrestrial 

salamander microhabitats found on Pigeon Mountain.      

Search and capture techniques 

Nighttime searches for salamanders were conducted within study Plot 1 between 

October 15th and 28th in 2015 and within both Plots 1 and 2 between March 23rd and 

May 11th in 2016.  Primary periods were separated by a minimum of 10 days. Plot 1 

was searched a total of 11 secondary periods and Plot 2 was searched a total of 8 

secondary periods (Table 1). Due to the relatively small range of salamanders in the 

genus Plethodon, secondary sampling periods for their mark recapture studies tend 

to be three to four secondary events taking place within a week during the primary 

period (Bailey et al. 2004). 

Pigeon Mountain Salamanders were collected under a Georgia Natural Resources 

collection permit, 29-WJH-14-252. All salamander species were included in the 

study except Green salamanders, Aneides aeneus, another species protected by the 

state of Georgia. We did not have a collection permit for A. aeneus so we only 

recorded their presence when individuals were observed within a plot.    

Searches began 30 minutes to two hours after sunset and continued for 2-3 hours 

per plot depending on the number of salamanders available for capture that night. 

The plot that was surveyed first alternated every secondary sampling event. Prior to 

the start of each survey the ground, air and rock face temperatures were recorded 
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along with the weather conditions and observation of leaf litter being dry or wet. 

Approximately 5 minutes of searching was done within each 5 x 5 meter quadrant. 

This excluded time spent actively attempting to capture salamanders and record 

data. Salamanders were captured by hand and placed individually in plastic sample 

bags with a handful of leaf litter.  To minimize habitat disturbance, cover objects 

were not flipped in the search for salamanders. Only salamanders utilizing the forest 

floor or partially exposed in a burrow or rock crevice were available for capture. 

Salamanders visible in rock crevices were removed using twigs or chopsticks. If a 

salamander was observed with only its head protruding from a hole or burrow, an 

attempt to lure out the salamander was made by wiggling the end of thin stem of 

grass or leaf in front of its’ snout. This movement simulated the presence a prey 

item and would often prompt a feeding response making it possible to lure the 

salamander out of its burrow.  

 

The exact location of each captured salamander was marked with a labeled piece of 

flagging tape. Beginning in 2016, the capture locations were recorded using the 

distance and bearing of the flag to the southwest corner of the quadrant in which 

the capture occurred. Using this information, the distance between initial and 

subsequent recaptures could be calculated. At the time of capture, the habitat type 

the salamander was found utilizing (e.g. rock, forest floor, vegetation, woody debris) 

was recorded.  A chi-square test for independence was conducted to identify 

significance in habitat use difference between species.  
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Once surveys of plots were completed, salamanders were transported to the ranger 

station on the Wildlife Management Area and transferred to individual plastic 

containers (9 cm x 5 cm) that contained a piece of paper towel dampened with 

natural spring water. Salamanders were held between 12 to 24 hours before being 

returned to their location of capture. Any feces deposited by salamanders were 

collected and stored in 95% EtOH for future use in a DNA barcoding dietary analysis 

project.  

 

VIE tagging  

 

In order for a mark-recapture study to be successful, individuals within the research 

population must be able to be distinguished from one another. Captured animals 

were given unique codes with florescent Visual Implant Elastomer (VIE) tags 

(Northwest Marine Technology, Inc. Shaw Island, Washington, USA). Three colors, 

yellow, red and orange, were used as tags and were placed at six ventral locations, 

behind front legs, in front of the hind legs and at the base of tail, on either side of the 

cloaca. We assessed the retention rate of tags by keeping the number of tags per 

individual at a constant number of three. If an individual was observed with fewer 

than three marks, it was be clear that a tag had been lost.  
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Prior to tagging, the body mass of each salamander was measured to the nearest 0.1 

gram. Salamanders were anesthetized prior to injections in a solution of 500 mg/L 

or 250mg/L of Tricaine methanesulfonate (MS-222) and de-chlorinated water 

depending on their mass, less than 3 grams or greater than 3 grams respectively.   

To achieve a neutral pH so not to irritate the salamander’s skin (Grant 2008), the 

solution was buffered with sodium bicarbonate. Salamanders were placed in the 

anesthetic bath until unresponsive to gentle prodding and unable to right 

themselves when placed on their backs. While immobilized, snout-vent-length 

(SVL), sex (male, female or unknown), relative age (adult or juvenile, SVL > or < 45 

mm respectively for P. petraeus) and any distinguishing features (e.g., scars, bite 

marks, regenerating limbs or tail) of individuals were noted. Once tags were injected 

and observations made, salamanders were placed in water baths to recover from 

the anesthetic and returned to temporary enclosures.  

 

Abundance 

 

The primary goal of our mark-recapture analysis was to estimate abundance. Mark-

recapture data was analyzed using Program MARK, a mark-recapture program that 

can estimate parameters including population size using numerical maximum 

likelihood techniques (White & Burnham 1999). Due to a small data set, a general 

model with few parameters was utilized for data analysis.  We analyzed our robust 

design mark-recapture data using a random emigration model. This decision was 
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based on the results from previous model fitting studies for Plethodontid 

salamanders that used datasets spanning multiple years and thousands of 

individuals. This work consistently showed random emigration models being the 

best fit for woodland terrestrial salamander mark-recapture data (Bailey et al. 

2004). Random movement models equate the probability that an animal is 

unavailable for sampling and present during the previous primary period with the 

probability of being unavailable for sampling and absent during the previous 

primary period. A random temporary emigration model establishes that the chance 

of emigrating or immigrating is equal (Kendall et al. 1997). Under the constraints of 

this model, there would be equal chance an individual would be available or absent 

any given sampling period.  

 

For these analyses, our mark-recapture data was structured in multiple data sets. 

Estimates were generated for total salamander abundance (including all species 

except A. aeneus) and specifically for P. petraeus abundance. Estimates were then 

made for both plots and separately for plots one and two. Estimates of total 

salamander abundance and P. petraeus abundance for plot one are the only 

estimates that contain data from 2015 since the second plot was not added to the 

study until 2016.  We were unable to make species-specific estimates for other 

species due to low numbers of captures or recaptures.   
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Results 

 

Abundance  

 

A total of 98 salamanders were captured throughout the duration of the study from 

the two plots (Table 2.). This included three species within the genus Plethodon- P. 

petraeus, P. glutinosus, and P. ventralis- and two other species- E. lucifuga and A. 

aeneus (Table 2). In all, 93 salamanders were marked with VIE tags and 47 (20 

females, 11 males, 16 juveniles) of these were Pigeon Mountain Salamanders. 

Twelve (six females, two males and four juveniles) P. petraeus were recaptured; 

however, two individuals were recaptured twice, bringing the number of recapture 

events for the species to 14. Four other individuals were recaptured, including a 

juvenile Northern Slimy Salamander and three Cave Salamanders. Three P. petraeus 

(one female, one male, and one juvenile) were tagged in Fall 2015 and recaptured in 

Spring 2016.  

 

Captures were highest in Plot 1 during October 2015. Relative captures of P. 

petraeus were consistently higher than any other species except during the April 

primary periods when more P. glutinosus were captured (Fig. 2).  During each 

primary period there was at least a single secondary period that corresponded with 

a rain event and wet leaf litter. On these occasions, numbers of captures peaked (Fig 

3). Through time, captures of new, unmarked individuals did decrease. However, 

new individuals continued to be captured for the duration of the study. Also, the 
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trend of decreasing new individuals followed a general decrease in the total number 

of salamanders being captured in each primary period. The exception occurred in 

Plot 2 during the final primary period when more recaptured salamanders were 

sampled than unmarked ones (Fig 4 and 5).  

 

The random movement model was used to make several estimates of salamander 

abundance, including total salamander abundance and species-specific abundance 

for P. petraeus within and across the two study areas, Plot 1 and Plot 2. There was 

considerable variation in abundance estimates between plots and across primary 

sampling periods (Table 1 and 2). Salamander abundance estimates were 

consistently estimated to be lower in Plot 2. The April primary period in Plot 2 is 

notably low for both estimates of abundance. This was due to low capture and 

recapture numbers within April. There were zero P. petraeus recaptures during this 

primary period. Also, this primary only consisted of two secondary periods 

compared to the three within the other primary periods.  

 

Capture probability 

 

The inconsistency of recaptures also affected the estimates of capture probability 

(Fig. 6 and 7).  The majority of capture probabilities fell between 1% and 25% but 

the low abundance estimate and recaptures in the April primary period, 7th and 8th 

secondary periods, influenced the capture probability. This can be seen most 

notably in the capture probability estimates for Plot 2. Only three unmarked P. 
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petraeus salamanders were captured during this primary period, during the evening 

of the 7th secondary period. This caused the population estimate to be 3 individuals 

and resulted in a 100% capture probability for the 7th secondary period and a 0% 

capture probability on the 8th secondary period. The remaining capture 

probabilities are comparable with other terrestrial woodland salamanders. Similar 

species have encounter probabilities of 10% or less (Bailey et al. 2004).   

 

Habitat Preference 

 

Microhabitat use by species was not evenly distributed across habitat type. There 

was a significant difference in habitat use per species (Fig. 8). The three species that 

primarily utilized rock surfaces were one species of each genus represented in the 

study: P. petraeus, E. lucifuga, and A. aeneus. P. glutinosus and P. ventralis were 

routinely encountered on the forest floor.  

 

Movement of Plethodon petraeus 

 

12 Pigeon Mountain Salamanders were recaptured at least once during the study. 

Beginning in Spring 2016, we were able to precisely record the capture location of 

10 Pigeon Mountain Salamanders from March to April of 2016. Of these 10 

individuals, nine individuals were recaptured a single time and one (individual 6) 

was recaptured twice.  There was an average distance between capture locations of 

2.29 meters (Table 5). All 12 Pigeon Mountain Salamanders recaptured were found 
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within the same or adjacent 5 meter plot. The other recaptures, 3 Cave Salamanders 

and 1 Northern Slimy Salamander were also found within the same or adjacent plot.  

 
Discussion 
   
 
This study demonstrated the successful implementation of VIE tagging and a robust 

design mark recapture monitoring project of terrestrial salamander species on 

Pigeon Mountain.  Marked individuals were recaptured across secondary and 

primary sampling periods, including over winter. No recaptured salamanders had 

lost tags. Tag migration did occur almost immediately after tagging one juvenile P. 

glutinosus. However, this was noted before its release. We were successfully able to 

construct capture histories for 93 salamanders over an eight-month study.  

 

Abundance estimates for all salamanders tagged in 2016 within the two 25 x 25 

meter plots ranged from 51.6 - 159.8 individuals and 53.6 – 198.1 for P. petraeus-

specific estimates (Table 3). Due to difference in capture probability between 

species and the small sample size, comparisons of abundance between species could 

not be drawn. A larger sample size is needed to increase the accuracy of community 

and species abundance estimates.  However, average plot-specific estimates 

provided a more reasonable estimate and ratio of P. petraeus to other species (Plot 

1: 48.4 P. petraeus/80.6 total species, Plot 2: 16.3 P.petraeus/39.3 total species) 

(Table 4). These ratios suggest that, 60% and 41.5%, of the total salamander 

abundance consists of P. petraeus within Plot 1 and 2 respectively. This finding 

supports previous observations that P. petraeus often outnumbers others species in 
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locations were it is found.  Also, these estimates are comparable to abundance 

estimates for woodland salamanders made in the Great Smoky Mountain National 

Park using the robust design and equal capture probability model. Within two 15 x 

15 meters plots established in the National Park, Bailey (2004) detected total 

salamander abundances of 92 and 264 for all species present 

 

In addition to initial estimates of abundance, evidence was provided for species-

specific segregation across habitat type. The majority of P. glutinosus captures 

occurred on the forest floor. Notably, in similar rocky habitat not occupied by P. 

petraeus- the northwest facing slope of Pigeon Mountain for example- it is common 

to find slimy salamanders utilizing rock crevices. These observations add support to 

the hypothesis of interspecific competition between these two closely related 

species and habitat partitioning (Marshall et al. 2004).  Seemingly similar habitat 

partitioning has been documented within overlapping ranges of Red-back 

Salamander, Plethodon cinereus, and related species with much smaller ranges 

(Farallo & Miles 2016). Farallo and Miles hypothesized that this separation may 

limit hybridization and may have important implications regarding how climate 

change could influence microhabitats differently.  

 

Also, the first investigation into site fidelity and home range of Pigeon Mountain 

Salamanders was included as part of the mark recapture sampling. The average 

distance between captures and recapture locations was 2.29 meters (Table 5).  The 

results of this study are similar to the findings of other studies showing movement 
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and dispersal within the genus Plethodon is limited and species have strong site 

fidelity (Mathis 1991). However, this study contained few individuals and not 

enough data to investigate age or sex based dispersal differences or make 

comparisons across species about average home ranges. When capture numbers are 

relatively low and researchers are not managing hundreds of individuals per night, 

it is easy to record and precisely measure the exact location of captures and 

recaptures. Due to the significance of movement and dispersal to resource allocation 

and gene flow further studies should be undertaken to better understand 

Plethodontid salamander movement (Sinsch 2014). 

 

Natural History Notes 

Described as a crevice-dwelling salamander, climbing behavior in in this species is 

well documented on rocky outcrops, cliff faces, and cave entrances (Jensen et al. 

2002). Despite morphological adaptations for climbing and ample evidence of 

utilizing vertical exposed rock there have been no reports of individuals on trees. 

During a collection period, an adult P. petraeus was observed 45 cm above the 

ground on the side of a hardwood tree. During this encounter, the individual was 

seen consuming an ant, a large component of this species’ diet (Jensen 2000). 

Although it was not raining at the time of the observation, the location had received 

rainfall within the previous 24 hours. This observation adds to the increasing 

documentation of facultative use of vegetation by plethodontid salamanders for 

foraging (McEntire 2016).  
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Other notable observations during sampling periods included a Cave Salamander 

sharing a crevice with a green anole, Anolis carolinensis. Cave Salamanders and 

Pigeon Mountain Salamanders are frequently observed inhabiting the same rock 

crevices; however, this type of interspecific interaction had not been observed by 

the researcher before.  Also, although Green Salamanders and Pigeon Mountain 

Salamanders utilize similar habitat types and share similar morphological 

adaptations (broad toe pad, long limbs, dorso-ventrally flattened (Wynn et al. 1988) 

they are not observed on Pigeon Mountain in close proximity to one another. The 

first personal occurrence of this was observed when a neonate juvenile green 

salamander was found occupying a rock face roughly 20 centimeters away from an 

adult Pigeon Mountain Salamander.   

 

Conservation Implications 

 

The declines in amphibians observed in North America are not driven by any one 

cause but a combination of threats and the effect of stressors at regional scales 

(Grant et al. 2016). With the variability of threats such as disease, habitat alteration, 

and climate change and the inconsistency at which species respond, an emphasis 

should be placed on developing local conservation strategies.  Mark-recapture 

monitoring can be a valuable tool in identifying population changes and can help 

optimize conservation actions by bringing greater quantitative accuracy into the 

development and application of management plans.  
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From a management perspective, monitoring should be economically and 

logistically feasible. An annual robust design study with multiple sample sites would 

require a large amount of effort, time, and financial resources. The potential 

knowledge gained must be weighed against the overall cost of the study. In the case 

of this project, we had the opportunity to study not only the Pigeon Mountain 

Salamander but also several other species within the same plots.  Pigeon Mountain 

is an amphibian biodiversity hotspot for the state of Georgia and the southeast.  In 

total, 16 species of salamander are known from the mountain, five of which were 

commonly found utilizing the terrestrial habitats within mark-recapture plots that 

were established. These observations included two protected species, the Pigeon 

Mountain Salamander and Green Salamander. The potential for increasing our 

understanding of not only the Pigeon Mountain Salamander but community level 

population dynamics for multiple species is a great advantage of implementing of 

mark-recapture monitoring with a robust sampling design.  

 

Expansion of the study spatially and temporally would increase sample size and the 

ability to generate more accurate estimates of salamander abundance. Successful 

long-term mark-recapture studies with terrestrial woodland salamanders have 

included over a dozen similarly sized plots over several sampling years (Bailey et al. 

2004; Connette & Semlitsch 2013). Increasing the scale of the study, and therefore 

sample size, would allow for the opportunity to investigate survival rates and 

recapture probabilities along with other parameters of interest to managers, such as 
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age and sex specific parameters and habitat or environmental variables that 

influence detection.  
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CHAPTER THREE FIGURES AND TABLES 

 

 

 

 

 

 

 

500 m 

2 km 

 

Figure 1. Map of approximate location of mark recapture plots within the 
Crockford-Pigeon Wildlife Management Area.  
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Chapter 3: Figures cont… 

 

 

 

Figure 2. Summary of captured salamanders within the study plots by species. The majority of captures during each primary 

period were P. petraeus, except in Plot 2 during the April primary period.    
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Chapter 3: Figures cont… 

 

 

 

Figure 3. Summary of captured salamanders within the study plots by species. P. 

petraeus were captured during every secondary sampling period. Secondary 

sampling periods 3, 5, 7 and 9 corresponded with rain or wet leaf litter and 

significantly greater number of salamander captures. Secondary periods 1-3 took 

place only in Plot 1 during Fall 2015.   
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Chapter 3: Figures cont… 

 

 

 

Figure 4. Capture summary for all salamander species captured from Oct. 2015 to May 2016. Bars represent total numbers of 
salamanders captured, broken down into naive, unmarked individuals (black bars), recaptures from previous primary 
sampling intervals (grey bars), and recent recaptures within primary sampling intervals (open bars).  
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Chapter 3: Figures cont… 

 

 

 

Figure 5. Capture summary for Pigeon Mountain Salamanders captured from Oct. 2015 to May 2016. Bars represent total 

numbers of salamanders captured, broken down into naive, unmarked individuals (black bars), recaptures from previous 

primary sampling intervals (grey bars), and recent recaptures within primary sampling intervals (open bars).
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Chapter 3: Figures cont… 

 

 

 

Figure 6. Variations in capture probabilities for P. petraeus and total individuals 
captured from both Plots in 2016.  
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Chapter 3: Figures cont… 

 

 

 

 

Figure7. Variations in capture probabilities for P. petraeus and total individuals captured in Plot one from Oct. 2015 to May 
2016 and Plot 2 in 2016. 
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Chapter 3: Figures cont… 

 

 

 

 

Figure 8. Habitat use for captured salamander species Oct. 2015 to May 2016. Bars 

represent total numbers of salamanders captured, broken down into habitat type 

they were using at moment of capture, rock (black bars), wood or woody debris 

(grey bars), and ground or leaf litter (open bars).
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Chapter 3: Tables 
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Chapter 3: Tables cont… 
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Chapter 3: Tables cont… 
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Chapter 4 

Detection of Polymorphic Microsatellite Loci in The Pigeon Mountain 

Salamander, P. petraeus, by Cross-amplification of Microsatellites within the 

Slimy Salamander Group. 

Introduction 

The assessment of genetic structure, diversity, and gene flow are measures 

that are often considered by conservation biologists when developing or 

implementing conservation goals. There is often a need to investigate fine-scale 

genetic patterns across a species distribution to determine the genetic health of the 

population, identify unique populations that may require protection, and detect 

natural or anthropogenic barriers to gene flow, such as, rivers or roads respectively. 

Therefore, quickly evolving nuclear markers, such as microsatellite loci or single 

nucleotide polymorphisms (SNPs) are vital tools for the field of conservation 

genetics.  While SNPs are quickly becoming more affordable to develop and 

increasingly prevalent as a maker in population genetic literature (Seeb et al. 2011), 

there can be advantages for a researcher to choose microsatellites for projects. For 

example, challenges still exist in SNP development for non-model organism (Helyar 

et al. 2011). This is even more evident when the species of interest does not have a 

sequenced reference genome. Working with salamanders adds to this complexity 

due to the large genome size. 

For conservation genetics questions about genetic diversity and structure, 

microsatellites are still widely used. The usefulness of microsatellites originates 
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from the fact they are species-specific; however, they can be highly conserved 

between closely related species. Cross-amplification has been shown to be a 

successful method for identifying useful nuclear loci across species within the same 

genus of salamander (Steele et al. 2008; Spatola et al. 2013; Hendrix et al. 2010). If 

primers already have been identified for repeat regions for a closely related species, 

it can be advantageous to screen them in your species of interest.  This exploratory 

process can detect polymorphic loci that can be used in a population genetic study, 

but cross-amplification comes with a decrease in efficiency.  Cross-amplification can 

identify conserved polymorphic regions across a genus; therefore, this approach can 

save a research project time and money spent developing new species-specific 

markers at the onset of a study.   

Cross-amplification was used to identify markers for a population genetic 

study of P. petraeus. Primers were previously identified for 27 microsatellites in the 

Western Slimy Salamander, Plethodon albagula, a large terrestrial salamander 

distributed across the Ozark Mountains and in a separate population in central 

Texas (Petranka 2010). Not only are these members of the same genus, they belong 

to the same “group” as P. petraeus (Fig. 1). As a member of the same genus as the 

Pigeon Mountain Salamander, microsatellite regions may be shared across the two 

species. They have already been shown to cross-amplify in another species within 

the slimy salamander group, Plethodon shermani (Spatola et al. 2013). The same 

primer pairs developed for microsatellites in P. albagula are used here to identify 

regions in the P. petraeus genome that can be used in a conservation genetics study.  
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Methods 

Tissue Collection 

Tissue samples of P. petraeus were contributed to the study by Glenn Marvin 

(University of Northern Alabama) and collected from the field by the authors in Fall 

2014.  Individuals were sampled from Dickson Gulf (N=10) and Pettijohn Cave 

(N=4), within the Crockford-Pigeon Mountain Wildlife Management Area, Georgia, 

USA. These collection sites are separated by approximately 3.5 km. 1cm of tail tissue 

was collected and transported in 95% EtOH or in an empty collection tube on ice 

until they could be stored at -20 degrees Celsius. DNA was extracted from each 

tissue using MoBio DNA Extraction Kit for tissue (Carlsbad, CA, USA).  Extracted 

DNA samples were stored in 50 ul elution buffer at -20 degree Celsius.  

Microsatellite Screening 

The 27 microsatellite primer pairs described in Spatola et al. (2013) were 

screened for amplification of microsatellite regions in the 14 P. petraeus samples.  

PCR cycling profile for initial primer screening consisted of a denaturation of 95 

degrees Celsius for 10 min, followed by 35 cycles of 95 degree Celsius denaturing for 

45 s, 60 degree C annealing for 45 s, extension at 72 degree C for 45 s, and a final 5 

min extension at 72 degree C for 45 s (Spatola et al. 2013). PCR products were 

visualized on 3% agarose gels.  

After visualization of PCR products with gel electrophoresis, only two of the 

27 cross-amplified loci amplified non-specific regions. Of the remaining 25 loci, 17 
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were monomorphic and eight were polymorphic (Table 1). The annealing 

temperature for two primer pairs, Plal_402 and Plal_542, were optimized due to 

smearing in PCR product bands (Table 1). The forward primers for the eight loci 

with multiple alleles were fluorescently labeled with 6-FAM, HEX or NED (Table 1) 

for capillary electrophoresis on an ABI 310 DNA Analyzer. PCR reactions were done 

either under the initial cycling conditions or with the optimized annealing 

temperatures (Table 1). Amplification products were sized on an ABI 310 DNA 

Analyzer (Applied Biosystems) using a Rox-500 size standard and results were 

scored using GeneScan software Version (Applied Biosystems).  

Genetic Analysis  

Deviations from Hardy-Weinburg (HW) equilibrium and observed and expected 

heterozygosities were calculated using GenoDive v2.0 (Meirmans & Van Tienderen 

2004). GENEPOP v4.2 (Rousset, 2008) was used to detect linkage disequilibrium 

(LD) between loci at each population. The Bonferroni correction for multiple 

comparisons was applied for both tests. Micro-Checker v2.2.3 (Van Oosterhout et al. 

2004) was used to check for the presence of null alleles at each locus for all 

populations, allele drop out, and stuttering.  

Results 

Cross-amplification was successful in 25 of the 27-screened primers, eight of which 

were polymorphic in P. petraeus. Two primer pairs resulted in non-specific PCR 

products, and the remaining alleles were monomorphic for the samples. The 

number of alleles per locus for the eight polymorphic loci ranged from three to eight 
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(mean = 5, Table 1). The observed heterozygosity ranged from 0.143 to 0.929 (mean 

= 0.641). All loci were in HW equilibrium. No linkage disequilibrium was detected 

between locus pairs. Analysis of loci PG_43M, Plal_402 and Plal_701, indicated 

homozygote excess, suggesting that null alleles may be present. This could also be 

due to the small sample size and low number of alleles sampled. There was no 

evidence of large allele dropout at any of the loci. Stuttering (an artifact of PCR) may 

be affecting the detected polymorphism at locus Plal_701 since a single repeat unit 

differentiates the three alleles detected at this locus.  

Discussion 

The eight cross-amplified polymorphic microsatellites optimized in P. 

petraeus were applied in the broader context of a population genetic study. It will be 

possible to use these markers to estimate genetic diversity, fine-scale genetic 

structure across the species’ distribution, and estimate gene flow between sampled 

locations. The use of these loci combined with comprehensive sampling from the 

known locations of P. petraeus will be important for conservation of this protected 

salamander.  

Furthermore, these microsatellite markers will contribute to a better 

understanding of terrestrial salamanders. Few terrestrial species within the genus 

Plethodon have had microsatellite primers developed at the species level. Despite 

the increase in population level genetic studies of amphibians over the last decade, 

there is a notable gap in the literature of terrestrial population genetic studies (Emel 

& Storfer 2012). The loci identified by Spatola et al. (2013) were successfully cross-
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amplified in P. shermani after their development and now also in P. petraeus.  The 

success of the cross-amplification of these primers developed for P. albagula 

suggests that they may be applicable across species within the genus and 

specifically among the larger bodied species of the slimy salamander group. It would 

be appropriate to screen these primers for use in population genetic studies of other 

terrestrial salamanders, especially when considering projects that may be limited by 

time and money to develop species-specific markers. 
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CHAPTER FOUR: FIGURES AND TABLES 
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Figure 1.  Eastern Plethodon phylogeny. Combined 
mtDNA and nuclear DNA Plethodon phylogeny (modified 
from Fisher-Ried and Wiends, 2011). P. petraeus is 
closely related to P. albagula and other slimy salamander 
species.  
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Chapter 5 

Conservation Genetics of the Rare Pigeon Mountain Salamander (Plethodon 

petraeus) within a Highly Restricted Range 

INTRODUCTION 

The magnitude of amphibian declines and recently documented extinctions both at 

the level of population and species has prompted a need for conservation planning 

for declining amphibians (Grant et al. 2016; Mendelson et al. 2006). Molecular 

methods are now the standard for assessing the status of amphibian species due to 

technological advances that allow for information such as genetic diversity to be 

obtained in relatively short periods of time (Eastman et al. 2009). The difference 

between several months and several years in conservation efforts can be meaningful 

to a project’s success.  Using population genetics to study the Pigeon Mountain 

salamander will provide wildlife managers with useful information regarding 

genetic diversity and population structure across the species small range. The 

limited range of this salamander increases its risk of extinction because the species 

is more vulnerable to threats such as disease, habitat loss, and climate change 

(Houlahan et al. 2000; Velo-Antón et al. 2013).  This study is an initial effort to 

document the genetic diversity and structure of this rare species. Previous work 

answered questions regarding life history traits (Camp & Jensen 2007; Jensen 2000; 

Marshall et al. 2004), and the addition of a genetic analysis to the scientific 

knowledge of the species will greatly aid in its conservation by delineating 

management units.   
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There has been great success using molecular markers to measure gene flow and 

genetic structure in amphibian populations. This approach is considered a key tool 

in directing the conservation efforts of amphibians as species suffer from global 

declines (Eastman et al. 2009). From 2001 to 2010 over 550 publications on 

amphibian populations and genetic studies have been published in scientific 

journals (Emel & Storfer 2012). The majority of these studies characterize 

population genetic structure across large ranges and in species that are not direct 

developing terrestrial salamanders.  However, there are other salamanders with 

limited ranges including the Peaks of Otter Salamander, federally threatened Cheat 

Mountain Salamander, and federally endangered Shenandoah Salamander (Bayer et 

al. 2012). Along with the Pigeon Mountain Salamander, these species have some of 

the smallest ranges of any terrestrial vertebrates in North America. In 2000, a 

conservation genetic study of the Shenandoah Salamander, Plethodon shenandoah, 

provided mtDNA haplotype evidence that showed no genetic differentiation among 

three seemingly geographically isolated groups of the species (Carpenter et al. 

2001). However, microsatellite data was not included in their analysis.  

 

Finer scale genetic differentiation has been detected in species with widespread 

ranges but across small distances comparable to the known range of P. petraeus. 

Within a single species, genetic differentiation has been demonstrated to vary 

widely between distances based on barriers to movement. The widely distributed 
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Northern Red-backed Salamander, Plethodon cinereus, is found from the 

southeastern United States to as far north as Canada. A microsatellite analysis using 

six loci from 12 Northern Red-backed Salamander populations spread across 

roughly 40 km of urbanized Montreal and surrounding islands revealed a high 

degree of genetic differentiation (Noël & Lapointe 2010).  Genetic structure was 

identified between populations separated by waterways as well as at a smaller 

spatial scale of roughly 1-2 km for populations located in downtown areas where 

anthropogenic disturbances limiting dispersal have been in place for hundreds of 

years (Munshi-South et al. 2013; Noël & Lapointe 2010). Conversely, the same study 

showed no genetic difference in Northern Red-backed Salamanders 35 km apart in 

areas connected by forest. However, a separate study of the same species in an 

undisturbed forest in Virginia, did detect fine scale genetic differentiation in P. 

cinereus across a transect of continuous forest (Cabe et al. 2007). This study also 

used six microsatellite loci to detect genetic structure between Northern Red-

backed Salamanders separated by 200 m along a 2 km transect, and small but 

detectable genetic differentiation among populations as close together as 200m was 

detected (Cabe et al. 2007). These researchers hypothesized that the increased 

aggression of Northern Red-backed salamanders within the central area of their 

range, the Appalachian Mountains, may have been limiting dispersal factor acting on 

the population instead of anthropogenic disturbances (Mathis 1991).  

 

Landscape features and habitat variation have also been shown to influence gene 

flow of a species in the same genus as P. petraeus, the Western Slimy Salamander, 
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Plethodon albagula (Peterman et al. 2014).  This study compared sampling locations 

separated by only a few kilometers, comparable to the distances that separate some 

of the known locations of P. petraeus. Although distinct populations were not 

detected across the range of the study, significant genetic differentiation was 

observed.  

 

The conflicting results from previous studies make predicting the results of our 

genetic analysis of P. petraeus difficult. If Pigeon Mountain Salamanders are readily 

dispersing between drainage gulfs then we would not expect to see significant 

spatial genetic structure across the habitat range. However, if the lack of rocky-

outcrop connectivity and interspecific aggression are limiting dispersal, then genetic 

differentiation within the small range is likely since previous studies of salamanders 

have demonstrated genetic structure within comparable ranges. Aggression and 

response to aggression may also be a limiting factor for dispersal. Lab trials have 

demonstrated that the Northern Slimy Salamander, Plethodon glutinosus, which 

exists sympatrically with P. petraeus, is more territorial and aggressive (Marshall et 

al. 2004). Using an experimental design to test for behavioral interactions between 

males of both species, Carlos Camp’s lab established that individuals of both species 

defend territories, but intruding P. glutinosus are more aggressive and more 

effective at evicting a resident P. petraeus from its territory. On the contrary, 

intruding P. petraeus individuals were less aggressive and not effective at evicting 

resident P. glutinosus. These results led to the hypothesis that direct competition 
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from slimy salamanders could be affecting P. petraeus movement and dispersal 

within and among suitable habitats on Pigeon Mountain.  

Objectives 

Due to the small range of P. petraeus, the species is highly vulnerable to the impacts 

driving amphibian declines. Fortunately, a large portion of the species known range 

is already preserved within a WMA, and the species is protected by the state of 

Georgia through a listing as a rare species. Despite its current level of protection, 

understanding the species’ population genetics can support long-term management 

plans. The objective of the conservation genetic assessment is to use microsatellite 

marker data from six sampling locations across the species range to investigate a) 

genetic diversity b) genetic structure and c) gene flow.   

METHODS 

Tissue Collection 

Tissue collection was performed under Georgia Department of Natural 

Resources scientific collecting permit (29-WJH-14-252) Salamanders were collected 

by hand and standard morphological measurements were recorded including snout-

vent-length (SVL), tail-length (TL), tail-width (TW), head-length (HL), head-width 

(HW) and mass. A 1 cm tail tip was collected from each individual captured. 

Following tissue collection, salamanders were released at their point of capture. 

Tissue was placed on ice in the field and transferred to the laboratory for storage in 

a -20º C freezer prior to DNA extraction.  
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Genetic Laboratory Techniques 

Whole genomic DNA was extracted from tissue with the commercial DNA 

extraction kit MoBio UltraClean Tissue & Cells DNA Isolation Kit (Carlsbad, CA, USA). 

Extracted DNA samples were stored in 50 ul elution buffer at -20 degree Celsius. 

Eight previously identified microsatellite loci were amplified from each sample 

using polymerase chain reaction (PCR). Microsatellite markers have not been 

developed in P. petraeus; however, eight polymorphic loci successfully cross-

amplified in Pigeon Mountain Salamanders from 27 microsatellite loci identified 

within closely related species of slimy salamander (Plethodon albagula and P. 

glutinosus) (Spatola et al. 2013). Primers were 5-prime end-labeled with a 

fluorescent dye (6-FAM, NED or HEX; Applied Biosystems).  The amplification 

products were sized on an Applied Biosystems 3130xl DNA analyzer (Applied 

Biosystems, Foster City, CA, USA) at the Savannah River Ecology Laboratory. Results 

were scored using GENEMARKER (v. 1.97; Sofgenetics, State College, PA, USA). We 

tested for full-siblings within our data set using COLONY and removed related 

individuals prior to data analysis (Jones & Wang 2010).  Following removal of 

siblings, 103 individuals were included in the data set (mean = #/site; Table 1).  

Statistical Analyses  

Genepop v4.2 (Raymond & Rousset 1995) was used to test microsatellite loci for 

linkage equilibrium and deviations from Hardy-Weinberg equilibrium (HWE) at 

each locus and in each population. Micro-Checker v2.20 (Van Ossterhout et al. 2004) 

was used to test for null alleles in the microsatellite data. We used GENODIVE v2.0 

http://www.mobio.com/tissue-cells-dna-isolation/ultraclean-tissue-cells-dna-isolation-kit.html
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(Meirmans 2006) to test for overall population genetic structure among collection 

sites relative to genetic diversity within in each collection site. Statistical 

significance of these estimates was tested and interpreted in an AMOVA framework. 

The overall correlation of pairwise FST and distance separating sampling sites was 

calculated in order to assess the presence or absence of isolation by distance (IBD) 

for both Euclidean distance and distance along drainages, a more accurate 

representation of true salamander movement throughout the habitat of Pigeon 

Mountain (Hutchison & Templeton 1999; Slatkin 1977; Slatkin 1993).  Measuring 

the ridgeline along the southeast facing slope of Pigeon Mountain using a 

topographic map was done to make an approximation of distance along drainages. 

Significance of matrix correlations between pairwise FST and distance separating the 

sites will be assessed by Mantel test (1000 permutations)  (Mantel 1967; Sokal et al. 

1986; Meirmans 2006).   

 A prime objective of this study was to delineate population genetic structure 

among collection sites for P. petraeus throughout the species range. We used the 

multi-locus clustering software program STRUCTURE v2.3.3 (Pritchard et al. 2000) 

to assign individuals to populations. This approach infers genetic assemblages by 

estimating the probability of the observed genetic data given K number of genetic 

clusters. Each individual’s population membership probability (to each cluster) was 

mapped to provide a visual representation of genetic structure.  In this study, we are 

interested in delineating population boundaries, if present.  We ran 10 independent 

simulations at each value of K between 2 and 6 (exploratory analyses supported K > 

1). Each run consisted of a 100,000 step burn-in period followed by 100,000 
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iterations.  The appropriate K value was selected using STRUCTURE HARVESTER 

(Earl & VonHoldt 2011) to determine the most likely number of populations using 

the DeltaK criterion (Evanno et al. 2005). Replicate runs were averaged using 

CLUMPP v1.1 (Jakobsson & Rosenberg 2007) and plotted using DISTRUCT v1.1 

(Rosenberg 2003). We used an analysis of molecular variance, AMOVA, to partition 

genetic variance at different levels of organization: within collection sites, among 

collection sites, and among clusters (Meirmans 2006). Estimates of effective gene 

flow (Nm) between populations were estimated using Wright’s formula, Fst = 

1/(4Nm +1) (Larson et al. 1984; Wright 1943).  

RESULTS 

Population Genetic Analysis 

The eight loci had 4- 29 alleles (mean  = 11.25, S.E. +/- 3.24) across all samples 

(Table 1). There was no evidence of linkage dis-equilibrium between the eight loci 

surveyed.  There was also no evidence of scoring errors, larger allele dropout, or 

null alleles detected.  All loci and populations were within HWE expectations. 

Observed heterozygosity at each sample location ranged from 0.543 to 0.679 (mean 

= 0.607; Table 2). Pairwise estimates of FST ranged from 0.072 to 0.344 (Table 3).  

Population structure 

The analysis of eight microsatellite loci grouped individuals into four distinct 

clusters based on the DeltaK values (Fig. 2). The two northernmost sampling 

locations, NR and NW, were within the same drainage and grouped together. 
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Although less than a kilometer apart, the two most central locations, PJ and LW, 

were found to belong to separate groupings.  The remaining cluster contains the two 

southern most localities, AC and NG.  Pairwise estimates of FST ranged from 0.071 to 

0.242 (Table 4).  An AMOVA confirmed the significance of population structure 

(Table 5).  

Isolation By Distance 

Our isolation-by-distance analyses (Mantel tests; Mantel 1967) indicated that 

geographic distances and genetic distance are strongly correlated for P. petraeus. 

Isolation by Euclidean distance resulted showed a strong correlation with genetic 

distance (r = 0.703. P = 0.006) (Fig 3).  This already strong correlation increased 

when the distance measured was adjusted along drainages (r = 0.884, P = 0.009). 

These measures represented a pathway containing a more suitable slope and 

habitat that could facilitate salamander movement compared to linear distances.  

Gene Flow 

Overall, the rates of migration met normal expectations of closer populations having 

higher migration estimates (Fig 4). Estimates of effective gene flow between 

populations suggest relatively consistent rates of movement across the landscape. 

As expected, gene flow is higher across shorter distances between populations but 

gene flow is not sufficient to homogenize populations.  
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DISCUSSION 

The results of our analysis revealed the Pigeon Mountain salamander, a species 

protected by the state of Georgia, has strong patterns of genetic structure across its 

entire range of less than 20 km. We found clear support for intrapopulation genetic 

structure and high levels of genetic differentiation across the known range of P. 

petraues. Bayesian clustering identified four distinct populations that were 

supported by high Fst values between populations and AMOVA results (Table 4 and 

5). A high degree of genetic differentiation and multiple populations is somewhat 

surprising given the species small range. However, natural history characteristics 

such as the species known patchy distribution, specific habitat preference, and 

potential interspecific competition give support to these findings.  These findings 

directly support observations of the species being patchily distributed and having 

limited dispersal. Previous work found evidence of strong site fidelity. The average 

distance moved between 10 marked and recaptured individuals was 2.26 meters.  

Further fieldwork needs to be done to determine if P. petraeus has high site fidelity 

and smaller home ranges and dispersal patterns as similar species.  

 

The two populations PJ and LW are the closest together yet are genetically distinct 

enough to be structured separately. The linear distance between these two 

collections sites was less than 1 km and they have a genetic distance of 0.052 Fst 

(Table 5). A road (Rocky Lane) and drainage (McWhorter Gulf) separate PJ from the 

LW; both are possible barriers to Plethodontid salamander movement. Roads, along 
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with openings in forest canopy, such as clearings for industrial power lines, have 

been recognized as reducing salamander dispersal (Connette & Semlitsch 2013a).  

Conservation Implications 

The conservation status of P. petraeus is based on its endemism to Pigeon Mountain 

and highly restricted range. The protection provided to the species includes listing 

as a rare species by the state of Georgia and the preservation of roughly half of its 

known range within a wildlife management area (WMA). Our findings show that one 

of the four detected population falls mostly south of the WMA and the habitat 

protection that it offers. Efforts to educate private landowners about the 

biodiversity on their property and benefits of conservation should be pursued along 

with long-term conservation options such as the establishment of land easements 

and purchases when possible.  

Seemingly suboptimal habitat for P. petraeus (areas lacking high density of outcrops 

and rocks) between known locations should also be considered for conservation. 

Such habitat could contain individuals at low densities that have not been detected 

during surveys and could be vital to gene flow between populations. Due to the 

species’ exceedingly linear range along on the southfacing slope of Pigeon Mountain 

and strong isolation by distance genetic patterning, a single disturbance in habitat 

connectivity could further reduce natural migration, inhibiting already low levels of 

gene flow between populations. Also, decease in movement within the distinct 

populations could lead to fragmentation within current populations. Numerous 
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conservation genetics studies have shown that the maintenance of continuous 

suitable habitat is vital for species persistence (Allendorf et al. 2012). 

 

Future work 

There is also great potential on Pigeon Mountain for a comparative population study 

within genus and across genus.  Three additional species of Plethodon are found 

throughout the range of P. petraeus, including P. glutinosus.  Across genera there are 

three species- E. lucifuga, A. aeneus and P. petraeus- that utilize rock outcrops and 

crevices. A comparative population genetic study across the landscape could inform 

how interspecific competition and differences in dispersal abilities may be 

influencing rates of gene flow and genetic connectivity (Storfer et al. 2010).  

 

Better understanding the environmental factors that are influencing gene flow 

across Pigeon Mountain is also important. Variables such as stream cover, 

temperature, moisture, slope, canopy cover, and frost free periods have been shown 

to influence salamander gene flow in salamander populations (Emel & Storfer 2015; 

Apodaca et al. 2012; Peterman et al. 2014). The application of least cost path models 

to the range of P. petraeus would give us a deeper understanding of how the 

landscape affects gene flow and population structure.  Other statistical methods 

such as occupancy estimation using Bayesian inference could be used to detect 

habitat that may contain new locations of P. petraeus.  While sampling the six 
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locations included in this study, several new locations throughout the current range 

were recorded, and one site roughly .25 km farther south than their previously 

known most southern location was identified.  Further efforts to know the full 

extent of the species range should be taken.  
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CHAPTER FIVE: FIGURES AND TABLES 

 

Figure 1. Sampling locations across the range of P. petraeus. Sampling locations AC, 

LW, PJ, NW and NR are within the Crockford-Pigeon Wildlife Management Area (red 

shading roughly approximates land within the WMA). The most southern location, 

NG, was accessible through a Nature Conservancy Land easement (green shading).  
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Chapter 5: Figures cont… 

 

Figure 2. STRUCTURE results for four populations of P. petraeus. A) Map of the four 

populations. B) deltaK results for the optimal value of K. C) STRUCTURE bar graph 

results for the six sampling locations. 
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Chapter 5: Figures cont… 

 

Figure 3. Isolation by distance. The relationship between pairwise genetic distance (Fst) and two measures of distance (Km). 

A) Linear distance and B) distance measured along southeast ridgeline of Pigeon Mountain representative of preferred habitat 

use connectivity.  
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Figure 4. Gene flow. Diagram of distance (km, bottom) between four populations and estimates of effective gene flow (Nm, 

top). The Northern and Southern populations contain two sampling locations, NR/NW and AC/NG, respectively. The distance 

between populations is measured to the nearest collection site between populations.  

 

 

 

    
North PC LW South 

2.24 km 0.81 km 4.41 km 

3.27 Nm 3.99 Nm 1.23 Nm 



 89 

Chapter 5: Tables 

 

 

  

 

 

 

 

 

 

 

 

 

Allele range (bp), number of individual amplified (N), number of alleles (Na), observed (Ho)  

and expected (He) heterozygosities and inbreeding coefficient (Fis). 

Table 1. Genetic diversity per locus data. 

 Locus 
Allele 
Range N Na Ne Ho He Fis 

PG_3XI 138-150 97 4 1.878 0.693 0.473 -0.457 

PG_43M 103-131 102 8 2.965 0.73 0.675 -0.113 

PG_POG 208-256 99 7 2.061 0.488 0.526 0.045 

PG_084 326-354 101 4 2.193 0.748 0.551 -0.419 

PLAL_127 97-121 92 7 1.998 0.413 0.515 0.173 

PLAL_404 156-308 100 29 8.852 0.782 0.908 0.105 

PLAL_542 164-280 92 22 5.109 0.831 0.823 -0.031 

PLAL_701 201-241 102 9 1.504 0.351 0.342 -0.026 

Overall     11.25 3.32 0.629 0.602 -0.074 
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Table 2 Genetic diversity per sampling location. 

Location N Na Ne Ho He Fis 

North Rim 10 3.13 1.98 0.545 0.43 -0.269 

Nash Waterfall Cave 18 5.5 3.21 0.655 0.569 -0.151 

Pettyjohn Cave 24 5.25 3.266 0.599 0.618 0.03 

Lost Wall 29 8.12 4.855 0.679 0.645 -0.053 

Allen Creek 5 3 2.349 0.543 0.562 0.034 

Neals Gap 17 5.38 3.296 0.623 0.575 -0.082 

Overall   5.063 3.159 0.607 0.567 -0.137 
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Table 3. Matrix of sampling location Fst (lower left) and P values 
(upper right). 
              
  NR NW PC LW AC NG 
NR -- 0.001 0.001 0.001 0.001 0.001 
NW 0.093 -- 0.001 0.001 0.001 0.001 
PC 0.112 0.072 -- 0.001 0.001 0.001 
LW 0.109 0.048 0.059 -- 0.001 0.001 
AC 0.318 0.22 0.247 0.184 -- 0.001 

NG 0.344 0.227 0.259 0.185 0.146 -- 
              

              

Table 4.   Matrix of population Fst (lower left) and 
P values (upper right). 
          
  North PC LW South 
North -- 0.001 0.001 0.001 
PC 0.071 -- 0.001 0.001 
LW 0.055 0.059 -- 0.001 
South 0.231 0.242 0.169 -- 

          

          

Table 5. Results of the analysis of molecular variance for best clustering according to 
the Evanno Method, K = 4 

Source of 
Variation 

d.f. Sum of 
Squares 

Variance 
components 

Percentage 
of variation 

P value 

Within 
Population   99 395.215 3.992 0.833 -- 
Among 
Population   3 73.532 0.8 0.167 <0.001 
Fixation Index 
(Fst) 0.167         



 92 

LITERATURE CITED 

Allendorf, F.W., Luikart, G. & Aitken, S.N., 2012. Conservation and the genetics of populations, 
John Wiley & Sons. 

Apodaca, J., Rissler, L. & Godwin, J., 2012. Population structure and gene flow in a heavily 
disturbed habitat: implications for the management of the imperilled Red Hills 
salamander ( Phaeognathus hubrichti). Conservation Genetics, 13(4), pp.913–923. 

Bailey, L., Simons, T.R. & Pollock, K.H., 2004. Comparing Population Size Estimators for 
Plethodontid Salamanders. Journal of Herpetology, 38(3), pp.370–380. 

Bailey, L., Simons, T.R. & Pollock, K.H., 2004. Estimating Detection Probability Parameters 
for Plethodon Salamanders Using the Robust Capture-Recapture Design. The Journal of 
Wildlife Management, (1), p.1. 

Bayer, C. et al., 2012. Conservation genetics of an endemic mountaintop salamander with an 
extremely limited range. Conservation Genetics, 13(2), pp.443–454. 

Bell, B.D. et al., 2004. The recent decline of a New Zealand endemic: how and why did 
populations of Archey’s frog Leiopelma archeyi crash over 1996–2001? Biological 
Conservation, 120(2), pp.189–199. 

Cabe, P.R. et al., 2007. Fine-scale population differentiation and gene flow in a terrestrial 
salamander (Plethodon cinereus) living in continuous habitat. Heredity, 98(1), pp.53–
60. 

Camp, C.D. & Jensen, J.B., 2007. Use of Twilight Zones of Caves by Plethodontid Salamanders. 
Copeia, (3), p.594. 

Carpenter, R.E., Sites, J.W. & Jung, D.W., 2001. Conservation genetics of the endangered 
Shenandoah salamander (Plethodon shenandoah, Plethodontidae). Animal 
Conservation, 4(2), pp.111–119. 

Connette, G.M. & Semlitsch, R.D., 2013a. Context-dependent movement behavior of 
woodland salamanders (Plethodon) in two habitat types. Zoology (Jena, Germany), 
116(6), pp.325–30. 

Connette, G.M. & Semlitsch, R.D., 2013b. Life History as a Predictor of Salamander Recovery 
Rate from Timber Harvest in Southern Appalachian Forests, U.S.A. Conservation 
Biology, 27(6), pp.1399–1409. Available at: http://dx.doi.org/10.1111/cobi.12113. 

Conover, W.J., 1999. Practical nonparametric statistics, Wiley. 

Earl, D.A. & VonHoldt, B.M., 2011. STRUCTURE HARVESTER: a website and program for 
visualizing STRUCTURE output and implementing the Evanno method. Conservation 
Genetics Resources, 4(2), pp.359–361. 

Eastman, J.M., Spear, S.F. & Storfer, A., 2009. Modern Molecular Methods for Amphibian 
Conservation. Bioscience, 59(7), pp.559–571. 

Emel, S. & Storfer, A., 2012. A decade of amphibian population genetic studies: synthesis and 
recommendations. Conservation Genetics, 13(6), pp.1685–1689. 



 93 

Emel, S. & Storfer, A., 2015. Landscape genetics and genetic structure of the southern 
torrent salamander, Rhyacotriton variegatus. Conservation Genetics, (16), pp.209–221. 

Evanno, G., Regnaut, S. & Goudet, J., 2005. Detecting the number of clusters of individuals 
using the software STRUCTURE: a simulation study. Molecular ecology, 14(8), 
pp.2611–20. 

Farallo, V.R. & Miles, D.B., 2016. The Importance of Microhabitat: A Comparison of Two 
Microendemic Species of Plethodon to the Widespread P. cinereus. Copeia, 104(1), 
pp.67–77. 

Grant, E.H. et al., 2016. Quantitative evidence for the effects of multiple drivers on 
continental-scale amphibian declines. Scientific Reports, 6, p.25625. 

Grant, E.H.C., 2008. Visual Implant Elastomer Mark Retention through Metamorphosis in 
Amphibian Larvae. The Journal of Wildlife Management, 72, pp.1247–1252. 

Heemeyer, J.L. & Homyack, J.A., 2007. Retention and readability of visible implant elastomer 
marks in eastern redbacked salamanders (Plethodon cinereus). Herpetological Review, 
38, pp.425–428. 

Helyar, S.J. et al., 2011. Application of SNPs for population genetics of nonmodel organisms: 
new opportunities and challenges. Molecular ecology resources, 11 Suppl 1, pp.123–36. 

Hendrix, R. et al., 2010. Strong correlation between cross-amplification success and genetic 
distance across all members of “True Salamanders” (Amphibia: Salamandridae) 
revealed by Salamandra salamandra-specific microsatellite loci. Molecular Ecology 
Resources, 10(6), pp.1038–47. 

Highton, R. et al., 2012. Concurrent speciation in the eastern woodland salamanders (Genus 
Plethodon): DNA sequences of the complete albumin nuclear and partial mitochondrial 
12s genes. Molecular phylogenetics and evolution, 63(2), pp.278–290. 

Houlahan, J.E. et al., 2000. Quantitative evidence for global amphibian population declines. 
Nature, 404(6779), pp.752–755. 

Hutchison, D.W. & Templeton, A.R., 1999. Correlation of Pairwise Genetic and Geographic 
Distance Measures: Inferring the Relative Influences of Gene Flow and Drift on the 
Distribution of Genetic Variability. Evolution, 53(6), p.1898. 

Jakobsson, M. & Rosenberg, N.A., 2007. CLUMPP: a cluster matching and permutation 
program for dealing with label switching and multimodality in analysis of population 
structure. Bioinformatics (Oxford, England), 23(14), pp.1801–6. 

Jensen, J.B. et al., 2008. Amphibians and reptiles of Georgia, Athens: University of Georgia 
Press. 

Jensen, J.B. and M.R.W., 2000. Diets of sympatric Plethodon petraeus and Plethodon 
glutinosus. Journal of Elisha Mitchell Scientific Society, 116, pp.245–250. 

Jensen, J.B., Camp, C.D. & Marshall, J.L., 2002. Ecology and Life History of the Pigeon 
Mountain Salamander. Southeastern Naturalist, 1(1), p.3. 



 94 

Johnson, S. et al., 2009. Evaluation of a new technique for marking anurans. Applied 
Herpetology, 6(3), pp.247–256. 

Jones, O.R. & Wang, J., 2010. COLONY: a program for parentage and sibship inference from 
multilocus genotype data. Molecular Ecology Resources, 10(3), pp.551–555. 

Kendall, W.L., Nichols, J.D. & Hines, J.E., 1997. ESTIMATING TEMPORARY EMIGRATION 
USING CAPTURE–RECAPTURE DATA WITH POLLOCK’S ROBUST DESIGN. Ecology, 
78(2), pp.563–578. 

Larson, A., Waket, D.B. & Yanevt, K.P., 1984. MEASURING GENE FLOW AMONG 
POPULATIONS HAVING HIGH LEVELS OF GENETIC FRAGMENTATION HE importance 
of gene flow as a factor maintaining phenotypic cohesion. Genetics, 1984(106), pp.293–
308. 

Liebgold, E.B., Brodie III D., E. & Cabe, P.R., 2011. Female philopatry and male-biased 
dispersal in a direct-developing salamander, Plethodon cinereus. Molecular ecology, 
20(2), pp.249–257. 

Marshall, J.L., Camp, C.D. & Jaeger, R.G., 2004. Potential Interference Competition between a 
Patchily Distributed Salamander (Plethodon petraeus) and a Sympatric Congener 
(Plethodon glutinosus). Copeia, 2004(3), p.488. 

Mathis, A., 1991. Territories of Male and Female Terrestrial Salamanders: Costs, Benefits, 
and Intersexual Spatial Associations. Oecologia, (3), p.433. 

McEntire, K.D., 2016. Arboreal Ecology of Plethodontidae: A Review. Copeia, 104(1). 

Meirmans, P.G., 2006. USING THE AMOVA FRAMEWORK TO ESTIMATE A STANDARDIZED 
GENETIC DIFFERENTIATION MEASURE. Evolution, 60(11), pp.2399–2402. 

Meirmans, P.G. & Van Tienderen, P.H., 2004. GENOTYPE and GENODIVE: two programs for 
the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4(4), 
pp.792–794. 

Mendelson, J.R. et al., 2006. Confronting Amphibian Declines and Extinctions. Science, 
(5783), p.48. 

Munshi-South, J., Zak, Y. & Pehek, E., 2013. Conservation genetics of extremely isolated 
urban populations of the northern dusky salamander (Desmognathus fuscus) in New 
York City. PeerJ, p.e64. 

Noël, S. & Lapointe, F.-J., 2010. Urban conservation genetics: Study of a terrestrial 
salamander in the city. Biological Conservation, 143(11), pp.2823–2831. 

Osbourn, M.S. et al., 2011. Use of fluorescent visible implant alphanumeric tags to 
individually Mark Juvenile ambystomatid salamanders. Herpetological Review, 42(1), 
pp.43–47. 

Van Ossterhout, C. et al., 2004. micro-checker: software for identifying and correcting 
genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), pp.535–538. 

Ousterhout, B.H. & Liebgold, E.B., 2010. Dispersal Versus Site Tenacity of Adult and Juvenile 



 95 

Red-Backed Salamanders (Plethodon cinereus). Herpetologica. 

Perry, G. et al., 2011. Toe Clipping of Amphibians and Reptiles: Science, Ethics, and the Law. 
Journal of Herpetology, 45(4), pp.547–555. 

Peterman, W.E. et al., 2014. Ecological resistance surfaces predict fine-scale genetic 
differentiation in a terrestrial woodland salamander. Molecular ecology, 23(10), 
pp.2402–2413. 

Petranka, J.W., 2010. Salamanders of the United States and Canada. American Scientist. 

Pollock, K.H., 1982. A Capture-Recapture Design Robust to Unequal Probability of Capture. 
The Journal of Wildlife Management, (3), p.752. 

Pritchard, J.K., Stephens, M. & Donnelly, P., 2000. Inference of population structure using 
multilocus genotype data. Genetics, 155(2), pp.945–959. 

Raymond, M. & Rousset, F., 1995. GENEPOP (Version 1.2): Population Genetics Software for 
Exact Tests and Ecumenicism. J. Hered., 86(3), pp.248–249. 

Rosenberg, N.A., 2003. Distruct: a program for the graphical display of population structure. 
Molecular Ecology Notes, 4(1), pp.137–138. 

Sapsford, S.J. et al., 2014. Visible Implant Elastomer Marking does Not Affect Short-Term 
Movements Or Survival Rates of the Treefrog Litoria Rheocola. Herpetologica, 70(1), 
pp.23–33. 

Seber, G.A.F., 1986. A Review of Estimating Animal Abundance. Biometrics, 42(2), p.267. 

Seeb, J.E. et al., 2011. Single-nucleotide polymorphism (SNP) discovery and applications of 
SNP genotyping in nonmodel organisms. Molecular ecology resources, 11 Suppl 1, pp.1–
8. 

Sinsch, U., 2014. Movement ecology of amphibians: from individual migratory behaviour to 
spatially structured populations in heterogeneous landscapes 1 , 2. Canadian Journal of 
Zoology, 92(6), pp.491–502. 

Slade, N.A. & Blair, S.M., 2000. AN EMPIRICAL TEST OF USING COUNTS OF INDIVIDUALS 
CAPTURED AS INDICES OF POPULATION SIZE NORMAN. Journal of mammalogy, 30(4), 
pp.399–411. 

Slatkin, M., 1977. Gene flow and genetic drift in a species subject to frequent local 
extinctions. Theoretical population biology, 12(3), pp.253–62. 

Slatkin, M., 1993. Isolation by Distance in Equilibrium and Non-Equilibrium Populations. 
Evolution, 47(1), p.264. 

Spatola, B. et al., 2013. Development of microsatellite loci for the western slimy salamander 
(Plethodon albagula) using 454 sequencing. Conservation Genetics Resources, 5(1), 
pp.267–270. 

Steele, C.A., Baumsteiger, J. & Storfer, A., 2008. Polymorphic tetranucleotide microsatellites 
for Cope’s giant salamander (Dicamptodon copei) and Pacific giant salamander 



 96 

(Dicamptodon tenebrosus). Molecular Ecology Resources, 8(5), pp.1071–1073. 

Storfer, A. et al., 2010. Landscape genetics: where are we now? Molecular ecology, 19(17), 
pp.3496–3514. 

Stuart, S.N. et al., 2004. Status and trends of amphibian declines and extinctions worldwide. 
Science, 306(5702), pp.1783–1786. 

Velo-Antón, G. et al., 2013. Tracking climate change in a dispersal-limited species: reduced 
spatial and genetic connectivity in a montane salamander. Molecular ecology, 22(12), 
pp.3261–3278. 

Welsh, H.H. & Droege, S., 2001. A Case for Using Plethodontid Salamanders for Monitoring 
Biodiversity and Ecosystem Integrity of North American Forests. Conservation Biology, 
(3), p.558. 

Wen, Z. et al., 2013. A robust design capture-recapture model with multiple age classes 
augmented with population assignment data. Environmental and Ecological Statistics, 
21(1), pp.41–59. 

White, G.C. & Burnham, K.P., 1999. Program MARK: survival estimation from populations of 
marked animals. Bird Study, 46, pp.S120–S139. 

Williams, B.K., Nichols, J.D. & Conroy, M.J., 2002. Analysis and Management of Animal 
Populations, San Diego, California, USA: Academic Press. 

Wright, S., 1943. ISOLATION BY DISTANCE*. Genetics, 28, pp.114–138. 

Wynn, A.H., Highton, R. & Jacobs, J.F., 1988. A New Species of Rock-Crevice Dwelling 
Plethodon from Pigeon Mountain, Georgia. Herpetologica, (2), p.135. 

 


	Kennesaw State University
	DigitalCommons@Kennesaw State University
	Summer 7-7-2016

	Conservation Genetics and Mark-Recapture Monitoring of the Rare Pigeon Mountain Salamander (Plethodon petraeus) within a Highly Restricted Range
	Kate Donlon
	Recommended Citation


	tmp.1469588593.pdf.42L3d

