Kennesaw State University
Digital Commons@Kennesaw State University

Faculty Publications

4-1996

Stochastic Electron Acceleration by Cascading Fast
Mode Waves in Impulsive Solar Flares

James A. Miller

University of Alabama - Tuscaloosa

Ted N.La Rosa

Kennesaw State University, tlarosal @kennesaw.edu

Ronald L. Moore
NASA

Follow this and additional works at: https://digitalcommons.kennesaw.edu/facpubs

b Part of the Stars, Interstellar Medium and the Galaxy Commons, and the The Sun and the Solar
System Commons

Recommended Citation

Miller JA, LaRosa TN, Moore RL. 1996. Stochastic electron acceleration by cascading fast mode waves in impulsive solar flares.
Astrophys ] 461(1):445-64.

This Article is brought to you for free and open access by Digital Commons@XKennesaw State University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of Digital Commons@Kennesaw State University. For more information, please contact

digitalcommons@kennesaw.edu.


https://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/127?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/126?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/126?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

THE ASTROPHYSICAL JOURNAL, 461:445-464, 1996 April 10
© 1996. The American Astronomical Society. All rights reserved. Printed in U.S.A.

STOCHASTIC ELECTRON ACCELERATION BY CASCADING FAST MODE WAVES IN
IMPULSIVE SOLAR FLARES
JAMES A. MILLER
Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899; miller@mpingo.uah.edu

T. N. LARosA
Department of Biological and Physical Sciences, Kennesaw State College, P.O. Box 444, Marietta, GA 30061

AND

R. L. MOORE
Space Sciences Laboratory, NASA/MSFC, Huntsville, AL 35812
Received 1995 August 8; accepted 1995 October 13

ABSTRACT

We present a model for the acceleration of electrons from thermal to ultrarelativistic energies during
an energy release fragment in an impulsive solar flare. Long-wavelength low-amplitude fast mode waves
are assumed to be generated during the initial flare energy release (by, for example, large-scale
restructuring of the magnetic field). These waves nonlinearly cascade to higher wavenumbers and even-
tually reach the dissipation range, whereupon they are transit-time damped by electrons in the tail of the
thermal distribution. The electrons, in turn, are energized out of the tail and into substantially higher
energies. We find that for turbulence energy densities much smaller than the ambient magnetic field
energy density and comparable to the thermal particle energy density, and for a wide range of initial
wavelengths, a sufficient number of electrons are accelerated to hard X-ray-producing energies on
observed timescales. We suggest that MHD turbulence unifies electron and proton acceleration in impul-
sive solar flares, since a preceding study established that a second MHD mode (the shear Alfvén wave)
preferentially accelerates protons from thermal to gamma-ray line-producing energies.

Subject headings: acceleration of particles — plasmas —Sun: corona — Sun: flares —

Sun: particle emission

1. INTRODUCTION

The acceleration of up to 1038 electrons to energies above
20 keV on timescales of the order of 100 s or less (e.g.,
Hoyng, Brown, & van Beek 1976) has been one of the out-
standing problems in high-energy solar flare physics and,
along with the associated problem of ion acceleration and
abundance enhancements (see Reames, Meyer, & von
Rosenvinge 1994 and references therein), is at the heart of
solar flare research. While the duration of the entire impul-
sive phase can last for this length of time, there is consider-
able evidence that some flares exhibit a much shorter
timescale for hard X-ray production and concomitant elec-
tron acceleration. Data obtained with the Hard X-Ray
Burst Spectrometer on the Solar Maximum Mission have
shown spikes of duration as small as ~400 ms superposed
upon the more slowly varying background of hard X-rays
(Kiplinger et al. 1984). Employing a thick-target model for
the hard X-ray production (e.g., Brown 1971; Emslie 1983),
Kiplinger et al. deduce that about 2 x 1034 electrons were
accelerated to energies greater than 20 keV in one of these
spikes. With the aforementioned spike duration, the rate at
which electrons are energized above 20 keV is then
~5 x 10%* s~!. Subsequent confirmation that energy
release and electron acceleration can be episodic or frag-
mented was provided by decimetric radio emission (e.g.,
Benz 1985, Giidel, Aschwanden, & Benz 1991).

More recently, the existence of a subsecond spiky struc-
ture in hard X-ray emission from some impulsive flares has
been confirmed by observations made with the Burst and
Transient Spectrometer on the Compton Gamma Ray
Observatory (Machado et al. 1993; see also Aschwanden,
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Schwartz, & Alt 1995) and has prompted Machado et al. to
call these spikes “energy release fragments” and hypothe-
size that they are the basic constituent of the entire impul-
sive phase. The energy content of hard X-ray—producing
electrons in a fragment is between 1026 and 10?7 ergs, since
the number of electrons that were accelerated to energies
above ~20 keV lies in the range from =3 x 1033 to
~3 x 1034, For a duration of ~300 ms, the rate of ener-
gization above 20 keV in a fragment is then ~103*-~ 1035
s~!. Hence, in light of the hard X-ray observations, a
general requirement of any electron acceleration process is
that it be able to energize ~5 x 103* electrons s~ ! above 20
keV over ~400 ms and thus yield about 2 x 103# electrons
above this energy. We consider energy release fragments in
this paper and address only this basic observation. Of
course, another very important test of any mechanism is its
ability to produce electron energy distributions consistent
with hard X-ray spectra. However, for the present, we con-
sider this a secondary issue, linked to transport, and to be
explored once the self-consistent and fully time-dependent
behavior of an acceleration model is established.

It is not known whether all impulsive solar flares are
indeed composed of a large number of these basic elements
or fragments. If this is so, then by considering the elemen-
tary event, we have essentially solved the electron acceler-
ation problem for the entire duration of the hard X-ray
emission. If not, and the acceleration is more steady and less
punctuated in some instances, our stochastic mechanism
will still work but requires an extended injection of turbu-
lence. In either case, the acceleration region must be
repopulated for about the duration of the energization due
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to the very large number of electrons that need to be accel-
erated and need to interact in the footpoints of the loops.
This replenishment can be accomplished by a cospatial
return current from the electron-rich partially ionized
chromosphere, which is readily established, either induc-
tively (Spicer & Sudan 1984) or electrostatically (LaRosa &
Emslie 1989), or both (van den Oord 1990), in response to
the drift of the accelerated electrons to the loop footpoints.
As opposed to large-scale electric field acceleration (Benka
& Holman 1994), stochastic acceleration mechanisms do
not require filamentation in the form of 10°-10!2 oppositely
directed current/return-current pairs (Emslie & Hénoux
1995) and, in fact, may need none at all. While Emslie &
Hénoux showed that current closure in such a fine-scale
environment may be accomplished, the source of the initial
filamentation is unknown. A detailed treatment of extended
acceleration and cospatial return currents (e.g., Emslie 1980)
is beyond the scope of this paper but will be presented in the
future.

We propose that electrons are accelerated from thermal
to relativistic energies by resonance with low-amplitude fast
mode waves in a continuous broad-band spectrum. The fast
mode branch in a plasma extends from low frequencies, past
the hydrogen cyclotron frequency Qy, and up to the elec-
tron cyclotron frequency (see, e.g., Swanson 1989, chap. 2).
Fast mode waves on the @ < Q section of this branch have
a dispersion relation given by @ = v, k, where v,, k, and @
are the Alfvén speed, the magnitude of the wavevector k,
and the wave frequency, respectively. As @ approaches Qy,
this simple relation is no longer valid, and above ~10Qy
the branch enters the whistler regime. The waves that are
important for electron acceleration in our theory have an
average frequency less than ~0.14Qy and lie below the
whistler regime. Low-frequency (MHD) fast mode waves
have a simple polarization. If a wave is parallel, then its
electric field E,, is transverse to the ambient magnetic field
B, and right-hand circularly polarized; if it is oblique, then
the wave is linearly polarized, and E,, is in the direction of
B, x k. From Faraday’s Law, then, the wave magnetic field
B, has both a compressive (along B,) and a linearly pol-
arized transverse component.

The wave electric field can strongly affect particle motion
through gyroresonant interactions (e.g., Karimabadi,
Omidi, & Gary 1994 and references therein), the condition
for which is @ — kv, — IQ/y = 0, where v, = uv, y, and
Q = |q| By/mc are the parallel speed, Lorentz factor, and
gyrofrequency of the particle, and k; = nk is the parallel
wavenumber. For parallel propagation, the low-frequency
fast mode wave electric field can gyroresonate with only
relativistic electrons via I = +1 (Steinacker & Miller 1992)
or relativistic ions via = — 1. In the oblique case, E,, can
be decomposed into right- and left-hand circularly pol-
arized components, and the left-hand portion can only res-
onate with relativistic ions via [= +1 or relativistic
electrons via I = —1 (Steinacker & Miller 1992). Therefore,
the low-frequency wave electric field is relevant for only
relativistic particles and is of no use in accelerating elec-
thermal background.

However, the compressive component of B, can also
interact with particles, but through the / = 0 resonance.
This process is called transit-time damping [Fisk 1976; Stix
1992, p. 273 (this terminology is also present in the 1962
edition of his text)] and is the magnetic analog of Landau
damping (which involves the I = 0 resonance and a parallel
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electric field). In transit-time damping, the interaction is
between the magnetic moment of a particle and the parallel
gradient of the magnetic field. Using the low-frequency fast
mode wave dispersion relation, the condition for resonance
to occur is v = v,/ and implies that the particle and wave
always move in the same direction (as opposed to gyrore-
sonant interactions). From this condition we see that the
threshold speed, below which resonance is not possible for
any wave n or pitch-angle cosine y, is the Alfvén speed v,.
For speeds v > v,, we can readily determine the efficiency of
the interaction for an isotropic particle distribution. Specifi-
cally, if there are waves with # in the interval [ +v,/v, +1]
and in the interval [—1, —v,/v], then 100% [1 — (v,/v)] of
the particles will be able to resonate with the waves. Hence,
for v ~ v,, only a small fraction of the particles will be able
to interact with waves, which propagate nearly parallel or
antiparallel to B,. However, this fraction is nearly 100% if
v ~ ¢, and the resonant waves have broad distribution in
propagation angle. Note that waves with n between —uv,/c
and +v,/c will not be able to resonate with particles of any
energy.

The essential point here is that the most efficient acceler-
ation from thermal to relativistic energies is achieved when
there is a distribution of waves between # = +v,/c and +1
and between —v,/c and — 1. Physically, resonance with one
wave results in an energy change that brings the particle
into resonance with a neighboring wave, which then
changes the energy so as to allow the particle to resonate
with another wave, and so on (see Karimabadi, Krauss-
Varban, & Terasawa 1992). The energy change is diffusive,
but over long timescales there is a net gain of energy,
resulting in stochastic acceleration.

This process is essentially the resonant form of Fermi
acceleration (Fermi 1949; Davis 1956). Here, a particle’s
magnetic moment is repelled upon encountering a region of
sufficiently high increased flux density. If the gyroradius is
much smaller than the scale of the perturbation, the first
adiabatic invariant is conserved in a collision. Particles can
make either head-on or trailing collisions with a moving
fluctuation: If the collision is head on (trailing), the particle
will be reflected with an increase (decrease) in energy.
Head-on collisions occur more often per unit time because
of the higher relative velocity between the particle and the
perturbation, and there will hence be a net acceleration.
This picture is strictly correct only when the strength of the
compressions is high enough so that most particles can be
reflected before completely penetrating the region of the
compression, and they could correspond to large-amplitude
fast mode waves. As the amplitude decreases, the number of
particles that are reflected decreases. In the limit of very
small amplitudes, the parallel particle speed in the wave
frame moving along B, with the parallel phase speed must
be about zero for reflection to occur. That is, v = w/k,
which is just the above resonance condition. Hence, the
process we are considering could be called small-amplitude
Fermi acceleration (Achterberg 1981); however, in keeping
with earlier terminology, we call it acceleration by transit-
time damping, which clearly denotes the resonant character
of the interaction.

An important aspect of transit-time acceleration is iso-
tropization, since the | =0 resonance changes only the
parallel energy of the particle. In the absence of ancillary
pitch-angle scattering, transit-time acceleration would lead
to a systematic decrease of particle pitch angles. Acceler-
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ation would then become less efficient, since only those
waves with very high parallel phase speeds (i.c., those pro-
pagating at angles close to 90° with respect to B,) would be
able to resonate with the particles. For example, suppose
that the parallel and perpendicular energy of an electron
were both ~0.1 keV initially, which is the case for a thermal
plasma of temperature ~10° K. In order to account for
solar flare hard X-ray observations, electrons must be accel-
erated up to at least ~100 keV. In the absence of pitch-
angle scattering, this energy must all be in the parallel
direction, in which case v ~ 0.55¢ and u =~ 0.999. For an
Alfvén speed of 0.036¢ (see below), the resonance condition
implies that 5 be about 6.5 x 10~ 2. Hence, in order to res-
onate with such an energetic electron, the waves need to
propagate at about 86° with respect to By. On the other
hand, if the electrons are isotropic, the pitch-angle cosine u
(and thus v|) would not be constrained to one value, and
waves over a broad range of propagation angle would be
able to interact with the electrons and contribute to their
energization. Essentially, therefore, pitch-angle scattering
greatly increases the volume of wave phase space that can
be sampled by the particles, thus increasing the acceleration
efficiency. We do not address the details of isotropization in
this paper but rather assume that it exists and keeps the
distribution isotropic during transit-time acceleration. Pos-
sible efficient scattering mechanisms include gyroresonant
interactions with whistlers (e.g., Steinacker & Miller 1992)
that may also exist in the flare environment or gyroresonant
interactions with lower hybrid waves generated by the
accelerated electrons themselves (see § 2).

The threshold speed of the resonance determines the
selectivity of the process. In a solar flare hydrogen plasma
with a temperature T of 3 x 10° K, density ny of 10'°
cm ™3, and B, of 500 G, the electron thermal speed v, =
0.032¢, the proton thermal speed is 7.4 x 10 %c, and the
Alfvén speed is 0.036¢. Therefore, the threshold speed is far
in the tail of the proton distribution, and a negligible
number of protons will be accelerated. Consequently,
protons (and other ions) are a negligible dissipation source
for the waves. On the other hand, v, is only slightly above
v, and a significant number of the ambient electrons can
resonate with, and damp, the waves. Thus, fast mode waves
almost exclusively accelerate electrons under solar flare
conditions, although this situation may change in other
environments (e.g., Fisk 1976).

In the classical Fermi process, the acceleration rate is
proportional to the collision frequency between a particle
and the magnetic perturbations. Identifying the collision
frequency with the inverse of the transit time across a per-
turbation, and taking the perturbation to be a large-
amplitude wave, we see that the acceleration rate increases
as the wavenumber increases. This should be the case for
transit-time damping as well, due to the analogy between
the two processes. Qualitatively then, fast mode waves of
relatively high k will probably be necessary to accelerate
electrons out of the background on short timescales and
against Coulomb collisions. The generation of turbulence in
flares is fairly unexplored territory, but it is reasonable to
suppose that very long wavelength waves (of order 10® cm,
say) will be excited during the primary energy release, by
large-scale magnetic field restructuring or perhaps a shear
flow instability (Chiueh & Zweibel 1987; LaRosa & Moore
1993; see also Roberts et al. 1992). The transfer of spectral
energy to higher wavenumbers is naturally accomplished by
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cascading (e.g, Zhou & Matthaeus 1990; Marsch 1991,
§§ 8.6 and 10.5), which results physically from wave
steepening.

In our scenario then, waves are initially excited at very
long wavelengths, cascade through an inertial range, even-
tually reach a sufficiently high k where they preferentially
accelerate electrons out of the thermal distribution, and are
subsequently damped. The range of k where damping is
significant is the dissipation range, the location of which
depends upon the wave energy absorption rate due to
transit-time damping relative to the wave energy cascade
rate. We employ small-amplitude waves since we wish to
consider the sufficient conditions under which the observed
acceleration can take place and thus minimize the energy
density of the turbulence. Since the energy density of the
turbulence will be small and only those electrons above the
threshold will be energized, the volume of the acceleration
region will need to be relatively large (~10%27 cm?) to
account for the total energy content of the electrons. An
opposite scenario, in which the waves have large amplitudes
and the volume of the acceleration region is only ~ 10?4
cm?, is considered in LaRosa, Moore, & Shore (1994). In
this case, electrons are accelerated by the Fermi mechanism
and there is no threshold energy, so that the result is “bulk
energization” of the entire distribution to hard X-ray—
producing energies. An important point with transit-time
damping (which is also the case with the associated Fermi
mechanism) is that there is no often-quoted “injection
problem:” A preacceleration mechanism is not needed, and
this single process can accelerate electrons to ultrarelativis-
tic energies directly from the thermal distribution.

Cascading was also an essential ingredient in the Fermi
acceleration model of LaRosa et al. (1994). That Fermi
acceleration of electrons could occur and be efficient was
previously established by Gisler & Lemons (1990) and
Gisler (1992), studies which firmly refuted Eichler’s (1979)
claim that this process would always lead to heating. Accel-
eration by transit-time damping has been treated in the
literature before. Achterberg (1981; see also 1979) derived
approximate diffusion coefficients and also showed that the
process can lead to acceleration. Miller (1991) showed that
the dominant dissipation mechanism for fast mode waves
under solar flare conditions was electron transit-time
damping, and that the damping rate (and thus the electron
acceleration rate) was very high. The study which cast
doubt on both resonant and Fermi acceleration by fast
mode waves was Zweibel & de la Beaujardicre (1990; see
also de la Beaujardiére & Zweibel 1989), in which test-
particle simulations revealed that the acceleration rate was
too slow to account for electron energization in flares. We
suspect the cause of this was the use of waves at low k. We
also employ low-k waves but take into account the sub-
sequent transfer of spectral energy to smaller scales, where it
is more rapidly dissipated by electron acceleration.

Herein, we formulate a self-consistent model for electron
acceleration, taking into account the cascading of the
waves, their damping on the electrons, and the resulting
energization of the electrons. We pay careful attention to
Coulomb collisions, since the threshold energy is near the
thermal speed. Cascading and acceleration are treated with
coupled diffusion equations, one of which is nonlinear.
These equations are numerically solved by finite differ-
encing with iteration. We discuss the model in detail in § 2.
In § 3 we present results from the quasilinear code. Implica-
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tions for flare acceleration are discussed in § 4, and we
summarize our findings in § 5. A derivation of the transit-
time damping diffusion coefficient, without approximation,
is given in the Appendix and will be used here and in future
extensions of this model.

2. THE MODEL

We assume that the acceleration region consists of an
isotropic fully ionized H plasma permeated by a homoge-
neous static ambient magnetic field B, = B,Z. At some
large-scale 4;, an unspecified mechanism generates small-
amplitude fast mode waves, which then cascade to smaller
scales and eventually accelerate electrons out of the thermal
distribution. In the next two subsections, we present the
quasilinear equations that describe the behavior of the elec-
trons and the waves. Here, we summarize our assumptions
and simplifications.

1. The turbulence is isotropic, which is consistent with the
Kolmogorov-like and Kraichnan cascading phenomenol-
ogies that we employ. In the Kolmogorov-like phenomen-
ology, waves of comparable wavelength interact in about
one eddy turnover time, which is then the timescale for
spectral energy transfer to smaller wavelength fluctuations.
In the Kraichnan phenomenology, the interaction timescale
is the Alfvén crossing time for a fluctuation. For low-
amplitude waves, this interaction is much shorter than that
for the Kolmogorov case, and spectral energy transfer to
smaller scales is inhibited and occurs at a slower rate.

2. The electron distribution is isotropic. While this is
likely to be the case initially, transit-time damping changes
only the parallel energy of the particles. In the absence of
pitch-angle scattering, the parallel energy would systemati-
cally increase, leading to a velocity-space anisotropy in the
electron distribution function. This would decrease the effi-
ciency of the acceleration by reducing the wavenumber
phase space accessible to the energetic particles. However,
as a tail is formed in the parallel direction, the anomalous
Doppler resonance (I = —1) instability (Liu & Mok 1977;
An et al. 1982; Moghaddam-Taaheri et al. 1985) would
rapidly lead to the excitation of electrostatic lower hybrid
waves that would pitch-angle scatter the particles back to a
nearly isotropic state. This process needs to be investigated
further in our context, but we assume it is operable over an
acceleration timescale. We point out, however, that transit-
time damping may be efficient enough even without iso-
tropizing scattering; this is to be investigated in the future.

3. Gyroresonance between the relativistic electrons and
the transverse wave electric field (see § 1) is neglected. This
process will greatly enhance the acceleration rate of rela-
tivistic electrons over that obtained from just the [ =0
interaction.

4. Electron escape from the acceleration region is not
considered. Escape is dictated by the mechanism
responsible for isotropization (see point 2), and, until this
process is explored seif-consistently, we prefer not to
include arbitrary parameters for it. (Note that this is not a
problem in Alvén wave/ion acceleration models where the
isotropizing and energizing waves are the same.) While not
a critical simplification in this paper, since we are concerned
with the overall efficiency of transit-time damping and its
ability to produce the observed electron numbers, a treat-
ment of escape is essential for a calculation of hard X-ray
spectra.

Vol. 461

5. We use the transit-time damping diffusion coefficient
that results for waves with w < Qy. With Kraichnan cas-
cading, the waves are confined to low frequencies and this
simplification will have no effect. With Kolmogorov-like
cascading, waves can have w =~ Q, but the effect of the
more complicated dispersion in this regime will not be sig-
nificant.

2.1. The Electron Diffusion Equation

With the introduction of isotropizing scattering, there is
no evolution of the particle distribution function in pitch-
angle cosine u. Hence, we can average the two-dimensional
momentum diffusion equation in spherical coordinates over
1 and readily obtain the isotropic momentum diffusion

equation
o 10|, of
=== 1
= p[pD(p)a , (2.12)
where
+1
D(p) = 4 f duD,, , (2.1b)

p is the magnitude of the momentum vector p, and D, =
{ApAp>/(2At) is the p-dependent momentum diffusion
coefficient. The quantity f is the phase-space distribution
function, normalized such that 4np?dpf(p, t) equals the
number of particles per unit volume with momentum in the
interval dp about p. The transit-time damping diffusion
coefficient D, is derived in the Appendix using a conve-
nient Hamiltonian formalism (e.g., Karimabadi et al. 1992;
Miller & Roberts 1995). From equations (2.1b) and (A10),
we find that

D(p) = (mc)*Qy % (”A)z c<ky Uy (-”—)2 <§>F(v) , (2.2a)

c Qy Ug \mc
where
Fo)= —3 — (1 + 2ud)Inpy + pd + 3ud, (22b)

and pu, = v,/v. An electron of speed v > v, must have | u| >
Uo 1n order to resonate with a wave. In this expression, m is
the electron mass, U is the total (kinetic plus vacuum field)
energy density in the fast mode waves, Up = B2/8n is the
background magnetic field energy density, and c(k)/Qy is
the mean dimensionless wavenumber of the wave spectrum.
The quantity F(v) is basically an efficiency factor, which
takes into account the velocity-dependent fraction of par-
ticles that can resonate with waves having an isotropic dis-
tribution, and equals 0 when v <wv, but approaches
—(5/4) — In(v,/c) ~ 2 when the electron becomes ultrarela-
tivistic. This expression for D(p) is equal to 3F(v) times the
expression derived by Achterberg (1981; see also 1979 and
Forman, Ramaty, & Zweibel 1986). Since F(v) < 1072 for
E < 1073 mc?, the efficiency of low-energy electron acceler-
ation is much smaller than previously estimated; however,
the diffusion coefficient, and thus the acceleration rate, at
high energies is larger by a factor of ~6.

Instead of the momentum diffusion equation, we finite
difference the associated Fokker-Planck equation in energy
space (Tsytovich 1966), which reads

= " 3E {|:A + (E)C]N} + 5 2E2 [(D + DN] ,
2.3)
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where E is kinetic energy and N is the energy-differential
particle density. The coefficient of systematic acceleration
(or convection coefficient) A(E) = (AE)/At, which is given
in terms of D(p) by p~2 d[p*vD(p)]/dp. The diffusion coeffi-
cient D(E) = {(AE)*)/At and can be written as 202D(p). We
have also added a convection (dE/dt); and diffusion coeffi-
cient DJE) for Coulomb collisions. We treat the Fokker-
Planck equation instead of the momentum diffusion
equation since (1) the boundary condition at high energies is
more easily implemented, (2) A(E) is necessary for the calcu-
lation of the damping rate anyway (see § 2.2), and (3) the
energy convection and diffusion coefficients for Coulomb
collisions have already been calculated. Differentiating D(p),
find that

2
A(E) = (mc*)Qy g <£cé> 'g—: %il (ﬁ) G@v), (24a)

where
1
G(v) = 7 @udlnp, —ug+ 1)+ F(p),  (24b)

and y is the Lorentz factor. The quantity G(v) = 0 when
v < v, and reaches a high energy limit of ~1/(4y?) — (5/4)
— In(va/c) = 2. Note that the acceleration rate is directly
proportional to <k), so that waves of relatively small wave-
length are much more efficient energizers than those with
large wavelength, in agreement with the argument present-
edin§ 1.

For all but the very lowest energies (E < 10~ 2k T, where
kg is Boltzmann’s constant and T is the temperature), the
energy change rate due to Coulomb collisions on the back-
ground electrons dominates that due to the background
protons. Consequently, we consider only electron-electron
collisions. In a fully ionized thermal H plasma, the
Coulomb convection coefficient from Huba (1994) is

(5’5>C = v [Y() — VWIE (2.52)

dt
where the diffusion constant v, = 4ne*(In A)ny/(m*v®), x =
v?/vf, Y(x) = P(3/2, x), ¥'(x) = 2(x/m)"/> exp (—x), the elec-
tron thermal speed v,, = (2kg T/m)*/?, and P is the incom-
plete gamma function (e.g., Press et al. 1986, p. 160). In the
diffusion constant, the electron charge e and the density ny
both have cgs units, and In A is the Coulomb logarithm
(taken to be 18 throughout the paper). An approximate
diffusion coefficient is given by Spitzer (1962, p. 132). Using
Huba’s notation,
DJE) = 4v, -l%x) E?. (2.5b)
We show in Figure 1 the Coulomb convection and diffusion
coefficients for electron-electron collisions in a H plasma of
temperature 3 x 10° K and density of 10!° cm 3. The mag-
netic field is only used to normalize time. Below the thermal
energy Er =ky T =5 x 10" *mc?, the convection coeffi-
cient is positive, and electrons systematically gain energy as
a result of collisions. Above E, this coefficient is negative
and electrons systematically lose energy.

The validity of these Coulomb convection and diffusion
coefficients can be tested by examining the evolution of an
initial electron distribution. Specifically, (1) an initial elec-
tron distribution with an average electron energy {E),
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F1G. 1.—The Coulomb convection (solid line) and diffusion (dashed line)
coefficients for an electron in the presence of a thermal electron back-
ground distribution of temperature 3 x 10° K and density 10!° cm 3. The
magnetic field is specified to normalize time, and Q, = 4.79 x 10® s~ 1.
Both coefficients are directly proportional to ny,.

should relax to a Maxwellian distribution of the same
average energy or one with Er = 2{E),/3, and (2) an ini-
tially Maxwellian distribution should remain Maxwellian.
As an example, in Figure 2 we place 10'° electrons cm ™3 at
an energy of 7.5 x 10~ *mc?. As such a distribution should
evolve to a Maxwellian with T =3 x 10° K; we use the
coefficients given in Figure 1 and numerically solve equa-
tion (2.3) (see § 2.3). Panel a shows the evolution from time
t = 0to 10* T;;, where T; = Qy; '. The solid lines denote the
distribution at 10 times during this interval. We see that the
low-energy part of the distribution grows rapidly, whereas
the high-energy tail suffers a much more gradual evolution.
In panel b we show the distribution from t = 10*~10°T;;. At
these times both the low- and high-energy parts evolve
slowly. In panel ¢ the simulation is continued and t =
105-10°Ty. Here the low-energy distribution has almost
reached its equilibrium value, while the tail is still growing
slightly. Beyond t = 10°T;, the spectrum suffers no further
appreciable evolution. In panel d we compare the distribu-
tion at t= 10°T; with a Maxwellian distribution with
T=3x10° K or E;x =5 x 10 *mc?. The agreement is
excellent for all but the highest energies (E 2 18Ey) in the
tail, a result similar to that obtained by a more rigorous
treatment using the Landau form of the Fokker-Planck
equation (Macdonald, Rosenbluth, & Chuck 1957). As a
result of this and other similar tests, we conclude that this
treatment of Coulomb collisions is very accurate.

2.2. The Wave Diffusion Equation

As a result of wave steepening, spectral energy will
cascade to higher frequencies and wavenumbers, and we
describe such a cascade by a diffusion equation in wave-
number space (Zhou & Matthaeus 1990). Zhou & Mat-
thaeus sought to provide a simple framework for turbulence
evolution in a variety of space physics problems, and this
framework can be readily applied to our study of electron
acceleration. The kinetic equation for a three-dimensional
spectral density Wi(k) (wave energy density per unit volume
of wavenumber space) is the usual conservation equation
OWy(k)/dt = —V, + F(k), where the flux F = —DV, W(k),
the diffusion coefficient in wavenumber space D = k?/z,,
and the spectral energy transfer time is 7,. For isotropic
turbulence, we can define a one-dimensional spectral
density Wy(k) = 4nk>Wy(k), and the diffusion equation sim-
plifies to
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where we have included a term for the damping of the waves

by the energetic electrons and a term S for wave energy
injection.

The diffusion coefficient depends upon the cascade
phenomenology. In the Kolmogorov treatment, the spectral
energy transfer time at a particular wavelength A is the eddy
turnover time A/6v, where dv is the velocity fluctuation of
the wave. In the Kraichnan treatment, the transfer time is

longer by a factor of v,/0v. Both phenomenologies are
further discussed in Zhou & Matthaeus (1990) and yield

|:k2D 5‘% (k-ZWT)] — W +S, (26

1/2
C%v, k" 2[%1(—)] , (Kolmogorov) ,
D= o k” 27
C%v, k“[?;]—(—)] , (Kraichnan) ,
B

where C? is the Kolmogorov constant that we take equal to
unity. Upon substituting these diffusion coefficents into
equation (2.6), and assuming a steady state with no
damping, we obtain Wy = W,k™*, where s = 5/3 for the
Kolmogorov case and s = 3/2 for the Kraichnan phenom-
enology. The diffusion equation in either case is nonlinear.
While the Kolmogorov phenomenology should be appro-
priate for strong turbulence, it appears (as discussed in
Miller & Roberts 1995) that it is also better than the
Kraichnan phenomenology for weak turbulence and thus
more appropriate for this study. However, we consider both
cases in this paper for completeness.

The damping rate y can be determined by conserva-
tion of energy. Employing the boundary conditions
N(0) =0 and D(E =0) =0, we find from equation (2.3)
that the volumetric energy gain rate of the particles U, =
j'3° dEN(E)A(E), which is expected from the fact that A(E) is
the systematic acceleration rate. Requiring that U, = —U,,
where the volumetric energy loss rate of the waves U, =
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— [& dky(k)Wy(k), and using equation (2.4a), we find that

-3 22 (8) (2o

(2.8)

The damping rate is directly proportional to k, so that
large-wavelength waves will suffer negligible damping even
though the energetic electron spectrum may extend to very
high energies. On the other hand, for sufficiently small
wavelengths, the waves will be dissipated rapidly on the
electrons. We thus expect a classical inertial and dissipation
range to form in the spectral density.

We assume for simplicity that turbulence is deposited at a
single wavelength 4;. When turbulence is injected over time,
we also assume that the injection rate is constant from time
t =0 to t,. Hence, S = QH(t, — t)o(k — k;), where Q is the
rate of wave energy density deposition, H is the step func-
tion, and the injection wavenumber k; = 2r/4;. If turbulence
is present at ¢t = 0, then Wy = U, 8(k — k,) initially, where
U, is the initial wave energy density.

2.3. Method of Solution

Electron acceleration and wave evolution are thus
described by the two coupled partial differential equations
(2.3) and (2.6), the latter of which is also nonlinear. To solve
this system, we first transform to dimensionless variables,
the use of which was already suggested by the form of the
expressions for D(p), A(E), and y. Spemﬁcally, normalized
momentum p = p/mc, Kinetic energy E = E/mc?, speed # =
v/c, wavenumber k = ck/Qy, and time ¥ = t/T;, where Ty =
Q' The wave spectral density Wr is normalized to Usp,
so that W, = Qy Wi/(cUg). That is, Wydk is the total
wave energy density, in units of Up, in the normahzed wave-
number interval dk about k. Last, the volumetric wave
energy density injection rate Q = QU, Q. In the following
sections, we use both normalized and unnormalized vari-
ables, depending upon convenience.

The technique used to solve this system is similar to that
used in Miller & Roberts (1995). Since N(E) will span many
decades in energy, we transform to logarithmic energy
derivatives in the Fokker-Planck equation by d/0E = [1/
Eln 10)]0/0y, where y = log E. The resulting equation is
then finite differenced according to the Crank-Nicholson
scheme (e.g., Press et al. 1986, p. 635). At the low-energy grid
point we take the convection and diffusion coefficients
equal to zero, while at the maximum-energy grid point we
neglect diffusion but include convection. This technique
takes into account the convection of particles to higher
energies and thus prevents particle “ pile up ” at the last grid
point.

We transform to logarithmic derivatives in the wave dif-
fusion equation as well, which is then also differenced with
the Crank-Nicholson method. If the maximum wavenum-
ber grid point is well inside the dissipation range, then the
waves will be damped completely before reaching it and Wy
can be set to zero there. At the minimum-wavenumber grid
point, we take Wy = 0, which is sufficient to prevent a flux
of wave energy to low wavenumbers. Each differential equa-
tion yields a tridiagonal system of linear equations, which
can be readily solved for N and W, at each grid point. The
integrations over E in the expression for the wave damping
rate, and over k for the calculation of U and <k) appearing
in the expressions for the convection and diffusion coeffi-
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cients, are performed using the extended trapezoidal rule.
We can also employ iteration in stepping forward from time
t, to the next time ¢, ,. In our scheme, coefficients at time
t,+ are first assumed to be equal to those at time ¢t,. The
quantities N and W are then stepped forward and used to
find first-order corrections to the coefficients at ¢, ;, which
allows us to make the time step again with more accurate
estimates of the coefficients at t,,,. This process can be
repeated an arbitrary number of times. We do not always
need to employ iteration, but in those cases where we do, we
find that one iteration is sufficient.

This overall scheme is very accurate and efficient. Adapt-
ive time steps are not necessary, and we use a fixed time step
in a given run. We incorporate many diagnostic features in
the code as well, determining the extent of energy conserva-
tion and particle number, for example. The code also has
the capability to restart from a previous run with a different
time step, which is useful for examining the detailed behav-
ior of the system in a small time interval of interest, such as
when {k) becomes large enough to start accelerating elec-
trons out of the tail. All simulations are performed with 30
grid points per decade in both E and k space and can be
done on a workstation or fast personal computer.

3. RESULTS

We take the ambient H density and magnetic field to be
10'® ¢cm~3 and 500 G, respectively. In an actual flare
plasma, the initial temperature T must be ~3 x 10° K in
order to account for the observed enhancements of heavy
ions in the interplanetary particles (Reames et al. 1994), and
so this is the temperature we assume for the initially Max-
wellian electron distribution. These values imply that Ty =
209 x 1077 s, Uy = 9.9 x 10® ergs cm 3, v, = 0.036¢, and

e = 0.032c.

3.1. Casel

In this trial, we consider a temporally extended injection
of waves at 4; = 1600c/Qy, with @ = 4 x 107 '°UzQy and
t; = 3 x 10°T;. There is no turbulence present initially, and
we employ the Kolmogorov phenomenology.

We show in Figure 3 the evolution of the turbulence from
t =0 to 4 x 10°ty. During this time the waves cascade to
higher k, but the mean wavenumber <k) of the spectral
density is not large enough for the waves to overcome
Coulomb collisions and accelerate electrons out of the
background. Consequently, the electron distribution
remains a Maxwellian. In Figure 3a we give the spectral
density at 10 times during this interval, and the formation of
a power-law spectrum with a —5/3 slope is evident at the
later times. The spectral density at the injection wavenum-
ber quickly reaches equilibrium, during which time the
volumetric rate of wave energy 1n3ect10n 0 must equal the
volumetric rate at which this energy is transferred to smaller
scales — k2D (k~2Wy)/ok. For a Kolmogorov spectrum
Wy = Wok =33, and we see from this condition and equa-

tion (2. 7) that
- ()"

115,

(3.1)

Note the important property that the normalization of the
spectral density depends only upon the injection rate and
not on the injection wavenumber. From equation (3.1),
W, = 2.6 x 1076, which is in excellent agreement with the
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FiG. 3.—Case 1 evolution from ¢t = 0to 4 x 10°T;,. (a) Wave spectral density at times ¢, = 4 x 10*nT;, wheren = 1,. . ., 10. (b) Total energy density of the

turbulence U ; (solid line). Mean wavenumber {k) (dotted line).

simulation value near t =4 x 10°T;; and at subsequent
times while the turbulence is still being injected. In Figure
3b, we show the total energy density of the turbulence U,
and the mean wavenumber during this time. As there is no
dissipation, U = Qt. The mean wavenumber does not have
a simple analytical expression but increases by a factor of
=5 during this interval.

This time interval marks the end of pure cascading, and
shortly afterwards <{k) becomes large enough to accelerate
electrons. This is illustrated in Figure 4. Figures 4a and 4b
are the electron distribution and spectral density in the
small time interval from ¢t = 4 x 10° to 5 x 10°T;, in which
a power-law spectral density is established at nearly all k
and a nonthermal electron tail begins to form. Specifically,
the electron distribution remains a Maxwellian until t =
4.1 x 10°Ty. At 4.2 x 105T;;, a power-law spectral density is
established at all but the largest k. At this point the mean
wavenumber rapidly increases and the acceleration rate
becomes large enough to energize electrons out of the
thermal background. The timescale 7, for power-law forma-
tion at all k will be approximately the turnover time of the
largest scale fluctuation k?/D(k;) and is given by

T, = /205 Uk 2PW S (3.2)
The cascade time of 9.7 x 10°Ty from this equation over-
estimates that seen from the simulation by about a factor of
2, indicating that an appreciable amount of wave energy
can be transferred to smaller scales before a complete turn-
over of the largest scale.

Figures 4c and 4d show N and W; from t = 5 x 10° to
10°T;;. Here, the spectral density is in equilibrium (except
for k < k;) and shows essentially no deviation from its
power-law form. The nonthermal tail of the electron dis-
tribution progressively hardens, being approximately pro-
portional to E~'° between 20 and 100 keV at 5 x 10°T;
and reaching E~2° at 10°T;;. During this time the total
number density N(>20 keV) of electrons above 20 keV
achieves a physically meaningful value of ~107 cm ™3, and
the specific acceleration rate of electrons F(> 20 keV) above
20 keV reaches its maximum value of more than 108 cm 3
s~! (see Fig. 6a). The electron distribution and spectral

density for the remainder of the time that waves are injected
are shown in Figures 4e and 4f. The main feature of the
electron distribution is the pronounced flattening between
~2 x 1072 and ~2 x 10~ *mc?, which is due to the rapid
convective nature of the acceleration process and the rela-
tively slow replenishment of electrons from lower energies.
Hardening occurs at all energies, however, and between 20
and 100 keV the distribution is proportional to E~!-% at
3 x 10°Ty,. At this time there is also a significant number of
electrons above 5 MeV. The spectral density remains a
power law except at ck/Qy 2 100, where damping by the
energetic electrons causes it to turn over slightly.

The distribution and spectral density after the injection of
waves has stopped is shown in Figure 5. Near E ~ 10~ 2mc?,
the electron distribution evolves to almost a constant form
but does not change appreciably at higher energies. The
quantity N(> 20 keV) remains approximately constant, and
F(>20 keV) drops very rapidly to levels uninteresting for
hard X-ray production. The spectral density decreases
about uniformly at all wavenumbers. Figure 6 is a summary
of the most relevant electron and wave information for the
entire simulation. The greater than 20 keV specific acceler-
ation rate is greater than 5 x 107 cm™3 s~ ! for about
1.6 x 10°T;;, and N(>20 keV) reaches a final value of
~4 x 107 cm 3. Figure 6b illustrates the rapid increase of
(k) at ~4 x 10°Ty, along with its subsequent decline due
to progressively stronger damping at high wavenumbers by
the electrons. During the time electrons are accelerated,
Ur S 2 x 104U, which confirms that the turbulence is
weak and the waves are low amplitude. This can also be
seen from the relative wave magnetic field 6B/B, =
(W {(k)k/2)'/?, where the number 2 takes into account the
equipartition of energy between the magnetic field and the
background ion motion. The largest relative amplitude is at
the injection wavelength, where itis ~7.2 x 1073

The effect of Coulomb collisions upon the acceleration
process can be readily determined by setting D, =
(dE/dt), = 0 in the simulation and comparing the results
with those obtained above. We show in Figure 7 the results
for case 1 parameters but without collisions. Qualitatively,
one expects that the absence of collisional drag above the
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density are shown at times ¢, = (4 x 10° + 10*n)T;; for n=0, . . ., 10. (c) and (d) Evolution from ¢ = 5 x 10° to 10°T;,. Electron distribution and wave
spectral density are shown at times ¢, = (5 x 10° T;; + 5 x 10*n) T, forn =0, . . ., 10. (¢) and (f) Evolution from t = 106 to 3 x 10°T;,. Electron distribution

and wave spectral density are shown at times t, = (10% + 2 x 10°n)T,forn = 0,. . ., 10.
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2 x 10°m) Ty forn = 0,. . ., 10. (b) Wave spectral density at the same 11 times.
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threshold energy would enable more electrons to be acceler-
ated out of the Maxwellian and into high energies, and this
is indeed the case. Panel a shows that the total number
density of electrons accelerated above 20 keV is ~ 108
cm ™3, which is about a factor of 2.5 times larger than the
total number density with collisions. Similarly, the specific
acceleration rate F(> 20 keV) is greater than 4 x 107 cm ™3
s~ ! for about 3 x 10°T;;, and greater than 108 cm =3 s~ ! for
nearly 2.5 x 10°T;;. However, while the total number of
accelerated electrons is greater without collisions, the
average electron energy is smaller, since more electrons are
absorbing energy from the same level of turbulence. In fact,
the electron spectra is proportional to E~2-2 between 20
and 100 keV at 5 x 10°Ty,, as opposed to nearly E~ -2 from
Figure 5a. The evolution of U is essentially the same as
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before, but (k) without collisions decreases more rapidly
after the injection of turbulence has stopped. Evidently, the
larger number of electrons more than offsets the lower ener-
gies that they are accelerated to, and the damping rate is
larger in this case than before.

3.2. Case?2

In the previous case, we assumed that the waves were
injected at 4; = 1600c/Q;,. Since the scale of turbulence gen-
eration is unknown at present for flares, we need to deter-
mine how this scale influences the results. The key for this is
to notice that the acceleration rate is proportional to
U k)= jg° dkkWi(k). For a Kolmogorov phenomenology,
this quantity is approximately 3W, k1’3, where k, is the
wavenumber at which the power law turns over due to
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F1G. 7—Same as Fig. 6 (case 1), except that Coulomb collisions have been neglected
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heavy damping by the accelerated electrons. Since k, should
not depend upon the injection wavenumber k;, as is the case
with W,, the acceleration rate when a steady state power-
law spectral density is achieved is also independent of k;.
Therefore, we expect that the magnitude of electron quan-
tities such as N(>20 keV) and F(> 20 keV) should not vary
appreciably with k;, although their precise time dependence
will (due to the change in the cascade time). This is an
important result, since it means that a major unknown
parameter is actually irrelevant (as long as k; < k).

To quantitatively establish this conclusion, we consider
another trial. In this trial all parameters are the same as
those in case 1, except that A, = 16000c/Qy (that is, Q =
4 x 1071°UzQy, t; =3 x 10°Ty, there is no turbulence

1015 MEARAL LR AL B AL ALY B R AL
1010-

10°

N(E)mc? [ecm™®]

10°[

1015
101° I

10°

N(E)mc?® [em™®]

10°[

00/ (Uge)

STOCHASTIC ELECTRON ACCELERATION

T

1015 r T
101°_r

10°

N(E)mc? [em™®]

10°[

Y| T | i 1 " aul T |

—T T

1072 10°
E/mc?

107*

455

present initially, and we employ the Kolmogorov
phenomenology). From equations (3.1) and (3.2), the
cascade time is about 4 x 10Ty, which is nearly 4 times
longer than that in case 1. We do not show results in the
initial time interval when the waves are cascading to higher
k and the electron distribution is still a Maxwellian (they are
similar to those in Fig. 3) but rather begin when the elec-
trons are forming a nonthermal tail. We show in Figures 8a
and 8b the electron distribution and wave spectral density
at 11 times between 1.5 x 10° and 2 x 10°T;;. The electron
distribution remains a Maxwellian until a power-law spec-
tral density is formed out to large wavenumbers at about
1.95 x 10°T;; and the mean wavenumber rapidly increases
to x0.5Qyu/c (see Fig. 9b). At this point, a significant
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FiG. 8.—Case 2 evolution from ¢ = 1.5 x 10° to 10 T,. (a) and (b) Evolution from ¢ = 1.5 x 10® to 2 x 10°T;,. Electron distribution and spectral density
are shown at times t, = (1.5 x 10° + 5 x 10*n) T, forn =0, . . ., 10.(c) and (d) Evolution fromt = 2 x 10°T;; to 3 x 10°T;,. Electron distribution and spectral
density are shown at times t, = (2 x 10° + 10°n) T, for n =0, . . ., 10. (¢) and (f) Evolution from ¢t = 5 x 10° to 10”T;,. Electron distribution and spectral
density are shown at times ¢, = (5 x 10° + 5 x 10°n) T, forn =0,. . ., 10
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F1G. 9.—Case 2 summary. Notation is the same as in Fig. 6.

number of electrons above the threshold energy can over-
come collisional drag and be energized out of the thermal
distribution.

Figures 8¢ and 8d are the distribution and spectral
density at 11 times from 2 x 10° to 3 x 10°Ty, at which
time the injection of the turbulence stops. During this inter-
val, the spectral density is in a quasi steady state, with U, x~
8 x 10~ *Uj. Since the turbulence energy density Wy(k,)k; in
a wavenumber interval k; about k; is x4.7 x 10™4Uy,
0B/B, = 1.5 x 1072 and all of the waves in the spectrum
are small amplitude. The only significant evolution of W, is
the decrease of <k) due to the accelerated electrons
damping waves at high wavenumbers. The electron dis-
tribution steadily hardens, reaching E~2 between 20 and
100 keV at 3 x 10°T;;. The number density of electrons
above 20 keV also steadily increases, but the specific accel-
eration rate above 20 keV reaches a maximum of more than
2 x 108 cm ™2 s~ ! at about 2.4 x 10°Ty,. After the injection
of the turbulence ceases, the spectral density uniformly
decreases in a manner similar to that in Figure 5, while the
electron distribution continues to harden at suprathermal
energies. However, since the cascade time is relatively large,
the turbulence stays at a relatively high level for a longer
time, allowing the electron distribution to further evolve
over a longer time as well. In fact, at 5 x 10°T;;, the electron
distribution still shows appreciable evolution, as opposed to
case 1.

We do not show N and Wy from 3 x 10° to 5 x 10°T;,
since their behavior is similar to that in Figure 5. However,
in Figures 8¢ and 8f we show these quantities from 5 x 10°
to 10"Ty,. Aside from the very hard spectrum (E~°)
between 20 and 100 keV, note a slight bump-on-tail feature
near =5 keV. This is due to the systematic convection of
electrons to higher energies (e.g., see also Fig. 3 or Ramaty
1979) in the absence of a correspondingly rapid replenish-
ment from the thermal distribution. Beyond 107 Ty, further
evolution is small. This bump-on-tail feature is interesting
and may be of importance in *He acceleration models (see
§4).

A summary of this simulation is given in Figure 9. The

total number density of electrons above 20 keV is the same
as that in case 1, and F(>20 keV) is greater than 5 x 107
cm ™3 57! for about 1.6 x 10°T;, also the same as in case 1.
This supports our expectation that the essential electron
results are independent of the scale at which waves are
injected. This is not to say, however, that all results are
identical. Specifically, the wave characteristics are quite dif-
ferent. The peak value of c<k)/Qy is about 0.6 in case 2, as
opposed to about 4 in case 1, although this quantity has the
same e-folding decay time after turbulence injection stops.
The decrease of (k) in this case is offset by an increase of
U, so that the product remains about the same.

3.3. Case3

The last simulation established the fact that the scale at
which the turbulence is generated does not appreciably
affect the essential properties of electron acceleration. The
next question is whether the timescale of the turbulence
generation does. In the above cases, we have taken the injec-
tion to be over 3 x 10°Tj,. Injection over longer times with
the same injection rate Q can yield sufficiently high electron
fluxes, but the total amount of turbulence will be larger.
Since we seek to establish the sufficient conditions under
which the observed electron acceleration can occur, we
want to keep the total amount of turbulence to a minimum.
Hence, we consider injection over shorter times, and we
thus take the limit of an impulsive deposition at t = 0.

In this trial all parameters are the same as those in case 2
(4; = 16000c/Qy; the Kolmogorov phenomeno]ogy), except
that the initial level of turbulence Up; at 4;is 1.2 x 1073Uy
and there is no subsequent injection of more wave energy.
Hence, in the code at t = 0, Y, Wi(k))Ak; = U, where k; is
a wavenumber grid point and Ak; = 2 3k;A log k; is the
wavenumber interval about k;. Wlth 30 pomts per decade in
log k space, we have that WT(k,) = 40. This is larger than
any value of W, encountered in the continuous injection
cases, but 6B/B, at the injection wavelength is about
9 x 1072, so that the waves are still small amplitude.

The wave energy is transferred to higher k more quickly
than in case 2 since its initial level is larger. Specifically, we
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approximate the cascade timescale 7, by the eddy turnover
time at the injection wavelength k; !/dv;, where dv; is the
velocity fluctuation at k;. Since dv;/v, = 6B/B, = (U1;/2)"/?,
we have that 7, ~ 2.9 x 10°. The time for a power-law spec-
tral density to form in the simulation is about 8 x 10°Ty.
This is shorter than the estimate and is due to the fact that a
power law can form before a complete turnover of the
largest fluctuation. At the moment a power law is estab-
lished, the normalization constant W, is given by Up; =
3W, k;2/3/2. This is also an approximate expression, since
by the time that the power law is formed, some wave energy
has already flowed into the electrons. This condition pre-
dicts that Wy(k;) = 2, in fair agreement with the simulations
which yield a value of 1.

We do not show electron distributions and spectral den-
sities as in Figures 3—5 and 8 since their behavior is not
significantly different. The main difference in the spectral
density is that Wi(k,) is continually decreasing, as opposed
to the earlier cases where it remained constant throughout
most of the turbulence injection. The electron distribution
at 3 x 10°T;;, which is when the bulk of the evolution is
over, is similar to the electron distribution at the same time
in Figure 4e. We give in Figure 10 a summary of this simu-
lation, showing the pertinent electron and wave data as
before. The total number of electrons above 20 keV reaches
about 6 x 107 cm 3 after 3 x 10°T;, and the specific accel-
eration rate above 20 keV remains above 5 x 10" cm 357!
for about 1.2 x 10°T};. The wave energy density remains
approximately constant at its initial level until the mean
wavenumber suffers a large increase to ~1.3 Q,/c, at which
point electrons are appreciably accelerated and both U
and (k) decrease in response.

34. Cased

In this trial we consider cascading according to the
Kraichnan phenomenology. The initial behavior of the
system is similar to that obtained using a Kolmogorov
phenomenology, but the longer cascade time results in qual-
itatively different spectral densities. Specifically, we consider

109
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a temporally extended injection of waves at 4; = 160c/Qy,
with 0 =4 x 107'°UQy and t, = 3 x 10°T;;. There is no
turbulence present initially. Note the smaller scale at which
the waves are generated (see § 4).

We show in Figures 11a and 11b the electron distribution
and spectral density at 11 times from t = 0 to 3 x 10°T;,
when the wave injection ceases. At about 6 x 10°T;, a non-
thermal tail begins to form, and it progressively hardens as
wave energy flows to smaller scales and the acceleration
rate increases. The spectral density forms a power law up to
some wavenumber k,, above which the spectral density
rapidly turns over and approaches zero. This turnover
wavenumber steadily increases up to 2.4 x 10°Ty, when
there are a sufficient number of electrons at high energies to
cause very strong damping at high k, which in turn leads to
the high-k part of the spectral density “snapping back” to
lower k. This phenomenon also occurs for Kolmogorov
cascading but to a much less noticeable extent and at sig-
nificantly higher k (cf. Figs. 4b and 4d with Fig. 11b). The
reason why the effect is so pronounced here is that the
cascade timescale is much longer and turbulence at high k
cannot be replenished from lower k as rapidly as it is dissi-
pated by the energetic electrons. This relatively slow spec-
tral energy cascade also leads to the waves being confined
to much lower k than in the Kolmogorov case.

The cascade timescale and spectral density normalization
can be estimated as with the Kolmogorov cases. Equating
Q _with the volumetric energy cascade rate — k*D
6_§k'2WT)/ak, assuming a Kraichnan spectrum W, =
W ok~ %2, and using D from equation (2.7), we find that

A\ 1/2
I/T/o = <4TQ>
N
at equilibrium. From equations (3.1) and (3.3), the normal-
ization of the Kraichnan spectrum is greater than that for
the Kolmogorov spectrum when Q < 0.3, which is expected

since spectral energy transfer is inhibited by the magnetic
field in the Kraichnan phenomenology and cascading into

(3.3)

107 °F .7 3

1074} b |

100U;/Ug, e<k>/0y
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10° 108
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FiG. 10.—Case 3 summary. Notation is the same as in Fig. 6.
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FiG. 11.—Case 4 evolution from ¢t = 0 to 7 x 10°T;,. (a) and (b) Evolution from ¢ = 0 to 3 x 10°T;,. Electron distribution and wave spectral density are
shown at times t, = 3 x 10°nT; forn=0,. . ., 10. (c) and (d) Evolution from t = 3 x 10° to 7 x 10°T;,. Electron distribution and spectral density are shown

attimest, = (3 x 10° + 4 x 10°n) T forn =0,. . ., 10.

the dissipation range will not occur as quickly. The cascade
timescale 7, is given by

T = 205 Uk PG, (3.4)
which is also typically greater than %, for the same reason.
With § =4 x 1071% and k; = 3.93 x 1072, we have W, ~
8 x 1075 and 7, ~ 3 x 10°T. From Figure 11b, these esti-
mates are in very good agreement with those obtained from
the simulation. At the injection wavelength, dB/B, =~
1.4 x 1072, and the waves are low amplitude in this case as
well.

By the time the wave energy injection stops, the electron
distribution has an approximate E~? form between 20 and
100 keV. The evolution of the system from t = 3 x 10° to
7 x 10°T; is shown in panels ¢ and d. During this time, the
electron distribution suffers the usual further development
into a harder spectrum and the spectral density uniformly
decreases due to damping. A summary of the relevant quan-
tities is given in Figure 12. The total number of electrons
accelerated to energies above 20 keV is x4 x 107 cm ™3,
and the specific acceleration rate above this energy remains
above 5 x 107 cm ™3 s ! for about 1.6 x 10°Ty;. The mean
wavenumber never exceeds ~0.4Qy/c, due to the strong
damping and the slow replenishment of wave energy.

4. DISCUSSION

Since the Fokker-Planck equation is in terms of the
energy-differential electron density, while hard X-ray
spectra give the rate of acceleration of energetic electrons,
we need to assume a volume of the acceleration region in

order to compare the two. We take this volume to be 10?7
cm?, so that the basic observations we wish to account for
are a specific acceleration rate above 20 keV of ~5 x 107
electrons cm ™3 s~ ! over ~400 ms and thus a total number
density of electrons above 20 keV of ~2 x 107 cm ~3. Con-
sider first the Kolmogorov cascading results. In cases 1-3,
we have established that an injection of 12 ergs cm ™2 on
any scale less than 10® cm and over any time interval less
than ~600 ms (which is at the upper limit of a burst
duration) will yield an F(>20 keV) of more than 5 x 10’
cm ™3 57! for 240-320 ms and an N(>20 keV) of 4-6 x 10’
cm ~3. Since the total number density of energetic electrons
above 20 keV is 2-3 times that needed and the time over
which F(>20 keV) exceeds 5 x 107 cm™2 s ! is consistent
with our approximate fiducial value of 400 ms, we conclude
that this scenario can account for the hard X-ray burst
observations. Of course, an injection of a larger amount of
turbulence would also be permissible, but 12 ergs cm ™3 is a
sufficient quantity.

Generating the turbulence at lower wavenumbers will
lead to a delay of the electron acceleration relative to the
start of the injection but will not, as we have argued, appre-
ciably affect the overall characteristics of the acceleration.
While this is always true in our model, it is true only up to a
point in an actual flare environment. The reason is that
longer cascade times increase the importance of convective
losses for the waves, which will eventually affect electron
acceleration by decreasing the level of turbulence remaining
in the region. In order for convective losses to have a small
effect, (1) the cascade time must be smaller than the wave
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FI1G. 12—Case 4 summary. Notation is the same as in Fig. 6.

transit time L/v,, where L is the scale size of the region that
we take to be (1027 cm3)'”® and (2) the time over which
electron acceleration occurs must be less than L/v,. The
second condition is automatically satisfied since we are
already requiring acceleration over about 400 ms, but the
first is not. From the previous section, we see that condition
(1) requires that k?*W§? be greater than 8.9 x 107° for
extended injection or k(Up/2)'* be greater than
6.3 x 107 for impulsive injection. Using Q =4 x 10710
and Uy = 1.2 x 1073 as before, either condition implies
that 4; needs to be smaller than ~ 10® cm. However, larger
quantities of turbulence would increase this upper limit
accordingly.

It is of interest to consider acceleration timescales in
addition to total numbers and specific acceleration rates
above 20 keV. In the absence of the factor G(v) in the
expression for the systematic acceleration rate A(E) (as is
the case in Fermi acceleration), this rate would be pro-
portional to E'? in the nonrelativistic regime and pro-
portional to E in the ultrarelativistic limit. However, as G(v)
is an increasing function of E, we have instead that A(E) is
nearly proportional to E from nonrelativistic to fully rela-
tivistic energies. Specifically, A(E) =~ 4.5

x 107 3mc2Qy, U (kDE®'® for 1072 < E < 10%. Therefore,
the acceleration time 7 from 10~ 2mc? to E is given by
1390(E1/6 — 0.48)(U <k>) "' T;;. This expression is valid
regardless of the cascading phenomenology or the precise
shape of the spectral density and can be used with Figures 6,
7, 10, or 12 to find acceleration timescales for a given wave
energy density Uy and mean wavenumber <k). To extend
this result to lower initial energies, we have that 7y from
E =178 x 10"*mc* (corresponding to v=1.lv,) to
E = 10" 2mc? is 4380(0 <k)) ! T;;. This timescale is rela-
tively large compared with those going from 107 ?mc? to
higher energies and is due to the steep decline of G(v) near
the threshold for acceleration.

For example, when the power-law spectral density is first
formed at t ~ 5 x 10°Ty in case 1, we have from Figure 6
that U, =2 x 10™* and <k) = 4, so that the timescale for
acceleration up to 10~ 2mc? is nearly 1 s. Since both Uy and

(k) subsequently decrease, the actual time is longer. As the
product of U and (k) for the other simulations is compa-
rable to when a nonthermal tail begins to form, we see that
transit-time damping does not typically yield extremely
short acceleration times at low energies. Cast in this light,
the process is not that efficient. However, the point is that
enough ambient electrons are accelerated to ~ 10~ 2mc?
over a subsecond time interval to produce a sufficient flux
to higher energies. Above 10~ 2mc?, the acceleration times
decrease greatly, and 7; from 1072 to 10™'mc? or mc? is
290(U <k») "1 T;; or 720(U 1<k))™ ' Ty, respectively. At the
instant when the power law is formed, it takes only about 75
ms to go from x5 to 50 keV or about 180 ms to go from
=5 to 511 keV. Again, the actual times will be longer since
the turbulence is being dissipated over the duration of the
acceleration. We note that since this is a diffusive process,
these are average times and some electrons are accelerated
more rapidly, just as some are accelerated more slowly.

We thus expect the acceleration time from 50 to 100 keV
to be no shorter than about 35 ms. This finite acceleration
time must be allowed for in the interpretation of fast time-
scale features. For example, Aschwanden et al. (1995) attrib-
ute a delay between the 25-30 and 50-100 keV hard X-ray
emission solely to energy-dependent propagation effects
and thereby infer the height of the acceleration region above
the interaction region (presumably the loop footpoints).
Since we do not consider trapping in this paper, we (like
Aschwanden et al.) have to make an assumption regarding
release. However, we do take into account an energy depen-
dence of the acceleration time. Assuming that electrons of
50 and 100 keV are released instantaneously upon reaching
these energies, that the time difference between releases is 35
ms, and that the higher energy electrons reach the inter-
action region some 17 ms earlier, we see that the distance
between acceleration and interaction regions is ~2.6 x 10°
cm. This is larger than Aschwanden et al’s estimate of
7.3 x 108 cm, and a longer acceleration time increases the
distance even more. Admittedly, this is a rough calculation,
but it does illustrate the potential importance of a realistic
acceleration time on such an analysis.
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For Kraichnan cascading, the injection wavelength needs
to be smaller than in the Kolmogorov case, due to the
.+ longer cascade time and thus the greater importance of
" wave convective losses. This is why a /; of 160 was used in
the Kraichnan simulation in §3. Namely, we need
kW, >12x107° for an extended injection and
kiOp>12 % 10~ 5 for _an impulsive injection. Using the
above values of 0 and U, a 4, smaller than ~2 x 10° cm
would satisfy either constraint. This upper limit could be
increased through the generation of more turbulence, but
120 ergs cm ~ 3 would be needed for a limit of 2 x 107 ¢cm to
be attained. Hence, relatively low wave levels require excita-
tion at smaller scales than in the Kolmogorov case. We did
not show results in § 3 for an impulsive injection of turbu-
lence, but, as with the Kolmogorov case, the essential elec-
tron results are the same as an extended injection. Keeping
the turbulence to a minimum, then, we see that 12 ergs
cm~3® of waves injected over any scale smaller than
~2 x 10° cm and over any time interval smaller than ~ 600
ms will lead to an F(>20 keV) of more than 5 x 107 cm ™3
s~! for ~320 ms and an N(>20 keV) of ~4 x 107 cm 3.
We thus conclude that this other cascading scenario is also
consistent with observations.

As with wave convective losses, there is one other aspect
of this model that needs to be mentioned but which is not
taken into account in the simulations. This is electron
Landau damping of relatively high-frequency fast mode
waves. Landau damping and transit-time damping are
similar insofar as they both involve the I = 0 resonance, but
they differ in regards to what the particle actually resonates
with. In the case of transit-time damping, the interaction is
between the parallel motion of the particle and the parallel
component of the wave magnetic field, whereas for Landau
damping the interaction is between the parallel motion of
the particle and the parallel component of the wave electric
field. In the MHD limit, the fast mode wave polarization is
as discussed in § 1 or the Appendix, and Landau damping is
negligible since the wave parallel electric field is small.
However, as the frequency increases beyond this regime, the
transverse electric field becomes right-hand circularly pol-
arized and a nonnegligible parallel electric field develops.

The change in the transverse electric field will decrease
the efficiency of transit-time damping since half of the avail-
able electric field energy will be in a component (the E,
component according to the convention in the Appendix)
that does not produce a parallel magnetic field. While
decreasing the strength of the I = 0 interaction, this trans-
verse field will increase the efficiency of the I = +1 gyrore-
sonance, which can be achieved by relativistic electrons. At
any rate, we do not expect this change to significantly affect
our results for hard X-ray—producing electrons, since there
will still be significant energy available for transit-time
acceleration.

The parallel electric field will also decrease the efficiency
of transit-time damping by increasing the efficiency of
Landau damping, which transfers wave energy to electrons
near the thermal speed and leads to heating. We now esti-
mate the effect of Landau damping. From Stix (1992, p.
288), we can calculate the ratio of wave power absorption
due to transit-time damping to that due to Landau
damping. We find that

-G G @) w
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where 1, is the electron Debye length; f, = nyky T/Up is
the electron plasma beta; E, and E; are the y- and z-
components of the wave electric field, respectively
(assuming the wave propagates in the x-z plane as in the
Appendix); and k and k, are the z and x components of the
wavevector, respectively. This is a general relation and is
valid unless ck/Qy exceeds ~ 10* Using the cold plasma
dispersion relation and the physical parameters of § 3, and
taking the propagation angle to be 45°, we find that P,/P,
goes as approximately w~* in the MHD regime, where it
exceeds ~107. As the frequency increases, P;/P; decreases
but is greater than 1 for waves on the fast mode branch with
0/Qy < 0.7 or ck/Qy < 17. Above this frequency, Landau
damping is more rapid than transit-time damping.

In the simulations in § 3, the maximum value attained by
c<k>/Qy ranges from about 0.6 to 4, which is in the range
where transit-time damping dominates. However, it is clear
that the spectral density extends to higher wavenumbers.
For Kraichnan cascading, the spectral energy resides below
ck/Qy ~ 20, and so Landau damping and electron heating
are not of great importance here. For Kolmogorov cas-
cading, though, waves can have ck/Qy in excess of 100,
which is at the bottom of the whistler regime. In this case,
bulk electron heating may be significant. While decreasing
the efficiency of transit-time damplng, heating is not an
intrinsically undesired phenomenon, since there is obser-
vational evidence that it occurs (e.g., Lin & Johns 1993) and
since it will still permit efficient acceleration.

As the waves initially cascade to higher wavenumbers,
Landau damping will dominate and the wave energy will go
into heating rather than acceleration. However, for the
wave injection rates we considered in § 3, Landau damping
will not lead to a cutoff in the spectral density at much
lower wavenumbers and thus to an appreciable decrease of
{k). Specifically, the rate at which wave energy density in
an interval 6k about k is absorbed due to Landau damping
is approximately given by (from Stix 1992, p. 289)

se~ () () (2) ()
(&) ()

(l) 2
X exp |:— ( > ]QH Wir(k)ok , 4.2)

Ky vee

where w,, is the electron plasma frequency. In deriving this
expression for P;, we have neglected the x-component of
the wave electric field, so that it is uncertain to within a
factor of ~2 above the MHD regime. The quantity 6P, /0k
rapidly increases with increasing frequency and attains a
maximum value of 8 x 107 13Uzc at w ~ 1.1Qy, above
which it rapidly decreases. Below 1.1Q,, 6P,/6k increases
due to the E|/E, factor (which becomes larger as Qy is
approached), while above this frequency 6P,;/0k decreases
due to the larger wave parallel phase speed (which becomes
much larger than the electron thermal speed). Below 1.1Qy
then, an upper limit on the integral power absorption P, =

j"(; dkdP;/ok is obtained by letting 6k = k in equation (4.2).
Above 1.1Qy, any further contribution is small. If P, = Q,
where Q is the volumetric rate of energy transport to higher
wavenumbers (see discussion in § 3), then the spectral
density will turn over due to Landau damping at that wave-
number. However, taking a typical wave propagation angle
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of 45° and employing the cold plasma dispersion relation,
we find that for a wave energy density injection rate of
0=4x10"1°U;Qy, the Landau absorption rate P
reaches a maximum of 1.9 x 107U, Qy at w = 1.1Qy,
above which it remains about constant. As P; never exceeds
Q, some wave energy will be free to cascade to high wave-
numbers as before.

In the Kolmogorov phenomenology then, some wave
energy will be dissipated on heating during the initial
cascade to high wavenumbers, but since the volumetric
cascade rate exceeds the heating rate, (k) will not be signifi-
cantly affected and the acceleration rate should remain
high. Note also that (1) heating decreases the Coulomb
energy loss rate for electrons above the threshold velocity,
thus facilitating the acceleration of these electrons and (2)
that heating will increase the total number above v,. Hence,
while heating will be important in some cases (namely,
lower values of Q), we do not expect it to affect the viability
of transit-time acceleration.

The last item we wish to point out concerning transit-
time electron acceleration is its relationship to ion acceler-
ation. Specifically, fast mode waves offer an opportunity to
unify ion and electron acceleration within the context of
MHD turbulence. Such turbulence, in general, consists of
shear Alfvén, fast mode, and slow mode waves, and the
effect of the fast mode is well discussed above. The slow
mode is heavily Landau damped, which may prevent its
excitation. If it is generated, it will heat the electrons and
further increase the efficiency of transit-time acceleration by
boosting the number of electrons above the threshold speed.
Miller & Roberts (1995) and Miller & Reames (1995; see
also Miller & Dermer 1995) have shown that cascading
shear Alfvén waves preferentially accelerate ions from the
thermal distribution to relativistic energies and can account
for solar flare gamma-ray line emission, as well as the heavy
ion abundances observed in the interplanetary particles.
Therefore, we can now envisage low-frequency MHD waves
being excited during the flare energy release and subse-
quently cascading to higher frequencies where they are
damped—the fast mode waves on the electrons and the
shear Alfvén waves on the ions. In this way, each of the two
MHD modes that are not heavily Landau damped will
accelerate a separate particle species.

The ion that is not included in this cascading theory is
3He, which almost certainly is at least preaccelerated by
waves excited around its cyclotron frequency. It has been
previously shown that bump-on-tail electron distributions
are unstable to electromagnetic hydrogen cyclotron waves
in a solar flare plasma, and that these waves can efficiently
accelerate *He and lead to large *He/*He abundance
enhancements (Temerin & Roth 1992; Miller & Viiias
1993). However, the source of the necessary electron dis-
tribution was unknown. In § 3 we showed that bump-on-tail
distributions in energy space can result from transit-time
damping, with the bump appearing at an energy of ~5 keV
(as required in the ion studies). While this is not equivalent
to a velocity-space anisotropy, such a bump may appear in
parallel velocity space as well. A more detailed treatment
that includes escape, Landau damping, and the self-
excitation of lower hybrid waves is necessary to verify this.

5. SUMMARY

We considered the cascading of fast mode waves from
low to high frequencies in a solar flare plasma, and the
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resulting stochastic acceleration of electrons out of the
thermal distribution and up to ultrarelativistic energies by
transit-time damping. Our specific results are as follows:

1. With a Kolmogorov phenomenology, the generation of
12 ergs cm ~ 3 of fast mode wave turbulence on any scale less
than ~10® cm and over any time interval less than ~600
ms will yield a specific acceleration rate above 20 keV of
more than 5 x 107 cm™3 s~ ! for 240-320 ms and a total
number density above 20 keV of 4-6 x 107 cm 3.

2. With a Kraichnan phenomenology, the generation of
12 ergs cm ~ 2 of turbulence on any scale less than ~2 x 10°
cm and over any time interval less than =~ 600 ms will yield
the same specific acceleration rate and total number
density.

3. Assuming an acceleration region volume of 10?7 cm?,
this specific acceleration rate and total electron density
above 20 keV can account for the energy-integrated hard
X-ray flux observed during a subsecond spike or energy
release fragment in impulsive solar flares. The acceleration
region size and the total wave energy density determine the
upper limit on the injection wavelength through wave con-
vective escape. A larger volume would increase this upper
limit as would a higher injected turbulence energy density.

4. The electron spectra resulting from transit-time
damping have the potential to be very hard and can attain
an E~'? form between 20 and 100 keV. Such spectra are
harder than that resulting from diffusive shock acceleration,
but taking into account escape may affect this result. They
are also harder than those implied by hard X-ray obser-
vations (which typically indicate an E~*5 spectrum). Again,
escape is expected to soften the spectra, as is the inclusion of
Landau damping (since Landau damping will increase the
number of electrons above threshold and thus decrease the
average energy per electron for a fixed amount of injected
turbulence).

5. Electrons are accelerated to ultrarelativistic (y 2 10)
energies, and so an additional mechanism operable at high
energies is not needed (as is the case with large-scale electric
fields).

6. Electron heating will accompany acceleration in the
Kolmogorov phenomenology but will not be significant in
the Kraichnan phenomenology. The precise amount of
heating in the first instance, and the detailed effect on the
electron distribution, can only be determined with a more
comprehensive simulation but should not destroy the via-
bility of transit-time acceleration or lead to larger energy
densities than those given above.

7. This mechanism establishes an attractive unified ion/
electron acceleration model. During the primary flare
energy release, MHD turbulence (consisting of shear Alfvén
and fast mode waves) is generated at large scales and subse-
quently cascades to higher frequencies through an inertial
range. At large wavenumbers a dissipation range forms,
where damping of the Alfvén waves is due to the ambient
ions and damping of the fast mode waves is due to the
electrons. In this way, MHD turbulence is capable of
accounting for the near simultaneous electron and ion
acceleration that is observed from impulsive solar flares.

Future work on this model will focus on the anomalous
Doppler resonance instability and its role in isotropizing
the electrons and return currents, and accounting for longer
timescale hard X-ray emission, electron heating, and the
fitting of observed hard X-ray spectra.
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APPENDIX
TRANSIT-TIME DAMPING MOMENTUM DIFFUSION COEFFICIENT

The magnetic vector potential 4,, for a spectrum of N monochromatic low-frequency fast mode waves propagating in the
x-z plane is given by

N
E.
A,=Y %ﬁcosq&i, (A1)
i=1 i

where ¢; = k,;x + kj;z — w;t + ¢¢;. The quantities k; = k ;& + k|; 2, w;, E;, and ¢, are the wavevector, frequency, electric
field amplitude, and constant phase offset of wave i, respectively. Each wave is completely electromagnetic, and the scalar
potential is zero. The vector potential 4, of the background magnetic field is —yB, x, so that the relativistically correct
Hamiltonian for an electron of charge — e and mass m becomes

p Q 2 P N 2 P.\? 1/2
H = mczli(r—ni — z y) + <’n;i + Z €; COS ¢,> + (;nJCl) + l:l ’ (A2)

i=1

where the normalized electric field €; = eE;/mcw; and the classical gyrofrequency Q = eB,/mc. Here P,, P,, and P are the
components of the canonical momentum P = p — e(4,, + Ay)/c, where p =p, X + p,J + p| £ is the ordinary mechanical
momentum. However, since the parallel component of 4, + A4, is zero, we have that P, = p,.

Since the waves are small amplitude, we can resolve the electron trajectory into slow guiding-center drift and fast gyration
about the guiding center. We thus transform to guiding-center action-angle variables using the generating function

Fy(x, 3, yg, 6) = mQ[—3(y — y,)* tan 0 + xy,] , (A3)

where (x, P,), (, P,), (v,, P,,), and (6, J) are conjugate pairs. The pair (z, P ) is unaffected by the transformation. Here, y, and
X, = PgIv/mQ are the y- and x-coordinates of the guiding-center frame origin. We define two ancillary variables, P, =
(2JmQ)'? and p = P,/mQ, which, in the limit of €; — 0, become the mechanical perpendicular momentum and gyroradius in
the guiding-center frame. Transforming H, expanding the result to first order in ¢;, and using the Bessel function expansion of
the cosine, we obtain

mc2 P N + oo
H =mc*y + — (—l> Y& Y Jikyp)sin (kj;z — ot +10 + 6, (A4)
Y \MC/ i=1 1=-o

where J; = k;;x, + ¢o; is another constant, J; is the derivative of the Bessel function, and y* = (P /me)* + (Py/mec)? + 1.
Resonance between the electron and wave i will occur when k ;2 — w; + 160 = 0 (the dot denotes time differentiation). Using
the Hamilton equations of motion and approximating H by the first term in equation (A4), the resonance condition becomes
; — ky;py/my — IQ/y = 0. Since terms of order ¢; have already been neglected in deriving this relation, it is consistent to set y
equal to the Lorentz factor, in which case this equation becomes the usual resonance condition.

The only resonance that can be achieved by nonrelativistic electrons is I = 0. The resonance condition for this harmonic
number becomes v, = vy, where vy = w;/k; is the parallel phase speed of the wave and v, is the parallel electron speed.
Using the fast mode dispersion relation, we can rewrite this condition as v = v,/n, where n = k * By/| k| B, is the wave
propagation angle cosine. Hence, | v | must be greater than v, before interactions with fast mode waves can occur, so thatv,
is the acceleration threshold speed. .

Using the Hamilton equations P, = —0H/0z and J = —0H/0d0, the above definition of P,, and then approximating P, by
the mechanical momentum p, , we find that

p.=0, (A5a)

and
. me? (p) « ,
py=- y \me Y, €ikyi Jokyip) cos (ky;z — w;t +3) , (A5b)

where y is now the Lorentz factor. Hence, the | = 0 resonance leads only to a change in the parallel energy. The diffusion
coefficient D, is given by (e.g., Schlickeiser & Achatz 1993)

Ap, A b
Dy = <_I’421A_tl’_u2 = L dr{p Py + 1)> , (A6)

i=1
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where the integrand is the correlation function and the angle brackets denote an average over initial conditions. In this case,

1 2n 1 +a
< >=£L de"EL dz ,

where 6, and z, are the initial gyrophase angle and z-position, respectively, and the particle was assumed to have been
initially confined to interval [ —a, +a]. Using the unperturbed orbits 6(t) = 6, — Qt/y and z(t) = zo + v) t to evaluate the
phase terms, we find after some algebra that

Y APIEINGAS
D” = 5 (Bi) Qz Z "3(?) J%(kJ_z p)a(wx - klliv“) 4
Y i=1 0,

where B; and n; are the magnetic field amplitude and propagation angle cosine of wave i, respectively. We use the wave
magnetic field because B; = cE;/v, and is therefore much greater than E; for solar values of v,. Consequently, essentially all of
the wave vacuum field energy lies in B;. Since k,; p < 1 for the electron energies and waves under consideration, the Bessel
function can be accurately approximated as k ; p/2.

For a discrete spectrum of waves, equation (A8) is not useful in its present form, and some type of resonance broadening
must be introduced (e.g., Karmimabadi & Menyuk 1991). However, we are interested in a continuous wave spectrum, such as
that resulting from cascading. We generalize to a continuous spectrum of waves by letting Y. B}/B3 =(2/Up)
Y B}/161 — (2/Uy) | dndkWy(n, k), where Uy = B{/8n is the ambient magnetic field energy density and W is the magnetic
energy spectral density. Writing 8(w — ky v})) as k™ '8(vs — nv), performing the integration over 1, and assuming isotropic
turbulence [so that Wy(n, k) = W g(k)/2], we find that

g (PN L[ ) 3\ (va)> 1 [® ck
= TR} () (1-22) %) — i
Dyy = me) Q“8<mc> 7 <|v.. |) 2\e) 5, ), HMa,) "M

for |v) | > va. If v | < va, Dy = 0. Here, Qy is the hydrogen cyclotron frequency, and we have written D in this manner in
order to facilitate the use of dimensionless variables and to readily reveal the dimensional correctness of the expression. We
normalize time to Q! instead of Q™! since (1) the waves are in the MHD regime and dimensionless wave numbers will be of
order unity, and (2) the acceleration timescales are closer to Q' for the levels of turbulence that we employ. Casting this
equation into an even more useful form, we have

oo, B (P L (e Vo, _va)\(ra)* k> Ur
Dy = (me)™y 16(mc> y2<|v”|> 1 vi [\ ¢ Qy Uy’

where Uy = 2 [§ dkWy(k) is the total (kinetic plus vacuum field) energy density of the fast mode waves and c{k)/Qy is the
mean dimensionless wavenumber of the waves. This result is completely general and is independent of the angular distribu-
tion of the particles. Note that D, — 0 as p, — 0, as expected, since mirroring cannot occur for particles of zero pitch angle.

If isotropizing scattering is introduced, it is more appropriate to use the D, diffusion coefficient in spherical momentum
coordinates. Since p* = p} + p}, we have from equations (A5a) and (A6) that D, = u*D), where p is the cosine of the
particle pitch angle. The D,, coefficient can now be averaged over u to obtain the 1sotropic momentum diffusion coefficient

D(p).

(A7)

(A3)

(A9)

(A10)
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