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Abstract

We propose a conceptual framework that leads to an abstract characterization for the exact solv-
ability of Calabi—Yau varieties in terms of abelian varieties with complex multiplication. The abelian
manifolds are derived from the cohomology of the Calabi—Yau manifold, and the conformal field
theoretic quantities of thenderlying stringemerge from the number theoretic structure induced on
the varieties by the complex multiplication symmetry. The geometric structure that provides a con-
ceptual interpretation of the relation between geometry and conformal field theory is discrete, and
turns out to be given by the torsion points on the abelian varieties.
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1. Introduction

Arithmetic properties of exactly solvable Calabi—Yau varieties encode string theoretic
information of their underlying conformal field theory. Results in this direction address the
issue of an intrinsic geometric description of the spectrum of the conformal field theory,
and a geometric derivation of the characters of the partition function. The computations
that have been performed so far depend on the explicit computation of the Hassé-Weil
function of Fermat varieties, or more generally Brieskorn—Pham type spaces. The special
feature of these manifolds, first observed by WaiP] about fifty years ago, is that the
cohomologicalL-function can be expressed in terms of number theofefienctions, de-
fined by special kinds of so-called GréRencharaktere, or algebraic Hecke characters. Weil's
analysis of Fermat typ&-functions in terms of Jacobi-su@réRencharaktere was gener-
alized by Yui to the class of Brieskorn—Phdfunctions[3]. It was shown ir{4] that the
algebraic number field that emerges from the Hasse—-lV&ilhction of an exactly solvable
Calabi—Yau variety leads to the fusion field of the underlying conformal field theory and
thereby to the quantum dimensions. It was further provdB]ithat the modular form de-
fined by the Mellin transform of the Hasse—WE#Hfunction of the Fermat torus arises from
the characters of the underlying conformal field theory. This establishes a new connection
between algebraic varieties and Kac—Moody algebras via their modular properties.

The basic ingredient of the investigations described in Hé{§] is the Hasse—Welil
L-function, an object which collects information of the variety at all prime numbers, there-
fore providing a ‘global’ quantity that is associated to Calabi—Yau varieties. The number
theoretic interpretation which leads to the piegsresults proceeded in a somewhat experi-
mental way, by observing the appaace of Jacobi-sum characterg4h, and that of affine
theta functions iff5]. This leaves open the question whether these results depend on the
special nature of the varieties under consideration, or whether it is possible to identify an
underlying conceptual framework that explains the emergence of conformal field theoretic
guantities from the discrete structure of the Calabi—Yau variety. It is this problem which
we address in the present paper.

The physical question raised translates into a simply stated mathematical problem: pro-
vide a theorem that states the conditions under which the geometric Hassé~fvledtion
decomposes into a product of number theorétiunctions. If such a statement were
known one could ask whether the class of varieties that satisfies the stated conditions can
be used to derive conformal field theoretic results, e.g., in the spirit of the res(dSHpf
It turns out that this question is very difficult. In dimension one it basically is the Shimura—
Taniyama conjecture, which has recently been proven in full generality by Breuil[6} al.
by extending foundational results of Wiles and Taylor in the semistable[¢hse

In higher dimensions much less is known. The problem is often summarized as the
Langlands program, a set of conjectures, which might be paraphrased as the hope that cer-
tain conjectured geometric objectslled motives, lead to Hasse—Weiseries that arise
from automorphic representatiofj@. At present very little is known in this direction as far
as general structure theorems are concerned. There exists, however, a subclass of varieties
for which interesting results have been known for some time, and which turns out to be
useful in the present context. In dimension one this is the class of elliptic curves with com-
plex multiplication (CM), i.e., curves which admit a symmetry algebra that is exceptionally
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large. It was first shown by Deuring in the fifti3, following a suggestion of Weil if2],

that for tori with CM the cohomological.-function becomes a number theoretic object.
More precisely, he showed that associated to the complex multiplication field of the elliptic
curve are algebraic Hecke charastahich describe the Hasse—Weilfunction, much like

Weil's Jacobi-sum GréRencharaktere do in the case of the Fermat varieties. This provides
an explicit description of thé -function for toroidal compactifications.

Complex multiplication is a group property, and it is not obvious what the most conve-
nient physical generalization of this notion is for higher-dimensional Calabi—Yau varieties.
One interesting attempt in this ditgmn was recently made by Gukov and Vi#®], who
conjectured that exactly solvable Calabi—Yauieties can be characterized in terms of a
property of the intermediate Jacobian describeflir-13](see alsd14]). In the present
paper we follow a different approach, which is motivated in part by the resulfs]of
and[15]. In [15] our focus was on properties of black hole attractor Calabi—Yau varieties
with finite fundamental group. In an interesting paper Mda® had shown that attractor
varieties with elliptic factors are distingghied by the fact that they admit complex multi-
plication. The aim of15] was to introduce a framework in which the notion of complex
multiplication can be generalized non-toroidal Calabi—Yau veeties of arbitrary dimen-
sion via abelian varieties that can be derived from the cohomology. Abelian varieties are
natural higher-dimensional generalizations of elliptic curves, and certain types admit com-
plex multiplication. The link between Calabi—Yau manifolds and abelian varieties therefore
allows us to generalize the elliptic analysis to the higher-dimensional abelian case.

In the most general context, the relationeetn exactly solvable Calabi—Yau varieties
and complex multiplication verlikely will go beyond abelian varieties, and involve the
theory of motives with (potential) complex multiplication. The program of constructing a
satisfactory framework of motives is incomplete at this point, despite much effort. In this
paper we therefore focus on the simpler case of exactly solvable Calabi—Yau varieties that
lead to motives derived from abelian varieties which admit complex multiplication. Within
this context we provide a conceptual understanding of the resu[# cdnd thereby es-
tablish a framework that generalizes the analysis described there. Briefly, we identify two
key ingredients of the exact solvability of Calabi—Yau varieties. The first is that just as in
the case of an elliptic curve the Hasse—Weifunction of an abelian variety with complex
multiplication is a number theoretic object, described in terms of algebraic Hecke charac-
ters. The second is that the origin of the$@racters can be traced to the torsion points
on the abelian variety, i.e., the points of finite order. This shows that it is the arithmetic
structure of CM abelian varieties associatedCalabi—Yau manifolds which encodes the
property of exact solvability.

The paper is organized as follows. In Secti@and 3we very briefly recall the arith-
metic and number theoretic concepts that will be used in the following parts. In Sdction
we discuss two examples of Fermat type varieties which illustrate the transition from
geometry to number theory in an explicit way. These examples show how the arithmetic
geometry of Calabi—Yau varieties provides non-trivial information about the underlying
conformal field theory. Before showing how ¢baracterize Calab¥au varieties in terms
of abelian manifolds we briefly review in Sectiénthe structure of higher-dimensional
abelian varieties with complex multiplication and show how theifunctions can be ex-
pressed in terms of algebraic Hecke chagetWe use an idelic formulation because this
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allows us to clearly identify the geometric structure that provides the conceptual basis of
this result—the behavior of the discrete set of torsion points on the variety. In Séatien
describe how one can associate abelian tiagg¢o Calabi—Yau manifolds by tracing the
cohomology of Calabi—Yau varieties to the Jacobians of cyt/&ls In the last section we
illustrate our framework by explicitly constructing the complex multiplication structure of
an exactly solvable Calabi—Yau variety. In this example we apply our general framework
to explain in a conceptual way some of the results described in Settion

2. Arithmetic L-functions

The first step in our construction is based on the observation that the Hasse—Welil
L-function of an exactly solvable Calabi—Yau variety contains information about the un-
derlying conformal field theory. In this sion we briefly recall the notion of a geometric
L-function and its key properties.

2.1. The Hasse—Well-function

The starting point of the arithmetic analysis is the set of Weil conjecfaiethe proof
of which was completed by Deligri&@ 7]. For algebraic varieties the Weil-Deligne result
states a number of structural properties for the congruent zeta function at a prime number
p defined as

tr
Z(X/F,, 1) =exp| HX/F ) — ). (1)
oo )
The motivation to arrange the numbe¥s, = #(X /I ,-) in this particular way, rather than
a more naive generating function, liR€, N, ,t", originates from the fact that they often
show a simple behavior, as a result of which the zeta function can be shown to be a rational
function. This was first shown by Artin in the 1920s for hyperelliptic function fi¢ld,
and by Schmidt for curves of arbitrary gerjd®,20]. Further experience by Hasse, Welil,
and others led to the conjecture that this phenomenon is more general, culminating in the
Weil conjectures, and Deligne’s proof in the 1970s.

The part of the conjectures that is most important for the present context is that the
rational factors ofZ (X /IF,, 1)

H?:l ,Péj'?)_l ()

Z(X/F,, 1) = , )
[Tf_0P5) )
can be written as
PP =1-1, PPy =1-p A3)
andfori<i<2d -1
bj

PPo=[10-8"x), (4)

i=1
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with algebraic integerﬁlgj)(p). The degree of the ponnomia’Bj(.”)(t) is given by the

Betti numbers of the variety;; = dim H).gnan{X). The rationality of the zeta func-
tion was first shown by Dwork21] by adélic methods, and the for(@) was derived by
GrothendiecK22]. More details of the Weil conjectures can be foun{h

We see from the rationality of the zeta function that the basic information of this quantity
is parametrized by the cohomology of the variety. More precisely, one can show that the

jth polynomiaIPJ(.”) (1) is associated to the action induced by the Frobenius morphism on

the jth cohomology group H X). In order to gain insight into the arithmetic information
encoded in these Frobenius actions it is useful to decompose the zeta function of the variety
into pieces determined by its cohomolodyis leads to the concept of a lodaifunction

that is associated to the polynomi&r]%”) (¢) via the following definition.

Let P (1) be a polynomial determined by the rational congruent zeta function over the
field IF,. The jth local L-function of the varietyX over[F, is defined via
1

LYX/F,,s) = ——.
pr)(pﬂ')

(%)

SuchL-functions are of interest for a number of reasons. One of these is that often they
can be modified by simple factors so that after analytic continuation they (are conjectured
to) satisfy a functional equation.

2.2. Arithmetic via Jacobi sums

The simplest exactly solvable Calabi-Yau varieties are of Brieskorn—Pham type, defined
via zero sets

,
XZ{ZZ?:O}CP/«) ..... k- (6)

i=0
For this class it is possible to gain more insight into the structure of tfienction poly-

nomiaIsPr(f)l(t). In the case of Fermat hypersurfaces an old result by Weil shows that the
cardinalities of the variety can be expressed in terms of Jacobi sums of finite fields.

Theorem [1]. Define the numbef = (n, g — 1) and the set

Ai’*":{(ao,...,a,)e@’+1|0<ai <1, da; =0 (mod 1), Zai=0(modj) )

1

()

Then the number of solutions of the projective variety

Xr1={(zoiui-“izr)elf"rIzbiZ?=0}CIF’r (8)

i=0
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over the finite field*, is given by

Ng(Xr-D)=14q+q%+ 4+ > g [ ] 7 B, 9
ac A"
where
1
Ja@) = —— D Xao(0) - Xa, (), (10)
u,-eIFq
ug+--+u,=0

with

Xay (1) = P, (11)

wherem; is determined via; = g™ for any generatog € F,.

With these Jacobi sumg (ao, . . ., ) one defines the polynomial

N
PO =] (1— (~1" s ... o) [ | He (bi)tf> (12)
acAr i

with f = f(a), A” is obtained fromA;'? by settingd = r. The associated Hasse—\Weil
L-function of the variety is defined as

1
Luw (X, s) = ]_[ -
» P ()
A slight modification of this result is useful even in the case of weighted projective
Brieskorn—Pham varieties because it can be tsedmpute the factor of the zeta function
coming from the invariant part of the cohatogy, when viewing these spaces as quotient
varieties of projective spac¢3].

(13)

3. L-functions of algebraic number fields

The surprising aspect of the Hasse—Weifunction is that it is determined by another,
a priori completely different kind of.-function that is derived not from a variety but from
a number field. It is this possibility to farpret the cohomological Hasse—WEHfunction
as a field theoretid.-function which establishes the connection that allows us to derive
number fieldk from algebraic varietieX. These in turn encode conformal field theoretic
information of the underlying exactly solvable model.

In the present context the type affunction that is important is that of a Hecle
function determined by a Hecke character, enprecisely an algebraic Hecke character.
Following Weil we will see that the relevant field for Fermat type varieties is the cyclotomic
field extensiorQ(,,) of the rational fieldD by roots of unity, generated ly= ¢27/™ for
some rational integer. It turns out that these fields fit in very nicely with the conformal
field theory point of view. In order to see how this works we first describe the concept of
Hecke characters and then explain how th&unction fits into this framework.
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There are many different definitions of algebraic Hecke characters, depending on the
precise number theoretic framework. Originally this concept was introduced by 23jke
as GroRencharaktere of an arbitrary algebraic number field. In the following Deligne’s
adaptation of Weil's Gro3encharaktere of typgis used24].

Definition. Let Ox C K be the ring of integers of the number fiekd f € Ok an integral
ideal, andF a field of characteristic zero. Denote By(K) the set of fractional ideals of
K that are prime tg and denote b)’[f”(K) the principal idealg«) of K for whicha =1
(modf). An algebraic Hecke character moddls a multiplicative functiony defined on
the idealsZ; (K') for which the following condition holds. There exists an element in the
integral group rin@_n,o € Z[Hom(K, F)], whereF is the algebraic closure d@f, such
that if (@) € If” (K) then

x(@)=]Jo@". (14)

Furthermore there is an integer> 0 such that, +ns = w for all o € Hom(K, F). This
integerw is called the weight of the character

Given any such character defined on the ideals of the algebraic number fi€ldve
can follow Hecke and consider a genezation of the Dirichlet series via thie-function

_ 1 Z x(a)
L(X ’ S) - l_[ 1 _ X(P) - NCI‘Y ’ (15)
pcOk Np*  acOk
p prime

where the sum runs through all the ideals. Hepeddnotes the norm of the idegal which

is defined as the number of element€ig /p. The norm is a multiplicative function, hence

it can be extended to all ideals via the prime ideal decomposition of a general ideal. If we
can deduce from the Hasse—WEe#function the particular Hecke character(s) involved we
will be able to derive directly from the variety in an intrinsic way distinguished number
field(s) K.

Insight into the nature of number fields can be gained by recognizing that for certain
extensionsk of the rational numbe® the higher Legendre symbols provide the charac-
ters that enter the discussion above. Inspection then suggests that we consider the power
residue symbols of cyclotomic field§ = Q(u,,) with integer ringOx = Z[u,,]. The
transition from the cyclotomic field to the finite fields is provided by the character which
is determined for any algebraic integee Z[w,,] prime tom by the map

Xo(x):jm(OK)_)(cx, (16)

which is defined on ideals prime tom by sending the prime ideal to teth root of unity
for which

Np—
m

p=xp(x)=x - (modp). a7
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Using these characters one can define Jacobi-sums ofrréakany fixed element =
(ai,...,ar) by setting

D@ =D YT xp @) xp ) (18)
ui €Ok /p
> iui=—1 (modp)
for primep. For non-prime ideals ¢ Ok the sum is generalized via prime decomposition
a =[], p; and multiplicativity J,(a) = []; Ja(p:). Hence we can interpret these Jacobi
sums as a map”) of rankr

IO 5 (Zlm]) x (Z/mZ)" — C*, (19)

whereZJ,, denotes the ideals prime to. For fixedp such Jacobi sums define characters
on the groupZ/m7)". It can be shown that for fixed € (Z/mZ)" the Jacobi sumra(r)
evaluated at principal ideals) for x = 1 (modm”) is of the formxS@  where

S@y=Y_ [XFX%HU;{ (20)

,m=1Li=1
¢modm

where(x) denotes the fractional part ®fand[x] describes the integer part of
We therefore see that the-function of a Brieskorn—Pham variety is determined by
HeckeL-functions of cyclotomic fields.

4. Examples

In this section we illustrate the importance of the Hasse—\Wilinction for the con-
nection between Calabi—Yau varieties and conformal field theories with two examples. In
the first, the cubic elliptic curve, the field of quantum dimensions is trivial. Nonetheless,
the L-function contains non-trivial informatiorgzause it allows us to provide a geometric
understanding of the key building blocks of the conformal field theoretic characters.

4.1. The elliptic Fermat curve

In [5] the elliptic curve defined by the plane cubic torus

C3={(z0:z1:22) €P2| 5+ 25 +23=0} (21)

was analyzed in some detalil.
The zeta functiorfl) simplifies for curves into the form

5l PP (p~*) )¢ =1

Z(X,s)= 1-p=)(1— plfs) o Lyw(X,s) ’

(22)

Z>p good prime
written in terms of the Hasse—Wdikfunction defined as

1
Luw(X,s) = | | —_—, (23)
(P (p—s
Z>p good primep P(p)
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and the Riemann zeta functigiis) = ]'[p(l — p~%)~1 of the rational fieldQ.

The Hasse—Weil.-function can be determined v{&) by direct counting of the number
of solutions ofC3/FF - over finite extensions§F,-: F,] of the finite fieldsF, of prime
orderp. This results in

2 1 5 4 7
Luw(Ca. ) =1—-f -t o — 75+ (24)
leading to the Hasse—Wejlexpansion

faw(Ca,q)=q —2¢* —q" +5¢"3+ 41— 7419+ ... (25)

It turns out that this is a modular form of weight 2 and modular level 27, which can be
written as a product of the theta functién(r) associated to the string functioir) of the
affine SU(2) Kac—Moody algebra at conformal leviel= 1. More precisely, the following
result was obtained.

Theorem [5]. The Mellin transform of the Hasse—WE#functionLyw(Cs, s) of the cubic
elliptic curveCs C P2 is a modular formfuw(Cs, ¢) € S2(I'9(27)) which factors into the
product

faw(Cs, q) = 0(¢%)0(¢°). (26)

Here ©(t) = n3(1)c(v) is the Hecke modular form associated to the quadratic extension
Q(+/3) of the rational fieldQ, determined by the unique string functiofr) of the affine
Kac—Moody S\¢2)-algebra at conformal levet = 1.

This establishes that it is possible to derive the modularity of the underlying string
theoretic conformal field theory from the geometric target space and that the Hasse—Weil
L-function admits a conformal field theoretic interpretation.

The number theoretic interpretation of the Hasse—\Wefilinction is best seen from the
expression for the polynomia®(”)(¢), which completely determine the congruent zeta
function and the Hasse—WHdil-function of these plane curves, in terms of the finite field
Jacobi sums. For curves this reduces to

POy = T (1= jpreyh)™ (27)
aeAg
with
1
Jg@ =~ D Keo(W0) Xeq (41) Kerp (42). (28)
q M,'EFq
ug+tuituz=0

Computing values of, («) at primes is in part easier thalirect counting because the

cardinalities of the setslg’3 are easy to control. For the first few primes the results are
collected inTable 1, in which the zeroes follow immediately from the structure of the

setsAb -3

Ag’3={{(%’%’%)’(%’%’%)} (3,]7—1)=1} (29)
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Table 1

Finite field Jacobi sums of the elliptic cubic cur@g at the lower rational primes

q 2 3 5 7 11 13
j,,(i,%,%) 0 0 0 2+362 0 —~1+362
ji (5.5 %) 0 0 0 2+ 363 0 —1+ 3%3

The number field theoretic interpretation of the Hasse—\Wdilinction emerges as fol-
lows. For any rational prime we can find a prime ideal C Z[u3] over p such that
the finite field characteg,, defined over the finite fieldf, can be expressed in terms of
the 3rd power residue symbgl,, whereF, is viewed as the residue field of the ring of
integersZ[ 3] with respect to the ideal. This allows to translate the finite field Jacobi-
sums;, (o, a1, a2) With o; = a;/3 into Jacobi-sum type Hecke charactéys, ) (p) of
the cyclotomic fieldQ(u3), wherea € {1, 2}. The fieldQ(u3) is the fusion field of the
underlying conformal field theory, and in turetrmines the field of quantum dimensions,
which in the present example is juSt[4]. This analysis furthermore shows that one can
write the geometric Hasse—Wdilfunction as a number theoretic object associated to the
fusion field. Applied to the field)(u3) this procedure leads to the number theoretic repre-
sentation of the Hasse—Wdilfunction of the plane cubic curve as

Luw(E,s) =Ly (J1,1,1),9)Lu(J2,22), ). (30)
4.2. The quintic threefold

Consider the Calabi—Yau variety defined by the Fermat quintic hypersurface in ordinary
projective fourspac®, defined by

4
fo=o}. (31)
i=0

It follows from Lefshetz's hyperplane theorem that the cohomology below the middle di-
mension is inherited from the ambient space. Thus we h&%e= 0= 1% andrll =1
while h%1 = 101 follows from counting monomials of degree five. For the smooth Fermat
quintic the zeta function simplifies to the expression

X = {(xo:~-~ 1xq) €Pg

1-01—pnHA— p?t)(L— p3)’

Z(X[Fp, 1) = (32)

where the numerator is given by the ponnon‘iPéf) )= nfg‘l‘a_ ﬁl@(p)t) which takes
the form

P = T (1 jpreh)™. (33)

P
acAy
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This expression involves the following ingredients. Defihe- (5, p — 1) and rational
numbersy; viada; =0 (mod 1). The sebﬁlZ’S then takes the form

Aﬁ’sz {a:(ao,...,a4)|0<ai <1, daj =0(mod 1), Zai:O(mOd ZD}.
" (34)

Defining the characterg,, € Fp inthe dual off', asyx, (u;) = exp2wia;s;) with u; = g%
for a generating elemegte F,, the factorj, () finally is determined as

. 1 :
Jp(a) = ﬂ Z HXa,- (7). (35)
Zi u;j=0i=0

We thus see that the congruent zeta function leads to the HassekAgittion asso-
ciated to a Calabi-Yau threefold

- ~1/f
LawX.5)= [] H(l—M) : (36)

7s
PeP(X) ac Al b

ignoring the bad primes. In the case of thergiai threefold we caproceed along the lines
described above to find that the cyclotonsitaracters associated to rational primes are
defined via prime ideals in the cyclotomic fieQ x5). This again is the fusion field of the
underlying conformal field theory, and leads to the field of quantum dimensions, given by
Q(+/5) [4], a result which we will explain in Sectioh

We will see further below that it is the corgx multiplication structure, underlying not
only the elliptic curveCs, but also the quintic threefold, which is responsible for the results
obtained for these two examples. This view will lead to a more conceptual understanding
of the relation between geometry and conformal field theory that allows to generalize the
analysis to broader classes of varieties.

5. Ab€lian varieties

The main problem we are addressing in this paper is the question how the conformal
field theoretic results that are encoded in the number theoretic form of the Hassé~-Weil
function of the previous sections can be formulated in a more conceptual framework that
allows us to generalize the characterization of exact solvability to arbitrary Calabi—Yau
manifolds. It is known in mathematics thatfunctions of abelian varieties with complex
multiplication are number theoretic in nature. We can therefore use the theory of such man-
ifolds if we are able to recover abelian manids from Calabi—Yau spaces. In this section
we briefly review the background of abelian iadies that is necessary for our discussion
further below. In the next section we will show how such abelian varieties emerge from
Calabi—Yau manifolds.
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5.1. General definition

An abelian variety over some number fiekd is a smooth, geometrically connected,
projective variety, which is also an algebraic group, with the groupdaswwA — A defined
overK. A concrete way to construct such manifolds is via complex@3yiA with respect
to some latticeA ¢ C", or, put differently, via an exact sequence

0-A-C" L aso, (37)

where f is a holomorphic map. The lattica is not necessarily integral and admits a
Riemann form, which is defined as &nabilinear form(,) on C" such that the following
hold:

(1) (x,y) takes integral values for afl, y € A;

(2) (x,y)=—(y,x);
(3) (x,iy)is a symmetric and positive definite form.in y.

The result then is that a complex tord%/A has the structure of an abelian variety if and
only if there exists a non-degenerate Riemann fornbnA.

5.2. Abelian varieties of CM type

A special class of abelian varieties are those of complex multiplication (CM) type. These
are varieties which admit automorphism groups that are larger than those of general abelian
manifolds. The reason why CM type varietiare special is because certain number theo-
retic questions can be addressed in a systematic fashion for this class. The first to discover
this was Weil[2] in the context of Fermat type hypersurfaces. The fact that this relation
can be traced to the property of CM for abelian varieties was first shown by Deuring in
the context of elliptic curves, following a sugg®n by Weil. This was later generalized
conditionally to higher dimensions by Taniyama and ShinjR€a27], Serre and Tatg28],
and Shimurg25,29].

Consider a number fiel# over the rational numbef3 and denote byF : Q] the degree
of the field F overQ, i.e., the dimension of" over the subfield). An abelian varietyd
of dimensiom is called a CM-variety if there exists an algebraic number fielof degree
[F:Q] = 2n over the rational numbef3 which can be embedded into the endomorphism
algebra EndAd) ® Q of the variety. More precisely, a CM-variety is a triplet, 6, F),
where

0:F—EndA)®Q (38)

describes the embedding Bf It follows from this that the field” necessarily is a CM field,
i.e., a totally imaginary quadratic extension of a totally real field. The important ingredi-
ent here is that the restriction &4 F) C End(A) ® Q is equivalent to the direct sum of
isomorphismspy, ..., ¢, € Iso(F, C) such that ISOF, C) = {¢1, ..., ¥n, L1, - -+, PPR},
where p denotes complex conjugation. These ddagmtions suggest calling the pair
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(F,{¢:}) a CM-type. In principle we can think ohe CM type as an abstract represen-
tation defined by some matrix

a®l

D(a) = , foraekPF, (39)

a Pn

but in the present context’, @ = {¢;}) describes the CM-type of a CM-variety, 0, F).
It is possible to prescribe the CM structure and construct an abelian variety with that
given structure by constructing a diagram of the following form

0—=a—=Fgp —> Fr/a—=0 (40)

Voo,

0—=A—>C'—1>A—>0

whereu is the map

u:Fgp — C"
a1

ar I (41)
awn

defined as ariR-linear extension orF, anda is the preimage of of the latticeA. The
abelian variety is thereby obtained as the quotiégta of Fr = F ®, R, with p denoting
complex conjugation, by an ideal i, with a complex structure determined byand an
embedding : F — End(A) ® Q given by(39).

Concrete examples of these concepts, which have been discuddédninhe context
of the Calabi—Yau/conformal field theory relation, are varieties which have complex mul-
tiplication by a cyclotomic fieldd = Q(u,,), whereu,, denotes the cyclic group generated
by a non-trivialzth root of unityé,. The degree ofd(u,,) is given by[Q(u,) : Q] = ¢ (n),
where¢ (n) =#{m € N | m < n, gcdm, n) = 1} is the Euler function. Hence the abelian
varieties encountered have complex dimensionAlim¢ (n)/2.

The simplest examples of abelian CM varieties are elliptic curves with complex mul-
tiplication. These occur in the context of higher dimensional Calabi—Yau varieties via the
Shioda—Katsura decomposition of the cohongyl of Fermat type manifolds. Further be-
low we briefly describe the reduction of the cohomology of more general Brieskorn—Pham
varieties to that generated by curves and then analyze the structure of the resulting weighted
curve Jacobians.

5.3. L-function of abelian varieties with complex multiplication

In this section we describe the generalization of the conceptual framework underlying
the number theoretic interpretation of the zeta function of abelian varieties with complex
multiplication. Our goal is to detail the undgimg structure thatxgplains this phenomenon.

As in the case of elliptic curves the main objects that provide the transition from the discrete
geometry of the variety to number theory are the torsion points on the variety, i.e., the points
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in the kernel of a multiplication map: A — A, analogous to the corresponding map on
the elliptic curves.

The general concept of a geomettigunction is derived from the reduction of a variety
over discrete field¥, of orderqg. One way to think about this structure is by considering
the fieldsF, as residue field®k /p, generated by prime ideagsin the ring of integers
Ok of some algebraic number fieki. Denoting the residue field produced pys K (p)
and the reduced variety by(p) one can define the local zeta function as

Z(X,p.5):=Z(X(p)/K(®), t=Np~*). (42)

By combining these local zeta functions for all prime ideals one obtains the global zeta
function

ZX/K.5)= [] zX.p.5) (43)
pCcOk

of the varietyX defined over the number field.

When the variety has complex multiplication with respect to some numberHiekee
zeta function admits a number theoretic interpretation which generalizes the results of
Deuring for elliptic curves with complex multiplication. Associated to the fi€lcare
GroRencharakterg;, i = 1,...,n which lead to Hecke.-functionsL(x;, s). The zeta
function of the abelian variety with complex multiplication then is described by these
HeckeL-functions.

Theorem [29]. Let the abelian CM-varietyA, 6, F) be defined over an algebraic number
field K of finite degree. Then the zeta functionAafover K coincides exactly with the
product

[TL LG9, (44)

i=1

where they; are GréRencharaktere, ang is the complex conjugate gf.

This result was first shown in a conditional formulation by Taniyama and Shimura, and
Serre and Tate. This shows that our framework applies to any Calabi—Yau variety to which
we can associate abelian manifolds.

5.4. Character construction from abelian varieties

The character construction from higher-dimensional abelian manifolds differs some-
what from that of elliptic curves because of the emergence of the reflex type, denoted
here by(ﬁ,cﬁ = {¢;}) of the complex multiplication typ&€F, ® = {¢;}). This reflex
field is defined by adjoining taF all traces determined by the CM type &f, i.e.,

F= F({)_;x% | x € F}). To define the reflex typé consider a Galois extensidyQ
over the rationals that contains the CM fieldd Denote byS the subset of all those
elements of the Galois group Gal/Q) of L that induce some; on F and define fur-
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ther

st={o"t|oes}

H={yeGa(L/Q) |yst=51}. (45)
Then the reflex type ofF, @) is completed by defining the maps

¢i:F—C (46)

as those that are obtained frafn!. In the one-dimensional case the discussion simplifies
because one has = F.

Consider an abelian variety/ K of dimension:z defined over a number field with
complex multiplication, i.e., with an embeddifgF — End(A) ® Q. Denote this structure
by (A/K, 0, F) with type (F, ® = {¢;}i=1....»). The appearance dt leads to a modifica-
tion of the norm map that appears in the elliptic construction of the character. To simplify
the discussion we assume that c K. The construction of the algebraic Hecke character
is now a two-step procedure. The first ingredient is a mamwnstructed as follows. For
any finite extensiord / F an idélic norm map

NE:AY — AX, (47)

can be defined by specifying what thth component is of the image idéle, whereuns
through the finite primes as well as the infinite primes, which are associated to the embed-
dings of the number field. Fare A one sets

(NEx), = [NFxw. (48)
wlv

whereL,, andF, are completions of the fieldsand F at the primesv andv, respectively.
Let further F* denote the invertible elements bf
Next, we compose the norm map with the determinant map

§:A% — A¥, (49)
E
defined as the continuous extension of the determinant of the reflex type
S(x) =detd(x), VxeF*. (50)

The compositiorz := § o NX of the norm map and the determinant map provides a map
from the K -ideles to theF-ideles

g:Ax — A%, (51)

generalizing the norm map in the elliptic case.

The construction of the character is based on the action of the idélic Artin symo)
for x € A on the torsion points. The main result of the theory of complex multiplication
in the case of abelian varieties that are relevant to us can now be summarized as follows.

1 This condition generalizes the assumption in the elliptic case that the CM field is contained in the field of
definition.
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Theorem. Let (F, ®) be a CM-type(F, ) its reflex, anda a lattice in F. Let further
(A, 0) be of type(F, @), u: Fr — C" the map in the diagran40), and f the map that
definesA via

0-A-C"Laso (52)

Further leto € Aut((C/ﬁ), X € A; be an idele of the reflex field such that

olp, =1Ix, Fl, (53)

andg=246o Ng :Ay — A} the map defined by the idélic extension of the determinant
map. Then there is an exact sequence

0— u(g)ta) - C" L5 A7 -0 (54)
such that
fu®)” = (u(gx)"t)) YveF/a, (55)

i.e., there exists a commutative diagram

F/afD2 pre(o)—ta (56)

wl lw’
o
Ator——— Afr

wherew = f ou andw’ = f' o u.

The construction of the algebraic Hecke character associated to the torsion points of
is now achieved by constructing an idélic mapf K in the following way.

Theorem. For the mapw: Fr — A defined byo = f ou with Fr = F ® , R and p denotes
complex conjugation, there exists a map

aAg — F* (57)
such that
)K= a)(a(x)g(x)flv) VxeAg, veF/a, (58)

which is determined uniquely by the following properties
a@gta=a,  aax)’ =Nw), (59)

where(x) is the ideal associated to. Furthermore the kernel af is open in the ideles.

We can now define characteas on the ideles by picking appropriate components from
the map that describes the Artin symbol on the elementg/af More precisely, define

Yi(0) = (e(x)g) ™), i=1....n, (60)
via the infinite primes of the complex multiplication fiekd
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6. Abelian varietiesfrom Brieskor n—Pham type hyper surfaces

We now have described all the key contsewe need in our formulation of a charac-
terization of exact solvability of Calabi—Yau manifolds. What remains is to establish the
existence of abelian varieties with complex multiplication in the context of Calabi—Yau
spaces. In the present section we will consider explicitly the class of Brieskorn—Pham hy-
persurfaces in weighted projective space.ilt become clear from the discussion that the
construction can be extended to more general types of polynomials. The basic idea is to
first reduce the intermediate cohomology of the Calabi-Yau via the Shioda—Katsura con-
struction to the cohomology spanned by c@eenbedded in the manifold, and then to use
the results of Faddeev, Gross, Rohrlich, and others, to decompose the Jacobian varieties
derived from these curves to find factors that admit complex multiplication.

6.1. The Shioda—Katsura decomposition

The decomposition of the intermediate cohomology of projective hypersurfaces was
first described by Shioda and Katsy8®] and Deligng[31]. Their analysis can be gen-
eralized to weighted hypersurfaces, in particular the class of Brieskorn—Pham varieties,
perhaps the simplest class of exactly solvable Calabi—Yau manifolds. This generalization
works because the cohomology ) for these varieties decomposes into the monomial
part and the part coming from the resolution. The monomial part of the intermediate co-
homology can easily be obtained from the cohomology of a projective hypersurface of the
same degree by realizing the weighted projective space as a quotient variety with respect
to a product of discrete groups determined by the weights of the coordinates.

For projective varieties

Xz = {(Zo, ey Zn41) € Pn+1 | Zg +--- 4+ Z,‘f_,_l = O} - IEDnJrl (61)

the intermediate cohomology can be determined by lower-dimensional varieties in combi-
nation with Tate twists by reconstructing the higher dimensional vaXétyf degreed

and dimensiom in terms of lower dimensional varietie§, and X’; of the same degree
with n =r + 5. Briefly, this works as follows. The decompositionXy is given as

Xy = B2y 7, ((my (X x X))/ 11a), (62)
which involves the following ingredients.
(1) 7; 1 (X", x X?) denotes the blow-up of’, x X* along the subvariety
Y =Xt x x5t Xl x XS, (63)

The varietyY is determined by the fact that the initial map which establishes the relation
between the three varietia’s;“, X!, X} is defined on the ambient spaces as

((-x07 DRI xr+l)7 (,YO» R ,YH—l)) = (xO)’s+1, DRI xry‘v+1» xr+1y0» sy xr+1y‘v)~
(64)
This map is not defined on the subvarigty
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(2) 7y 1 (X, x X3)/1a denotes the quotient of the blow-up *(X, x X*) with respect
to the action of
Md > 5 ((-XO? B xr+1)» ()’O, sy yS? ,YH—l))
= (X0, - X EXr 1), (D0, -+ Vs EYs41)):
3) BZl»ZZ((jT;l(erl x X%))/na) denotes the blow-down im;l(Xfl x X3)/mq of the
two subvarieties
Z1=P, x X571, Zp=X[1xP,
This construction leads to an iterative degmosition of the cohomology which takes the
following form. Denote the Tate twist by
H (X)(j) :=H (X) @ W&/ (65)
with W = H2(P1) and IetX;“ be a Fermat variety of degrédeand dimensiom + s. Then

r s
H s (erl—H) ® Z Hr+s—2j (eri_l) ()@ Z Hr+s—2k (Xfi_l) (k)
j=1 k=1

SHT (X x X5 @ HH2(x < X5TH ). (66)
This allows us to trace the cohomology of higher-dimensional varieties to that of curves.

Weighted projective hypersurfaces can baned as resolved quotients of hypersurfaces
embedded in ordinary projective spaceeTiesulting cohomology has two components,
the invariant part coming from the projection of the quotient, and the resolution part.
As described i{32], the only singular sets on arbitrary weighted hypersurface Calabi—
Yau threefolds are either points or curves. The resolution of singular points contributes to
the even cohomology group?dX) of the variety, but does not contribute to the middle-
dimensional cohomology groufi3(X). Hence we need to be concerned only with the
resolution of curves (see, e.§33]). This can be described for general CY hypersurface
threefolds as follows. If a discrete symmetry grdymZ of ordern acting on the three-
fold leaves invariant a curve then the normal bundle has fiGgeand the discrete group
induces an action on these fibres which can be described by a matrix

(“0" o) 7)

where « is an nth root of unity and(g,n) have no common divisor. The quotient
Cz/(Z/nZ) by this action has an isolated singularity which can be described as the singular
set of the surface i3 given by the equation

S={(z1.22.23) € Ca| 25 =z125 *}. (68)
The resolution of such a singularity is completely determined by the typg) of the
action by computing the continued fraction q!bf
1

bilz[bl,...,bs]. (69)
,

L
q
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The number$; specify completely thelpmbing process that régces the singularity and
in particular determine the additional generator to the cohomolctyylHbecause the
number oflP1s introduced in this process is precisely the number of steps needed in the
evaluation of2 = [b1, ..., bs]. This can be traced to the fact that the singularity is re-
solved by a bundle which is constructed outsof 1 patches withs transition functions
that are specified by the numbéxs Each of these gluing steps introduces a sphere, which
in turn supports &1, 1)-form. The intersection properties of these 2-spheres are described
by Hirzebruch—Jung trees, which foZanZ action is just arBU(n + 1) Dynkin diagram,
while the number#$; describe the intersection numbers. We see from this that the resolu-
tion of a curve of genug introducess additional generators to the second cohomology
group H(X), andg x s generators to the intermediate cohomology¥)).

Hence we see that the cohomology of weightggersurfaces is determined completely
by the cohomology of curves. Because the Jacobéaiety is the basic geometric invariant
of a smooth projective curve this sayathor weighted hypersurfaces the main cohomo-
logical structure is carriely their embedded curves.

6.2. Cohomology of weighted curves

For smooth algebraic curves of genusg the de Rham cohomology groupﬁgg(C)
decomposes (over the complex number fig)cas

HiRr(C) =HO(C, 2Y @ HY(C, 0). (70)
The Jacobiary (C) of a curveC of genusg can be identified with
J(C)=C8/A, (71)
whereA is the period lattice
A:{(/w) 'aeHl(C,Z), wieHO(C,Ql)}, (72)
2 i=1..¢g

where thew; form a basis. Given a fixed poiny € C on the curve there is a canonical
map from the curve to the Jacobian, called the Abel-Jacobi map

v:.C— J(O), (73)
defined as

4
PH<...,/wi,...>m0dA. (74)

Po
We are interested in curves of Brieskorn—Pham type, i.e., curves of the form

Cy= {xd +y'+ 7P = 0} € P1r.0)ld], (75)
such thatt = d/k andb = d /¢ are positive rational integers. Without loss of generality we
can assume thdk, ¢) = 1. The genus of these curves is given by
(d—k)(d—10)+ (kt —d)

2k '

1
g(Cd)=§(2—X)= (76)
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For non-degenerate curves in the configuratiBag ¢ [d] the set of forms

Har(P(wk.0ld])
1<r<d-1,
= o=y Ay |r+ ks +tr=0modd, [ 1<s<4 -1, (77)
1<r<4 -1

defines a basis for the de Rham cohomology gro@;Q(Eld) whose Hodge split is given
by

HO(Ca, 28) = {wps | r +ks + t1 =d},

HY(Cy, Oc) = {wr5 | 7 + ks + €t = 2d}. (78)

In order to show this we view the weighted projective space as the quotient of pro-
jective space with respect to the actidfs: [0, 1, 0] andZ;, : [0, O, 1], where we use the
abbreviatiorZ, = Z/kZ and for any groujZ, the notatior«, b, c] indicates the action

la,b,cl:(x,y,2) > (y*x, v"y, v<2), (79)

wherey is a generator of the group. This allows us to view the weighted curve as the
guotient of a projective Fermat type curve

010
0 0 1|
These weighted curves are smooth and hence their cohomology is determined by consider-

ing those forms on the projective curffg[d] which are invariant with respect to the group
actions. A basis for Ej-k(]P’z[d]) is given by the set of forms

Pk,oldl =Pold]/Zi x Zy [ (80)

Hig(P2ld]) = {wrs, =y 12" dy|0<rs,t <d,
r+s+1t=0(modd), r,s,teN}. (81)
Denote the generator of tt# action bye and consider the induced action @p; ;
L > wp 5, > O5Swr,s,t- (82)

It follows that the only forms that descend to the quotient with respéeZy tare those for
whichs = 0 (modk). Similarly we denote by the generator of the actidfy and consider
the induced action on the formas ;

Z@ :a)m,; (ad ﬁtida)m,;. (83)

We see that the only forms that descend to the quotient are those for mhaiBi{mod¢).
6.3. Abelian varieties from weighted Jacobians

Jacobian varieties in general are not abelian varieties with complex multiplication. The
guestion we can ask, however, is whether the Jacobians of the curves that determine the
cohomology of the Calabi—Yau varieties can be decomposed such that the individual fac-
tors admit complex multiplication by an order of a number field. In this section we show
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that this is indeed the case and therefore we can define the complex multiplication type of
a Calabi—Yau variety in terms of the CMges induced by the Jacobians of its curves.

It was shown by Faddeef4]? that the Jacobian variety (C,;) of Fermat curves
Cq C P> splits into a product of abelian factors,

Icoz [l Ao (84)
O, €T /(Z)dT)*

where the sef provides a parametrization of the cohomology(af, and the set®; are
orbits inZ of the multiplicative subgrougZ/d7)* of the groupZ/dZ. More precisely it
was shown that there is an isogeny

i J(Cq) — ]_[ Ao, (85)
O;eT/(Z)dT)*

where an isogeny: A — B between abelian varieties is defined to be a surjective homo-
morphism with finite kernel. In the parametrization used in the previous subséci®n
the set of tripletgr, s, ¢) in (81) and the periods of the Fermat curve have been computed
by Rohrlich[37] to be

1 (st ‘ is
[ o =go(Ge5)aeramener 9
AJ Bk
where¢ is a primitivedth root of unity, and
1
B(u,v) = / Mt — vy tar (87)
0
is the classical beta functionl, 55 are the two automorphism generators

Al y, )= 1, &y, 2), BA,y,2)=(1,y,&2) (88)

andx is the generator of HC,) as a cyclic module ovét[ A, 3]. The period lattice of the
Fermat curve therefore is the span of

r. s

. 1
O L ) O R
r+s+t=d (89)
The abelian facton ., ;) associated to the orbi, ; ; = [(r, s, t)] can be obtained as
the quotient

Afrsn =CPO2/A, . (90)
wheredo = d/gcdr, s, t) and the latticeA, 5 ; is generated by elements of the form
(as) (at)

n-e) - ga( 42 40, 1)

2 More accessible references on the subjec{26e37]



484 M. Lynker et al. / Nuclear Physics B 700 [PM] (2004) 463—-489

wherez € Z[g,], 04 € Gal(Q(q,)/Q) runs through subgroups of the Galois group of the

cyclotomic fieldQ(uq,) and(x) is the smallest integerQ x < 1 congruent toc modd.
Alternatively, the abelian variety;* " can be constructed in a more geometric way as

follows. Consider the orbifold of the Fermat curgg with respect to the group defined as

Gy = {1 52,89 € uf | E1E385 = 1), (92)
The quotienCd/G;’” can be described algebraically via projections

T Cy— C™,

(x, ) = (x4 x"y) = (u, v), (93)

which mapC, into the curves
C:i” {v =u"(1- u)s}. (94)

For prime degrees the abelian varietie;'s"” can be defined simply as the Jacobians

J(C;*") of the projection€;*. Whend has nontrivial divisor:|d, this definition must
be modified as follows. Considére projected Fermat curves

Cd - Cma
- d d
(x, ) > (X, 3) :=(xm, ym), (95)

r,s,t

whose Jacobians can be embedded.dgC,,) — J(C,). Composing the projectiofi,’
as

)YI

J(Cp) = J(Cy) N J(ch*h (96)

for all proper divisorsn|d leads to a collection of subvarietibj;mld T;’S”(e(J(Cm))). The
abelian variety of interest then is defined as

Arvt_J C:th /UTrvt J(Cm))) (97)
m|d

r,s,t

The abelian varietie ;" are not necessarily simple but it can happen that they in
turn can be factored. Th|s guestion can be analyzed via a criterion of Shimura—Taniyama,
described in27]. Applied to theAZ;” discussed here the Shimura—Taniyama criterion
involves computing for each sét;*" defined as

HS = {a € (Z/dZ)™ | (ar) + (aks) + (alr) = d) (98)
another seW’;*" defined as

Wyt ={a e (Z/dZ)* |aH}"" = H;*'}. (99)

r.S,t

If the order|W/*'| of W/* is unity then the abelian variety/;
splits into| W/;*'| factors[38].

We adapt this discussion to the weighted case. Denote the index set of ¢riples
parametrizing the one-forms of the weighted cur@gss P1 « ¢[d] again byZ. The cyclic

is simple, otherwise it
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group(Z/d7Z)* again acts off and produces a set of orbits

Opsi=[(r,5,0] € T/(Z/)dT)*. (100)

Each of these orbits leads to an abelian varigfy s ;) of dimension

. 1
dim Ay (5.7 = 5¢(do). (101)

where ¢ is the Euler functionp(n) = #{m | (m,n) = 1}, and complex multiplication
with respect to the field¥ ;.1 = Q(iq,), Wheredo = d/gcdr, ks, €t). This leads to
an isogeny

i:J(Ca)—> I1 Af(r5,01- (102)
[(r.5.01€Z/(Z/dZ)*

The complex multiplication type of the abelian facters, ; of the Jacobian/ (C) can
be identified with the sef?;**" via a homomorphism from }4*' to the Galois group. More
precisely, the CM type is determined by the subgrﬂip” of the Galois group of the
cyclotomic field that is parametrized by;H'

G ={oa € GallQ(uay) /Q) | a € H;™'} (103)
by considering
(F. {$a}) = (Qap). {0a | 00 € G™'Y). (104)

7. The Fermat quintic threefold
7.1. CM type

Consider the projective threefold entlaed in projective 4-space and defined by

Xs={(z0:z1:---:2z5) €Palzg+ - +23=0}. (105)

We can splitd =3 =1+ 2 =r + s and apply the Shioda—Katsura construction to obtain
the decompositions

H3(X5) ® H(Cs) (1) = H3(Cs x S5)" @ HY(X2 x Cy) (D) (106)
and

H?(S5) = H2(Cs x C5)"S @ d(d — 2)H?(Py) (107)
in terms of the cohomology groups of the Fermat curve

Cs={x°+y°+2z°=0} CP, (108)

and the Fermat surfacs.
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From this we see that the basic builgiblock of the cohomology decomposition is
given by the plane projective cunég; which has genug(Cs) = 6. The index sef

7={(1.1,3),(1,31),(3.1,1),(1,2,2),(2,1,2),(2.21;
(2,4,4),(4,2,4),(4,4,2),(3,3,4),(3,4,3), (4.3,3)}
parametrizes a basis of the first cohomology groug=fwhich can be written as
Hir(Cs) = {wrs = x""1y 2dx | (r,5,1) € T}. (109)
The action of(Z/5Z)* leads to the orbits
0113={(1.1,3),(2,2,1),(3.3,4),(4.4,2)},
0131={(1.3,1),(2,1,2),(3.4,3), (4.2, 4},
0311={(3,1,1),(122),(4,33), (24,9} (110)
Hence the Jacobian decomposes into a product of three abelian varieties
J(Cs) = I Arsi=A113% A131%X A3 11, (111)
(th,tEl-/(Z/SZ))<
each of dimensiop(5)/2 = 2, which arise from the Jacobians of the genus two curves
s ={v® —u@—u)=0},
¥t = —u@@-u?®=0},
Cg,l,l _ {v5 — 31 —u) = o}, (112)

obtained via the maph. "',

In order to check the simplicity of the abelian factors we can use the criterion of
Shimura—Taniyama, descéall above. Computing the sewg’“ for any of the triplets
(r, s, 1) shows that the order of these groups is unity, hence all three factors are in fact
simple.

For the complex multiplication type we find from

He'® = {a € (2/52) =(1,2,3,4) | (a) + {a) + (3a) =5} = {1,2) (113)
thatGé’l’3 = {01, 02} and therefore the complex multiplication type4f 1 3 is given by

(Q(us). {9} = {o1.02}). (114)

The remaining factors are described in the same way.
More explicitly, we can use the maﬂg’” to express the differentials @f; invariant

under the action ofG¢*" in terms of the(u, v) coordinates ofCL*’ and observe their
transformation behavior under the map

(u, v) = (u, &sv). (115)
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7.2. Fusion field and quantum dimensions

The field of complex multiplication derived for the quintic is given by the cyclotomic
field Q(us) and embedded in this field is the real subfi€ldv/5), generated by the ele-
ments(&s + 55_1). To compare this to the number field determined by the string we briefly
recall some facts about theresponding Gepner mod@&9,40].

The underlying exactly solvable model of the quintic threefold is determined by the
affine Kac—Moody algebr&U(2) at conformal levelk = 2. The central charge(k) =
3k/(k + 2) at levelk then leads ta = 9/5, leading to a product of five models to make
a theory of total charge = 9. The physical spectrum of this model is constructed from
world sheet operators of the individualU(2) factors with the anomalous dimensions

A® _ Jj(+2
J 4k +2)’
leading in the case =3 to Af) €{0, 5. 2. 3.
These anomalous dimensions can be mapped into the quantum dimefisions the
Rogers dilogarithm. Denote by 4 Euler’s classical dilogarithm

. Z"
L = -
20)=) . (117)
neN
and byL (z) the Rogers dilogarithm

j=0,... .k, (116)

1
L(z) =Lix(z) + > log(z) log(1 — z). (118)

Then there exist relations between anomalous dimensions and the quantum dimensions
Q;; [41-43]
k

B Y e T P VIR Iy (119)
L) = Ql?j k42 j
where theQ;; are defined as
S..
Qij = ijj, (120)

in terms of the modula§-matrix

2 _((+DH(+Dr .
i = . 0<i,j<k 121
Si=\it2 Sm( k+2 " (121)
describe the modular behavior of tB&J(2) affine characters
1 u ik 2/2
(=2 %) = e 23 5w, 122
X ( . ‘L') e - ixj(T,u) ( )

Applying this map to the theory at conformal level three leads to the quantum dimensions

Qi = Qio
0:(SU2)3) € {1, las JE)} cQWB). (123)
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