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Abstract

We propose a conceptual framework that leads to an abstract characterization for the exact solv-
ability of Calabi–Yau varieties in terms of abelian varieties with complex multiplication. The abelian
manifolds are derived from the cohomology of the Calabi–Yau manifold, and the conformal field
theoretic quantities of theunderlying stringemerge from the number theoretic structure induced on
the varieties by the complex multiplication symmetry. The geometric structure that provides a con-
ceptual interpretation of the relation between geometry and conformal field theory is discrete, and
turns out to be given by the torsion points on the abelian varieties.
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1. Introduction

Arithmetic properties of exactly solvable Calabi–Yau varieties encode string theoretic
information of their underlying conformal field theory. Results in this direction address the
issue of an intrinsic geometric description of the spectrum of the conformal field theory,
and a geometric derivation of the characters of the partition function. The computations
that have been performed so far depend on the explicit computation of the Hasse–WeilL-
function of Fermat varieties, or more generally Brieskorn–Pham type spaces. The special
feature of these manifolds, first observed by Weil[1,2] about fifty years ago, is that the
cohomologicalL-function can be expressed in terms of number theoreticL-functions, de-
fined by special kinds of so-called Größencharaktere, or algebraic Hecke characters. Weil’s
analysis of Fermat typeL-functions in terms of Jacobi-sumGrößencharaktere was gener-
alized by Yui to the class of Brieskorn–PhamL-functions[3]. It was shown in[4] that the
algebraic number field that emerges from the Hasse–WeilL-function of an exactly solvable
Calabi–Yau variety leads to the fusion field of the underlying conformal field theory and
thereby to the quantum dimensions. It was further proven in[5] that the modular form de-
fined by the Mellin transform of the Hasse–WeilL-function of the Fermat torus arises from
the characters of the underlying conformal field theory. This establishes a new connection
between algebraic varieties and Kac–Moody algebras via their modular properties.

The basic ingredient of the investigations described in Refs.[4,5] is the Hasse–Weil
L-function, an object which collects information of the variety at all prime numbers, there-
fore providing a ‘global’ quantity that is associated to Calabi–Yau varieties. The number
theoretic interpretation which leads to the physical results proceeded in a somewhat experi-
mental way, by observing the appearance of Jacobi-sum characters in[4], and that of affine
theta functions in[5]. This leaves open the question whether these results depend on the
special nature of the varieties under consideration, or whether it is possible to identify an
underlying conceptual framework that explains the emergence of conformal field theoretic
quantities from the discrete structure of the Calabi–Yau variety. It is this problem which
we address in the present paper.

The physical question raised translates into a simply stated mathematical problem: pro-
vide a theorem that states the conditions under which the geometric Hasse–WeilL-function
decomposes into a product of number theoreticL-functions. If such a statement were
known one could ask whether the class of varieties that satisfies the stated conditions can
be used to derive conformal field theoretic results, e.g., in the spirit of the results of[4,5].
It turns out that this question is very difficult. In dimension one it basically is the Shimura–
Taniyama conjecture, which has recently been proven in full generality by Breuil et al.[6]
by extending foundational results of Wiles and Taylor in the semistable case[7].

In higher dimensions much less is known. The problem is often summarized as the
Langlands program, a set of conjectures, which might be paraphrased as the hope that cer-
tain conjectured geometric objects,called motives, lead to Hasse–WeilL-series that arise
from automorphic representations[8]. At present very little is known in this direction as far
as general structure theorems are concerned. There exists, however, a subclass of varieties
for which interesting results have been known for some time, and which turns out to be
useful in the present context. In dimension one this is the class of elliptic curves with com-
plex multiplication (CM), i.e., curves which admit a symmetry algebra that is exceptionally
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large. It was first shown by Deuring in the fifties[9], following a suggestion of Weil in[2],
that for tori with CM the cohomologicalL-function becomes a number theoretic object.
More precisely, he showed that associated to the complex multiplication field of the elliptic
curve are algebraic Hecke characters which describe the Hasse–WeilL-function, much like
Weil’s Jacobi-sum Größencharaktere do in the case of the Fermat varieties. This provides
an explicit description of theL-function for toroidal compactifications.

Complex multiplication is a group property, and it is not obvious what the most conve-
nient physical generalization of this notion is for higher-dimensional Calabi–Yau varieties.
One interesting attempt in this direction was recently made by Gukov and Vafa[10], who
conjectured that exactly solvable Calabi–Yauvarieties can be characterized in terms of a
property of the intermediate Jacobian described in[11–13](see also[14]). In the present
paper we follow a different approach, which is motivated in part by the results of[5]
and[15]. In [15] our focus was on properties of black hole attractor Calabi–Yau varieties
with finite fundamental group. In an interesting paper Moore[16] had shown that attractor
varieties with elliptic factors are distinguished by the fact that they admit complex multi-
plication. The aim of[15] was to introduce a framework in which the notion of complex
multiplication can be generalizedto non-toroidal Calabi–Yau varieties of arbitrary dimen-
sion via abelian varieties that can be derived from the cohomology. Abelian varieties are
natural higher-dimensional generalizations of elliptic curves, and certain types admit com-
plex multiplication. The link between Calabi–Yau manifolds and abelian varieties therefore
allows us to generalize the elliptic analysis to the higher-dimensional abelian case.

In the most general context, the relation between exactly solvable Calabi–Yau varieties
and complex multiplication very likely will go beyond abelian varieties, and involve the
theory of motives with (potential) complex multiplication. The program of constructing a
satisfactory framework of motives is incomplete at this point, despite much effort. In this
paper we therefore focus on the simpler case of exactly solvable Calabi–Yau varieties that
lead to motives derived from abelian varieties which admit complex multiplication. Within
this context we provide a conceptual understanding of the results of[4], and thereby es-
tablish a framework that generalizes the analysis described there. Briefly, we identify two
key ingredients of the exact solvability of Calabi–Yau varieties. The first is that just as in
the case of an elliptic curve the Hasse–WeilL-function of an abelian variety with complex
multiplication is a number theoretic object, described in terms of algebraic Hecke charac-
ters. The second is that the origin of thesecharacters can be traced to the torsion points
on the abelian variety, i.e., the points of finite order. This shows that it is the arithmetic
structure of CM abelian varieties associatedto Calabi–Yau manifolds which encodes the
property of exact solvability.

The paper is organized as follows. In Sections2 and 3we very briefly recall the arith-
metic and number theoretic concepts that will be used in the following parts. In Section4
we discuss two examples of Fermat type varieties which illustrate the transition from
geometry to number theory in an explicit way. These examples show how the arithmetic
geometry of Calabi–Yau varieties provides non-trivial information about the underlying
conformal field theory. Before showing how tocharacterize Calabi–Yau varieties in terms
of abelian manifolds we briefly review in Section5 the structure of higher-dimensional
abelian varieties with complex multiplication and show how theirL-functions can be ex-
pressed in terms of algebraic Hecke characters. We use an idèlic formulation because this
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allows us to clearly identify the geometric structure that provides the conceptual basis of
this result—the behavior of the discrete set of torsion points on the variety. In Section6 we
describe how one can associate abelian varieties to Calabi–Yau manifolds by tracing the
cohomology of Calabi–Yau varieties to the Jacobians of curves[15]. In the last section we
illustrate our framework by explicitly constructing the complex multiplication structure of
an exactly solvable Calabi–Yau variety. In this example we apply our general framework
to explain in a conceptual way some of the results described in Section4.

2. Arithmetic L-functions

The first step in our construction is based on the observation that the Hasse–Weil
L-function of an exactly solvable Calabi–Yau variety contains information about the un-
derlying conformal field theory. In this section we briefly recall the notion of a geometric
L-function and its key properties.

2.1. The Hasse–WeilL-function

The starting point of the arithmetic analysis is the set of Weil conjectures[1], the proof
of which was completed by Deligne[17]. For algebraic varieties the Weil–Deligne result
states a number of structural properties for the congruent zeta function at a prime number
p defined as

(1)Z(X/Fp, t) ≡ exp

(∑
r∈N

#(X/Fpr )
tr

r

)
.

The motivation to arrange the numbersNr,p = #(X/Fpr ) in this particular way, rather than
a more naive generating function, like

∑
r Nr,ptr , originates from the fact that they often

show a simple behavior, as a result of which the zeta function can be shown to be a rational
function. This was first shown by Artin in the 1920s for hyperelliptic function fields[18],
and by Schmidt for curves of arbitrary genus[19,20]. Further experience by Hasse, Weil,
and others led to the conjecture that this phenomenon is more general, culminating in the
Weil conjectures, and Deligne’s proof in the 1970s.

The part of the conjectures that is most important for the present context is that the
rational factors ofZ(X/Fp, t)

(2)Z(X/Fp, t) =
∏d

j=1P
(p)

2j−1(t)∏d
j=0P

(p)

2j (t)
,

can be written as

(3)P (p)

0 (t) = 1− t, P (p)

2d (t) = 1− pdt

and for 1� i � 2d − 1

(4)P (p)
j (t) =

bj∏
i=1

(
1− β

(j)
i (p)t

)
,
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with algebraic integersβ(j)
i (p). The degree of the polynomialsP (p)

j (t) is given by the

Betti numbers of the variety,bj = dim H
j

DeRham(X). The rationality of the zeta func-
tion was first shown by Dwork[21] by adélic methods, and the form(2) was derived by
Grothendieck[22]. More details of the Weil conjectures can be found in[4].

We see from the rationality of the zeta function that the basic information of this quantity
is parametrized by the cohomology of the variety. More precisely, one can show that the
j th polynomialP (p)

j (t) is associated to the action induced by the Frobenius morphism on

thej th cohomology group Hj (X). In order to gain insight into the arithmetic information
encoded in these Frobenius actions it is useful to decompose the zeta function of the variety
into pieces determined by its cohomology. This leads to the concept of a localL-function
that is associated to the polynomialsP (p)

j (t) via the following definition.

LetP (p)
j (t) be a polynomial determined by the rational congruent zeta function over the

field Fp . Thej th localL-function of the varietyX overFp is defined via

(5)L(j)(X/Fp, s) = 1

P (p)

j (p−s )
.

SuchL-functions are of interest for a number of reasons. One of these is that often they
can be modified by simple factors so that after analytic continuation they (are conjectured
to) satisfy a functional equation.

2.2. Arithmetic via Jacobi sums

The simplest exactly solvable Calabi–Yau varieties are of Brieskorn–Pham type, defined
via zero sets

(6)X =
{

r∑
i=0

z
ni

i = 0

}
⊂ Pk0,...,kr .

For this class it is possible to gain more insight into the structure of theL-function poly-
nomialsP (p)

r−1(t). In the case of Fermat hypersurfaces an old result by Weil shows that the
cardinalities of the variety can be expressed in terms of Jacobi sums of finite fields.

Theorem [1]. Define the numberd = (n, q − 1) and the set

(7)

Aq,n
r =

{
(α0, . . . , αr ) ∈ Qr+1 | 0 < αi < 1, dαi = 0 (mod 1),

∑
i

αi = 0 (mod 1)

}
.

Then the number of solutions of the projective variety

(8)Xr−1 =
{

(z0 : z1 : · · · : zr) ∈ Pr |
r∑

i=0

biz
n
i = 0

}
⊂ Pr
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over the finite fieldFq is given by

(9)Nq(Xr−1) = 1+ q + q2 + · · · + qr−1 +
∑

α∈Aq,n
r

jq(α)
∏

χ̄αi (bi),

where

(10)jq(α) = 1

q − 1

∑
ui∈Fq

u0+···+ur=0

χα0(u0) · · ·χαr (ur ),

with

(11)χαi (ui) = e2πiαimi ,

wheremi is determined viaui = gmi for any generatorg ∈ Fq .

With these Jacobi sumsjq(α0, . . . , αr ) one defines the polynomial

(12)P (q)

r−1(t) =
∏

α∈An
r

(
1− (−1)r−1jqf (α0, . . . , αr )

∏
i

χ̄αi (bi)t
f

)1/f

with f = f (α), An
r is obtained fromAn,q

r by settingd = r. The associated Hasse–Weil
L-function of the variety is defined as

(13)LHW(X, s) =
∏
p

1

P (p)
r−1(p

−s )
.

A slight modification of this result is useful even in the case of weighted projective
Brieskorn–Pham varieties because it can be usedto compute the factor of the zeta function
coming from the invariant part of the cohomology, when viewing these spaces as quotient
varieties of projective spaces[3].

3. L-functions of algebraic number fields

The surprising aspect of the Hasse–WeilL-function is that it is determined by another,
a priori completely different kind ofL-function that is derived not from a variety but from
a number field. It is this possibility to interpret the cohomological Hasse–WeilL-function
as a field theoreticL-function which establishes the connection that allows us to derive
number fieldsK from algebraic varietiesX. These in turn encode conformal field theoretic
information of the underlying exactly solvable model.

In the present context the type ofL-function that is important is that of a HeckeL-
function determined by a Hecke character, more precisely an algebraic Hecke character.
Following Weil we will see that the relevant field for Fermat type varieties is the cyclotomic
field extensionQ(µm) of the rational fieldQ by roots of unity, generated byξ = e2πi/m for
some rational integerm. It turns out that these fields fit in very nicely with the conformal
field theory point of view. In order to see how this works we first describe the concept of
Hecke characters and then explain how theL-function fits into this framework.
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There are many different definitions of algebraic Hecke characters, depending on the
precise number theoretic framework. Originally this concept was introduced by Hecke[23]
as Größencharaktere of an arbitrary algebraic number field. In the following Deligne’s
adaptation of Weil’s Größencharaktere of typeA0 is used[24].

Definition. Let OK ⊂ K be the ring of integers of the number fieldK, f ⊂OK an integral
ideal, andF a field of characteristic zero. Denote byIf(K) the set of fractional ideals of
K that are prime tof and denote byIp

f
(K) the principal ideals(α) of K for which α ≡ 1

(modf). An algebraic Hecke character modulof is a multiplicative functionχ defined on
the idealsIf(K) for which the following condition holds. There exists an element in the
integral group ring

∑
nσ σ ∈ Z[Hom(K, F̄ )], whereF̄ is the algebraic closure ofF , such

that if (α) ∈ Ip

f
(K) then

(14)χ((α)) =
∏
σ

σ (α)nσ .

Furthermore there is an integerw > 0 such thatnσ +nσ̄ = w for all σ ∈ Hom(K, F̄ ). This
integerw is called the weight of the characterχ .

Given any such characterχ defined on the ideals of the algebraic number fieldK we
can follow Hecke and consider a generalization of the Dirichlet series via theL-function

(15)L(χ, s) =
∏

p⊂OK
p prime

1

1− χ(p)
Nps

=
∑

a⊂OK

χ(a)

Nas
,

where the sum runs through all the ideals. Here Np denotes the norm of the idealp, which
is defined as the number of elements inOK/p. The norm is a multiplicative function, hence
it can be extended to all ideals via the prime ideal decomposition of a general ideal. If we
can deduce from the Hasse–WeilL-function the particular Hecke character(s) involved we
will be able to derive directly from the variety in an intrinsic way distinguished number
field(s)K.

Insight into the nature of number fields can be gained by recognizing that for certain
extensionsK of the rational numberQ the higher Legendre symbols provide the charac-
ters that enter the discussion above. Inspection then suggests that we consider the power
residue symbols of cyclotomic fieldsK = Q(µm) with integer ringOK = Z[µm]. The
transition from the cyclotomic field to the finite fields is provided by the character which
is determined for any algebraic integerx ∈ Z[µm] prime tom by the map

(16)χ•(x) :Im(OK) → C×,

which is defined on idealsp prime tom by sending the prime ideal to themth root of unity
for which

(17)p �→ χp(x) = x
Np−1

m (modp).
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Using these characters one can define Jacobi-sums of rankr for any fixed elementa =
(a1, . . . , ar) by setting

(18)J (r)
a (p) = (−1)r+1

∑
ui∈OK/p∑

i ui=−1 (modp)

χp(u1)
a1 · · ·χp(ur)

ar

for primep. For non-prime idealsa ⊂OK the sum is generalized via prime decomposition
a =∏i pi and multiplicativity Ja(a) =∏i Ja(pi ). Hence we can interpret these Jacobi
sums as a mapJ (r) of rankr

(19)J (r) :Im

(
Z[µm])× (Z/mZ)r → C×,

whereIm denotes the ideals prime tom. For fixedp such Jacobi sums define characters
on the group(Z/mZ)r . It can be shown that for fixeda ∈ (Z/mZ)r the Jacobi sumJ (r)

a

evaluated at principal ideals(x) for x ≡ 1 (modmr) is of the formxS(a), where

(20)S(a) =
∑

(�,m)=1
�mod m

[
r∑

i=1

〈
�ai

m

〉]
σ−1

� ,

where〈x〉 denotes the fractional part ofx and[x] describes the integer part ofx.
We therefore see that theL-function of a Brieskorn–Pham variety is determined by

HeckeL-functions of cyclotomic fields.

4. Examples

In this section we illustrate the importance of the Hasse–WeilL-function for the con-
nection between Calabi–Yau varieties and conformal field theories with two examples. In
the first, the cubic elliptic curve, the field of quantum dimensions is trivial. Nonetheless,
theL-function contains non-trivial information because it allows us to provide a geometric
understanding of the key building blocks of the conformal field theoretic characters.

4.1. The elliptic Fermat curve

In [5] the elliptic curve defined by the plane cubic torus

(21)C3 = {(z0 : z1 : z2) ∈ P2 | z3
0 + z3

1 + z3
2 = 0

}
was analyzed in some detail.

The zeta function(1) simplifies for curves into the form

(22)Z(X, s) =
∏

Z�p good prime

P (p)(p−s )

(1− p−s )(1− p1−s)
= ζ(s)ζ(s − 1)

LHW(X, s)
,

written in terms of the Hasse–WeilL-function defined as

(23)LHW(X, s) =
∏

Z�p good prime

1

P (p)(p−s )
,
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and the Riemann zeta functionζ(s) =∏p(1− p−s )−1 of the rational fieldQ.
The Hasse–WeilL-function can be determined via(1) by direct counting of the number

of solutions ofC3/Fpr over finite extensions[Fpr : Fp] of the finite fieldsFp of prime
orderp. This results in

(24)LHW(C3, s) = 1− 2

4s
− 1

7s
+ 5

13s
+ 4

16s
− 7

19s
+ · · · ,

leading to the Hasse–Weilq-expansion

(25)fHW(C3, q) = q − 2q4 − q7 + 5q13 + 4q16 − 7q19 + · · · .
It turns out that this is a modular form of weight 2 and modular level 27, which can be
written as a product of the theta functionΘ(τ) associated to the string functionc(τ ) of the
affineSU(2) Kac–Moody algebra at conformal levelk = 1. More precisely, the following
result was obtained.

Theorem [5]. The Mellin transform of the Hasse–WeilL-functionLHW(C3, s) of the cubic
elliptic curveC3 ⊂ P2 is a modular formfHW(C3, q) ∈ S2(Γ0(27)) which factors into the
product

(26)fHW(C3, q) = Θ
(
q3)Θ(q9).

HereΘ(τ) = η3(τ )c(τ ) is the Hecke modular form associated to the quadratic extension
Q(

√
3) of the rational fieldQ, determined by the unique string functionc(τ ) of the affine

Kac–Moody SU(2)-algebra at conformal levelk = 1.

This establishes that it is possible to derive the modularity of the underlying string
theoretic conformal field theory from the geometric target space and that the Hasse–Weil
L-function admits a conformal field theoretic interpretation.

The number theoretic interpretation of the Hasse–WeilL-function is best seen from the
expression for the polynomialsP (p)(t), which completely determine the congruent zeta
function and the Hasse–WeilL-function of these plane curves, in terms of the finite field
Jacobi sums. For curves this reduces to

(27)P (p)(t) =
∏

α∈Ap
2

(
1− jpf (α)tf

)1/f

with

(28)jq(α) = 1

q − 1

∑
ui∈Fq

u0+u1+u2=0

χα0(u0)χα1(u1)χα2(u2).

Computing values ofjq(α) at primes is in part easier than direct counting because the

cardinalities of the setsAp,3
2 are easy to control. For the first few primes the results are

collected inTable 1, in which the zeroes follow immediately from the structure of the
setsAp,3

2

(29)Ap,3
2 =

{ {( 1
3, 1

3, 1
3

)
,
(2

3, 2
3, 2

3

)}
(3,p − 1) = 1

∅ (3,p − 1) > 1

}
.
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Table 1
Finite field Jacobi sums of the elliptic cubic curveC3 at the lower rational primes

q 2 3 5 7 11 13

jq
( 1

3 , 1
3 , 1

3

)
0 0 0 2+ 3ξ2

3 0 −1+ 3ξ2
3

jq
( 2

3 , 2
3 , 2

3

)
0 0 0 2+ 3ξ3 0 −1+ 3ξ3

The number field theoretic interpretation of the Hasse–WeilL-function emerges as fol-
lows. For any rational primep we can find a prime idealp ⊂ Z[µ3] over p such that
the finite field characterχαi defined over the finite fieldFp can be expressed in terms of
the 3rd power residue symbolχp, whereFp is viewed as the residue field of the ring of
integersZ[µ3] with respect to the idealp. This allows to translate the finite field Jacobi-
sumsjp(α0, α1, α2) with αi = ai/3 into Jacobi-sum type Hecke charactersJ(a,a,a)(p) of
the cyclotomic fieldQ(µ3), wherea ∈ {1,2}. The fieldQ(µ3) is the fusion field of the
underlying conformal field theory, and in turn determines the field of quantum dimensions,
which in the present example is justQ [4]. This analysis furthermore shows that one can
write the geometric Hasse–WeilL-function as a number theoretic object associated to the
fusion field. Applied to the fieldQ(µ3) this procedure leads to the number theoretic repre-
sentation of the Hasse–WeilL-function of the plane cubic curve as

(30)LHW(E, s) = LH (J(1,1,1), s)LH (J(2,2,2), s).

4.2. The quintic threefold

Consider the Calabi–Yau variety defined by the Fermat quintic hypersurface in ordinary
projective fourspaceP4 defined by

(31)X =
{

(x0 : · · · :x4) ∈ P4

∣∣∣∣
4∑

i=0

x5
i = 0

}
.

It follows from Lefshetz’s hyperplane theorem that the cohomology below the middle di-
mension is inherited from the ambient space. Thus we haveh1,0 = 0 = h0,1 andh1,1 = 1
while h2,1 = 101 follows from counting monomials of degree five. For the smooth Fermat
quintic the zeta function simplifies to the expression

(32)Z(X/Fp, t) = P (p)

3 (t)

(1− t)(1− pt)(1 − p2t)(1− p3t)
,

where the numerator is given by the polynomialP (p)

3 (t) =∏204
i=1(1−β

(3)
i (p)t) which takes

the form

(33)P (p)

3 (t) =
∏

α∈Ap
4

(
1− jpf (α)tf

)1/f
.
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This expression involves the following ingredients. Defined = (5,p − 1) and rational
numbersαi via dαi ≡ 0 (mod 1). The setAp,5

4 then takes the form

(34)

Ap,5
4 =

{
α = (α0, . . . , α4) | 0 < αi < 1, dαi ≡ 0 (mod 1),

∑
i

αi = 0 (mod 1)

}
.

Defining the charactersχαi ∈ F̂p in the dual ofFp asχαi (ui) = exp(2πiαisi) with ui = gsi

for a generating elementg ∈ Fp, the factorjp(α) finally is determined as

(35)jp(α) = 1

p − 1

∑
∑

i ui=0

4∏
i=0

χαi (ui).

We thus see that the congruent zeta function leads to the Hasse–WeilL-function asso-
ciated to a Calabi–Yau threefold

(36)LHW(X, s) =
∏

p∈P(X)

∏
α∈Ap

4

(
1− jpf (α)

pf s

)−1/f

,

ignoring the bad primes. In the case of the quintic threefold we canproceed along the lines
described above to find that the cyclotomiccharacters associated to rational primes are
defined via prime ideals in the cyclotomic fieldQ(µ5). This again is the fusion field of the
underlying conformal field theory, and leads to the field of quantum dimensions, given by
Q(

√
5) [4], a result which we will explain in Section7.

We will see further below that it is the complex multiplication structure, underlying not
only the elliptic curveC3, but also the quintic threefold, which is responsible for the results
obtained for these two examples. This view will lead to a more conceptual understanding
of the relation between geometry and conformal field theory that allows to generalize the
analysis to broader classes of varieties.

5. Abelian varieties

The main problem we are addressing in this paper is the question how the conformal
field theoretic results that are encoded in the number theoretic form of the Hasse–WeilL-
function of the previous sections can be formulated in a more conceptual framework that
allows us to generalize the characterization of exact solvability to arbitrary Calabi–Yau
manifolds. It is known in mathematics thatL-functions of abelian varieties with complex
multiplication are number theoretic in nature. We can therefore use the theory of such man-
ifolds if we are able to recover abelian manifolds from Calabi–Yau spaces. In this section
we briefly review the background of abelian varieties that is necessary for our discussion
further below. In the next section we will show how such abelian varieties emerge from
Calabi–Yau manifolds.
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5.1. General definition

An abelian variety over some number fieldK is a smooth, geometrically connected,
projective variety, which is also an algebraic group, with the group lawA×A → A defined
overK. A concrete way to construct such manifolds is via complex toriCn/Λ with respect
to some latticeΛ ⊂ Cn, or, put differently, via an exact sequence

(37)0 → Λ → Cn f−→ A → 0,

wheref is a holomorphic map. The latticeΛ is not necessarily integral and admits a
Riemann form, which is defined as anR-bilinear form〈 , 〉 on Cn such that the following
hold:

(1) 〈x, y〉 takes integral values for allx, y ∈ Λ;
(2) 〈x, y〉 = −〈y, x〉;
(3) 〈x, iy〉 is a symmetric and positive definite form inx, y.

The result then is that a complex torusCn/Λ has the structure of an abelian variety if and
only if there exists a non-degenerate Riemann form onCn/Λ.

5.2. Abelian varieties of CM type

A special class of abelian varieties are those of complex multiplication (CM) type. These
are varieties which admit automorphism groups that are larger than those of general abelian
manifolds. The reason why CM type varieties are special is because certain number theo-
retic questions can be addressed in a systematic fashion for this class. The first to discover
this was Weil[2] in the context of Fermat type hypersurfaces. The fact that this relation
can be traced to the property of CM for abelian varieties was first shown by Deuring in
the context of elliptic curves, following a suggestion by Weil. This was later generalized
conditionally to higher dimensions by Taniyama and Shimura[26,27], Serre and Tate[28],
and Shimura[25,29].

Consider a number fieldF over the rational numbersQ and denote by[F :Q] the degree
of the fieldF overQ, i.e., the dimension ofF over the subfieldQ. An abelian varietyA
of dimensionn is called a CM-variety if there exists an algebraic number fieldF of degree
[F :Q] = 2n over the rational numbersQ which can be embedded into the endomorphism
algebra End(A) ⊗ Q of the variety. More precisely, a CM-variety is a triplet(A, θ,F ),
where

(38)θ :F → End(A) ⊗ Q

describes the embedding ofF . It follows from this that the fieldF necessarily is a CM field,
i.e., a totally imaginary quadratic extension of a totally real field. The important ingredi-
ent here is that the restriction toθ(F ) ⊂ End(A) ⊗ Q is equivalent to the direct sum ofn

isomorphismsϕ1, . . . , ϕn ∈ Iso(F,C) such that Iso(F,C) = {ϕ1, . . . , ϕn, ρϕ1, . . . , ρϕn},
where ρ denotes complex conjugation. These considerations suggest calling the pair
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(F, {ϕi}) a CM-type. In principle we can think of the CM type as an abstract represen-
tation defined by some matrix

(39)Φ(a) =

aϕ1

. . .

aϕn


 , for a ∈ F,

but in the present context(F,Φ = {ϕi}) describes the CM-type of a CM-variety(A, θ,F ).
It is possible to prescribe the CM structure and construct an abelian variety with that

given structure by constructing a diagram of the following form

(40)0 a FR

u

FR/a 0

0 Λ Cn
f

A 0

whereu is the map

u :FR → Cn

(41)a �→

 aϕ1

...

aϕn


 ,

defined as anR-linear extension onF , anda is the preimage ofu of the latticeΛ. The
abelian variety is thereby obtained as the quotientFR/a of FR = F ⊗ρ R, with ρ denoting
complex conjugation, by an ideal inF , with a complex structure determined byu, and an
embeddingθ :F → End(A) ⊗ Q given by(39).

Concrete examples of these concepts, which have been discussed in[4] in the context
of the Calabi–Yau/conformal field theory relation, are varieties which have complex mul-
tiplication by a cyclotomic fieldF = Q(µn), whereµn denotes the cyclic group generated
by a non-trivialnth root of unityξn. The degree ofQ(µn) is given by[Q(µn) :Q] = φ(n),
whereφ(n) = #{m ∈ N | m < n, gcd(m,n) = 1} is the Euler function. Hence the abelian
varieties encountered have complex dimension dimA = φ(n)/2.

The simplest examples of abelian CM varieties are elliptic curves with complex mul-
tiplication. These occur in the context of higher dimensional Calabi–Yau varieties via the
Shioda–Katsura decomposition of the cohomology of Fermat type manifolds. Further be-
low we briefly describe the reduction of the cohomology of more general Brieskorn–Pham
varieties to that generated by curves and then analyze the structure of the resulting weighted
curve Jacobians.

5.3. L-function of abelian varieties with complex multiplication

In this section we describe the generalization of the conceptual framework underlying
the number theoretic interpretation of the zeta function of abelian varieties with complex
multiplication. Our goal is to detail the underlying structure that explains this phenomenon.
As in the case of elliptic curves the main objects that provide the transition from the discrete
geometry of the variety to number theory are the torsion points on the variety, i.e., the points
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in the kernel of a multiplication mapn :A → A, analogous to the corresponding map on
the elliptic curves.

The general concept of a geometricL-function is derived from the reduction of a variety
over discrete fieldsFq of orderq . One way to think about this structure is by considering
the fieldsFq as residue fieldsOK/p, generated by prime idealsp in the ring of integers
OK of some algebraic number fieldK. Denoting the residue field produced byp asK(p)

and the reduced variety byX(p) one can define the local zeta function as

(42)Z(X,p, s) := Z
(
X(p)/K(p), t = Np−s

)
.

By combining these local zeta functions for all prime ideals one obtains the global zeta
function

(43)Z(X/K, s) =
∏

p⊂OK

Z(X,p, s)

of the varietyX defined over the number fieldK.
When the variety has complex multiplication with respect to some number fieldF the

zeta function admits a number theoretic interpretation which generalizes the results of
Deuring for elliptic curves with complex multiplication. Associated to the fieldF are
Größencharaktereχi , i = 1, . . . , n which lead to HeckeL-functionsL(χi, s). The zeta
function of the abelian variety with complex multiplication then is described by these
HeckeL-functions.

Theorem [29]. Let the abelian CM-variety(A, θ,F ) be defined over an algebraic number
field K of finite degree. Then the zeta function ofA over K coincides exactly with the
product

(44)
n∏

i=1

L(χi, s)L(χ̄i , s),

where theχi are Größencharaktere, and̄χi is the complex conjugate ofχi .

This result was first shown in a conditional formulation by Taniyama and Shimura, and
Serre and Tate. This shows that our framework applies to any Calabi–Yau variety to which
we can associate abelian manifolds.

5.4. Character construction from abelian varieties

The character construction from higher-dimensional abelian manifolds differs some-
what from that of elliptic curves because of the emergence of the reflex type, denoted
here by (F̂ , Φ̂ = {ϕ̂i}) of the complex multiplication type(F,Φ = {ϕi}). This reflex
field is defined by adjoining toF all traces determined by the CM type ofF , i.e.,
F̂ = F({∑i x

ϕi | x ∈ F }). To define the reflex typêΦ consider a Galois extensionL/Q

over the rationals that contains the CM fieldF . Denote byS the subset of all those
elements of the Galois group Gal(L/Q) of L that induce someϕi on F and define fur-
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ther

S−1 = {σ−1 | σ ∈ S
}
,

(45)H = {γ ∈ Gal(L/Q) | γ S−1 = S−1}.
Then the reflex type of(F,Φ) is completed by defining the maps

(46)ϕ̂i : F̂ → C

as those that are obtained fromS−1. In the one-dimensional case the discussion simplifies
because one haŝF = F .

Consider an abelian varietyA/K of dimensionn defined over a number fieldK with
complex multiplication, i.e., with an embeddingθ :F → End(A)⊗Q. Denote this structure
by (A/K,θ,F ) with type(F,Φ = {ϕi}i=1,...,n). The appearance of̂F leads to a modifica-
tion of the norm map that appears in the elliptic construction of the character. To simplify
the discussion we assume that1 F̂ ⊂ K. The construction of the algebraic Hecke character
is now a two-step procedure. The first ingredient is a mapα constructed as follows. For
any finite extensionL/F an idèlic norm map

(47)NL
F :A×

L → A×
F ,

can be defined by specifying what thevth component is of the image idèle, wherev runs
through the finite primes as well as the infinite primes, which are associated to the embed-
dings of the number field. Forx ∈ A×

K one sets

(48)
(
NL

Fx
)
v
=
∏
w|v

NLw

Fv
xw,

whereLw andFv are completions of the fieldsL andF at the primesw andv, respectively.
Let furtherF× denote the invertible elements ofF .

Next, we compose the norm map with the determinant map

(49)δ :A×
F̂

→ A×
F ,

defined as the continuous extension of the determinant of the reflex type

(50)δ(x) = detΦ̂(x), ∀x ∈ F̂×.

The compositiong := δ ◦NK

F̂
of the norm map and the determinant map provides a map

from theK-idèles to theF -idèles

(51)g :A×
K → A×

F ,

generalizing the norm map in the elliptic case.
The construction of the character is based on the action of the idèlic Artin symbol[x,K]

for x ∈ A×
K on the torsion points. The main result of the theory of complex multiplication

in the case of abelian varieties that are relevant to us can now be summarized as follows.

1 This condition generalizes the assumption in the elliptic case that the CM field is contained in the field of
definition.
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Theorem. Let (F,Φ) be a CM-type,(F̂ , Φ̂) its reflex, anda a lattice in F . Let further
(A, θ) be of type(F,Φ), u :FR → Cn the map in the diagram(40), andf the map that
definesA via

(52)0 → Λ → Cn f−→ A → 0.

Further letσ ∈ Aut(C/F̂ ), x ∈ A×
F̂

be an idèle of the reflex field such that

(53)σ |
F̂ab

= [x, F̂ ],
and g = δ ◦ NK

F̂
:A×

K → A×
F the map defined by the idèlic extension of the determinant

map. Then there is an exact sequence

(54)0 → u
(
g(x)−1a

)→ Cn f ′
−→ Aσ → 0

such that

(55)f
(
u(v)

)σ = f ′(u(g(x)−1v
)) ∀v ∈ F/a,

i.e., there exists a commutative diagram

(56)F/a

ω

g(x)−1

F/g(x)−1a

ω′

Ator
σ Aσ

tor

whereω = f ◦ u andω′ = f ′ ◦ u.

The construction of the algebraic Hecke character associated to the torsion points ofA

is now achieved by constructing an idèlic mapα of K in the following way.

Theorem. For the mapω :FR → A defined byω = f ◦u with FR = F ⊗ρ R andρ denotes
complex conjugation, there exists a map

(57)α :A×
K → F×

such that

(58)ω(v)[x,K] = ω
(
α(x)g(x)−1v

) ∀x ∈ A×
K, v ∈ F/a,

which is determined uniquely by the following properties

(59)α(x)g(x)−1a = a, α(x)α(x)ρ = N(x),

where(x) is the ideal associated tox. Furthermore the kernel ofα is open in the idèles.

We can now define charactersψi on the idèles by picking appropriate components from
the map that describes the Artin symbol on the elements ofF/a. More precisely, define

(60)ψi(x) = (α(x)g(x)−1)
∞i

, i = 1, . . . , n,

via the infinite primes of the complex multiplication fieldF .
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6. Abelian varieties from Brieskorn–Pham type hypersurfaces

We now have described all the key concepts we need in our formulation of a charac-
terization of exact solvability of Calabi–Yau manifolds. What remains is to establish the
existence of abelian varieties with complex multiplication in the context of Calabi–Yau
spaces. In the present section we will consider explicitly the class of Brieskorn–Pham hy-
persurfaces in weighted projective space. It will become clear from the discussion that the
construction can be extended to more general types of polynomials. The basic idea is to
first reduce the intermediate cohomology of the Calabi–Yau via the Shioda–Katsura con-
struction to the cohomology spanned by curves embedded in the manifold, and then to use
the results of Faddeev, Gross, Rohrlich, and others, to decompose the Jacobian varieties
derived from these curves to find factors that admit complex multiplication.

6.1. The Shioda–Katsura decomposition

The decomposition of the intermediate cohomology of projective hypersurfaces was
first described by Shioda and Katsura[30] and Deligne[31]. Their analysis can be gen-
eralized to weighted hypersurfaces, in particular the class of Brieskorn–Pham varieties,
perhaps the simplest class of exactly solvable Calabi–Yau manifolds. This generalization
works because the cohomology H3(X) for these varieties decomposes into the monomial
part and the part coming from the resolution. The monomial part of the intermediate co-
homology can easily be obtained from the cohomology of a projective hypersurface of the
same degree by realizing the weighted projective space as a quotient variety with respect
to a product of discrete groups determined by the weights of the coordinates.

For projective varieties

(61)Xn
d = {(z0, . . . , zn+1) ∈ Pn+1 | zd

0 + · · · + zd
n+1 = 0

}⊂ Pn+1

the intermediate cohomology can be determined by lower-dimensional varieties in combi-
nation with Tate twists by reconstructing the higher dimensional varietyXn

d of degreed
and dimensionn in terms of lower dimensional varietiesXr

d andXs
d of the same degree

with n = r + s. Briefly, this works as follows. The decomposition ofXn
d is given as

(62)Xr+s
d

∼= BZ1,Z2

((
π−1

Y

(
Xr

d × Xs
d

))
/µd

)
,

which involves the following ingredients.

(1) π−1
Y (Xr

d × Xs
d) denotes the blow-up ofXr

d × Xs
d along the subvariety

(63)Y = Xr−1
d × Xs−1

d ⊂ Xr
d × Xs

d.

The varietyY is determined by the fact that the initial map which establishes the relation
between the three varietiesXr+s

d , Xr
d , Xs

d is defined on the ambient spaces as

(64)

(
(x0, . . . , xr+1), (y0, . . . , ys+1)

) �→ (x0ys+1, . . . , xrys+1, xr+1y0, . . . , xr+1ys).

This map is not defined on the subvarietyY ;
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(2) π−1
Y (Xr

d ×Xs
d)/µd denotes the quotient of the blow-upπ−1

Y (Xr
d ×Xs

d) with respect
to the action of

µd � ξ :
(
(x0, . . . , xr, xr+1), (y0, . . . , ys, ys+1)

)
�→ (

(x0, . . . , xr, ξxr+1), (y0, . . . , ys, ξys+1)
);

(3) BZ1,Z2((π
−1
Y (Xr

d × Xs
d))/µd) denotes the blow-down inπ−1

Y (Xr
d × Xs

d)/µd of the
two subvarieties

Z1 = Pr × Xs−1
d , Z2 = Xr−1

d × Ps .

This construction leads to an iterative decomposition of the cohomology which takes the
following form. Denote the Tate twist by

(65)Hi (X)(j) := Hi (X) ⊗ W⊗j

with W = H2(P1) and letXr+s
d be a Fermat variety of degreed and dimensionr + s. Then

Hr+s
(
Xr+s

d

)⊕ r∑
j=1

Hr+s−2j
(
Xr−1

d

)
(j) ⊕

s∑
k=1

Hr+s−2k
(
Xs−1

d

)
(k)

(66)∼= Hr+s
(
Xr

d × Xs
d

)µd ⊕ Hr+s−2(Xr−1
d × Xs−1

d

)
(1).

This allows us to trace the cohomology of higher-dimensional varieties to that of curves.

Weighted projective hypersurfaces can be viewed as resolved quotients of hypersurfaces
embedded in ordinary projective space. The resulting cohomology has two components,
the invariant part coming from the projection of the quotient, and the resolution part.
As described in[32], the only singular sets on arbitrary weighted hypersurface Calabi–
Yau threefolds are either points or curves. The resolution of singular points contributes to
the even cohomology group H2(X) of the variety, but does not contribute to the middle-
dimensional cohomology groupH 3(X). Hence we need to be concerned only with the
resolution of curves (see, e.g.,[33]). This can be described for general CY hypersurface
threefolds as follows. If a discrete symmetry groupZ/nZ of ordern acting on the three-
fold leaves invariant a curve then the normal bundle has fibresC2 and the discrete group
induces an action on these fibres which can be described by a matrix

(67)

(
αmq 0

0 αm

)
,

where α is an nth root of unity and(q,n) have no common divisor. The quotient
C2/(Z/nZ) by this action has an isolated singularity which can be described as the singular
set of the surface inC3 given by the equation

(68)S = {(z1, z2, z3) ∈ C3 | zn
3 = z1z

n−q

2

}
.

The resolution of such a singularity is completely determined by the type(n, q) of the
action by computing the continued fraction ofn

q

(69)
n

q
= b1 − 1

b2 − 1
. ..− 1

bs

≡ [b1, . . . , bs].
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The numbersbi specify completely the plumbing process that replaces the singularity and
in particular determine the additional generator to the cohomology H∗(X) because the
number ofP1s introduced in this process is precisely the number of steps needed in the
evaluation ofn

q
= [b1, . . . , bs]. This can be traced to the fact that the singularity is re-

solved by a bundle which is constructed out ofs + 1 patches withs transition functions
that are specified by the numbersbi . Each of these gluing steps introduces a sphere, which
in turn supports a(1,1)-form. The intersection properties of these 2-spheres are described
by Hirzebruch–Jung trees, which for aZ/nZ action is just anSU(n + 1) Dynkin diagram,
while the numbersbi describe the intersection numbers. We see from this that the resolu-
tion of a curve of genusg introducess additional generators to the second cohomology
group H2(X), andg × s generators to the intermediate cohomology H3(X).

Hence we see that the cohomology of weightedhypersurfaces is determined completely
by the cohomology of curves. Because the Jacobianvariety is the basic geometric invariant
of a smooth projective curve this says that for weighted hypersurfaces the main cohomo-
logical structure is carriedby their embedded curves.

6.2. Cohomology of weighted curves

For smooth algebraic curvesC of genusg the de Rham cohomology group H1
dR(C)

decomposes (over the complex number fieldC) as

(70)H1
dR(C) ∼= H0(C,Ω1)⊕ H1(C,O).

The JacobianJ (C) of a curveC of genusg can be identified with

(71)J (C) = Cg/Λ,

whereΛ is the period lattice

(72)Λ :=
{(

. . . ,

∫
a

ωi, . . .

)
i=1,...,g

∣∣∣a ∈ H1(C,Z), ωi ∈ H0(C,Ω1)},

where theωi form a basis. Given a fixed pointp0 ∈ C on the curve there is a canonical
map from the curve to the Jacobian, called the Abel–Jacobi map

(73)Ψ :C → J (C),

defined as

(74)p �→
(

. . . ,

p∫
p0

ωi, . . .

)
modΛ.

We are interested in curves of Brieskorn–Pham type, i.e., curves of the form

(75)Cd = {xd + ya + zb = 0
} ∈ P(1,k,�)[d],

such thata = d/k andb = d/� are positive rational integers. Without loss of generality we
can assume that(k, �) = 1. The genus of these curves is given by

(76)g(Cd) = 1

2
(2− χ) = (d − k)(d − �) + (k� − d)

2k�
.
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For non-degenerate curves in the configurationsP(1,k,�)[d] the set of forms

H1
dR

(
P(1,k,�)[d])

(77)=

ωr,s,t = ys−1zt−d/� dy

∣∣∣∣ r + ks + �t = 0 modd,


 1 � r � d − 1,

1� s � d
k

− 1,

1� t � d
�

− 1






defines a basis for the de Rham cohomology group H1
dR(Cd) whose Hodge split is given

by

H0(Cd,Ω1
C

)= {ωr,s,t | r + ks + �t = d},
(78)H1(Cd,OC) = {ωr,s,t | r + ks + �t = 2d}.

In order to show this we view the weighted projective space as the quotient of pro-
jective space with respect to the actionsZk : [0,1,0] andZ� : [0,0,1], where we use the
abbreviationZk = Z/kZ and for any groupZr the notation[a, b, c] indicates the action

(79)[a, b, c] : (x, y, z) �→ (
γ ax, γ by, γ cz

)
,

whereγ is a generator of the group. This allows us to view the weighted curve as the
quotient of a projective Fermat type curve

(80)P(1,k,�)[d] = P2[d]/Zk × Z� :

[
0 1 0
0 0 1

]
.

These weighted curves are smooth and hence their cohomology is determined by consider-
ing those forms on the projective curveP2[d] which are invariant with respect to the group
actions. A basis for H1dR(P2[d]) is given by the set of forms

H1
dR

(
P2[d])= {ωr,s,t = ys−1zt−d dy |0 < r, s, t < d,

(81)r + s + t = 0 (modd), r, s, t ∈ N
}
.

Denote the generator of theZk action byα and consider the induced action onωr,s,t

(82)Zk :ωr,s,t �→ αsωr,s,t .

It follows that the only forms that descend to the quotient with respect toZk are those for
whichs = 0 (modk). Similarly we denote byβ the generator of the actionZ� and consider
the induced action on the formsωr,s,t

(83)Z� :ωr,s,t �→ βt−dωr,s,t .

We see that the only forms that descend to the quotient are those for whicht = 0 (mod�).

6.3. Abelian varieties from weighted Jacobians

Jacobian varieties in general are not abelian varieties with complex multiplication. The
question we can ask, however, is whether the Jacobians of the curves that determine the
cohomology of the Calabi–Yau varieties can be decomposed such that the individual fac-
tors admit complex multiplication by an order of a number field. In this section we show
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that this is indeed the case and therefore we can define the complex multiplication type of
a Calabi–Yau variety in terms of the CM types induced by the Jacobians of its curves.

It was shown by Faddeev[34]2 that the Jacobian varietyJ (Cd) of Fermat curves
Cd ⊂ P2 splits into a product of abelian factorsAOi

(84)J (Cd) ∼=
∏

Oi∈I/(Z/dZ)×
AOi

,

where the setI provides a parametrization of the cohomology ofCd , and the setsOi are
orbits inI of the multiplicative subgroup(Z/dZ)× of the groupZ/dZ. More precisely it
was shown that there is an isogeny

(85)i :J (Cd) →
∏

Oi∈I/(Z/dZ)×
AOi

,

where an isogenyi :A → B between abelian varieties is defined to be a surjective homo-
morphism with finite kernel. In the parametrization used in the previous subsectionI is
the set of triplets(r, s, t) in (81) and the periods of the Fermat curve have been computed
by Rohrlich[37] to be

(86)
∫

AjBkκ

ωr,s,t = 1

d
B

(
s

d
,

t

d

)(
1− ξs

)(
1− ξ t

)
ξjs+kt ,

whereξ is a primitived th root of unity, and

(87)B(u, v) =
1∫

0

tu−1(1− v)v−1dt

is the classical beta function.A, B are the two automorphism generators

(88)A(1, y, z) = (1, ξy, z), B(1, y, z) = (1, y, ξz)

andκ is the generator of H1(Cd) as a cyclic module overZ[A,B]. The period lattice of the
Fermat curve therefore is the span of

(89)

(
. . . , ξjr+ks

(
1− ξr

)(
1− ξs

)1

d
B

(
r

d
,
s

d

)
, . . .

)
1�r,s,t�d−1

r+s+t=d

, ∀0 � j, k � d − 1.

The abelian factorA[(r,s,t)] associated to the orbitOr,s,t = [(r, s, t)] can be obtained as
the quotient

(90)A[(r,s,t)] = Cϕ(d0)/2/Λr,s,t ,

whered0 = d/gcd(r, s, t) and the latticeΛr,s,t is generated by elements of the form

(91)σa(z)
(
1− ξas

)(
1− ξat

)1

d
B

( 〈as〉
d

,
〈at〉
d

)
,

2 More accessible references on the subject are[35–37].
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wherez ∈ Z[µd0], σa ∈ Gal(Q(µd0)/Q) runs through subgroups of the Galois group of the
cyclotomic fieldQ(µd0) and〈x〉 is the smallest integer 0� x < 1 congruent tox modd .

Alternatively, the abelian varietyAr,s,t
d can be constructed in a more geometric way as

follows. Consider the orbifold of the Fermat curveCd with respect to the group defined as

(92)G
r,s,t
d = {(ξ1, ξ2, ξ3) ∈ µ3

d

∣∣ ξr
1ξs

2ξ t
3 = 1

}
.

The quotientCd/G
r,s,t
d can be described algebraically via projections

T
r,s,t
d :Cd → C

r,s,t
d ,

(93)(x, y) �→ (
xd, xrys

)=: (u, v),

which mapCd into the curves

(94)C
r,s,t
d = {vd = ur(1− u)s

}
.

For prime degrees the abelian varietiesA
r,s,t
d can be defined simply as the Jacobians

J (C
r,s,t
d ) of the projectionsCr,s,t

d . Whend has nontrivial divisorsm|d , this definition must
be modified as follows. Considerthe projected Fermat curves

Cd → Cm,

(95)(x, y) �→ (x̄, ȳ) := (x d
m , y

d
m
)
,

whose Jacobians can be embedded ase :J (Cm) → J (Cd). Composing the projectionT r,s,t
d

as

(96)J (Cm)
e−→ J (Cd)

T
r,s,t
d−→ J

(
C

r,s,t
d

)
for all proper divisorsm|d leads to a collection of subvarieties

⋃
m|d T

r,s,t
d (e(J (Cm))). The

abelian variety of interest then is defined as

(97)A
r,s,t
d = J

(
C

r,s,t
d

)
/
⋃
m|d

T
r,s,t
d

(
e
(
J (Cm)

))
.

The abelian varietiesAr,s,t
d are not necessarily simple but it can happen that they in

turn can be factored. This question can be analyzed via a criterion of Shimura–Taniyama,
described in[27]. Applied to theA

r,s,t
d discussed here the Shimura–Taniyama criterion

involves computing for each setH
r,s,t
d defined as

(98)Hr,s,t
d := {a ∈ (Z/dZ)× | 〈ar〉 + 〈aks〉 + 〈a�t〉 = d

}
another setWr,s,t

d defined as

(99)W
r,s,t
d = {a ∈ (Z/dZ)× | aH

r,s,t
d = H

r,s,t
d

}
.

If the order|Wr,s,t
d | of W

r,s,t
d is unity then the abelian varietyAr,s,t

d is simple, otherwise it
splits into|Wr,s,t

d | factors[38].
We adapt this discussion to the weighted case. Denote the index set of triples(r, s, t)

parametrizing the one-forms of the weighted curvesCd ∈ P1,k,�[d] again byI. The cyclic
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group(Z/dZ)× again acts onI and produces a set of orbits

(100)Or,s,t = [(r, s, t)] ∈ I/(Z/dZ)×.

Each of these orbits leads to an abelian varietyA[(r,s,t)] of dimension

(101)dimA[(r,s,t)] = 1

2
ϕ(d0),

where ϕ is the Euler functionϕ(n) = #{m | (m,n) = 1}, and complex multiplication
with respect to the fieldF[(r,s,t)] = Q(µd0), whered0 = d/gcd(r, ks, �t). This leads to
an isogeny

(102)i :J (Cd) →
∏

[(r,s,t)]∈I/(Z/dZ)×
A[(r,s,t)].

The complex multiplication type of the abelian factorsAr,s,t of the JacobianJ (C) can
be identified with the setHr,s,t

d via a homomorphism from Hr,s,td to the Galois group. More
precisely, the CM type is determined by the subgroupG

r,s,t
d of the Galois group of the

cyclotomic field that is parametrized by Hr,s,t
d

(103)G
r,s,t
d = {σa ∈ Gal

(
Q(µd0)/Q

) | a ∈ Hr,s,t
d

}
by considering

(104)
(
F, {φa}

)= (Q(µd0),
{
σa | σa ∈ G

r,s,t
d

})
.

7. The Fermat quintic threefold

7.1. CM type

Consider the projective threefold embedded in projective 4-space and defined by

(105)X5 = {(z0 : z1 : · · · : z5) ∈ P4 | z5
0 + · · · + z5

4 = 0
}
.

We can splitd = 3 = 1 + 2 = r + s and apply the Shioda–Katsura construction to obtain
the decompositions

(106)H3(X5) ⊕ H1(C5)(1) ∼= H3(C5 × S5)
µ5 ⊕ H1(X0

5 × Cd

)
(1)

and

(107)H2(S5) ∼= H2(C5 × C5)
µ5 ⊕ d(d − 2)H2(P1)

in terms of the cohomology groups of the Fermat curve

(108)C5 = {x5 + y5 + z5 = 0
}⊂ P2

and the Fermat surfaceS5.
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From this we see that the basic building block of the cohomology decomposition is
given by the plane projective curveC5 which has genusg(C5) = 6. The index setI

I = {(1,1,3), (1,3,1), (3,1,1), (1,2,2), (2,1,2), (2,2,1);
(2,4,4), (4,2,4), (4,4,2), (3,3,4), (3,4,3), (4,3,3)

}
parametrizes a basis of the first cohomology group ofC5, which can be written as

(109)H1
dR(C5) = {ωr,s,t = xr−1ys−5dx | (r, s, t) ∈ I

}
.

The action of(Z/5Z)× leads to the orbits

O1,1,3 = {(1,1,3), (2,2,1), (3,3,4), (4,4,2)
}
,

O1,3,1 = {(1,3,1), (2,1,2), (3,4,3), (4,2,4)
}
,

(110)O3,1,1 = {(3,1,1), (1,2,2), (4,3,3), (2,4,4)
}
.

Hence the Jacobian decomposes into a product of three abelian varieties

(111)J (C5) =
∏

Or,s,t ∈I/(Z/5Z)×
Ar,s,t = A1,1,3 × A1,3,1 × A3,1,1,

each of dimensionϕ(5)/2= 2, which arise from the Jacobians of the genus two curves

C
1,1,3
5 = {v5 − u(1− u) = 0

}
,

C
1,3,1
5 = {v5 − u(1− u)3 = 0

}
,

(112)C
3,1,1
5 = {v5 − u3(1− u) = 0

}
,

obtained via the mapsT r,s,t
5 .

In order to check the simplicity of the abelian factors we can use the criterion of
Shimura–Taniyama, described above. Computing the setsWr,s,t

5 for any of the triplets
(r, s, t) shows that the order of these groups is unity, hence all three factors are in fact
simple.

For the complex multiplication type we find from

(113)H1,1,3
5 = {a ∈ (Z/5Z)× = {1,2,3,4} | 〈a〉 + 〈a〉 + 〈3a〉 = 5

}= {1,2}
thatG1,1,3

5 = {σ1, σ2} and therefore the complex multiplication type ofA1,1,3 is given by

(114)
(
Q(µ5), {ϕ} = {σ1, σ2}

)
.

The remaining factors are described in the same way.
More explicitly, we can use the mapsT

r,s,t
5 to express the differentials ofCd invariant

under the action ofGr,s,t
5 in terms of the(u, v) coordinates ofCr,s,t

5 and observe their
transformation behavior under the map

(115)(u, v) �→ (u, ξ5v).
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7.2. Fusion field and quantum dimensions

The field of complex multiplication derived for the quintic is given by the cyclotomic
field Q(µ5) and embedded in this field is the real subfieldQ(

√
5), generated by the ele-

ments(ξ5 + ξ−1
5 ). To compare this to the number field determined by the string we briefly

recall some facts about the corresponding Gepner model[39,40].
The underlying exactly solvable model of the quintic threefold is determined by the

affine Kac–Moody algebraSU(2) at conformal levelk = 2. The central chargec(k) =
3k/(k + 2) at levelk then leads toc = 9/5, leading to a product of five models to make
a theory of total chargec = 9. The physical spectrum of this model is constructed from
world sheet operators of the individualSU(2) factors with the anomalous dimensions

(116)∆
(k)
j = j (j + 2)

4(k + 2)
, j = 0, . . . , k,

leading in the casek = 3 to ∆
(3)
j ∈ {0, 3

20,
2
5, 3

4}.
These anomalous dimensions can be mapped into the quantum dimensionsQij via the

Rogers dilogarithm. Denote by Li2 Euler’s classical dilogarithm

(117)Li2(z) =
∑
n∈N

zn

n2
,

and byL(z) the Rogers dilogarithm

(118)L(z) = Li2(z) + 1

2
log(z) log(1− z).

Then there exist relations between anomalous dimensions and the quantum dimensions
Qij [41–43]

(119)
1

L(1)

k∑
i=1

L

(
1

Q2
ij

)
= 3k

k + 2
− 24∆(k)

j + 6j,

where theQij are defined as

(120)Qij = Sij

S0j

,

in terms of the modularS-matrix

(121)Sij =
√

2

k + 2
sin

(
(i + 1)(j + 1)π

k + 2

)
, 0 � i, j � k

describe the modular behavior of theSU(2) affine characters

(122)χi

(
−1

τ
,
u

τ

)
= eπiku2/2

∑
j

Sij χj (τ, u).

Applying this map to the theory at conformal level three leads to the quantum dimensions
Qi = Qi0

(123)Qi

(
SU(2)3

) ∈ {1,
1

2
(1+ √

5)

}
⊂ Q(

√
5).
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