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ABSTRACT
Cross-correlation techniques have been used recently to study the relative timing of solar Ñare hard

X-ray emission at di†erent energies. These studies Ðnd that for the majority of the impulsive Ñares
observed with BATSE there is a systematic time delay of a few tens of milliseconds between low (B50
keV) and higher energy emission (B100 keV). These time delays have been interpreted as energy-
dependent time-of-Ñight di†erences for electron propagation from the corona, where they are accelerated,
to the chromosphere, where the bulk of the hard X-rays are emitted. We show in this paper that cross-
correlation methods fail if the spectral index of the Ñare is not constant. BATSE channel ratios typically
display variations of factors of 2 to 5 over time intervals as short as a few seconds. Using simulated and
observed data, we demonstrate that cross-correlating energy channels with identical timing character-
istics, but with variations in the amplitudes of one or a small number of relatively strong emission
spikes, produces asymmetric time delays of either sign. The reported time delays are therefore largely due
to spectral index variations and are not signatures of time-of-Ñight e†ects.
Subject headings : Sun: Ñares È Sun: X-rays, gamma rays È Sun: particle emission

1. INTRODUCTION

Impulsive hard X-ray emission produced by high-energy
accelerated electrons is the primary signature of rapid
energy release during solar Ñares. The number of electrons
accelerated, their energy spectrum, and their timing are the
most useful constraints for determining the mechanism(s)
responsible for the rapid energy conversion taking place
during a Ñare (for a recent comprehensive review see Miller
et al. Recently, new high-sensitivity, high time1997).
resolution, hard X-ray observations, made with the Burst
and Transient Source Experiment (BATSE) on board the
Compton Gamma Ray Observatory, have provided the
impetus for a number of studies on the timing of high-
versus low-energy emission. & SchwartzAschwanden

and Aschwanden et al. have found(1996) (1996a, 1996b)
that in the majority of impulsive Ñares, high-energy emis-
sion systematically precedes low-energy emission by tens of
milliseconds. They interpret these time delays as the result
of energy-dependent time-of-Ñight (TOF) di†erences for
electrons propagating from a coronal acceleration site to
the chromosphere. By combining the TOF results with hard
X-ray images, it is possible to infer the location and the
geometry of the Ñare acceleration site et al.(Aschwanden

These studies suggest that Ñare acceleration sites are1996a).
located at the tops of loops in magnetic cusp regions. This
result, if correct, is strong evidence in favor of reconnection
models of solar Ñares (e.g., &Hirayama 1974 ; Kopp
Pneuman 1976 ; Sturrock 1966 ; Tsuneta 1996).

The validity of the timing results depends on the applica-
bility of correlation methods to the BATSE data. The fun-
damental underlying assumption is that the relative timing
between energy channels is due solely to the time depen-
dence of the emission and is independent of the amplitude
of the emission as a function of energy. Our purpose in this
paper is to demonstrate that amplitude variations are

capable of producing the time delays derived from corre-
lation analyses. Consequently, the time delays cannot be
uniquely interpreted as being the result of TOF di†erences

Shore, & Zollistch(LaRosa, 1997).

2. DATA ANALYSIS

We used two principal criteria to select the data discussed
here. The Ðrst was to reanalyze a subset of Ñares discussed
by Aschwanden et al. hereafter A96a). These are the(1996a,
largest Ñares in the BATSE database for which contempo-
raneous Yohkoh images exist. The second was to select Ñares
for which there exist complete medium energy resolution
(MER) data sets. These data are burst triggered with 16 ms
sampling that is rebinned to 64 ms resolution. A burst data
set has 16 energy channels, each with 2560 points covering
an interval of 164 s. These observations provide the highest
time resolution and signal-to-noise ratio (for further dis-
cussion of the BATSE Ñare data see &Aschwanden
Schwartz lists the Ñares we have in common1996). Table 1
with For brevity, we present data only for thoseA96a.
Ñares for which time delays have been previously published.
A more complete analysis will be published separately.

2.1. Procedures
The hard X-ray light curves were analyzed in a three-step

process. 1 (top shows a typical Ñare light curve,Figure left)
in this case burst 1181, in two energy channels. This Ñare
serves as our illustration of the procedure.

The Ðrst step is to separate the fast timescale variations
from the slowly varying emission by digitally Ðltering the
data. Any cross-correlation analysis of short-time varia-
tions, i.e., spikes, requires that all long-term variability Ðrst
be removed from the data in order not to produce a spu-
rious correlation. This is analogous to removing the season-
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TABLE 1

RESULTS OF CORRELATION ANALYSIS

Filter Spike Envelope A96a Filter A96a Spike A96a Envelope
Channel Width Delay Delay Width Delay Delay

Flare Burst Number (s) (ms) (ms) (s) (ms) (ms)

1032 . . . . . . . 3 10 37 [45 3.6 28 [100
4 10 0 [59 3.6 34 [300
5 10 [36 [56 3.6 51 [750
6 10 [114 [158 3.6 43 [900

1037 . . . . . . . 3 10 21 366 2.5 13 1100
4 10 28 808 2.5 51 2300
5 10 32 1011 2.5 61 2400
6 10 42 1076 2.5 76 2000
7 10 62 1023 2.5 101 1400
8 10 53 727 2.5 106 800

1066 . . . . . . . 3 10 58 [55 1.5 35 50
4 10 78 [103 1.5 61 0
5 10 106 [188 1.5 86 [25
6 10 129 [285 1.5 114 [100

1146 . . . . . . . 3 10 49 [39 2 24 80
4 10 102 [86 2 47 110
5 10 157 [208 2 64 120
6 10 251 [399 2 83 80
7 10 365 [640 2 95 [100

1181 . . . . . . . 5 10 14 [117 3 18 [90
6 10 26 [289 3 29 [170
7 10 36 [486 3 40 [230
8 10 49 [658 3 50 [380
9 10 55 [961 3 60 [550

10 10 66 [1304 3 70 [900
1227 . . . . . . . 3 10 2 407 1 18 [35

4 10 10 475 1 36 [100
5 10 8 517 1 37 [150
6 10 9 530 1 57 [200
7 10 25 590 1 66 [270

al trend from a time series analysis of weather or removing a
Ðltered background in the analysis of turbulence in a molec-
ular cloud (e.g., & Bally As in &Miesch 1994). Aschwanden
Schwartz this is accomplished using a fast Fourier(1996),
transform The resulting FFT for each channel is(FFT).1
trimmed, Fourier inverted, and Ðnally subtracted without
scaling from the original data. This creates a high pass
digital Ðlter that admits variations only faster than a speci-
Ðed timescale, the Ðlter width. In our analysis we used a
Ðxed Ðlter width of 10 s for all Ñares. This choice is moti-
vated by the fact the power spectrum analyses indicate that
nearly all Ñares in our study have well-deÐned emission
peaks lasting of order 10È12 s. Filter widths of a few
seconds or less produce correlation functions that are sub-
stantially reduced in signal-to-noise ratio. The Ðltered pro-
Ðles for channels 4 and 7 are displayed in 1 (topFigure left),
and the residual spike emission for channel 4, which is left
after subtracting the Ðltered proÐle from the data in Figure
1 (top is displayed in 1 (bottomright), Figure left).

In the second step, the residuals from the di†erent energy
channels are auto- and cross-correlated. To continue with
our illustration, the resulting auto- and cross-correlation
functions for channels 4 and 7 are shown in 1Figure
(bottom We generally eliminated the Ðrst 200 dataright).
points to avoid edge e†ects in the Ðltering process. This is
especially important for those Ñares caught already on the
rise. The upper time limit to the range is set by the time at
which the emission falls to background levels.

1 These were computed for the individual energy channels using the
FFT routine available in interactive data language (IDL).

In the third step, we determine the peak of the correlation
functions using a nonlinear least-squares Gaussian Ðtting
routine. gives our results for all Ñares in commonTable 1
with The Ðrst column lists the burst number, and theA96a.
second column gives the MER channel that was correlated
with the reference Our Ðlter width was always 10 schannel.2
and for reference is listed in the third column. The fourth
and Ðfth columns list our results for the time delays between
the spike emission and the slowly varying envelope emis-
sion. The published results are shown for comparison. The
sixth column lists the Ðlter width with which the A96a
results were obtained, and the seventh and eighth columns
list those published time delays.

2.2. Derivation of T ime Delays
One basic result of our correlation analysis is its extreme

sensitivity to the properties of the data set. Simply changing
the length of the sampled interval, the starting and ending
times, or the width of the Ðlter changes the magnitude
and/or sign of the time delay in unpredictable ways. Take,
for example, burst 1296Èthe so-called Masuda ÑareÈfor
which et al. report large energy-Aschwanden (1996)
dependent delays (e.g., ]107 ^ 21 ms for channel 3 delay
with channel 5). Their delays were derived using a 32 s Ðlter
width using all 2560 points. & SchwartzAschwanden (1996)
found that Ðlter width strongly a†ects the derived time
delays. Here we point out that the derived delays are also
strongly inÑuenced by the portion of the data set selected

2 The reference channel number is always one less than the Ðrst value
listed in the second column.
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FIG. 1.ÈExample of correlation analysis for burst 1181 (1991 December 15, start time 18 :32 UT). Hard X-ray light curves for MER channels 4 (41È54
keV) and 7 (97È122 keV) (top left). Filtered envelope proÐles for data in top left panel obtained using an FFT with a 10 s Ðlter (top right). Residual spike
emission obtained by subtracting Ðltered envelope from observed data (bottom left). Autocorrelation function for channel 4 residuals (solid line) and
cross-correlation of residuals of channels 4 and 7 (bottom right, dashed line). The plot shows the normalized correlation function vs. time lag (s). The spike at
zero lag is due to the intrinsic noise in the data and must be present in any autocorrelation (see A96a).

for analysis. We again used a Ðxed Ðlter width of 10 s and
cross-correlated channels 3 and 5 using di†erent portions of
the time series. The use of points between 25 to 90 s only
yields a time delay of [59 ms, the use of points from 25 to
102 s gives no delay, and the use of points 38 to 115 s yields
a delay of ]69 ms. Notice that this last shift di†ers from the
Ðrst by a factor of 2 in magnitude and has the opposite sign.
Similar results are obtained by cross-correlating channels 2
and 4 : using all data points yields a ]70 ms shift, but if we
restrict the sample to points from 13 to 128 s, the shift is 4
times larger, i.e., 280 ms. Finally, using only the interval
from 13 to 90 s yields a shift of ]240 ms. It is therefore
possible to derive a broad range of time delays with
opposite directions of shift from the same data set.

We found the same result for the other Ñares in our
sample. This calls into question the physical nature of the
delays and suggests to us that they are an artifact of the
analysis procedure.

2.3. Spectral Index Variations
We noticed that many Ñares in our sample show large

spectral index changes. These occur on the long timescale,
varying slowly over the course of the whole Ñare and, more
importantly, within spikes on timescales as short as a few
seconds. For example, shows several typicalFigure 2

channel ratios for di†erent Ñares. Note that changes in the
ratio by factors of 2 to 5 over an interval of a few seconds
are quite common. Inspection of the actual light curves
reveals that spike proÐles and amplitudes change substan-
tially from one energy channel to another in an apparently
random way. In Figure illustrate this variation in burst3 we
1146, one of the Ñares from the sample, for twoA96a
channel ratios. We therefore hypothesized that these
changes could be the origin of the time delays and could
also be responsible for the sensitivity of the correlation
analysis to the Ðltering and sampling interval.

To test whether amplitude variations alone can produce
time delays, we simulated the data for a single channel by
altering only the amplitude of one or a small number of
emission spikes. We used the channel ratios to scale the
spike with no changes in the timing or any other property of
the data set. We then cross-correlated the simulated data
against the observed data and performed the same analysis
described above. For example, we used burst 1252, the light
curve of which is shown in 4 (top for channels 2Figure left)
and 5. Notice that channel 2 has a well-deÐned emission
spike at 80 s, but there is no corresponding spike in channel
5. There is also a rise in emission in channel 2 between 67
and 74 s with no corresponding rise in channel 5. We
created simulated data by changing the amplitude of this
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FIG. 2.ÈMER channel ratios. Burst 1146 (1991 December 4, start time 17 : 43 UT), channels 1È4 (top left) ; burst 1181, channels 4È7 (top right) ; burst 1252
(1991 December 30, start time 23 : 05 UT), channels 2È5 (bottom left) ; burst 1358 (1992 February 5, start time 13 :16 UT), channels 2È5 (bottom right).

one spike as shown in 4 (top We multipliedFigure right).
this spike by a reducing factor that Ñattened it to mimic the
appearance of this spike in channel 5. Cross-correlating this
simulated channel with the original channel 2, which is
almost the same as an autocorrelation, resulted in a time
delay of [49 ms. This delay has the same sign as the shift
found with the real data and accounts for about one-third
of the real magnitude, [159 ms. Another simulation used

FIG. 3.ÈSample high time resolution MER channel ratios. Burst 1146
(1991 December 4, start time 17 : 43 UT), channels 3È6 (top) ; channels 3È7
(bottom).

burst 1146, one of the original Ñares in We changedA96a.
three spikes using the same approach. The shift obtained
from the real data is ]157 ms and from the simulation is
]77 ms. Once again, the sign of the shift agrees, and the
magnitude is no di†erent from the observed one. In yet
another simulation, using burst 1358, reducing the ampli-
tude of one spike resulted in a shift of 35 ms, which is about
one-fourth of the actual shift. However, increasing the
amplitude of this spike beyond what is seen in the channel
ratios resulted in a shift of similar magnitude but opposite
direction ! At this point we must emphasize that no criterion
based on the shape of the spike or on its channel ratio
biased these choicesÈthe spikes were just typical of the
Ñare. Since we Ðnd that positive and negative shifts can be
recovered from these simulations, it is clear that changes in
the spectral index can certainly account for the reported
time delays.

3. DISCUSSION

We have shown in this paper that small changes in indi-
vidual emission spikes that mimic a change in the spectral
index can signiÐcantly a†ect the cross-correlation of di†er-
ent energy channels. In particular, altering the amplitude or
shape of a single spike can change the resulting time delay by
50% to 100%. There seem to be no systematics to the short-
duration spectral index variations within any Ñare. The
channel ratios vary considerably on timescales as short as a
few seconds. Although the variability in the channel ratios
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FIG. 4.ÈTest of dependence of time delays on small amplitude changes (see Burst 1252, channels 2 and 5 in the real data (top left) ; MER data for° 2.3).
channels 2 and 5 (solid line) and simulated data formed by altering spike between 68 and 71 s (top right, dashed line) ; autocorrelation function for residuals of
MER channel 2 (real data ; bottom left, solid line) and the cross-correlation of residuals for MER channels 2 and 5 (bottom left, dashed line). The shift is [159
ms (see text). Autocorrelation function for residuals of MER channel 2 (real data ; solid line) and the cross-correlation of residuals for real vs. simulated MER
channel 2 (bottom right, dashed line). The shift is [49 ms (see text).

shown in Figures and is dramatic, it is by no means2 3
unique. This randomness of structure is further highlighted
by the result that the derived shift is very sensitive to small
changes in the size and selection of the interval used for the
correlation analysis. If the derived shifts are dependent on
the points used in the analysis, then a global physical e†ect
cannot be the cause of the shift.

3.1. Comparison with Previous Studies
The large di†erences between our results and those of

shown in are likely due to di†erences in ÐlterA96a Table 1
width. In the smoothly varying component of theA96a
emission, i.e., the envelope, is attributed to trapped elec-
trons, and the fast timescale variations, i.e., the emission
spikes, are attributed to directly precipitating electrons. The
trapped electrons have the opposite time delay from the
precipitating ones since the trapping time increases with
energy. The timing of the smoothly varying emission there-
fore competes with the timing of the spikes. The authors
refer to this as the ““ two-component model.ÏÏ To separate
these e†ects, chose a Ðlter width that maximizes theA96a
time delay between energy channels.

If the envelope emission is due to trapped electrons, then
the cross-correlation of the envelopes should result in nega-
tive time delays, i.e., low-energy envelopes should lead those
at high energy because the trapping time increases with

energy. Two out of the six Ñares shown in show posi-A96a
tive envelope shifts. This already contradicts the assertion
that such shifts are always negative. We Ðnd that out of
eight Ñares (bursts 1358, 1252, 215, 1180, 2085, 1043, 2246,
and 1170), in addition to those reported in only oneTable 1,
Ñare (burst 1170) showed the high-energy envelopes lagging
behind the low-energy ones. We, consequently, Ðnd no
support from these data for the two-component model.
Furthermore, the low-energy spike emission leads the high-
energy spikes in six of the eight cases. Our results are in
disagreement with the model assumptions used by A96a.

The TOF explanation relies for its veriÐcation on a sys-
tematic e†ect in the dataÈthe envelope must lag relative to
the spikes & Schwartz In order to(Aschwanden 1996).
achieve consistent separation between the envelope and
short timescale spikes, the published analyses force the time
delay to be positive by choosing the Ðlter width that maxi-
mizes the shift based on a speciÐc interpretation of the two
emission components. These alterations introduce a bias
into the analysis and lead to a circular resultÈthe shifts are
in the right direction because the procedure has been tai-
lored to support the hypothesis.

4. CONCLUSIONS

The simplest explanation for the sensitive behavior of the
correlation method to Ðlter width and interval is that the
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spectral variations through the Ñare are random, especially
from one spike to another. If these short-duration changes
are uncorrelated, then trimmed data sets can be easily
biased by the elimination or alteration of only a few spikes.
This accounts for the results from our numerical experi-
ments. In the real data, small excesses of one skew in spike
proÐle over its opposite can easily produce the observed
shifts. We are currently developing methods to quantify this
conjecture using a larger sample of BATSE Ñare data.

It is not possible to separate the e†ects of electron propa-
gation from processes connected with the particle acceler-
ation using correlation methods. Consequently, the
assertion that the time delays between energy channels are
uniquely due to electron TOF propagation is not correct.

Our aim here is to point out that this alternate interpreta-
tion of the energy-dependent time delays opens a new diag-
nostic possibility for analyzing these Ñares. Previous work
has concentrated on obtaining the geometry of the Ñare site
from the BATSE data. We suggest instead that the spectral
index variations are more fundamental characteristics of the
acceleration process.

We thank Markus Aschwanden for several important
discussions and comparisons of methods. We also thank
Richard Schwartz for assistance with the MER data and
Candace Zollistch for technical support. T. N. L. was
supported by a NASA JOVE grant to Kennesaw State
University.

REFERENCES
M. J., Hudson, H., Kosugi, T., & Schwartz, R. A. 1996, ApJ,Aschwanden,

464, 985
M. J., Kosugi, T., Hudson, H. S., Wills, M. J., & Schwartz,Aschwanden,

R. A. 1996a, ApJ, 470, 1198
M. J., & Schwartz, R. A. 1996, ApJ, 464,Aschwanden, 974
M. J., Wills, M. J., Hudson, H. S., Kosugi, T., & Schwartz,Aschwanden,

R. A. 1996b, ApJ, 468, 398
T. 1974, Sol. Phys., 34,Hirayama 323

R. A., & Pneuman, G. W. 1976, Sol. Phys., 50,Kopp, 85
T. N., Shore, S. N., & Zollitsch, C. 1997, BAAS, 29,LaRosa, 01.64
M. S., & Bally, J. 1994, ApJ, 429,Miesch, 645

J. A., et al. 1997, J. Geophys. Res., 102,Miller, 14631
P. 1966, Nature, 211,Sturrock, 695
S. 1996, ASP Conf. Ser. 111, Magnetic Reconnection in the SolarTsuneta,

Atmosphere, ed. R. D. Bentley & J. T. Mariska (San Francisco : ASP)


	Kennesaw State University
	DigitalCommons@Kennesaw State University
	8-10-1998

	Production of Energy-dependent Time Delays in Impulsive Solar Flare Hard X-Ray Emission by Short-Duration Spectral Index Variations
	Ted N. La Rosa
	Steven N. Shore
	Recommended Citation


	tmp.1468257265.pdf.fMRJF

