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Abstract

In this paper we consider the approximation of a function by its interpolating multilinear spline and the
approximation of its derivatives by the derivatives of the corresponding spline. We obtain the exact uniform
approximation error on classes of functions with moduli of continuity bounded above by certain majorants.
© 2014 Elsevier Inc. All rights reserved.

MSC: 41A05; 41A10; 41A28

Keywords: Simultaneous approximation; Multilinear splines; Interpolation; Modulus of continuity; Approximation on a
class; Block partitions

1. Basic definitions and notation

Let x = (x1,x2,...,X,) be a point in Euclidean space R". By Cp we denote the class of
functions f(x) = f(x1, x2, ..., x,) that are continuous on the domain D := [0, 1]* C R".
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We consider a vector r € {0, 1}", i.e. a vector having n components each being either O or 1.
Let C }') be the class of functions, f(x) € Cp, with continuous derivatives

dLi=1li f
Ox)= ——(x
FO0 = ),
where t € {0, 1}" and ; < r; foreachi =1, ..., n. We define f®(x) := f(x) and C?) = Cp.
For any function f(x) € Cp, consistent with literature, we denote the uniform norm as

Ifllc = max{|f(x)| : x € D}.

The next two definitions introduce two types of moduli of continuity of a given function f,
both characterizing the smoothness of the original function f.

Definition 1. If the function f(x) is bounded for x; € [a;,b;i],i = 1,...,n, then its total
modulus of continuity, w( f; ), is defined as follows

o(f;t) =w(f;a,b; 1)
= sup{|f(X) — fWI: |xi —yil <7 xi,y €lai, bil},

where 0 < t; < b; —a;,fori = 1,...,nand T = (71,...,7,), a == (ai,...,a,),
b= (by,...,by).

In addition, we consider the following [, distances, 1 < p < oo, between points x,y € D C R",

n
Ix—yllp = 7D lxi — ylP.
i=1

Definition 2. For the function f(x) € Cp and for given p, 1 < p < oo, we define the modulus
of continuity of function f with respect to p to be

wp(fry) =sup{lf® — fWI:xyeD, |x—yl, <y}, 0<y=<d,,
where d,, :== max{|x —y|, :x,y € D C R"}.
We point out that
d, = Y.

Note that the moduli of continuity of all suitable functions have some common properties. We
call all functions (univariate or multivariate) with these properties functions of the moduli of
continuity type and use them to define classes of smoothness of functions.

Definition 3. Function (2(t) is called a function of modulus of continuity type, or MC-type
function (for short), if the following properties hold for any vectors y, 7 € R’} = {x € R" :
x;>0,i=1,...,n}:

1. 2(0) =0.

2. 2(t) .= 1y, ..., Ty) is non-decreasing (in each coordinate).

3. 2(t +yp) < 2(t) + 2(y), that is 2(7) is subadditive.
4. (2(t) is continuous forall 7;,i =1, ..., n.
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The following two definitions present the classes of functions that we will be working with in
this paper.

Definition 4. Given an arbitrary n-variate MC-type function {2(t), we define the class C},({2),
where r € {0, 1}* with COD(Q) = Cp({2), to be the class of functions f(x) € C7,, such that the
total modulus of continuity of their derivatives of order r is bounded from above by the given
2(T)

o(fT) < 2(r), 0<m<li=1..n 2

Definition 5. Given an arbitrary univariate MC-type function f(2(y), we define the class
C}')’p(Q), I < p < oo, where r € {0, 1} with C%’p((}) = Cp,p({2), to be the class of
functions f(x) € C¥,, such that their moduli of continuity are bounded from above by the given
2(y)

wp(fO9) < 2(y), 0<y< Yn. 2)

2. Construction of the interpolating spline

In order to construct the interpolating spline for the given function f € Cp, which will be the
main approximation tool for f (and its derivatives will be used to approximate the derivatives
of f), we fix a vectorm = (my,...,m,) € N* and for eachi = 1, ..., n we first define the
univariate grid of nodes as follows

1 1
Dmi={o,—,...,m’ ,1}.

mi m;

With the help of the standard Cartesian product we define the n-variate grid as

Dm =Dy, X+ X Dy,.

Once the grid is constructed, each point on the grid is defined by a vector j = (ji, ..., j,) where
Ji €10, ..., m;}, as follows
x = (x{‘,...,x,{”) = (J—l,..., J—n) € Dm.
mi my

Having defined the grid, we next define the interpolating spline that will be used to approx-
imate the given function and whose derivatives will be used to simultaneously approximate the
derivatives of the function.

Definition 6. For the grid of nodes, Dy, and a given function f(x) € Cp, we define the multi-
linear (n-linear) interpolating spline, Sy (f; X), to satisfy the following conditions:

1. Onevery block Dj := ]_[?Zl[xiji,xfi+l],wherej =tyeosgn)rji=0,...,mi—1,Sm(f;Xx)
is an algebraic polynomial of first degree in x; fori =1, ..., n.
2. Sm(f;x) = f(xd) forj = (ji,...,jn), ji = 0,...,myandi = 1, ..., n. In other words,

Sm(f; X) interpolates f(x) at the nodes Dy,.



R. Anderson et al. / Journal of Approximation Theory 183 (2014) 8§2-97 85

Note that forx € Dj, j; =0,...,m; —landi =1,..., n, the following holds
. n
Sm(f1%) = Z Z [ () (1"[ Huy, j (mﬂ , (3)
u1=0 Up= i=1
where u = (uy, ..., u,) and
. 1 1
Hoji(x)) =mi(]" —x), Y Hy () = 1 4)
Let the vector r = (r1,r2,...,r,) € {0, 1}" be given. When taking the partial derivatives

S,(,f) (f; x), there may be discontinuities at the points of the following set

Ji

= {x: x;" is a component of x for some i and some j; € {0, ..., m;}}.

The discontinuities of the partial derivatives of Sp(f; X) may exist because Sy (f;X) is a
piecewise linear polynomial with respect to x;, fori = 1, ..., n. With these discontinuities all
partial derivatives need to be defined carefully. In order to do so, we define theset M = {i : r; =
1}. We use the notation | M| to denote the number of elements (cardinality) in set M.

Next,forx € D;, ji =0,...,m; —landi = 1, ..., n we introduce the functions F;(x) and
Fjp(x) — which will later be used to define the partial derivatives of Sy, (f; X) — as follows:

Fu(x) = Z Z( 1>ZteM“l(]"[Hul,,<x,> FeIY,

igM

Fyp(x) = Z Z( 1)2iem it (1"[ Hy, j; (x7) )f(xj+“>.

u1=0 Up= igM

Remark. F;(x)isusedif |M|iseven, and Fp (x) is used if | M| is odd. When stating the results,
we will use M such that | M| is even, but the results also hold for M in the case when | M| is odd.

At last we define

SE(fix) = (H mi> Fy(x) (5)

ieM
forx e DJf = [1i—; I (x;), where
‘i l+l . .
[xij,xi] ), 1f]i:0,...,mi—2

I(x;) = o
[x.J’ x.f'“], if ji = mi— 1.

1>

Finally, we introduce the errors of approximation for a given function (Definition 7) and error
of approximation on a class of functions (Definition 8).

Definition 7. For givenr € {0, 1} and a function f € C7,, we denote the error of approximation
of a function f® (x) (or its derivative) by the interpolating spline Sl(;)( f;x) (or its derivative,
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respectively) constructed above to be
En(f1%) = |fP® - SP (10|, xeD (6)
with £2 (31 X) = Em(f; X).

Definition 8. For a given r € {0, 1}" and for any class M e C?,, we denote the error of approx-
imation on the class M by splines that interpolate at the nodes Dy, to be

Ef(M) = sup {EL(Nllc : f € M] (7)
with EQ (M) := Ep(M).

In this paper, we present the explicit formulas for the uniform error of approximation of
multivariate functions from some classes of smoothness by multilinear interpolating splines as
well as the error of approximation of the derivatives of functions from the considered class by
the derivatives of the corresponding splines. An analogous univariate result for approximating the
function from the same class is contained in [2], and the result for approximating the derivatives is
contained in [3]. In the case of bivariate functions from the class Cf) (£2), earlier known results for
such functions are in the paper of Storchai [7] and for the derivatives are in works of Vakarchuk
and Shabozov [8,5]. For the class CrD’ p(Q) the known results are only for the cases p = 1 [9]
and p = 2 [6] for functions and [9,5] for derivatives, respectively. We have extended their results
to the case of arbitrary dimension and arbitrary 1 < p < 3.

3. The error of approximation on classes Cp(2) and Cp ,({2)

In this section, we estimate the error of approximation by interpolating splines on the classes
Cp({2) and Cp_ ,({2) defined in Definitions 4 and 5.

Theorem 1. Let {2(t) be an arbitrary concave (in each variable) MC-type function. Then for
m € N" withm; > 2 fori =1,...,n, the error on the class Cp({2) is

1
Em (Cp(£2)) =02 (2_> .
m

Proof. Let an arbitrary function f € Cp(£2) be given. Without loss of generality we consider
X € Dj = ]_[l 1[xl , l ]for some j = (j1,..., Jn)» ji € {0,...,m; — 1}. By Definition 7,
using connection (4), we have

Em(fix) = |f(X) - Sm(f‘ X)|
(1‘[ i (x») (oo - f(x““))' :

where xIT4 = (x]j1+l“, .. .,x,{”ﬂ”) andu = (uy,...,u,) €{0, 1Y fori=1,...,n.
Using the triangle inequality, Definitions 1 and 4, we obtain

Em(f1%)] < Z Z (H Hy; j; (xi) ) \f(x) fITY

u1=0 u,=0
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1 1 n
=2 ) (H Hu,-,jxx,-)) o(f: x =)
u1=0

u,=0 \i=1
1 1 n .
<y (1"[ Hui,,-i<x,-)> 2(x — X)),
u1=0 u,=0 \i=1

where [x — x| = (jx; — x0Ty

Since x € Dj and function 2(7) is concave in each variable, we have

1Em(f3 %) = 2(A(x1), ..., A(xn)),

where

— X)),

' - _
Mx;) = Ho j, (xi)(xi —x]") + Hy j, (x;) (x] T ox), i=1,...,n (8)

Since the function of MC-type is non-decreasing, we need to find max{A(x;) : x; € [xl.ji,

ji+1 . . o
xij’+ 1} fori =1, ..., n. For convenience, we use the substitution x; = ¢:

i i+1
M) = Ho j;(1)(t — x") + Hij; (0" =)
Ji+1

= (mix]"" —mit)t —x!)+ (1 — mixl:]iJr] + mit)(xi]i+1 5
Ji+l1

= 2 ] it ; 2 .
; . .| 11 1
3mix;’ 't mif2 + mixijlt — mix,'jlxij’ —m (le ) xij’+ —1.

1

Thus, taking the derivative of A () with respect to ¢, setting A’ (¢) = 0, and solving for ¢ yields

Ji Jit+l Ji Jit+l
x4+ x: x4+ x; 1
t=-——1t  andhence A | - L = )
2 2 2m;
In order to show that 217[ 1s a maximum, we take second derivative
V(@) = —4m;.
Since m; > 2, we have 1”(¢) < 0. Hence, ﬁ is a maximum and we obtain
Ji Jit+l
L x4 x; 1
max{A(x;) : x; € [x.]’,x.J’H]} =A|+t——] = , i=1,...,n. 9)
! ! 2 2m,-
As (2(t) is non-decreasing, we conclude
1
1Em(f;x)] < 2 (—) :
2m
Since the last inequality holds for any f € Cp(f2), we have
1
Em (Cp(§2)) < 12 (—) : (10)
2m

Next, we present a particular function from Cp(§2) (called an extremal function) for which
(10) occurs with equality. We define the extremal function fJ* as follows

. i i+ . it 1
i) =0 (mm{xl —xljl,xlj1+ —x1), ..., min{x, — x", xn T —xn}),
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where X = (x1, ..., x,) € Dj for fixed j and fj*(x) = 0 forx ¢ D;. Then we have fJ* e Cp(12),
and fj*(xj) =0forj=(j1,...,Jn)»Ji=0,...,m;jandi =1, ..., n. In addition, we have

IEm(£Dle = 1£ e,

since Sp( fj*; X) is linear on each partition element and interpolates fJ* (x) at the nodes of Dy,.
Consequently, the following estimates hold:

1 1
Em (Cp(2)) = [Em(F)lc = 1/l = £ (—m> =0 (—) . (11)
Combining (10) and (11), we obtain

En (Cp(£2)) = 12 (L> . g
2m

Theorem 2 gives the error En(Cp, p(£2)) for 1 < p < 3, where Cp ,(§2) is defined in (2).

Theorem 2. Let 2(y) be an arbitrary concave, MC-type, univariate function. Then for m € N"
withm; > 2 foralli =0, ..., n, the error on the class Cp_,(2) for 1 < p < 3is

m (CD,p(Q)) = {2

Proof. For any x from an arbitrary Dj := [[/_ 1[x .’ ] and for an arbitrary f € Cp, ,({2) by
Definition 7, we have

Em(f:x) = If(X) - Sm(f‘ x)|

Z Z (1_[ Hy,, j; (xi) ) ‘f(x) FITY,

u,=0

where xit = (x/'"™ . x Yy and j; = 0,..,m — 1w = (uy, ..., u,) € {0, 1) for
i=1,...,n
Using Deﬁnition 2, we have

Em(f3%) < Z Z (1"[ Hy, j; (xi) ) P> i —xf e
i=1

u,=0

1
Using Definition 5 for the class Cp, ,(§2), relation (4), and the fact that £2(y) and function ¢ 7,
1 < p < 3, are both concave functions, we obtain

1 1 n )
NTEDIS (n H o ) |3 by = i
i=1

u;=0 u,=0

n 1 1
<01’ Z|:Z Z <1_[Hu, J,(xl )lxi _xij.i+ui|pi|

i=1 Lu;=0 u, =0
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n 1 ) n 1
=017 Z (Z Hy,; j; (xi)|xi _xiji+ui|p) 1_[ |:Z Huk,jk(xk)i|

i=1 u;=0 k=1;k#i Lux=0

n 1
=& Z[ Hy,.j; (xi) |xi —xiﬁuilp}

i=1 Lu;=0
Fori =1, ..., n, we denote
1 .
alxi) = Y Hy, i (ei)lx; — x|
u;=0
_ v N (v Jiyp () (yJi T Y
= HO,]i(xz)(xt —X; ) +H1,j,-(xl)(x,' —xi)P. (12)
‘We have
i ji+1
a(x;) = Hou (6)(xi — x/)P 4+ Hy oy (x) I = x)P

i+ i 1 i+ i+
= mi (" —x) i — xDP 4 my (;—xi’”r +Xi) T — )P
l

ji+1 i i\ it
= mi ()" —xi) (i = x4 mi (o = D)) —x)P

, i \P , Ji
e SRR VES N f [t S B el
TV ! Jitl1 Jit1 :
X; — X X; — X

Using the following inequality [1, p. 334]
2P (tP +1) <A+t 1>0,0<p<3

Ji
Xj—X;

——+—and 1 < p <3, we have
Xy

1

fort =

ji \ Pl
n; i X; — X:
O[()Ci) < _pl(xi]l“r‘l . xi)P-H (1 + ;)
l

2 ot
1
+1
= ﬁ(.le—’_l — X'-ji)p+] = @ i g = ! .
or l 20 \m; Qm;)P

Since {2(y) is non-decreasing, we obtain

—

Em(Cpp(£)) =02 57 (13)

\®)

— (m;)P
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Finally, for each fixed j we consider an extremal function fj*, defined as follows

n
fx=0|7 Z (min{xi — xl.”, jitl ,}) ,
i=1
where x € Dj and fJ* (x) = 0 for x ¢ Dj. From the way fJ* is defined, it is easy to see that

fj* € Cp,p(2). Note that fj*(xj) =0forj= (j1,...,Jn)» Ji =0,...,m;,i = 1,...,n. This,
along with the linearity of Sy (f, X) on each element of the partition, implies that Sy, (f, x) = 0
and

IEm(fOMc = I1£f"lc. (14)
Using (14), we obtain

1
Emawm»zmammwszczﬁ(—)zﬂ (15)

2m

Combining (13) and (15), we have

Em(Cp,p(12)) = 22

4. Divided differences

In order to state the remaining results of this paper, we need to recall the definitions and some
properties of divided differences.
Given function f, we define

5(f;x,y) = % x,y € R", (16)
ieG

where G = {i € {1,...,n}:x; # yi}.
We remind the reader that for given r € {0, 1}", the set M is definedas M = {i : r;, = 1}.

In the remaining sections we will express Sg)( f;X) in terms of the divided difference of the
function f for the terms x;, where i € M. Recall that from (5) we have

Aﬁum=<ﬂm)m®

ieM
(1) 35 S (1T o) o
ieM U= igM
where xit? = (x“+u1, cx Ty and i = 0,....mi — 1, u = (ui, ..., uy) € {0, 1} for
i =1,...,n. Fixing index a € M, we have

1 1 1 1
w0 =m | T m | e 3030 3 B

ieM;i#a u1=0 Ug—1=0uq441=0 u, =0
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+u Jntu
1_[ Hui,ji (xi) f(le 1, Xéa, .. xn ")

igM
1 1 1
e[ T m] 2 330 e 3 e
ieM;i#a u1=0 —1=0uy41=0 u,=0
Jitug Ja+1 Jntu
HHui,ji(xl)f(] ,---,Xau ""9xnn n)
igM
1 1 1 1
SRV DIED o oSS SRR
ieM;i#a u1=0 Ug—1=0uq441=0 u, =0
J1tu Ja+1 Jntu
[T i Gy | [ G0, et
igM
+u +u +u intu
f( ]1 1’ xéjla"" Jn n)+f( Jl 1"""xa7""‘xén n)
— f(x]”Lul, s X e x,ﬁ”ﬂ”)] .
Setting
. . .
V= (x{1+”1, oy xjeTtatl ey
W= (x{lﬂ”, Xl ey
) . 1 .
y = (x{1+"1, e xaj“Jr e, xj"+"”)
z:(x{‘ﬂl,...,xa, , xntimy

and using the divided difference defined in (16), we have

1

1
Sr(rll.)(f; X) = my l_[ m; Z . Z Z Z (—I)ZIEMl;éau i+1

ieM;i#a u1=0 Ug—1=0uy441=0 Up=

[T Hue. i) [(xa'ﬁl — )8 (f1¥,2) + (X — Xai,)8 (f1 2, w)]

igM
1 1 1
u;i+1
S I3 D 2P 3ns o EIE S A
ieM;i#a u1=0ur=0 u,=0

[ | Huiji ) ) 8(f: v, 2).

igM

Repeating this process for each i € M and using the fact that |[M| is even, we eventually
obtain that the sign of each term is positive. We define the vectors q, p € Dj as follows

T e M
=G, 9. qn): i = xljfﬂi

g M
_( ) . Xi, ifieM
P=(P1,P2,---,Pn): pPi = xiji+ui, lfl¢M



92 R. Anderson et al. / Journal of Approximation Theory 183 (2014) 82-97

Therefore, we obtain

SW (%) = Z Z (]—[Hu i (xi) )3(f; q. p)-

u;=0 u,=0

Combining it with (5) and using the triangle inequality, we obtain

Em(fi%) < Z Z (HHMI ji (xi) ) \f“)(x) 3(f: q. p)\

uip= =0 Mn—O

Using [4], we write the divided difference in integral form

EL(fix) < Z Z <1_[ H,,, ]l(x,)> /RN )f(r)(x) _

<]_[ da,-) , a7

u1=0 u,=0 ieM
where
7z — [0’ 1]|M|
and
X = (uf xd, L x), with xF = {x,}:utlx,(xlz wi+1 —Xi), lfl eM
X; , ifi ¢ M.

5. Approximation of derivatives of functions by derivatives of splines

In this section, we look at approximating a function’s derivative by the derivative of the linear
spline that is constructed to interpolate the function itself.

In the following result, we provide the exact error of approximation on the class C7,({2),
denoted by E} (CT,({2)).

Theorem 3. Letr € {0, 1} be given and M .= {i : r; = 1}. Let also an arbitrary function 2(y)
of MC-type, concave with respect to y;, where i ¢ M, be given. Then for m € N" withm; > 2,

i =1,...,n, the error of approximation on the class C}S(Q) is
m (CH(D) = (H m) / 2(h) (]_[ dm) :
ieM ieM
where
Vi, ifieM

h=(hy, ho,...,hy), withh; =

e M
o, ifid

and R = [T;cpl0, 71
Proof. For any x from an arbitrary Dj := [[/_, [xl.j" : xiji 11 and for given f € CT,(12) using the
presentation of the divided difference in integral form (17) and Definition 4, we have

el = Y- Z(]‘[Hul,xx,)/R mﬂ)(]‘[da,>, (1)

u1=0 u,=0 ieM
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where

i—ui+1 (64} cp .
ap|xl —xi|=m—’Hul.,ji(x,~), ifieM

B=(Bi.Pa....Bu). withp; = 1
|-xl _-le ll = ;Hl—ui,ji(xi), ifi ¢ M.
1

Taking into account that {2(y) is concave with respect to y;, i & M, and performing a change
of variables, we obtain

ol = ([Tm) 32 32 [ o ([Ten).

ieM Uijpg = ieM
where iy € M, R" == []; [0, mi_lHui,ji (x;)], and
Vi fieM
B =B.B.... B, withp =12 -
1 ’ ! l m_HOu]l('xl)Hl,]l(xl)’ lfl ¢M.
l

We have ,,%Ho, ji (xi)Hy j. (x;) = A(x;), where A(x;) is defined in (8). Therefore, by (9) we
have that B/ < h; foralli =1, ..., n, where

Vi, ifieM
- p— 1 p— 1
h; = (hy,ha, ..., hy), withh; ifig M. (19)
2m,~

The fact that {2(y) is non-decreasing together with (19) implies

(M) 2 2 (1)

ieM Uijpg = ieM

Em (f3 %)

[A

= P(x). (20)

It is easy to verify that @(x) is continuous on [xiji , xiji+l] fori € M. As 2(y) > 0, it is also
easy to verify that

max{®(x) : x; € [x/, /'] i e M}y = 63TV, we {0, 1)". (21)

By (20) and (21), we have
Em (fix)] < o)

(1) o (11e)

where R = [];c,10, m%]. Using the fact that the last inequality holds for any function f €
Cp(12), we have the upper bound

L (Ch() < (]‘[ m)/ Q(h)(l_[ dy,). (22)

ieM ieM
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In order to show that the upper bound (22) is achieved, we introduce the extremal function

d(x) :=/n(h’ (]_[ dy,),
ieM

where S = [[,.y,10, x;1,

/ / . I yl’ lfi GM
= (h7, ,...,hn), Wlthhi_{xi, ifidM,
for x € [Tieplab, “E) 5 [Tyl o, %, u; =0, 1,i = 1,...,n,

%) = D) - <1‘[ml>f9<h><1"[dy,>,
ieM ieM

where
1
(=" (— —xi) , ifieM
m;

W' = (W), hY,....h)), withh! = X
(—1)4 (2 —x,-), ifi ¢ M
n;

and extend function 7 (x) to be %—periodio for x; such thati € M, and to be n%—periodic for x;
wherei & M.

From the way that d(x) is defined, we see that it is in the class CJ,({2). In addition, we have
that d(xj) =0forj = (j1,---,Jn) ji = 0,...,m;, so it follows that Sy (d; x) = O as the
spline is linear in each x; on every element of the partition. With S,(,f) (d; x) = 0, we obtain the
following inequality

En (CH() = IER@lc = 14Vl = ¢ )|

_ (1‘]‘[4 m,.) / 2(h) (l_ﬂlldy) (23)

where
1 e
—, ifieM
¢ = (P12 ... ), withg; = 1"
, ifigM.
mi

Comparing (22) and (23), we obtain the approximation error to be

EL (Ch(2)) = (Hm,)/!)(h)(ﬂdy,). O
ieM ieM

Theorem 4 provides the estimate for the error of approximation on the class C7, » (£2).

Theorem 4. Let r € {0, 1}" be given and let M = {i : r; = 1}. Let also an arbitrary univariate,
concave, MC-type function {2(y) be given. Then for m € N" withm; > 2,i = 1,...,n, the
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error of approximation on the class CT, p(_Q), 1<p<3is

E;(capm)):(rlm’)/ p[zy"p}+[z <2"ii>”} <Hd%>’

ieM ieM

where R = [];c,10, ml,-]'

Proof. Let arbitrary f € CT,(£2) be given. For any x from an arbitrary Dj := [];_ 1[x J,+1]
using the estimate of the error in the form (17), and using Definition 3 of {2(y) and Deﬁmtlon 5

of the class CT,({2), we have

EXTIP ey (HHM, - )

u;=0 u,=0

b

i —uj+1 P ji i
xf op | £ o3 [t =il |7 3 = (l_[dai>
R//

ieM igM ieM

Sy Y (ﬁ H<>)

u1=0 u,=0

o p 1 p
Lo({p ) ) (1)

ieM igM

where R” := [0, 1M,
Performing the change of variables, taking into account that (2(y) is concave, and using
notation R := [ [;5,[0, m; lHul i (x)], we have

[Em (f3 %] < (Hm,) Z Z (]‘[ Hy, i (x0) )

ieM u,=0 \i¢M

o5z Gomes) ] ) (M10)

()5 5

ieM u,‘1=0 uilM\:O

ez [mer] ) ()

where iy € M and a(x;) is defined in (12).
Recall that in Theorem 2 we proved that for any x € D;

i=1,...,n.

e
(2m;)P

a(x;
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Therefore, since {2(y) is non-decreasing, we have

o= (1) 3 > >

ieM Wijpg = =0
1
Loz Z ] ) (1)
= n(x). (24)

It is easy to verify that

max{u(x) : x € Dj}

(,I;Lml) / v LXA; yil’:| + L%; (2n1,')1’} <l];[4dy,), (25)

where R = [0, ]|M | for i € M. Therefore, using (25) and the fact that (24) holds true for any
f e Cr7 (1), wehave

(@)= (o) Lo (5 e ) ([r) o

In order to show that equality in (26) is achieved, we introduce the extremal function

e(x) ::/n(h’ (1_[ d]/;)
ieM

where S = [0, x;1"™! fori € M,

AN , . )i ifieM
= (hy, hy, ..., hy), Wlthhi_{xi, ifidM,

and function 7 (x) is defined as

0 = 0 [;; (( Ly (mi_x)y’ [zﬂ;(( 1)u1( 1, _xl.))p}

() Lo (113 )+ [ e ) (T1)

for x € ]_[leM[m , ”mH] X HngM[zm , “2;;1] u; =0,1,i =1, ...,n and then extended so that

m(X)is m—i-perlodlc for x; such thati € M and is m%-periodic for x; wherei ¢ M.

From the way e(x) is defined, we see that it clearly belongs to the class CJ,({2). We have
that e(xj) =0forj= (ji,...,jn), ji = 0,...,m;, so it follows that Sy(e; x) = 0 as the
spline is linear in each x; on each partition element. With Sl(rf) (e; x) = 0, we obtain the following
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inequality

EL (Ch, (@) = 1€ @lc = lelc > | )|

=[] /RQ ADNZAE: Z—(zni,-)l) .de,- , Q27

ieM ieM igM ieM
where
1
—_, ifieM
) m;
¢=(d1,02,....¢,), with¢; = 1’
, ifi € M.
2m,~

Comparing (26) and (27), we obtain the following error of approximation

1
Er (Ch o, () = ([T mi fR” vl |+ ZW [[avi). O

ieM ieM i¢gM ieM

Remark. If in the statement of the theorem all coordinates of the vector r are equal to 1, then
the assumption on {2(y) to be concave can be removed.
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