
Kennesaw State University
DigitalCommons@Kennesaw State University

Dissertations, Theses and Capstone Projects

8-2015

Formal Specification Driven Development
Titus Fofung
Kennesaw State University

Follow this and additional works at: http://digitalcommons.kennesaw.edu/etd

Part of the Computer Engineering Commons, and the Software Engineering Commons

This Thesis is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in
Dissertations, Theses and Capstone Projects by an authorized administrator of DigitalCommons@Kennesaw State University. For more information,
please contact digitalcommons@kennesaw.edu.

Recommended Citation
Fofung, Titus, "Formal Specification Driven Development" (2015). Dissertations, Theses and Capstone Projects. Paper 682.

http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/etd?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/etd?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/etd/682?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F682&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

 Quantitative Analysis of Formal Specification Driven
Development

A Thesis Presented to
The Faculty of the Department of Computer Science and Software Engineering

By

Titus Dohnfon Fofung

In Partial Fulfillment
Of Requirements for the Degree

M.S. in Software Engineering

Southern Polytechnic State University
August 2015

 Quantitative Analysis of

In presenting this thesis as a partial fulfillment of the requirements for an advanced degree
from Southern Polytechnic State University, I agree that the university library shall make it
available for inspection and circulation in accordance with its regu
materials of this type. I agree that permission to copy from, or to publish, this thesis may be
granted by the professor under whose direction it was written, or, in his absence, by the
dean of the appropriate school when such copying or
purposes and does not involve potential financial gain. It is understood that any copying
from or publication of, this thesis that involves potential financial gain
without written permission.

ii

Quantitative Analysis of Formal Specification Driven
Development

In presenting this thesis as a partial fulfillment of the requirements for an advanced degree
from Southern Polytechnic State University, I agree that the university library shall make it
available for inspection and circulation in accordance with its regulations governing
materials of this type. I agree that permission to copy from, or to publish, this thesis may be
granted by the professor under whose direction it was written, or, in his absence, by the
dean of the appropriate school when such copying or publication is solely for scholarly
purposes and does not involve potential financial gain. It is understood that any copying

thesis that involves potential financial gain will not be allowed

Formal Specification Driven

In presenting this thesis as a partial fulfillment of the requirements for an advanced degree
from Southern Polytechnic State University, I agree that the university library shall make it

lations governing
materials of this type. I agree that permission to copy from, or to publish, this thesis may be
granted by the professor under whose direction it was written, or, in his absence, by the

publication is solely for scholarly
purposes and does not involve potential financial gain. It is understood that any copying

will not be allowed

iii

Notice To Borrowers

Unpublished theses deposited in the Library of Southern Polytechnic State University must
be used only in accordance with the stipulations prescribed by the author in the preceding
statement.

￼The author of this thesis is:

Titus Dohnfon Fofung
3011 Forbes Trail

Snellville, GA 30039

The director of this thesis is:

Sheryl Duggins
SPSU School of CSE, Building J, J365

1100 South Marietta Pkwy
Marietta, GA 30060

Users of this thesis not regularly enrolled as students at Southern Polytechnic State
University are required to attest acceptance of the preceding stipulations by signing below.
Libraries borrowing this thesis for the use of their patrons are required to see that each
user records here the information requested.

Name Address Date Type of use

iv

 Quantitative Analysis of Formal Specification Driven
Development

An Abstract of
A Thesis Presented to

The Faculty of the Department of Computer Science and Software Engineering

By

Titus Dohnfon Fofung

In Partial Fulfillment
Of Requirements for the Degree

M.S. in Software Engineering

Southern Polytechnic State University
August 2015

v

This paper researches a quantitative metric of investigating Formal Specification-

Driven Development (FSDD). Formal specification is needed at the beginning of the

development process to prevent ambiguity and to improve the quality through corrections

of errors found in the late phases of a traditional design process, Software Development

Life Cycle (SDLC). The research is conducted with capstone students using both the FSDD

and the SDLC (traditional) models and a quantitative analysis is presented to evaluate the

internal quality of the software. The tool used to measure the internal quality is the .NET

2013 analysis tool.

Formal Specification-Driven Development (FSDD) is a new approach in which

formal specification is used and functional units of code are incrementally written and

tested prior to the code implementation. In the research, there is a comparative study of

Formal Specification-Driven Development with the traditional model. This research

realized the promising attributes of Formal Specification Driven Development. It promotes

the incorporation of FSDD in the software development process. FSDD is radically different

from the traditional ways of developing software. In the traditional software development

model (SDLC), the tests are written after code implementation. In FSDD the test occurs

during development. This model is more of a programmer’s process.

This study is the first complete evaluation of how FSDD affects software

development and internal design quality. The study was carried out with students in a

Software Engineering Capstone class. The research included a semester-long project to

develop a ticketing system.

vi

This research demonstrated that software developers applying Formal

Specification-Driven Development (FSDD) approach are likely to improve some software

quality aspects compared to Software Development Life Cycle (FSDD) approach. In

particular this research has shown significant differences in the areas of code complexity

and size statistically. The differences in internal quality can considerably improve the

external software quality, software maintainability, software understandability, and

software reusability. The research establishes a standard for future studies. It focused

mainly on the software process. This research is going to raise awareness of FSDD as a new

software development approach to explore further.

vii

Formal Specification Driven Development

A Thesis Presented to
The Faculty of the Department of Computer Science and Software Engineering

By

Titus Dohnfon Fofung

Advisor: Sheryl Duggins

In Partial Fulfillment
Of Requirements for the Degree

M.S. in Software Engineering

Southern Polytechnic State University
August 2015

viii

This is dedicated to my sons Gurb Fofung and Bila Fofung and daughter, Nahdia Fofung, for
their sustenance, endurance, and consideration throughout this undertaking.

ix

Table of Contents

1. INTRODUCTION ... 13
1.1. MOTIVATION ... 15
1.2. THE COMPONENTS OF FORMAL SPECIFICATION-DRIVEN DEVELOPMENT (FSDD)

 16
1.2.1. TEST-DRIVEN DEVELOPMENT (TDD) .. 16
1.2.2. BEHAVIOR-DRIVEN DEVELOPMENT (BDD) .. 17
1.2.3. FORMAL METHODS .. 20

1.3. SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC) ... 21
1.4. SUMMARY OF THE REMAINING CHAPTERS .. 23
1.5. OBJECTIVE .. 24

2. LITERATURE REVIEW ... 26
2.1. TEST-DRIVEN DEVELOPMENT AND FORMAL METHODS 27
2.2. RESEARCH IN TEST-DRIVEN DEVELOPMENT .. 28

2.2.1. TEST-DRIVEN DEVELOPMENT IN ACADEMIA .. 28
2.2.2. TEST-DRIVEN DEVELOPMENT IN INDUSTRY ... 29

2.1. BEHAVIOR-DRIVEN DEVELOPMENT (BDD) .. 31

3. RESEARCH METHODOLOGY .. 33
3.1. FORMAL SPECIFICATION-DRIVEN DEVELOPMENT MODEL ... 33

3.1.1. Java Model ... 33
3.2. EXPERIMENTAL DESIGN .. 45

3.2.1. EXPERIMENT OVERVIEW .. 46

4. RESULTS AND ANALYSIS .. 59
4.1. METRICS COLLECTION AND ANALYSIS ... 59
4.2. INTERNAL QUALITY RESULTS ... 59

4.2.1. METHOD-LEVEL METRICS ... 60
4.2.2. CLASS-Level Metrics ... 62
4.2.3. PROJECT-LEVEL METRICS ... 66

4.3. TEST RESULTS ... 70

5. EVALUATION, OBSERVATION, AND DISCUSSION ... 71
5.1. EMPIRICAL EVIDENCE OF FORMAL SPECIFICATION-DRIVEN DEVELOPMENT

EFFICACY ... 71
5.1.1. QUANTITATIVE EVIDENCE: COMPLEXITY ... 72
5.1.2. QUANTITATIVE EVIDENCE: COUPLING ... 74
5.1.3. QUANTITATIVE EVIDENCE: COHESION ... 77
5.1.4. QUANTITATIVE EVIDENCE: SIZE .. 79
5.1.5. QUANTITATIVE EVIDENCE: STATIC CODE QUALITY ANALYSIS....................... 81
5.1.6. EMPIRICAL EVIDENCE SUMMARY AND CONCLUSIONS 82

5.2. SUMMARY AND FUTURE WORK .. 83

6. BIBLIOGRAPHY ... 86

7. APPENDIX A FORMAL SPECIFICATION-DRIVEN DEVELOPMENT APPROACH

METRICS .. 92
7.1. FORMAL SPECIFICATION-DRIVEN DEVELOPMENT – ALL METRICS 92
7.2. FORMAL SPECIFICATION-DRIVEN DEVELOPMENT CLASS-LEVEL METRICS146
7.3. FORMAL SPECIFICATION-DRIVEN DEVELOPMENT PROJECT-LEVEL METRICS147

8. APPENDIX B SOFTWARE DEVELOPMENT LIFE CYCLE APPROACH METRICS148
8.1. SOFTWARE DEVELOPMENT LIFE CYCLE - ALL METRICS.................................... 148

x

8.2. SOFTWARE DEVELOPMENT LIFE CYCLE METHOD-LEVEL METRICS 201
8.3. SOFTWARE DEVELOPMENT LIFE CYCLE CLASS-LEVEL METRICS 205
8.4. SOFTWARE DEVELOPMENT LIFE CYCLE PROJECT-LEVEL METRICS 206

9. APPENDIX .NET CODE ANALYSIS TOOL .. 207
9.1. .NET CODE ANALYSIS TOOL .. 207

10. APPENDIX D METRICS.. 208
10.1. MAINTAINABILITY INDEX .. 208
10.2. CYCLOMATIC COMPLEXITY .. 208
10.3. DEPTH OF INHERITANCE .. 208
10.4. CLASS COUPLING .. 209
10.5. LINES OF CODE .. 209

xi

Table of Figures

Figure 1: Test-Driven Development ... 16

Figure 2: Behavior-Driven Development .. 18

Figure 3: SDLC - Waterfall Model .. 21

Figure 4: The Simplified SDLC Process .. 22

Figure 5: Method-Level Metrics p-values.. 61

Figure 6: % difference in Method-Level Metrics.. 61

Figure 10: Class-Level Metrics p-values .. 63

Figure 11: % Difference in Class-Level Metrics .. 64

Figure 12: Box plot for line of code in Classes .. 64

Figure 12: Box plot Class-Level Maintainability Index .. 65

Figure 14: % Difference Project-level Metrics .. 67

Figure 16: Difference in Project-Level Cyclomatic Complexity .. 73

Figure 17: Difference in Depth of Inheritance .. 73

Figure 17: Difference in Project-Level Cyclomatic Complexity .. 74

Figure 19: Box plot of Method-Level Class Coupling.. 76

Figure 20: Box plot of Class-Level Class Coupling .. 77

Figure 17: Differences in Cohesion Metric CC .. 78

Figure 18: % Difference in Size Metrics... 79

Figure 18: Static Code Quality ... 81

xii

List of Tables

Table 1: C# Code Metrics .. 52

Table 2: Sample Metrics by attribute ... 53

Table 3: Summary of Methods Metrics .. 60

Table 4: Summary of Class-level Metrics .. 62

Table 5: Project-Level Metrics results ... 66

Table 6: FSDD Project-level Static Code Analysis results ... 68

Table 7: SDLC Project-level Static Code Analysis results ... 69

Table 8: Project-Level Metrics results ... 82

Table 9: FSDD Metrics .. 92

Table 10: FSDD Class-Level Metrics .. 146

Table 11: FSDD Project-Level Metrics .. 147

Table 12: SDLC Metrics ... 148

Table 13: SDLC Method-Level Metrics .. 201

Table 14: SDLC Class-Level Metrics ... 205

Table 15: SDLC Project-Level Metrics ... 206

13

1. INTRODUCTION

The study is aimed at providing an effectiveness comparison between the quality of

Formal Specification-Driven Development (FSDD), and the Software Development Life

Cycle (SDLC) methods of creating software. Unlike SDLC, FSDD is a new approach in

software development proposed by Rutledge & Tsui (2013), in which units of programming

codes are incrementally written and tested prior to system implementation. The formal

specification is needed at the beginning of the development process to prevent ambiguity

and to improve the quality of software. FSDD has been improved through corrections found

in the late phases of a traditional design process (Rutledge & Tsui, 2013). With the

traditional software development model, the tests are written after the code

implementation. The SDLC test is mainly for implementation and not development, and

hence referred to as “test-last”. Meanwhile, with the FSDD model, the test occurs during

development, and is more of a programmer’s process in which testing is done during the

coding phase by the developer. FSDD is thus classified as “test-first” since it involves the

use of Test-Driven Development (Erdogmus et al. 2005).

This study will be conducted with two groups of capstone students from Southern

Polytechnic State University, who will respectively develop a system using FSDD and SDLC

models to provide the data for the comparative quantitative analysis. This quantitative

analysis will help to conclude on the software effectiveness and quality.

14

Software failure occurs very frequently and so there is a need to remedy the

situation. The introduction of the Formal Specification Driven Development proposed by

Richard Rutledge in his 2013 thesis needs to be investigated for its effectiveness, as

compared to other methodologies, for possible incorporation into software development.

Test-Driven Development (TDD) and Behavior-Driven Development (BDD) using formal

specification are the basis of FSDD (Rutledge & Tsui, 2013). FSDD could be classified as an

agile software development approach derived from Extreme Programming (XP) (Beck,

2001). While FSDD is new, TDD and BDD have been around for more than a decade (Beck,

2002). Software engineers always have to look for new ways to improve software quality.

FSDD can be categorized as formalized TDD (Rutledge & Tsui 2013). This thesis will

investigate the new process and present an argument that FSDD comes with the benefits

that TDD and BDD have, but without their shortcomings (Tsui, 2010). The study will

attempt to establish the quantitative efficacy of FSDD. The various aspects involved in

creating a balanced condition will be discussed and determined. The other component of

FSDD, the TDD, was introduced in 2003 but is not extensively used as much (Rutledge, &

Tsui 2013). Also, FSDD includes BDD and Formal Methods in the development approach.

The study had intended to get test data as direct evidence but resorted to the use of

quality metrics since only one team submitted their test data. This was due to some logistic

constraints. The SDLC team could not be readily contacted after their code was submitted.

It then became apparent that the Visual Studio Analysis tool was the only option to work

with. There were three teams at the beginning but could only utilize the code from the

teams that used Visual Studio, hence the one team was dropped since they used PHP to

code their project.

15

1.1. MOTIVATION

The proliferation of computer software usage around the world has reached an

enormous proportion, such that software development has become more and more

complex, leading to increasingly compromised quality. Dependence on computer software

for day-to-day living may not be very apparent. Software is involved in healthcare,

agriculture, transportation, communication, and leisure, just to name a few areas, and has

become inevitable in today’s lifestyle worldwide (Preserve Articles, 2011). The correct

functioning of the software is of utmost importance, especially in critical systems that

cannot afford to fail or be defective. Therefore, software engineering should strive for

100% accuracy, although this seems utopian. But the introduction of the various

development methods such as Test-Driven Development and Behavior-Driven

Development, and now Formal Specification-Driven Development, are part of the ongoing

strategies that attempt to reduce the incidence of software defects and failures. These

methodologies may stem the tide of software failures and defects. This study is a further

investigation of the work started by Rutledge (2013). This technique proves to be a

potentially useful tool in a reduction of software failure. But this cannot be concluded

unless a comparison to existing methodologies is achieved. The prospects of the FSDD

approach have motivated me to further investigate its usefulness.

1.2. THE COMPONENTS OF FORMAL SPECIFICATION

1.2.1. TEST-DRIVEN DEVELOPMENT (TDD)

TDD is the exercise of writing each piece of production code in direct response to a

test. But if the test fails, the production code is rewritten until the test passes. This

definition is only a simplified description of a very complex process. In TDD, the tests are

written in a stepwise process with each step written to

before the next is started (Kumar & Bansal, 2013).

Figure

16

THE COMPONENTS OF FORMAL SPECIFICATION-DRIVEN DEVELOPMENT (FSDD)

DRIVEN DEVELOPMENT (TDD)

exercise of writing each piece of production code in direct response to a

test. But if the test fails, the production code is rewritten until the test passes. This

definition is only a simplified description of a very complex process. In TDD, the tests are

written in a stepwise process with each step written to completion with passing code

before the next is started (Kumar & Bansal, 2013).

Figure 1: Test-Driven Development

DRIVEN DEVELOPMENT (FSDD)

exercise of writing each piece of production code in direct response to a

test. But if the test fails, the production code is rewritten until the test passes. This

definition is only a simplified description of a very complex process. In TDD, the tests are

completion with passing code

17

Generally, this means that in TDD just a small part of the test is written at a time,

and it begins with a simple, uncomplicated example, and the code is tested to make it work,

typically within a few minutes, before proceeding to the next test portion (Erdogmus, et al.

2005) to meet the requirements and constraints that the tests provide. But as the tests get

more and more challenging, the code becomes more and more capable. Summarily, TDD is

more concerned with the testing of a component as a unit (Shull, et al. 2014). The testing is

free of the other dependencies, but it does not entirely replace the usual conventional

software testing. It increases software quality by improving correctness.

1.2.2. BEHAVIOR-DRIVEN DEVELOPMENT (BDD)

BDD focuses on the users’ opinion of how the software should behave. It is more about

functionality and so must start with the most important function pertinent to the users of

the system. When the crucial function has been identified, the developer then takes over

and implements it. BDD deals with business domain, and it is used for acceptance and

regression testing (Solis & Xiaofeng, 2011). Figure 2 is a depiction of BDD.

Figure

BDD is mostly regarded

precise specifications. BDD is specified

example scenarios in a Given-When

that they can be automated. Gherkin uses a simple structure for doc

the behavior the stakeholders want, bridging the communication between developers and

stakeholders (Wynne & Hellesoy, 2010). In conversations to promote a shared

understanding, Gherkin uses user

BDD focuses on behavioral aspects while TDD emphasizes implementation. In BDD,

the system is described in a way that can

18

Figure 2: Behavior-Driven Development

is mostly regarded as the evolution of TDD. BDD is centered on defining very

is specified with the Gherkin Language. Gherkin

When-Then format to create structure around behaviors so

that they can be automated. Gherkin uses a simple structure for documenting examples of

the behavior the stakeholders want, bridging the communication between developers and

stakeholders (Wynne & Hellesoy, 2010). In conversations to promote a shared

understanding, Gherkin uses user-defined tags to organize scenarios.

focuses on behavioral aspects while TDD emphasizes implementation. In BDD,

in a way that can be easily automated. BDD provides a precise,

on defining very

with the Gherkin Language. Gherkin defines

Then format to create structure around behaviors so

umenting examples of

the behavior the stakeholders want, bridging the communication between developers and

stakeholders (Wynne & Hellesoy, 2010). In conversations to promote a shared

focuses on behavioral aspects while TDD emphasizes implementation. In BDD,

BDD provides a precise,

19

uncomplicated language that helps stakeholders to specify their tests (Solis & Xiaofeng,

2011). The transparency between user expectation and developers’ tests is a significant

advantage. The toolkits supporting BDD include Cucumber (JUnit.org, 2004) and RSpec

(Beck & Gamma, 1998). RSpec is a BDD framework for the Ruby programming language.

Cucumber is a software tool used for testing other software. Cucumber is created using the

Ruby programming language. Gherkin only has a few keywords that enable the building of

a domain specific language for everyday use in the system.

The BDD approach is still in its infancy, just like FSDD, so it could be characterized

as being under development. The BDD concept is still a little vague. There is no one

commonly accepted definition of BDD. The characteristics of BDD are not concise. The tools

are mainly concentrated on the implementation phase of the development process, which

is incompatible with BDD’s wider involvement in the software development lifecycle.

BDD could be explained further with an example. Consider sorting with various

types of method as thus:

• Bubble sort

• Selection sort

• Insertion sort

• Shell sort

• Comb sort

• Merge sort

20

• Quicksort

The test for sorting in BDD could be written using the Cucumber tool as follows:

� Given a list of numbers

� When I sort the list

� Then the list will be in numerical order

The sorting method does not matter, or the routine employed to test and implement the

sort; all that is needed is a sorted list (Falco, 2013).

1.2.3. FORMAL METHODS

Formal methods (FM) are another component of FSDD which are mathematical

ways of modeling a system. They are scientifically based and hence are considered to be

very reliable and accurate (Staples, 1996). They help in avoiding ambiguities in the

specification of software. FMs are, unfortunately, not very welcomed by programmers, due

to their mathematical aspects, since many people have very little affinity for mathematics.

FMs are rarely used in the industry on a large scale, though it plays a significant role in

reducing software defects (Boehm & Basili, 2001). There are many types of formal

methods, including Vienna Development Method (VDM), Object Constraint Language (OCL),

Z and Java Modelling Language (JML). FMs will eventually pay off if learned and used in the

software development process. When the specifications are correct, then less time will be

spent on software testing. Using FMs is a great approach for building reliable software

(Wedde et al. 1992).

1.3. SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

There exist many different types of traditional software develop

with the most common being the Waterfall Model. With the traditional methods, all tests

are carried out after the code has

distinct phases of the Waterfall Model

30).

Figure

The Waterfall Model is a plan

very critical, and so a written plan and schedule of all the process activities must be done

before embarking on the software development

the process as: Specify, Design,

21

SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

There exist many different types of traditional software development techniques,

with the most common being the Waterfall Model. With the traditional methods, all tests

are carried out after the code has been implemented (Janzen & Saiedian, 2008). The

distinct phases of the Waterfall Model are as illustrated in Figure 2 (Sommerville, 2010, p.

Figure 3: SDLC - Waterfall Model

The Waterfall Model is a plan-driven development. For this model, documentation is

very critical, and so a written plan and schedule of all the process activities must be done

before embarking on the software development (Sommerville, 2010). Figure 3 summa

the process as: Specify, Design, Code, Test and Implement.

ment techniques,

with the most common being the Waterfall Model. With the traditional methods, all tests

(Janzen & Saiedian, 2008). The

Sommerville, 2010, p.

driven development. For this model, documentation is

very critical, and so a written plan and schedule of all the process activities must be done

Sommerville, 2010). Figure 3 summarizes

Figure

This study will demonstrate why there is a need to investigate the new processes of

software development. It is imperative to

important to examine the usefulness of

potential application in software development in the future. Very little research has been

conducted using FSDD compared to th

a little for BDD. While it is a relatively new technique, a statistical study for FSDD is needed

for quality and productivity.

deficiency, with the purpose of determining if this formalized combination of the TDD and

BDD approaches is a better technique in curbing the software defects that are regularly

encountered with using the traditional method of development.

not eliminate testing at the end of the software development, but it reduces the time

devoted to the system testing phase. The significance of all of these will usher in a new way

of developing systems, especially critical systems. Analysis of the collected data will he

reveal the accuracy of FSDD compared to

FSDD is a viable software engineering method of the future. The research will show that

FSDD is a sustainable software development

22

Figure 4: The Simplified SDLC Process

This study will demonstrate why there is a need to investigate the new processes of

software development. It is imperative to know how FSDD fares against SDLC.

important to examine the usefulness of FSDD compared to the traditional methods for

potential application in software development in the future. Very little research has been

compared to the vast amount of research data available for TDD and

a little for BDD. While it is a relatively new technique, a statistical study for FSDD is needed

for quality and productivity. Therefore, this study will concentrate on the quality

urpose of determining if this formalized combination of the TDD and

BDD approaches is a better technique in curbing the software defects that are regularly

encountered with using the traditional method of development. The FSDD technique does

testing at the end of the software development, but it reduces the time

devoted to the system testing phase. The significance of all of these will usher in a new way

of developing systems, especially critical systems. Analysis of the collected data will he

the accuracy of FSDD compared to SDLC, and potentially provide a guide to whether

FSDD is a viable software engineering method of the future. The research will show that

FSDD is a sustainable software development technique of the future.

This study will demonstrate why there is a need to investigate the new processes of

know how FSDD fares against SDLC. It will be

FSDD compared to the traditional methods for

potential application in software development in the future. Very little research has been

data available for TDD and

a little for BDD. While it is a relatively new technique, a statistical study for FSDD is needed

Therefore, this study will concentrate on the quality

urpose of determining if this formalized combination of the TDD and

BDD approaches is a better technique in curbing the software defects that are regularly

The FSDD technique does

testing at the end of the software development, but it reduces the time

devoted to the system testing phase. The significance of all of these will usher in a new way

of developing systems, especially critical systems. Analysis of the collected data will help

potentially provide a guide to whether

FSDD is a viable software engineering method of the future. The research will show that

23

In this study, analysis of the data collected will help portray the accuracy of FSDD

compared to SDLC, and potentially provide a guide to whether FSDD is a practical and the

prospective software engineering method. In other words, it will be important to explore

the usefulness of FSDD compared to the traditional methods for potential application of

FSDD in software development in the future.

1.4. SUMMARY OF THE REMAINING CHAPTERS

Chapter 2 will provide a literature review of studies on FSDD (including FM, TDD &

BDD) techniques. The development processes will be discussed, with historical references

to some evolving forms of FSDD. References to TDD, BDD, and FM will be noted, since FSDD

is still a very new approach. Recent literature in which FM, TDD, and BDD have gained

some prominence will be considered.

Chapter 3 will describe the research methodology that will be utilized in the study.

It will explain in detail how the research is carried out. The chapter starts with an example

of how FSDD is used in software development. It will attempt to provide a step-by-step

process, with an example to make the FSDD technique very comprehensible. The tools and

metrics utilized are also identified, the objectives and hypotheses are discussed, and the

methods and data acquisition are highlighted.

24

Chapter 4 gives the results of the research conducted. The data is analyzed and

discussed. Finally, Chapter 5 summarizes the work and debates its potential to improve the

quality of software, and stresses its importance. Future work will be identified.

1.5. OBJECTIVE

This study is a follow-up of the qualitative study carried out by Richard Rutledge,

who introduced the FSDD technique. Therefore, this quantitative aspect of the study is

done to evaluate the effects of FSDD on software quality when compared to the traditional

SDLC approach. The samples shall be collected from two groups of software engineering

students working on their capstone projects. The independent variable is the use of FSDD

versus SDLC development. The dependent variable is software quality. These two sets of

independent samples will be analyzed to answer the research question that is mentioned

below. Meanwhile, in doing this analysis, to control for confounding by the independent

variables, the covariates that include the experience and programming skills of the

students and the number of them involved shall be controlled.

1.5.1 Research Question (RQ) and Hypothesis (HP0)

RQ: Is the internal quality of software developed using Formal Specification-Driven

Development (FSDD) technique higher than that using the traditional approach (SDLC)?

Null Hypothesis (HP0) When the Formal Speculation-Driven Development (FSDD) and the

(SDLC) techniques are compared, there is difference found in the internal quality of the

software.

25

IntQltyFSDD = IntQltySDLC ==> p-value > 0.0500

Alternative Hypothesis: When the (FSDD) and the (SDLC) techniques are compared, a

significant improvement in quality of the software developed is noted.

IntQltyFSDD > IntQltySDLC ==> p-value < 0.0500

26

2. LITERATURE REVIEW

This chapter summarizes and evaluates the studies related to TDD, BDD, FM, and

SDLC. There are some publications on XP and Agile methods, many anecdotal and some

empirical. The first section will present some observations that validate the notion that

TDD can be studied and applied independently of XP. However, this discussion will exclude

research on XP or Agile methods as a whole. Such research on agile methods might prove

informative when examining TDD, but it fails to show any individual merits or

shortcomings of TDD.

After a thorough search of three relevant electronic databases (IEEE Explorer, ACM

Digital Library, Georgia LIbrary Learning Online - GALILEO), no research article was found

that compares FSDD to the traditional technique. These databases were selected based on

the fact that they cover most of the relevant conferences and peer-reviewed publications,

and were easy to access. In the literature search, the keywords: Traditional Method, Test-

Driven Development, TDD, Behavior-Driven Development, BDD, Formal Specification-

Driven Development, FSDD, and Formal Methods were used.

More than seven searches were done for each of the sources, using different

permutations of some keywords. The searches included BDD and Traditional Method; TDD

and Traditional Method; Comparative Study of Formal TDD and Traditional Method; and

Formal Methods and TDD. The search results were manually checked based on titles and

abstracts. The following articles were found in the search.

27

2.1. TEST-DRIVEN DEVELOPMENT AND FORMAL METHODS

Aichernig, Lorber & Tiran (2012) provide information about formal refinement and

Test-Driven Development used in the study of car alarm systems. Formal methods are

introduced to generate test cases. This study is similar to the concept of FSDD. However, it

does not compare this process with the traditional technique.

Baumeister (2004) showed that combining formal specifications with TDD does not

necessarily lead to losing the agility of TDD, and also proposes the formalization of TDD

using JUnit tests instrumented with run-time assertions generated from the JML

specifications. The concept was similar to that of FSDD but did not include a comparative

study.

Alawneh & Peters' (2013) paper discusses the use of TDD, formal specifications and

the right tools to develop programs. This study is very much in concert with FSDD. The

paper proposes the use of formal notation to specify the behavior as an alternative to TDD.

The research talks about FSDD without naming it as such. The new name was not given to

this proposed method; it could have been, since it does not deviate that much from FSDD

concept.

Beck (2001) argues that TDD is a code development process that has been made

very famous by extreme programming, but it is not a testing technique. Rutledge & Tsui

(2013) propose the FSDD technique of software development, pulling the knowledge from

the improvements that have been made with TDD and BDD to decrease errors and increase

the quality.

28

2.2. RESEARCH IN TEST-DRIVEN DEVELOPMENT

Research on TDD can be categorized broadly by context. In particular, TDD research will be

classified as “industry” if the study or research was primarily conducted with professional

software practitioners. Alternatively, the research will be classified as “academia” if the

software developers are mainly students and the work is in the context of a course or some

other academic setting.

2.2.1. TEST-DRIVEN DEVELOPMENT IN ACADEMIA

A paper by Erdogmus et al. (2005) shows that TDD offered no change in software

quality, but there was an improvement in productivity when the study was conducted with

undergraduate students. In Fucci & Turhan's (2013) research, the same controlled

experiment by Erdogmus et al. was carried out and concluded that there was no

noteworthy change in productivity and quality. Edwards (2003) also conducted a study of

TDD and found a significant increase in quality and productivity by way of project

assignments to undergraduate students.

Kaufmann, & Janzen (2003), realized an increase in quality and programmer

productivity with 8 students in their study, similar to that of Edwards, 2003, who carried

out his study with 59 students. Muller & Hagner (2003) found no significant difference in

quality and productivity, but better reuse in their study, using 19 students. Pancur et al.

(2003) also realized no change in quality and programmer productivity in their study,

using 38 students.

29

Most of the literature reviews were more focused on the academic studies, since

they were similar to the way this research will be conducted. These studies were done

using TDD without formal methods, except Aichernig, Lorber, & Tiran (2012), Baumeister

(2004) and Alawneh & Peters (2013).

2.2.2. TEST-DRIVEN DEVELOPMENT IN INDUSTRY

There have been some attempts to study software quality and developer

productivity using TDD in industrial settings. George and Williams (2004) carried out their

study with 24 professional pairs of programmers in three companies. In the development

of a bowling application, the pairs were selected at random to a TDD or an SDLC group, and

the projects assessed at completion. They determined TDD produced superior external

code quality using a set of blackbox test cases. The TDD passed 18% more test cases than

the SDLC, but the TDD group spent 16% more time on this approach. The post-

development interview showed 78% of the subjects favored TDD to improve programmers’

productivity.

In Maximilien and Williams (2003), using IBM Retail Store Solutions with a TDD

approach and unit testing, the software quality defect fell by 50%, as measured by

Functional Verification Tests (FVT). The development time was not impacted, since the

process was on time.

30

Williams et al.'s (2003) case study in IBM reviewed TDD again. Compared to

Maximilien and Williams' (2003) project developed with SDLC, defects reduced by 40%

using TDD, with regression tests. There was no change in the productivity. Geras et al.

(2004) secluded TDD from other XP practices and investigated the effect of TDD on

developer productivity and software quality. In their study, TDD does not require more

time, though developers in the TDD group wrote and executed more tests. The reason for

the shorter time is because less time was spent on debugging the code.

Another study of TDD conducted at Microsoft (Bhat and Nagappan, 2006) reported

significant improvement in software quality. There were two projects considered, namely,

project A and project B. Using TDD with project A reduced defect rate by 2.6 times and TDD

with project B reduced it by 4.2 times as compared to the organizational average. The time

factor was as follows: 35% more development time in project A, and 15% more

development time in project B, as compared to time spent in non-TDD projects.

Damm and Lundberg (2006) took 1.5 years to conduct longitudinal case studies

with 100 professionals at Ericsson. It involved the development of mobile applications

using C++ and Java. This study was found to have reduced the project cost by 5-6%, the

defect by 5-30% and defect cost by 55%. Sanchez et al.'s (2007) was an extended five-year

single case study at IBM, which included 9-17 developers working on a device driver.

During this study it was noted that TDD introduction showed an increase of 19% in

development time and a 40% increase in internal defect rate.

Janzen and Saiedian's (2008) collection of three industrial experiments and one case

study was composed of intersecting teams and individuals. The studies produced some

31

moderate results favoring TDD considering test coverage and some size metrics, but were

inconsistent for complexity, coupling and cohesion measures. The study involved real-

world J2EE applications ranging from 800 to 50,000 lines of code. Test coverage was

improved with the use of TDD in all the studies except one.

2.1. BEHAVIOR-DRIVEN DEVELOPMENT (BDD)

There have been very few publications about BDD. Among the few, there have been

attempts to treat BDD as an evolved form of TDD. Carvalho et al. (2008) characterize BDD

as a specification technique. But Tavares et al.'s emphasis is on BDD as a design technique,

with a combination of verification and validation in the design phase. As BDD is firmly

grounded on the automation of tasks and tests, they advocate proper tooling to support it.

Tavares et al. (2010) also emphasize BDD as a design technique. They, like Carvalho

et al., claim BDD is to bring together verification and validation in the design phase. It

means thinking of client criteria before embarking on the design of the discrete part that

makes up the functionality. They believe in automation of specification and tests, and tools

to support these processes.

Keogh (2010) put forward a wider understanding of BDD, and disputes its significance to

the entire lifecycle of software development, specifically to the business side and the

collaboration between business and software development. He talks about writing a BDD

starting with events and their outcomes. He also disputes that BDD defines behavior. Even

though Keogh does not provide a complete list of BDD characteristics, he shows in a

compelling way that BDD has a wider consequence to software development processes and

is not merely a form of TDD.

32

Lazar et al. (2010) discussed BDD as an important aspect of the business domain

and the interaction between business and software development. They said BDD allows

domain experts and software developers to communicate seamlessly. In the BDD process,

communication of the business and technology worlds refer to a particular system the

same way. Any system should have a recognized, confirmable value to the business. Their

approach does not take into consideration the rapport among other BDD concepts, like an

iterative breakdown process.

33

3. RESEARCH METHODOLOGY

 This chapter presents the FSDD approach and details how this study will look at it.

FSDD will be introduced in the first section with a small sample application, giving the

example in Java.

3.1. FORMAL SPECIFICATION-DRIVEN DEVELOPMENT MODEL

3.1.1. Java Model

A Java example of the bank account system will be discussed. JUnit is the testing

framework for Java, and the model will use JUnit and FSDD to develop this application.

Using FSDD, the specification is written in JML. Here is a case of a simple bank account

specification in JML.

3.1.1.1. NATURAL LANGUAGE SPECIFICATION

The description below is a natural language or an informal specification of a simple bank

account.

• An account must contain a certain amount of money (balance) and is associated

with a minimum number that this account may have (the minimum balance).

• It is possible to deposit or withdraw an account. A withdraw operation is only

possible if there is enough money in the account.

• One or several last deposit or withdraw operations may be canceled.

• The lowest balance of the account may be altered.

34

3.1.1.2. JML SPECIFICATION

The class Account and the class History are implemented in Java, using JML

specification. The specifications are not very detailed, in order to keep it simple. To prevent

attributes from modifications, they are declared private, and access methods are defined:

getBalance, getMin and getHistory in class Account and getBalance and getPrec in class

History. Since there are no changes in the methods, they are specified explicitly in JML. The

class Account is invariant because the balance of the account must always exceed the

minimum balance.

/* Class of bank accounts. */

public class Account {

/* Invariant of class Account. */

/*@ public invariant getBalance() >= getMin(); */

private int balance; // Account balance

private int min; // Account minimum balance

private History hist; // List of account history

/* The balance of this account. */

public /*@ pure */ int getBalance() {

 return balance;

35

 }

/* The history list of the account. */

public /*@ pure */ History getHistory() {

 return hist;

 }

/* The minimum balance of this account. */

public /*@ pure */ int getMin()

 { return min;

 }

The constructor of class BankAccount constructs an account with a specified balance

and the specified minimum balance. Its pre-condition asserts that the specified balance is

more than the specified minimum balance.

 /* Constructs an account with a balance and a minimum balance. */

 /*@ obliges that the balance >= min; */

 public BankAccount (int balance, int min) {

this.balance = balance;

this.min = min;

36

this.hist = null;

}

Since the minimum balance min is private, we have to use a method setMin (int min) to

modify its value; it could be set to any specified value. Its pre-condition asserts that the

balance is greater than the minimum value.

/* Sets the minimum balance to a specified value. */

/*@ pre-condition is getBalance () >= min; */

public void setMinimum (int min) {

 this.min = min;

 }

The method Deposit (int amount) deposits the account with the specified amount. The pre-

condition obliges the amount to be positive. Its post-condition asserts that the new balance

is the former balance increased by the amount, a new history is created with balance from

the previous balance of the account, and, with prior history, the history of the account. Its

exceptional post-condition asserts that the method should not terminate abruptly.

/* Deposits this amount into the account. */

/*@ requires amount >= 0;

*@ ensures getBalance () == \old (getBalance ()) + amount &&

37

*@ \fresh (getHistory ()) &&

*@ getHistory ().getBalance () == \old (getBalance ()) &&

*@ getHistory ().getPrec () == \old (getHistory ());

*@ signals (Exception e) false;

*/

public void deposit(int amount) {

 hist = new History (balance, getHistory ());

 balance = balance + amount;

}

The Withdraw operation is similar to that of the Deposit, in addition to the

precondition that the balance decreases by the specified amount is more than the minimum

balance. The method Cancel eliminates the last deposit or debit operation. Its pre-condition

stipulates the history to not be null. There must be at least one operation of Deposit or

Withdraw since the account was created. Its post-condition guarantees that the balance and

the history have been accommodated in the account with their former values. Below is a

sample JML.

/* Cancels the last deposit or debit operation. */

/*@ requires getHistory () != null;

38

*@ ensures getHistory () == \old (getHistory ().getPrec ()) &&

*@ getBalance () == \old (getHistory ().getBalance ());

*@ signals (Exception e) false;

*/

public void cancel () {

 balance = hist.getBalance ();

 hist = hist.getPrec ();

 }

} // End of class BankAccount

3.1.1.3. WRITING THE CODE (CREATING THE TEST PROJECT IN

ECLIPSE)

• The Java project is created using eclipse

• The junit.jar is added to the build path of the project

• Two directories are created; one called src for source code and test for test code

3.1.1.3.1. CREATING THE TEST CLASS

39

• A new class is added to the test project giving it a recognizable name to signify that

the class will be tested.

• Junit.framework.TestCase is imported and has the class extend it.

package talkuml.fsdd.examples.banking;

import junit.framework.TestCase;

public class BankAccountTests extends TestCase {

}

3.1.1.3.2. CREATING TEST METHOD

• The method is declared public with a name that starts with “test”, followed by the

description of the test. The rules for creating the methods are as follows:

• All test methods must be declared public and start with the test because JUnit uses

reflection to find, recognize and execute the method. This shows how the test

methods are identified.

• Test methods must not use, pass parameters or return values

package talkuml.fsdd.examples.banking;

import junit.framework.TestCase;

public class BankAccountTests extends TestCase {

 public void testWithdrawWithSufficientFunds (){

 }

}

40

3.1.1.3.3. WRITING THE TEST ASSERTION

• The code needed to execute the test is not written unless the required assertions

code is satisfactory.

• The assertions are worked on, one at a time.

public void testWithdrawWithSufficientFunds(){

 assertTrue(account.getBalance() == oldBalance - amt);

}

The test code above will confirm that when we have sufficient funds in the bank account,

after the withdrawal, the balance is the previous balance minus the amount withdrawn.

3.1.1.3.4. WRITING THE TEST FRAME

The test code necessary to execute the scenario is written. In this scenario, there is an

initial balance of $600 in the bank account and a $350 withdrawal as shown below.

 public void testWithdrawWithSufficientFunds(){

BankAccount account = new BankAccount (600);

float amt = 350;

float oldBalance = account.getBalance();

account.withdraw(amt);

assertTrue(account.getBalance() == oldBalance - amt);

}

41

3.1.1.3.5. WRITE THE CODE TO PASS THE TEST

Below is simple code needed to pass the test. This example is a simple Java code and is

straightforward to comprehend.

public class BankAccount {

private float balance = 0;

public BankAccount(float initialBalance){

 balance = initialBalance;

}

public void withdraw(float amt){

 balance = balance - amt;

}

public float getBalance() {

 return balance;

}

}

3.1.1.3.6. NEXT TEST

This test involves the Deposit method that is similar to the Withdraw method. The

test code above will confirm when a deposit is made to the bank account. After a deposit,

the balance is the previous balance plus the amount withdrawn.

42

public void testDepositAmountGreaterThanZero(){

BankAccount account = new BankAccount (600);

float amt = 350;

float oldBalance = account.getBalance();

account.deposit(amt);

assertTrue(account.getBalance() == oldBalance + amt);

 }

public void testDepositAmountGreaterThanZero(){

BankAccount account = new BankAccount (600);

float amt = 350;

float oldBalance = account.getBalance();

account.deposit(amt);

assertTrue(account.getBalance() == oldBalance + amt);

}

public class BankAccount {

private float balance = 0;

public BankAccount (float initialBalance){

 balance = initialBalance;

}

public void withdraw(float amt){

 balance = balance - amt;

}

public float getBalance() {

43

 return balance;

}

public void deposit(float amt) {

 balance = balance + amt;

 }

}

3.1.1.3.7. CODE DUPLICATION REMOVED

public class BankAccountTests extends TestCase {

private BankAccount account;

private float amt;

private float oldBalance;

public void setUp(){

account = new BankAccount (600);

amt = 350;

oldBalance = account.getBalance();

}

public void testWithdrawWithSufficientFunds(){

account.withdraw(amt);

assertTrue(account.getBalance() == oldBalance - amt);

}

public void testDepositAmountGreaterThanZero(){

account.deposit(amt);

assertTrue(account.getBalance() == oldBalance + amt);

44

}

}

public class BankAccountTests extends TestCase {

private BankAccount account;

private float amt;

private float oldBalance;

public void setUp() {

account = new BankAccount (600);

amt = 350;

oldBalance = account.getBalance();

}

public void testWithdrawWithSufficientFunds(){

account.withdraw(amt);

assertTrue(account.getBalance() == oldBalance - amt);

}

public void testDepositAmountGreaterThanZero() {

account.deposit(amt);

assertTrue(account.getBalance() == oldBalance + amt);

}

}

3.1.1.3.8. START THE PROCESS AGAIN

The process is repeated here below:

public void testWithdrawWithSufficientFunds() {

45

try {

account.withdraw(amt);

} catch (AccountException e) {

fail();

}

assertTrue(account.getBalance() == oldBalance - amt);

}

public void testWithdrawWithInsufficientFunds(){

try {

account.withdraw(1000);

fail(); // at this point the test failed

} catch (AccountException e) {

// at this point a correct exception was thrown

}

}

public void withdraw(float amt) throws AccountException {

if(amt > balance) {

throw new AccountException();

}

balance = balance - amt;

}

3.2. EXPERIMENTAL DESIGN

46

This section will outline the details of the formal experiment. It will discuss the

hypothesis, independent and dependent variables, the software development process

context, and the methods of making and analyzing observations. The method used to

analyze the experiment data and how the results were weighed and validated will be

discussed. Actual research results will be given in the next chapter.

3.2.1. EXPERIMENT OVERVIEW

This section will describe the study conducted in a capstone class in more detail.

The research design will be discussed, including specific artifacts collected, information on

the FSDD training provided to students, and descriptions of the projects completed by the

students.

The experiment was designed for in a capstone class at Southern Polytechnic State

University (SPSU) to collect artifacts. This experiment took place in a capstone class with

graduate and undergraduate students at Southern Polytechnic State University Georgia in

the software engineering program. The capstone class project involves the design and

implementation of software and regularly includes a semester-long team-based project.

The course includes both undergraduate seniors and graduates with different

academic but similar professional experiences in their computing background. All students

in the course had diverse educational backgrounds. The course met two evenings a week

for a sixteen-week semester.

47

The capstone students were split into three groups; each group had four students.

The three groups were given a project to design and implement a ticketing system during

the semester. This project was focused on the process of listing event tickets to be sold,

customers viewing those events, purchase of tickets, management of tickets to events, and

the addition of new events and tickets. Most of the students were familiar with Formal

Methods and must have taken the course prior to the capstone course, since it is part of the

software engineering curriculum at SPSU.

All the students, including the undergraduate seniors and graduate students, were

avid programmers or had taken courses to be able to write some good code. There were

four graduate students in the capstone class, who formed one group. This group was

charged with the use of the Formal Specification-Driven Development technique, and the

other two control groups, undergraduate groups, used the traditional software

development approach (SDLC). The FSDD team, on the other hand, used the new method,

to allow the detailed design to emerge as the software was developed. The FSDD team was

asked to document their detailed design after the code was developed. The graduate group

(FSDD team) and one undergraduate team (SDLC team) used Visual Studio 2013 and coded

with ASP and C#. One of the undergraduate teams used PHP for their project and hence

their code was not used for the comparative studies. They all presented their finished

projects on the last day of class and handed in their code.

48

3.2.1.1. FSDD EDUCATIONAL MATERIALS

 The FSDD team was provided with a one-hour guest lecture early in the semester.

The talk covered some Java fundamentals as well as training on JUnit and FSDD.

The FSDD team was also offered additional assistance to students struggling with

FSDD technique. On a few occasions, the FSDD students requested minor help through

email and electronic meetings. FSDD examples were also furnished to the FSDD team.

All teams completed a software requirements specification and high-level

architectural design. Educational materials were developed and given to the FSDD team.

Information on the FSDD training was provided to the graduate students in the team that

made up the observed group. The study provided information on the FSDD approach on

how to use Formal Methods and automate unit testing. FSDD information and training were

offered only to the FSDD group. The training used some examples of how the technique

could be realized.

3.2.1.2. TEAM AND TREATMENT SELECTION

In the software engineering courses, students worked in teams of four programmers

most of the time. There were only four graduate students in the capstone class, so they

were asked to form a team, and the remaining eight undergraduates were divided into two

teams in which each team had a balanced skill set. Developers were only able to complete

the first phase in the time allotted. This design allows one to examine programmer’s ability

to apply formal specification-driven development quickly, and compares early quality

differences in the FSDD and SDLC approach.

49

3.2.1.3. SOFTWARE ARTIFACTS

Teams submitted all of the code that they completed for the project. The code was collected

at the end of the semester and evaluated to determine the quality.

3.2.1.4. EXPERIMENT

The independent variable was the use of Formal Specification-Driven Development

versus the traditional method of development (SDLC). The dependent variable was

software quality. The project had relatively stable and established requirements. In the

study, developers were coding with a familiar computer language they were comfortable

with. They had the option to choose their development platform. The project, however,

included developers with a range of programming experience. While student programmers

had similar course backgrounds, they reported a mix of programming backgrounds.

Similarly, the project teams ranged from a mix of junior through to more senior developers.

As will be discussed, the control and observed groups were balanced in programming

experience. Though all the FSDD team members were graduate students, and the control

group undergraduates, their programming experiences and college course work were

similar.

In the study, confounding factors of requirements unpredictability and technology

experience were avoided within each team. Other such factors were circumvented by

ensuring consistent language use, stable domain and project assignment, and consistent

time frames in the study.

The project is to develop an application that will allow the sale of tickets to different

50

types of events using the internet. It is designed to be accessed by multiple users

simultaneously. The system must accurately display the available tickets for an event.

Furthermore, the system shall allow an administrator to create and update the inventory of

tickets that are available for sale.

The application will accommodate the following features:

● A user can browse different events that are available

● A user can choose multiple events to purchase

● The events’ dates, prices, and venues will be listed

● Events that have been sold-out or canceled will be marked

● A user can add or remove events at any time while browsing

● A message will pop up before a user finalizes a sale

● A notification will be sent via email once a deal is finalized

The initial release of application will not accommodate the following features:

● The system will not display a venue’s seating chart

● The system will not allow a user to choose a specific seat for an event

● The system will not be able to perform credit card verification

51

3.2.1.5. FORMAL SPECIFICATION DRIVEN DEVELOPMENT

(FSDD) METHOD

 To further maintain privacy, student results are reported collectively only. The

approval for the study was obtained from Southern Polytechnic State University

Institutional Review Board (IRB) prior to conducting the studies. The purpose of the IRB is

to regulate all research activities involving human subjects on the campus of Southern

Polytechnic State University. The Board ensures that people who participate in research

are not treated unethically and are in agreement with all federal and state laws and

regulations. Prior to submitting the application, a collaborative institutional training

initiative (CITI) was completed in Human Subjects Researchers Curriculum and

Responsible Conduct of Research for Engineers Curriculum.

The two teams used Microsoft Visual Studio 2013 (Microsoft, 2015) for

development. MVC was the preferred architectural style for both the FSDD and the SDLC

teams. Visual Studio 2013 takes advantage of its NuGet Package Manager (Microsoft, 2015)

to add external tools. TDD/BDD framework that works in C# is SpecFlow (SpecFlow, 2013).

SpecFlow was used as the framework of choice, though others are likewise as good.

SpecFlow is an open source tool that could be downloaded and installed (SpecFlow, 2013).

The other tool that works seamlessly with Visual Studio is NUnit (NUnit, 2015). It is

a free tool that could also be downloaded and installed. NUnit integrates very well with

SpecFlow in the.NET environment. NUnit is used for unit testing and adds to the TDD

realization. Both SpecFlow and NUnit are added to projects using the Library Package

Reference (Microsoft, 2015). The FSDD team installed these tools at the beginning of the

52

development process. Though SpecFlow can be used for testing, most of the testing was

done by NUnit, since it is more compatible with Junit, and the team was more familiar with

Junit. The formal specification was done using Z notation. This was a formal specification

language of choice used for modeling in the development process.

3.2.1.6. SOFTWARE METRICS AND ANALYSIS

The project was a semester-long team project. As a result, the metrics generated and

analysis conducted will closely follow that of the previous sections. The project was

completed using the ASP and C# integrated development environment, and simple assert

statements for automated unit testing. The .NET (Microsoft, 2015) was used to generate

some project-level metrics.

Table 1: C# Code Metrics

Metric Expanded Name

DOI Depth of Inheritance

CC Class Coupling

MI Maintainability Index

CCP Cyclomatic Complexity

LOC Lines of Code

53

The “Metric” column in Table 1 gives the equivalent metric abbreviation from the .Net-

based experiment. The metrics are deliberated in Appedix 10.

Test volume metrics will be evaluated in the study, but test coverage will not be presented

for both teams. The analysis techniques will be the same.

3.2.1.7. STATIC CODE ANALYSIS

Table 2: Sample Metrics by attribute

Attribute Metrics

Complexity Cyclomatic Complexity (CCP)

Depth of Inheritance (DOI)

Coupling Coupling between Objects (CC)

Cohesion Lack of Cohesion of Methods

LOC/Method

Size LOC/Method

LOC/Class

LOC/Project

Maintenance Maintenance Index (MI)

54

An extensive search produced many static code analysis metrics tools, but the Visual

Studio 2013 Code analysis tool was acquired and evaluated for the purposes of this

research. Cohesion metric is not utilized in the research and shown above in Table 2

because it is not measured by the Visual Studio Code analysis tool since it is one of the

internal quality features. The only attributes listed above can be found in any typical

engeneering texts since they are the traditional ones. For example, Maintainability Index is

a software metric which evaluates the how easy it can be to support and change the source

code. It is subsequently calculated through by a fomulae that consists Cyclomatic

Complexity, SLOC (Source Lines Of Code) and Halstead volume. It is utlized by several other

software tools such as Microsoft Visual Studio 2013 development environment (Lacchia,

2015).

• the derivative utilized by Visual Studio as quoted(Lacchia, 2015).

MI=max[0,100171−5.2lnV−0.23G−16.2lnL171].

Where:

• V is the Halstead Volume (see below);

• G is the total Cyclomatic Complexity;

• L is the number of Source Lines of Code (SLOC);

• C is the percent of comment lines (important: converted to radians).

55

Maintainability Index should be taken seriously and held in high regard since it is an

experimental Index like other metrics. (Lacchia, 2015).

Halstead Metrics

The goal Halstead had was to note the calcualtable properties of the software, and their

interconnections. These numbers are statically computed from the source code:

• η1 = the number of distinct operators

• η2 = the number of distinct operands

• N1 = the total number of operators

• N2 = the total number of operands

From these numbers several measures can be calculated:

• Program vocabulary: η=η1+η2

• Program length: N=N1+N2

• Calculated program length: Nˆ=η1log2η1+η2log2η2

• Volume: V=Nlog2η

• Difficulty: D=η12⋅N2η2

• Effort: E=D⋅V

• Time required to program: T=E18 seconds

56

• Number of delivered bugs: B=V3000.

The search was focused on tools that generate metrics from C# code. The static

analysis tool comes from Microsoft. The fully functional trial version of Visual Studio 2013

(Microsoft, 2015) was acquired for this analysis. The tool produced many traditional and

object-oriented metrics. Table 2 shows the metrics and their categories denoted by

“Attribute”. There are other metrics for each of these categories but only the metrics used

in the study are included in Table 2. The metrics tools parsed Excel output files that were

then consolidated. Project metrics, class and method metrics were obtained using the

Visual studio analysis tool (Microsoft, 2015).

57

3.2.1.8. DYNAMIC TEST COVERAGE ANALYSIS

All software produced was expected to have associated automated unit tests. Code

from the assert() statements were embedded in the source code, but separated in a global

run_tests() function. Code from the experiment utilized the NUnit framework, so the test

code was separate from the source/production code. A couple of factors weighed in on the

decision not to collect SDLC test coverage metrics. One was that there were no written

automated tests for the SDLC code before submission. As a result, it was not reasonable to

examine manually the SDLC project to determine what tests were working. Although this is

a very doubtful metric, it gives an indication of testing effort.

3.2.1.9. ASSESSMENT AND VALIDITY

 Data collected from the experiment were analyzed statistically. The next two

chapters will report results of this analysis. A statistical test such as t-Test for Two-Sample

Assuming Unequal Variances was employed to determine if differences between the SDLC

solution and FSDD solution metrics were statistically significant. The results are only

reported in aggregate, as a team effort. In fact, the experiment design and corresponding

results should establish the internal validity of the experiment. As mentioned earlier, care

was taken to ensure that the control and experimental groups are balanced in terms of

their programming skills. Each team used the programming language they were

58

comfortable with. Both groups were given the same specifications to do the project, to

ensure that no bias was introduced. None of the graduate students had an undergraduate

degree in either Computer Science or Software Engineering. Also the graduate students,

except one of them works in the software development field, in contrast to the a couple of

the undergraduates students who had programing jobs. The experiment was slightly

skewed towards the SDLC team.

59

4. RESULTS AND ANALYSIS

This chapter summarizes research conducted with student programmers in a

capstone course at the Southern Polytechnic State University. The two projects using FSDD

and SDLC will be analyzed in this chapter. The chapter begins with a description of the

metrics collected and the corresponding analysis performed. Each project and

corresponding results are then described in turn.

4.1. METRICS COLLECTION AND ANALYSIS

The experiment was a semester-long team project. The metrics generated and

analysis conducted will closely follow that of Chapter 3. The projects were completed using

ASP and C# in an integrated development environment and simple assert statements for

automated unit testing, as described in Chapter 3. Students worked in groups of four.

Different metrics tools were evaluated for the study, and the.NET analysis tool (Microsoft,

2015) was used to generate the code metrics for the study. Visual Studio, 2013 Analysis

tool was also used to produce method, class, and additional project level metrics. Table 1

indicates the metrics that will be used for internal quality measurements. Test volume

metrics will be evaluated in the study, but test coverage will not be presented for both

teams. The analysis techniques will be the same.

4.2. INTERNAL QUALITY RESULTS

60

This section reports, describes and compares the internal design quality metric

results. The metrics are broken down into the method, class, and project levels.

4.2.1. METHOD-LEVEL METRICS

Table 3: Summary of Methods Metrics

Metric p-value Sig?

Higher

Method

FSDD

Mean

FSDD

SDev

SDLC

Mean

SDLC

Sdev % diff

MI 0.004094 Yes FSDD 88.67 12.00 80.12 16.13 10.13

CCP 0.028153 Yes SDLC 9.45 10.16 16.02 17.92 51.56

DOI 0.000019 Yes SDLC 1.30 0.68 2.40 1.51 59.39

CC 0.004373 Yes SDLC 5.02 7.30 11.87 14.71 81.02

LOC 0.022203 Yes SDLC 15.12 26.58 46.25 90.97 101.45

This section presents the results of the method-level analysis of the two teams,

using FSDD and SDLC with ASP and C# in the spring 2015 study. Table 2. gives a summary

of all the metrics for the methods in the two techniques. The p-values as compared to the

alpha value (0.05) are shown in Figure 5.

Figure 5: Method-Level Metrics p

All the metrics indicate

are also crucial. The percentage differences

10% for the Maintainability Index (MI).

 Figure 6: % difference in Method

61

Level Metrics p-values

All the metrics indicate substantial statistical significance. The percent differences

. The percentage differences range from 101% for the line of code (LOC) to

10% for the Maintainability Index (MI).

: % difference in Method-Level Metrics

statistical significance. The percent differences

from 101% for the line of code (LOC) to

62

Those differences are depicted in Figure 6. FSDD code has significantly desirable

Cyclomatic Complexity (CC), Depth of Inheritance (DOI), Class Coupling (CC) and Line of

Code (LOC). LOC with a value of 101% is so significant compared to the other values. None

of the p-values comes close to the alpha value of .05. The data results for the method-level

metric infers that the FSDD technique may be more likely to produce smaller solutions

(LOC). The solutions are less complex (CCP), less cohesive (CC), and easier to maintain

(MI). FSDD code has a significantly higher internal quality than SDLC code considering

method-level metrics.

4.2.2. CLASS-Level Metrics

Table 4: Summary of Class-level Metrics

Metric p-value Sig?

Higher

Method

FSDD

Mean

FSDD

SDev

SDLC

Mean SDLC Sdev %diff

MI 0.068531 No FSDD 89.09 11.37 79.80 13.71 11.00

CCP 0.046549 Yes SDLC 36.00 41.60 79.20 81.76 75.00

DOI 0.007635 Yes SDLC 1.27 0.65 3.10 1.66 83.58

CC 0.012956 Yes SDLC 11.64 15.21 36.90 24.35 104.10

LOC 0.064904 No SDLC 57.64 74.43 226.20 247.09 118.78

Table 4 gives a summary of all the class-level metrics for the two techniques. This

section reports the class-level metrics analyzed for the study. The results show four of the

metrics with significant statistical p-value. Two of the metrics are not statistically viable

when comparing their p-values to the alpha value (0.05).

Figure 7: Class-Level Metrics p

Figure 10 shows the side

MI are the statistically insignificant metrics. The percent

except MI. LOC is interesting in that it was not statistically significant, as seen in Figure 11.

LOC yields the greatest percentage difference (119%).

63

Level Metrics p-values

Figure 10 shows the side-by-side comparison of all the p-values and alpha. LOC and

MI are the statistically insignificant metrics. The percent differences are all significant

except MI. LOC is interesting in that it was not statistically significant, as seen in Figure 11.

LOC yields the greatest percentage difference (119%).

values and alpha. LOC and

differences are all significant

except MI. LOC is interesting in that it was not statistically significant, as seen in Figure 11.

 Figure 8: % Difference in Class

Figure 9: Box plot for line of code in Classes

Figure 12 shows the box plot of the class

plot that may be the reason we have very high percentage difference in LOC but statistica

p-value that made it insignificant.The outliers are many in the LOC of the FSDD box plot.

The same reason can be used for the box plot of the maintainability index MI of Figure 12.

Though the percentage difference is not much, there are also outliers in

skewing the results.

Again, just like the method

data in favor of FSDD code as having a higher internal quality compared to SDLC code.

64

: % Difference in Class-Level Metrics

for line of code in Classes

Figure 12 shows the box plot of the class-level LOC. There are some outliers on this

plot that may be the reason we have very high percentage difference in LOC but statistica

value that made it insignificant.The outliers are many in the LOC of the FSDD box plot.

The same reason can be used for the box plot of the maintainability index MI of Figure 12.

Though the percentage difference is not much, there are also outliers in this case, thereby

Again, just like the method-level, the class-level data portrays statistically significant

data in favor of FSDD code as having a higher internal quality compared to SDLC code.

level LOC. There are some outliers on this

plot that may be the reason we have very high percentage difference in LOC but statistical

value that made it insignificant.The outliers are many in the LOC of the FSDD box plot.

The same reason can be used for the box plot of the maintainability index MI of Figure 12.

this case, thereby

level data portrays statistically significant

data in favor of FSDD code as having a higher internal quality compared to SDLC code.

 Figure 10: Box plot Class-

The results signify some trends that can be identified. For instance, the SDLC class

tends to be larger and more complex (LOC). The SDLC software tends to use more of a

procedural approach. These concerns are reflected in the CC and LOC measures. The results

demonstrate that the FSDD technique may be more likely to produce smaller solutions

(LOC) that are less complex (CCP), less cohesive (CC), and easier to maintain (MI).

65

-Level Maintainability Index

The results signify some trends that can be identified. For instance, the SDLC class

tends to be larger and more complex (LOC). The SDLC software tends to use more of a

hese concerns are reflected in the CC and LOC measures. The results

demonstrate that the FSDD technique may be more likely to produce smaller solutions

(LOC) that are less complex (CCP), less cohesive (CC), and easier to maintain (MI).

The results signify some trends that can be identified. For instance, the SDLC class

tends to be larger and more complex (LOC). The SDLC software tends to use more of a

hese concerns are reflected in the CC and LOC measures. The results

demonstrate that the FSDD technique may be more likely to produce smaller solutions

(LOC) that are less complex (CCP), less cohesive (CC), and easier to maintain (MI).

66

4.2.3. PROJECT-LEVEL METRICS

Table 5: Project-Level Metrics results

Metric Sig? Higher Method FSDD SDLC % diff

MI No FSDD 89.00 80.00 10.65

CCP Yes SDLC 163.00 833.00 134.54

DOI Yes SDLC 2.00 5.00 85.71

CC Yes SDLC 51.00 210.00 121.84

LOC Yes SDLC 1203.00 2405.00 66.63

The project-level metrics are reported in Table 5. From this table, one notices that

the SDLC projects tend to be larger (LOC) and more complex (CCP). The FSDD project is

less complex (CCP), but the discrepancy is not much. The Cyclomatic Complexity (CCP)

shows high significant percentage difference. The code Maintenance Index (MI) was not

that significant. Both the FSDD and SDLC solutions are between the 20 and 100 interval of

favorable values. The Project-level metrics shows the most significant percentage

differences compared to the class-level and method-level metrics. The entire project being

considered as an entity makes the FSDD solution even more desirable.

 Figure 11: % Difference Project

The CCP difference (134.54%) is so significant, since it trumps that of the class

and method-level. The results point to the fact that when the project is considered as one

big giant entity, the complexity of the SDLC solution

increase can also be seen in the CC percent difference value (121.84%). The CCP and the

CC are metrics of complexity and will also indicate a lot of tests achieve good code coverage

(Microsoft, 2015).

67

Project-level Metrics

The CCP difference (134.54%) is so significant, since it trumps that of the class

level. The results point to the fact that when the project is considered as one

big giant entity, the complexity of the SDLC solution becomes even greater. This complexity

increase can also be seen in the CC percent difference value (121.84%). The CCP and the

CC are metrics of complexity and will also indicate a lot of tests achieve good code coverage

The CCP difference (134.54%) is so significant, since it trumps that of the class-level

level. The results point to the fact that when the project is considered as one

becomes even greater. This complexity

increase can also be seen in the CC percent difference value (121.84%). The CCP and the

CC are metrics of complexity and will also indicate a lot of tests achieve good code coverage

68

4.2.3.1. STATIC CODE ANALYSIS

Table 6: FSDD Project-level Static Code Analysis results

Table 6 shows the static code analysis of the code developed using FSDD. It indicates

twelve warnings, of which only one is of a critical nature. The table portrays no code

quality issues with the FSDD solution. Looking at Table 7 with the results of the SDLC static

code analysis, there are 46 warnings, of which six are critical and nine have quality issues.

Tables 6 and 7 show a marked difference in the static code quality between FSDD and

SDLC. It signifies the superior quality of the FSDD approach and further tips the scale

towards this technique.

Bugs Name # Matches Elements Group

Warning Critical Potentially dead Methods 1 methods Dead Code

warning Avoid namespaces with few types 1 namespaces Design

warning Static fields should be prefixed with a 's_' 1 fields Naming Conventions

warning Avoid methods with name too long 2 methods Naming Conventions

warning Class with no descendant should be sealed if possible 2 types Object Oriented Design

warning

A stateless class or structure might be turned into a static

type 2 types Object Oriented Design

warning

Non-static classes should be instantiated or turned to

static 2 types Object Oriented Design

warning Methods should be declared static if possible 6 methods Object Oriented Design

warning Don't assign static fields from instance methods 1 fields Object Oriented Design

warning Mark assemblies with CLS Compliant 1 assemblies System

warning Methods that could have a lower visibility 6 methods Visibility

warning Types that could have a lower visibility 1 types Visibility

69

Table 7: SDLC Project-level Static Code Analysis results

Bugs Name # Matches Elements Group

warning Assemblies with poor cohesion (Relational Cohesion) 1 assemblies Architecture and Layering

warning Avoid namespaces dependency cycles 1 namespaces Architecture and Layering

Warning Critical Avoid namespaces mutually dependent 1 namespaces Architecture and Layering

warning UI layer shouldn't use directly DAL layer 27 types Architecture and Layering

warning UI layer shouldn't use directly DB types 9 types Architecture and Layering

warning Methods potentially poorly commented 17 methods Code Quality

warning Methods too big 13 methods Code Quality

warning Methods with too many local variables 4 methods Code Quality

warning Methods with too many parameters 8 methods Code Quality

warning Critical Methods with too many parameters - critical 4 methods Code Quality

warning Quick summary of methods to refactor 25 methods Code Quality

warning Types with poor cohesion 3 types Code Quality

warning Types with too many fields 6 types Code Quality

warning Types with too many methods 1 types Code Quality

Warning Critical Potentially dead Fields 144 fields Dead Code

Warning Critical Potentially dead Methods 6 methods Dead Code

warning Avoid namespaces with few types 7 namespaces Design

warning Declare types in namespaces 1 namespaces Design

warning Instances size shouldn't be too big 22 types Design

warning Nested types should not be visible 2 types Design

Warning Critical Avoid having different types with same name 2 types Naming Conventions

warning

Avoid naming types and namespaces with the same

identifier 1 types Naming Conventions

warning Instance fields should be prefixed with a 'm_' 296 fields Naming Conventions

warning Methods name should begin with an Upper character 14 methods Naming Conventions

warning Static fields should be prefixed with a 's_' 12 fields Naming Conventions

warning Class with no descendant should be sealed if possible 48 types Object Oriented Design

warning Methods should be declared static if possible 25 methods Object Oriented Design

warning

Non-static classes should be instantiated or turned to

static 34 types Object Oriented Design

Warning Critical Don't assign a field from many methods 2 fields

Purity - Immutability - Side-

Effects

warning Fields should be marked as Read Only when possible 9 fields

Purity - Immutability - Side-

Effects

warning Structures should be immutable 2 types

Purity - Immutability - Side-

Effects

warning Avoid defining multiple types in a source file 1 types Source Files Organization

warning Namespace name should correspond to file location 71 types Source Files Organization

warning

Types declared in the same namespace, should have their

source files stored in the same directory 2 namespaces Source Files Organization

warning

Types with source files stored in the same directory,

should be declared in the same namespace 2 namespaces Source Files Organization

warning Mark assemblies with assembly version 1 assemblies System

warning Mark assemblies with CLS Compliant 1 assemblies System

warning Mark assemblies with Com Visible 1 assemblies System

warning Avoid public methods not publicly visible 37 methods Visibility

warning Avoid publicly visible constant fields 2 fields Visibility

warning Event handler methods should be declared private 76 methods Visibility

warning Fields should be declared as private 275 fields Visibility

warning Fields that could have a lower visibility 275 fields Visibility

warning Methods that could have a lower visibility 403 methods Visibility

warning Types that could have a lower visibility 50 types Visibility

70

4.3. TEST RESULTS

This section presents the test density and coverage measurements for the study. It

should be recalled that the SDLC team wrote no automated tests, so they are not included

in this discussion, consequently there are no data for comparison. The results from the

FSDD team will be combined in the final section of this chapter. FSDD teams achieved a

very high test coverage metrics at 90% for black box and 98% for white box testin

71

5. EVALUATION, OBSERVATION, AND DISCUSSION

This final chapter will summarize and evaluate the results of this research.

Observations will be drawn, and possible conclusions will be proposed. Future work will

also be identified. This research makes several substantial contributions. Foremost is the

empirical evidence regarding the effects of Formal Specification-Driven Development on

internal software quality. Section 5.1 will summarize this evidence and categorize it in

terms of the desirable quality attributes identified in the earlier chapter. This evidence

provides compelling motivation to adopt FSDD to reduce code size and complexity, and

increase programmer testing and testability. The evidence also raises some interesting

questions about how FSDD affects coupling, cohesion, and maintainability.

The research is the first significant examination of the effects of FSDD on internal

software quality. As such, it creates a benchmark to be reviewed and assessed. This work

provides a basis for conducting replicated studies in similar environments that will

reinforce and clarify these results. Finally, the last section will summarize this work and

recommend future directions for related research.

5.1. EMPIRICAL EVIDENCE OF FORMAL SPECIFICATION-DRIVEN DEVELOPMENT

EFFICACY

The main contribution of this research is the empirical proof of the effects on

internal software quality, applying FSDD technique in the software development process.

72

Chapter 4 presented a high volume of empirical data, along with some analysis. This section

will summarize this data and reexamine the initial hypotheses. Data will be grouped and

visualized with bar charts to accommodate drawing conclusions. The longer the bar, the

larger the difference between the FSDD and SDLC projects on that particular metric. Special

attention will have to be paid to whether larger values are desirable or not. For instance,

with a maintainability index, larger values are more desirable. However with complexity

metrics, smaller values are more desirable.

The first section will focus on the substantial improvements that the FSDD approach

has on software testing. The following sections will consider complexity, coupling,

cohesion, and size metrics, and then combine them to examine the effects of FSDD on the

four desirable software characteristics of understandability, maintainability, and

testability.

5.1.1. QUANTITATIVE EVIDENCE: COMPLEXITY

Figure 16 displays the differences in cyclomatic complexity metrics between the

FSDD and SDLC projects for the study. In all of the complexity metrics, lower values are

more desired. The complexity figures tell an interesting story. It appears that developers

tend to write less complex software when using the FSDD approach. However, more

developers tend to write more complex code with the SDLC approach.

Figure 12: Difference in Project

Perhaps the influence of experience with the FSDD approach provides an enduring

effect that extends through future projects. There is also another metric to be looked at

when considering code complexity, and this is the depth of inheritance DOI.

Figure 13: Difference in Depth of Inheritance

73

: Difference in Project-Level Cyclomatic Complexity

Perhaps the influence of experience with the FSDD approach provides an enduring

effect that extends through future projects. There is also another metric to be looked at

when considering code complexity, and this is the depth of inheritance DOI.

: Difference in Depth of Inheritance

Perhaps the influence of experience with the FSDD approach provides an enduring

effect that extends through future projects. There is also another metric to be looked at

when considering code complexity, and this is the depth of inheritance DOI.

Figure 17 shows the significant difference between SDLC and FSDD in the way the

number of class creations extend to the root of the class pyramid. The longer the extension,

the more complex the code, and also the more difficulty understanding the code.

Many of these differences were statistically significant in both the method and class

levels. Figure 16 and Figure 5 report that differences were statistically significant at

A ’Yes’ in a cell indicates that the metric was significant for that experiment.

5.1.2.

Figure 14: Difference in Project

74

Figure 17 shows the significant difference between SDLC and FSDD in the way the

number of class creations extend to the root of the class pyramid. The longer the extension,

the code, and also the more difficulty understanding the code.

Many of these differences were statistically significant in both the method and class

levels. Figure 16 and Figure 5 report that differences were statistically significant at

n a cell indicates that the metric was significant for that experiment.

QUANTITATIVE EVIDENCE: COUPLING

: Difference in Project-Level Cyclomatic Complexity

Figure 17 shows the significant difference between SDLC and FSDD in the way the

number of class creations extend to the root of the class pyramid. The longer the extension,

the code, and also the more difficulty understanding the code.

Many of these differences were statistically significant in both the method and class-

levels. Figure 16 and Figure 5 report that differences were statistically significant at p < .05.

n a cell indicates that the metric was significant for that experiment.

QUANTITATIVE EVIDENCE: COUPLING

75

Figure 18 displays the differences in class coupling metrics between the FSDD and

SDLC projects for all of the experiments in which the typical solution contained at least two

objects. For both coupling metrics, lower values are more appropriate.

This chart indicates that the FSDD approach decreases coupling. The results show a

statistical significance. Thus, we can claim that the FSDD approach reduces class coupling,

since it is statistically significant. The FSDD approach seems to cause developers to write

smaller, less complex methods and classes. More connections between these units may

result.

An interesting question is whether the increased coupling is good or bad. Coupling

can be inappropriate when it is inflexible, and changes in one module cause changes in

another module. However, it can be argued that some coupling can be useful, particularly

when the coupling is either constituted or uses abstract connections such as interfaces or

abstract classes. Such code can be considered highly flexible and thus more maintainable

and reusable.

Figure 15: Box plot of Method

The box plot of the coupling in method

clearly backs this assertion that FSDD yields less coupled code. It is not difficult to draw

this conclusion regarding coupling in this experiment. There are overwhelming indications

that the FSDD approach decrease

desirable type of coupling through abstractions. The differences are shown in Figure 19

and Figure 20 box plots for the class

76

of Method-Level Class Coupling

The box plot of the coupling in method-level of Figure 19 and class-level of Figure 20

clearly backs this assertion that FSDD yields less coupled code. It is not difficult to draw

ing coupling in this experiment. There are overwhelming indications

that the FSDD approach decreases coupling, although an increase could have indicated a

desirable type of coupling through abstractions. The differences are shown in Figure 19

for the class-level and method-level class coupling.

level of Figure 20

clearly backs this assertion that FSDD yields less coupled code. It is not difficult to draw

ing coupling in this experiment. There are overwhelming indications

coupling, although an increase could have indicated a

desirable type of coupling through abstractions. The differences are shown in Figure 19

Figure 16: Box plot of Class-Level Class Coupling

Statistically significant: so much can be said with confidence. In contrast to the

complexity metrics, these results do not necessarily reject the RQ Null Hypothesis.

5.1.3. QUANTITATIVE EVIDENCE: COHESION

Like the coupling measures, the empirical results are very apparent regarding the

effects of the FSDD/SDLC approach on cohesion. Attempts

charts discussed here. Figure 17 reports the differences in the class coupling (CC) metric

for the experiment in which the typical solution will have more than one object. Compared

to most metrics reported, lower class cou

77

Level Class Coupling

Statistically significant: so much can be said with confidence. In contrast to the

metrics, these results do not necessarily reject the RQ Null Hypothesis.

QUANTITATIVE EVIDENCE: COHESION

Like the coupling measures, the empirical results are very apparent regarding the

effects of the FSDD/SDLC approach on cohesion. Attempts at determining trends led to two

charts discussed here. Figure 17 reports the differences in the class coupling (CC) metric

for the experiment in which the typical solution will have more than one object. Compared

to most metrics reported, lower class coupling (CC) values are desirable, indicating better

Statistically significant: so much can be said with confidence. In contrast to the

metrics, these results do not necessarily reject the RQ Null Hypothesis.

QUANTITATIVE EVIDENCE: COHESION

Like the coupling measures, the empirical results are very apparent regarding the

at determining trends led to two

charts discussed here. Figure 17 reports the differences in the class coupling (CC) metric

for the experiment in which the typical solution will have more than one object. Compared

pling (CC) values are desirable, indicating better

cohesion. Reasonable explanations for the exceptions seem harder to come by in the case of

cohesion.

Figure 17: Differences in Cohesion Metric CC

One might expect the SDLC/libr

than the FSDD application. The differences were statistically significant, so perhaps there is

nothing that can be said about the effects of the FSDD/SDLC approach on cohesion. In the

study, the FSDD project had more methods and classes.

The comparison with the number of classes makes sense because the projects

within the research were solutions to the same problem. The greater number of methods

and classes with the FSDD approach was anticipated, as small

But the corresponding decrease in cohesion is perhaps surprising. One might expect

78

cohesion. Reasonable explanations for the exceptions seem harder to come by in the case of

: Differences in Cohesion Metric CC

One might expect the SDLC/library project of the experiment to have more cohesion

than the FSDD application. The differences were statistically significant, so perhaps there is

nothing that can be said about the effects of the FSDD/SDLC approach on cohesion. In the

ect had more methods and classes.

The comparison with the number of classes makes sense because the projects

within the research were solutions to the same problem. The greater number of methods

and classes with the FSDD approach was anticipated, as smaller units are more testable.

But the corresponding decrease in cohesion is perhaps surprising. One might expect

cohesion. Reasonable explanations for the exceptions seem harder to come by in the case of

ary project of the experiment to have more cohesion

than the FSDD application. The differences were statistically significant, so perhaps there is

nothing that can be said about the effects of the FSDD/SDLC approach on cohesion. In the

The comparison with the number of classes makes sense because the projects

within the research were solutions to the same problem. The greater number of methods

er units are more testable.

But the corresponding decrease in cohesion is perhaps surprising. One might expect

solutions with more classes to have smaller and more cohesive classes. However, this

seems not to be the case. The differences in the number of m

in the projects were statistically significant.

Like the coupling measures, there are some indications that the FSDD approach may

decrease cohesion. However, differences were statistically significant. As a result, the

cohesion metrics do lend support to accepting the

5.1.4.

This section considers differences in software size metrics. Figure 18 compares LOC for the

two approaches in the experiment, in which the typical solution contained the objects.

Figure 18: % Difference in Size Me

79

solutions with more classes to have smaller and more cohesive classes. However, this

seems not to be the case. The differences in the number of methods and number of classes

in the projects were statistically significant.

Like the coupling measures, there are some indications that the FSDD approach may

decrease cohesion. However, differences were statistically significant. As a result, the

cohesion metrics do lend support to accepting the RQ null hypothesis.

 QUANTITATIVE EVIDENCE: SIZE

This section considers differences in software size metrics. Figure 18 compares LOC for the

two approaches in the experiment, in which the typical solution contained the objects.

: % Difference in Size Metrics

solutions with more classes to have smaller and more cohesive classes. However, this

ethods and number of classes

Like the coupling measures, there are some indications that the FSDD approach may

decrease cohesion. However, differences were statistically significant. As a result, the

EVIDENCE: SIZE

This section considers differences in software size metrics. Figure 18 compares LOC for the

two approaches in the experiment, in which the typical solution contained the objects.

80

The chart reveals the trend that SDLC developers tend to write larger methods and

classes. We see here that FSDD developers consistently implemented more classes and

methods with more variables, and that the total number of statements in a solution

reversed in favor of smaller FSDD solutions. The number of methods and classes was

statistically significant. The code size metrics and lines of code used in the study have often

been criticized (Murphy & Stone, 1995), but they are beneficial in some situations. Less

code is more maintainable compared to a complex one. Smaller modules are more reusable

and testable. These results indicate that the FSDD approach seems to influence developers

to write smaller methods and classes.

5.1.5. QUANTITATIVE EVIDENCE:

Figure 19: Static Code Quality

Figure 18 gives a summary of the static code quality analysis of the study. There is a

big discrepancy between the number of warnings produced by the solutions of SDLC and

FSDD. The differences are also seen

the FSDD code had no quality issues, while the SDLC code had nine. Observations

earlier evidence strengthen the notion that FSDD produces better internal quality

than SDLC.

81

QUANTITATIVE EVIDENCE: STATIC CODE

QUALITY ANALYSIS

: Static Code Quality

Figure 18 gives a summary of the static code quality analysis of the study. There is a

big discrepancy between the number of warnings produced by the solutions of SDLC and

are also seen in both the critical and quality type warnings

the FSDD code had no quality issues, while the SDLC code had nine. Observations

evidence strengthen the notion that FSDD produces better internal quality

STATIC CODE

Figure 18 gives a summary of the static code quality analysis of the study. There is a

big discrepancy between the number of warnings produced by the solutions of SDLC and

warnings. In fact,

the FSDD code had no quality issues, while the SDLC code had nine. Observations from

evidence strengthen the notion that FSDD produces better internal quality code

82

5.1.6. EMPIRICAL EVIDENCE SUMMARY AND

CONCLUSIONS

Complexity, coupling, cohesion and size were identified as relevant components of

the quality characteristics: understandability, maintainability, reusability, and testability.

Table 8: Project-Level Metrics results

Metric

Higher

Method FSDD SDLC % diff Desirable

MI FSDD 89 80 10.65 FSDD

CCP SDLC 163 833 134.54 FSDD

DOI SDLC 2 5 85.71 FSDD

CC SDLC 51 210 121.84 FSDD

LOC SDLC 1203 2405 66.63 FSDD

Table 8 summarizes the results in these categories from the previous sections. The

table reports that SDLC method had desirable values. The FSDD method produced more

appropriate values for the analogous experiment and characteristic. The FSDD approach

provides more desirable values as opposed to SDLC. Blank cells indicate that results were

not valid or available for the research. Almost all the metric differences were statistically

significant.

83

It appears that the FSDD approach did improve internal software quality for the

FSDD team in terms of complexity, size, and testing. The evidence is significant enough to

make the following claim. Developers applying the FSDD approach are likely to write

smaller units (methods and classes) than they would write with an SDLC approach.

There was a more favored approach in terms of coupling and cohesion. It appears

that an FSDD approach may be best in terms of complexity, coupling, and cohesion.

Coupling, cohesion, complexity, and size were identified as components of the desirable

quality characteristics of understandability, maintainability and reusability. The claim

cannot be made that the FSDD approach improves all of the features entirely. Hence, we

cannot reject the RQ Null Hypothesis. However, this research has demonstrated that the

FSDD approach can cause significant internal code quality improvements by lowering code

complexity and reducing the size of methods and classes. Combined with the

improvements in complexity and size, this provides a compelling incentive for developers

to consider adopting FSDD.

5.2. SUMMARY AND FUTURE WORK

Despite many significant advances, software construction is still plagued with many

failures. Development organizations struggle to adopt smart development methods, due to

a lack of empirical evidence of what methods are best in which circumstances. While some

individual programmers and organizations have learned to value and apply well-organized,

yet flexible methods, students do not graduate with these skills.

84

Formal Specification-Driven Development is a disciplined development practice that

promises to improve software design quality while reducing defects, with no increased

effort. This research carefully examined the possibility of FSDD to deliver these benefits.

This research has demonstrated that FSDD can and is likely to improve some software

quality aspects at minimal cost over a comparable SDLC approach. In particular, it has

shown significant differences statistically in the areas of code complexity, size, and

maintainability. These internal quality differences can substantially decrease software

defects. Additional empirical studies should replicate the study in similar and new settings.

Future studies should examine if the use of C# and JUnit improves FSDD acceptance

and efficacy in programming courses.Future studies could examine the question of how

much up-front software architecture and design work should ideally be finished before

engaging in the FSDD process. These studies should consider scale and safety concerns of

the projects.

Another suggestion would be to consider the learning curve of the FSDD approach

as well as programmer discipline with the FSDD approach in practice. Some of the students

in the study noted the high level of discipline required to stay with the FSDD approach on a

daily basis. The FSDD team indicated they would be keen to use this new method, but not

within limited time constraints, as was the case in the semester-long project.

This study compared one FSDD team to one SDLC team, due to the limited number

of students in the spring 2015 capstone class. Future studies should examine their efficacy

as it applies to a broad cross-section, probably three to four groups per approach.

85

As a result, it is believed that this research can have a significant impact on the

software development process. FSDD may in an indirect way transform the methods by

which we develop software. Some software development organizations will be convinced

to adopt FSDD in appropriate situations. New textbooks can be written applying the FSDD

learning approach. As students learn to use this new and more methodical approach to

software development, they will carry this into the future, and this will impact the way

software is developed.

86

6. BIBLIOGRAPHY

Aichernig, B. K., Lorber, F. & Tiran, S. (2012). Formal test-driven development with verified
test cases. Retrieved 8/20/2014 from
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=275810&p
CurrPk=67400

Alawneh, S. G. & Peters D. K. (2013). Using test oracles and formal specifications with test-
driven development. International Journal of Software Engineering & Knowledge

Engineering 23(3): 361-385. Retrieved 8/20/2014 from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.416.9592_br

Ambler, S. W. (2007). Test-driven development of relational databases. IEEE Software
24(3): 37-43. Retrieved 09/3/2014 from
https://connect.spsu.edu/eds/command/,DanaInfo=.aeeuCfEki0lys057Os54+detail?sid
=060fd54b-67a6-44a4-b215-d357ef58d497%40sessionmgr115&vid=6&hid=113

Baumeister, H. (2004). Combining formal specifications with test driven development.
Lecture Notes in Computer Science, 3134, 1-12. Retrieved 8/30/2014 from
http://www.pst.ifi.lmu.de/~baumeist/publications/baumeister04a.pdf

Boehm, B. & Basili, V. R. (2001). Software Defect Reduction Top 10 List. Retrieved
6/29/2015 from http://cs.umd.edu/~basili/publications/journals/J81.pdf

Beck, K. (2001). Aim, fire (test-first coding). Software, IEEE , vol.18, no.5, pp.87,89, Sep/Oct
2001. Retrieved 8/30/2014 from
https://connect.spsu.edu/stamp/,DanaInfo=.aifgh1urvznJtqrsO48y+stamp.jsp?tp=&ar
number=951502

Beck, K., Gamma E. (1998). Test Infected: Programmers Love Writing Tests. Java Report, vol.

3, pp. 51-56, 1998. Retrieved 10/30/2014 from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB4QF
jAA&url=http%3A%2F%2Fwww-public.int-
evry.fr%2F~gibson%2FTeaching%2FCSC7302%2FReadingMaterial%2FBeckGamma0
0.pdf&ei=vcpeVLDpGJXasASp1IDgBQ&usg=AFQjCNEwCd4lfy6UgeLi_qgvQEHuDq3Cjg&
bvm=bv.79189006,d.cWc

Boehm, B. (1987). Industrial software metrics top 10 list. Computer, January 2001, pp. 135-
137. Retrieved 10/30/2014 from
http://www.cs.cmu.edu/afs/cs/academic/class/17654-f01/www/refs/BB.pdf

Carvalho R., Soares Manhães R., and de Carvalho F.L., Filling the Gap between Business
Process Modeling and Behavior Driven Development, CoRR, 2008. Retrieved
10/2/2014 from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CEQQF

87

jAD&url=http%3A%2F%2Fwww.confenis2011.aau.dk%2FdigitalAssets%2F31%2F314
15_proceedings---short-
papers.pdf&ei=XS5pVID0FYynNpnLgYAJ&usg=AFQjCNEzWs9KiX1XJ0nm1nxFXYm-
gUCbkw&sig2=1OyVsOAqMjDt-f9Gz_Q8qw&bvm=bv.79142246,d.eXY

Code Metrics Results: what is it for? (n.d.). Retrieved 5/24/2015 from
https://social.msdn.microsoft.com/Forums/en-US/95897686-485b-4492-a9f0-
8a8a83656

Edwards S. H. (2003). Using test-driven development in the classroom: providing students
with automatic, concrete feedback on performance. In Proceedings of the International

Conference on Education and Information Systems: Technologies and Applications

EISTA’03, August. Retrieved 8/30/2014 from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB4QF
jAA&url=http%3A%2F%2Fwww.cs.tufts.edu%2F~nr%2Fcs257%2Farchive%2Fstephe
n-edwards%2Fautomated-
feedback.pdf&ei=D50sVJyGJY6PNsetgLgH&usg=AFQjCNELCYQtBk-IOdhDvf9o-
zGH0MwRQw&bvm=bv.76477589,d.eXY

Erdogmus, H., Morisio, M. & Torchiano, M. (2005). On the effectiveness of the test-first
approach to programming. Software Engineering, IEEE Transactions on , vol.31, no.3,

pp.226,237, March 2005. Retrieved 8/30/2014 from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1423994&isnumber=307
44

Falco, L. (2013) Behavior Driven Development - YouTube. (n.d.). Retrieved 6/29/2015
from https://www.youtube.com/watch?v=mT8QDNNhExg

Fucci D., Turhan B.A. (2013). Replicated Experiment on the Effectiveness of test-first
development, Empirical Software Engineering and Measurement. 2013 ACM / IEEE

International Symposium on, vol., no., pp.103, 112, 10-11 Oct. 2013. Retrieved
8/30/2014 from
https://connect.spsu.edu/stamp/,DanaInfo=.aifgh1urvznJtqrsO48y+stamp.jsp?tp=&ar
number=6681343

Gamma, E. & Beck, K. (2006). JUnit. Retrieved 9/3/2014 from
https://www.google.com/?gws_rd=ssl#q=junit+Gamma+pdf

George B. & Williams L. (2003). An Initial Investigation of Test Driven Development in
Industry, Proc. ACM Symp. Applied Computing. Retrieved 10/30/2014 from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB4QF
jAA&url=http%3A%2F%2Fcollaboration.csc.ncsu.edu%2Flaurie%2FPapers%2FTDDpa
perv8.pdf&ei=ks1eVMe5OtP7sASevILoDQ&usg=AFQjCNHk6TJnNC32UGD8cN65EWGjo
QkTBA

JUnit.org, www.junit.org, 2004

88

Junit Tutorial PDF Book - Asaha.com. (n.d.). Retrieved from http://asaha.com/ebooks/junit-
tutorial.html_br

Kaufmann R. & Janzen D. Implications of test-driven development: a pilot study. In

Companion of the 18th Annual ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, pages 298-299. ACM Press, 2003.
Retrieved 8/30/2014 from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB4QF
jAA&url=http%3A%2F%2Fwww.cs.tufts.edu%2F~nr%2Fcs257%2Farchive%2Fstephe
n-edwards%2Fautomated-
feedback.pdf&ei=D50sVJyGJY6PNsetgLgH&usg=AFQjCNELCYQtBk-IOdhDvf9o-
zGH0MwRQw&bvm=bv.76477589,d.eXY

Keogh E., BDD: A Lean Toolkit. In Processings of Lean Software & Systems Conference,
ASDLC anta, 2010. Retrieved 8/30/2014 from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB4QF
jAA&url=http%3A%2F%2Fwww.djaa.com%2Fsites%2Fdefault%2Ffiles%2Flean_ssc_2
010_proceedings.pdf&ei=DDBpVLjYEsuYNvaYgoAK&usg=AFQjCNEI7t43_97Pqq-
VceoXXhiH0mjjkg&sig2=DKJV_Fo1iIDwj_UkpyGb4w&bvm=bv.79142246,d.eXY

Janzen D.S. & Saiedian, H. (2008). Does Test-Driven Development really improve software
design quality? Software, IEEE, 25(2), 77-84. Retrieved 9/3/2014 from
https://connect.spsu.edu/eds/command/,DanaInfo=.aeeuCfEki0lys057Os54+detail?sid
=060fd54b-67a6-44a4-b215-d357ef58d497%40sessionmgr115&vid=26&hid=113

Kumar, S., & Bansal, S. (2013). Comparative study of test driven development with
traditional techniques. International Journal of Soft Computing & Engineering, 2013, Vol.

3, Issue 1, p.352. Retrieved 9/2/2014 from
http://www.doaj.org/doaj?func=openurl&genre=article&issn=22312307&date=2013&
volume=3&issue=1&spage=352
http://www.ijsce.org/attachments/File/v3i1/A1351033113.pdf

Lacchia, M. (2015).Introduction to Code Metrics. Retrieved 8/8/2015 from
http://radon.readthedocs.org/en/latest/intro.html#maintainability-index

Lazăr I., Motogna S., and Pârv B., (2010). Behaviour-Driven Development of Foundational
UML Components. Electronic Notes in Theoretical Computer Science 264, no. 1 (August):
91-105,. Retrieved 9/12/2014 from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDsQF
jAD&url=http%3A%2F%2Fsdq.ipd.kit.edu%2Ffileadmin%2Fuser_upload%2Fsdq%2Fc
onferences%2FFESCA2010%2FSimonaMotogna.pdf&ei=hjFpVKL5EcbQggTThYPoAg&
usg=AFQjCNFqs0EZfyQepbu3XXsqC3O1Ti-
lBg&sig2=7pS0wirHvHjvLkpsi9wqdw&bvm=bv.79142246,d.eXY

Mark Doliner. Cobertura, 2006. Retrieved 12/20/2014 from
http://cobertura.sourceforge.net/.

89

Microsoft . Code Metrics Values, 2015. Retrieved 5/22/2015 from
https://msdn.microsoft.com/en-us/library/bb385914.aspx

Microsoft. NuGet Package Manager for Visual Studio 2013, 2015. Retrieved 5/26/2015
from https://visualstudiogallery.msdn.microsoft.com/4ec1526c-4a8c-4a84-b702-
b21a8f5293ca

Microsoft. Visual Studio 2013, 2015. Retrieved 4/20/2015 from
https://msdn.microsoft.com/query/dev12.query?appId=Dev12IDEF1&l=en-
US&k=k%28MSDNSTART%29&rd=true

Muhammad Shahid, Suhaimi Ibrahim, and Mohd Naz’ri Mahrin, (2011). A Study on Test
Coverage in Software Testing, ,Advanced Informatics School (AIS), Universiti Teknologi
Malaysia, International Campus, Jalan Semarak, Kuala Lumpur, Malaysia,

Muller M. M. & Hagner O., Experiment about test-first programming. IF.F.F, Proceedings-

Software, 149(5):131-136, 2002. Retrieved 8/30/2014 from
https://connect.spsu.edu/stamp/,DanaInfo=.aifgh1urvznJtqrsO48y+stamp.jsp?tp=&ar
number=1049202

Murphy, J. & Stone, C. (1995, December). International Conference on Object Oriented
Information Systems, 18-20 December 1995, Dublin, Ireland, Proceedings. Springer,
1996, ISBN 3-540-76010-5.

Murphy, C., et al. (2009). Using JML runtime assertion checking to automate metamorphic
testing in applications without test oracles. Software Testing Verification and Validation,

2009. ICST '09. International Conference on. Retrieved 8/30/2014 from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4815377&isnumber=481
5322

NUnit. NUnit.org, 2015. Retrieved 5/29/2015 from http://www.nunit.org/

Pancur M., Ciglaric M., Trampus, M. and Vidmar T. (2003). Towards empirical evaluation of
test-driven development in a university environment. In Proceedings of FUROCON 2003.

Computer as a Tool. The IFFF Region 8, volume 2, pages 83-86, 2003. Retrieved
8/30/2014 from
https://connect.spsu.edu/stamp/,DanaInfo=.aifgh1urvznJtqrsO48y+stamp.jsp?tp=&ar
number=1248153

Plat, N., Van Katwijk, J. & Toetenel, H. (1992). Application and benefits of formal methods in
software development. Software Engineering Journal , vol.7, no.5, pp.335,346, Sep 1992.
Retrieved 9/26/2014 from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=165489&isnumber=4260

Preserve Articles. (2011). Essay on the importance of Computer in the Modern Society.
Retrieved 9/4/2014 from

90

http://www.preservearticles.com/201103264739/importance-of-computer-in-the-
modern-society.html

Rutledge, R., Tsui, F., (2013). Formal specification-driven development. Unpublished

Student Dissertation. Southern Polytechnic State University, Marietta, GA . Retrieved from
http://cse.spsu.edu/ftsui/images/Paper_FSDD%20SERP%202014%20Final.pdf

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M. & Erdogmus, H. (2014). What Do We
Know about Test-Driven Development? Software, IEEE , vol.27, no.6, pp.16,19, Nov.-Dec.
2010. Retrieved 9/2/2014 from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5604358&isnumber=560
4350

Siniaalto, M. & Abrahamsson, P. (2007) A Comparative Case Study on the Impact of Test-
Driven Development on Program Design and Test Coverage, Empirical Software

Engineering and Measurement, 2007. ESEM 2007. First International Symposium on, vol.,
no., pp.275,284, 20-21 Sept. 2007. Retrieved 8/30/2014
from https://connect.spsu.edu/stamp/,DanaInfo=.aifgh1urvznJtqrsO48y+stamp.jsp?tp
=&arnumber=4343755

Solis, C. & W. Xiaofeng (2011). A study of the characteristics of behavior driven
development. Software Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on. Retrieved 9/25/2014 from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6068372&isnumber=606
8309

Sommerville, I. (2010). Software Engineering. Harlow, England: Addison-Wesley. ISBN:
978-0-13-703515-1

SpecFlow. SpecFlow - Cucumber for .NET, 2013. Retrieved 5/26/2015 from
http://specflow.org

Staples, J. (1996). Do formal methods really work? Australian Software Engineering

Conference. Proceedings of 1996. Retrieved 9/25/2014 from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=534124&isnumber=1114
9

Tavares H.P., Guimarães G., Rezende, Mota V., Soares Manhães R., R., and Atem R. De
Carvalho, A tool stack for implementing Behaviour-Driven Development in Python
Language, CoRR, 2010. 10/25/2014 from http://arxiv.org/pdf/1007.1722v1

Vogel, L., & IDE, E. J. (2013). Eclipse IDE Tutorial. Retrieved 9/3/2014 from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=0CFoQFj
AI&url=http%3A%2F%2Fwww.cs.mun.ca%2F~mhatcher%2F3716%2FLecture%2520
Slides%2FWeek%25206%2FEclipse%2520Quick%2520Guide.pdf&ei=H6QsVPLsDo3N
ggSvhoLwAw&usg=AFQjCNH1zBjCWPr1d55PO7yU2I3BzTUQDA&bvm=bv.76477589,d
.eXY

91

Wedde, H.F., Cheng, B.H.C., Gries, D., Shankar, N., Lin, K.-J. & Ardis, M. (2014). Are formal
methods useful for software development? Computer Software and Applications

Conference, 1992. COMPSAC '92. Proceedings., Sixteenth Annual International. Retrieved
9/25/2014
from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=217611&isnumber=
5703

Wohlin C., Runeson P., Host M., Ohlsson M.C., Regnell B., and Wesslen A., Experimentation in
Software Engineering: An Introduction. Kluwer Academic, 2000. Retreived 10/10/2014
from
http://www.pdfbook.co.ke/details.php?title=Experimentation%20in%20Software%20
Engineering&author=Martin%20H%F6st,%20Per%20Runeson&category=Computers&
eid=115330&type=Book&popular=5

Wynne, M., Hellesoy, A. (2010). The Cucumber Book - Pragmatic Bookshelf. (n.d.). Retrieved
6/30/2015 from http://media.pragprog.com/titles/hwcuc/gherkin.pdfeck, Test-Driven

Development: By Example. Boston: Addison-Wesley, 2003.

92

7. APPENDIX A FORMAL SPECIFICATION-DRIVEN

DEVELOPMENT APPROACH METRICS

7.1. FORMAL SPECIFICATION-DRIVEN DEVELOPMENT – ALL

METRICS

These are all the metrics for the entire FSDD solution and extracted from the Visual Studio

2013 Code Analyzer. It includes the classes and methods

Table 9: FSDD Metrics

Scope Type Member Maintain
ability
Index

Cyclomatic
Complexit
y

Depth of
Inherita
nce

Class
Coupling

Lines
of Code

Project 89 163 2 51 1203

Namesp
ace

 93 13 1 0 13

Type Address 93 13 1 0 13

Member Address Address
()

100 1 0 1

Member Address Address
1.get() :
string

98 1 0 1

Member Address Address
1.set(str
ing) :
void

95 1 0 1

93

Member Address Address
2.get() :
string

98 1 0 1

Member Address Address
2.set(str
ing) :
void

95 1 0 1

Member Address City.get(
) : string

98 1 0 1

Member Address City.set(
string) :
void

95 1 0 1

Member Address Country
.get() :
string

98 1 0 1

Member Address Country
.set(stri
ng) :
void

95 1 0 1

Member Address State.ge
t() :
string

98 1 0 1

Member Address State.se
t(string
) : void

95 1 0 1

Member Address Zip.get(
) : string

98 1 0 1

Member Address Zip.set(
string) :

95 1 0 1

94

void

Namesp
ace

 94 31 3 18 62

Type EventRe
pository

 98 1 3 3 1

Member EventRe
pository

EventRe
pository
(DbCont
ext)

98 1 3 1

Type EventTy
peReposi
tory

 98 1 3 3 1

Member EventTy
peReposi
tory

EventTy
peRepo
sitory(D
bContex
t)

98 1 3 1

Type GenericR
epositor
y<TDom
ain,
TEntity>

 75 25 1 12 55

Member GenericR
epositor
y<TDom
ain,
TEntity>

CheckM
odelStat
e(TEntit
y) : void

81 2 3 2

95

Member GenericR
epositor
y<TDom
ain,
TEntity>

Convert
(IEnum
erable<
TEntity
>) :
IEnume
rable<T
Domain
>

77 2 3 3

Member GenericR
epositor
y<TDom
ain,
TEntity>

Convert
(TEntity
) :
TDomai
n

100 1 0 0

Member GenericR
epositor
y<TDom
ain,
TEntity>

Delete(i
nt) :
TEntity

78 1 1 3

Member GenericR
epositor
y<TDom
ain,
TEntity>

Delete(
TEntity)
:
TEntity

81 1 1 3

Member GenericR
epositor
y<TDom
ain,
TEntity>

Generic
Reposit
ory(Db
Context
)

79 1 2 3

96

Member GenericR
epositor
y<TDom
ain,
TEntity>

Get(Exp
ression
<Func<
TEntity,
bool>>,
Func<I
Querya
ble<TEn
tity>,
IOrdere
dQuery
able<TE
ntity>>,
string) :
IEnume
rable<T
Domain
>

61 4 9 10

Member GenericR
epositor
y<TDom
ain,
TEntity>

Get(int)
:
TDomai
n

73 2 1 5

Member GenericR
epositor
y<TDom
ain,
TEntity>

Get(TEn
tity) :
TDomai
n

87 1 0 2

Member GenericR
epositor
y<TDom
ain,
TEntity>

GetAll()
:
IEnume
rable<T
Domain
>

87 1 1 2

Member GenericR
epositor
y<TDom
ain,

GetAll(s
tring) :
IEnume
rable<T

64 4 6 8

97

TEntity> Domain
>

Member GenericR
epositor
y<TDom
ain,
TEntity>

GetFirst
OrDefau
lt(Expre
ssion<F
unc<TE
ntity,
bool>>,
string) :
TDomai
n

64 3 6 8

Member GenericR
epositor
y<TDom
ain,
TEntity>

Insert(T
Entity) :
TEntity

86 1 1 2

Member GenericR
epositor
y<TDom
ain,
TEntity>

Update(
TEntity)
:
TEntity

75 1 3 4

Type OrderRe
pository

 98 1 3 3 1

Member OrderRe
pository

OrderR
epositor
y(DbCo
ntext)

98 1 3 1

Type Perform
anceRep
ository

 98 1 3 3 1

98

Member Perform
anceRep
ository

Perform
anceRe
pository
(DbCont
ext)

98 1 3 1

Type Unconve
rtedGene
ricRepos
itory<TE
ntity>

 96 2 2 2 3

Member Unconve
rtedGene
ricRepos
itory<TE
ntity>

Convert
(TEntity
) :
TEntity

91 1 0 2

Member Unconve
rtedGene
ricRepos
itory<TE
ntity>

Unconv
ertedGe
nericRe
pository
(DbCont
ext)

98 1 2 1

Namesp
ace

 93 149 2 16 156

Type CardTyp
e

 93 9 1 3 10

Member CardTyp
e

CardTy
pe()

87 1 2 2

Member CardTyp
e

CardTy
pe1.get(
) : string

98 1 0 1

99

Member CardTyp
e

CardTy
pe1.set(
string) :
void

95 1 0 1

Member CardTyp
e

CardTy
peId.get
() : int

98 1 0 1

Member CardTyp
e

CardTy
peId.set
(int) :
void

95 1 0 1

Member CardTyp
e

Orders.
get() :
ICollecti
on<Ord
er>

98 1 2 1

Member CardTyp
e

Orders.s
et(IColl
ection<
Order>)
: void

95 1 2 1

Member CardTyp
e

status.g
et() :
bool

98 1 0 1

Member CardTyp
e

status.s
et(bool)
: void

95 1 0 1

Type Event 92 25 1 7 26

Member Event CreateB
yId.get(

98 1 1 1

100

) : int?

Member Event CreateB
yId.set(i
nt?) :
void

95 1 1 1

Member Event Descrip
tion.get
() :
string

98 1 0 1

Member Event Descrip
tion.set(
string) :
void

95 1 0 1

Member Event Event() 87 1 2 2

Member Event EventId.
get() :
int

98 1 0 1

Member Event EventId.
set(int)
: void

95 1 0 1

Member Event EventTy
pe.get()
:
EventTy
pe

98 1 1 1

Member Event EventTy
pe.set(E
ventTyp
e) : void

95 1 1 1

101

Member Event EventTy
peId.get
() : int?

98 1 1 1

Member Event EventTy
peId.set
(int?) :
void

95 1 1 1

Member Event Image.g
et() :
string

98 1 0 1

Member Event Image.s
et(strin
g) : void

95 1 0 1

Member Event Locatio
n.get() :
string

98 1 0 1

Member Event Locatio
n.set(str
ing) :
void

95 1 0 1

Member Event Name.g
et() :
string

98 1 0 1

Member Event Name.s
et(strin
g) : void

95 1 0 1

Member Event Perform
ances.ge
t() :
ICollecti
on<Perf

98 1 2 1

102

ormanc
e>

Member Event Perform
ances.se
t(IColle
ction<P
erforma
nce>) :
void

95 1 2 1

Member Event Price.ge
t() :
decimal
?

98 1 2 1

Member Event Price.se
t(decim
al?) :
void

95 1 2 1

Member Event status.g
et() : int

98 1 0 1

Member Event status.s
et(int) :
void

95 1 0 1

Member Event User.get
() : User

98 1 1 1

Member Event User.set
(User) :
void

95 1 1 1

Type EventTy
pe

 93 9 1 3 10

103

Member EventTy
pe

Events.g
et() :
ICollecti
on<Eve
nt>

98 1 2 1

Member EventTy
pe

Events.s
et(IColl
ection<
Event>)
: void

95 1 2 1

Member EventTy
pe

EventTy
pe()

87 1 2 2

Member EventTy
pe

EventTy
peId.get
() : int

98 1 0 1

Member EventTy
pe

EventTy
peId.set
(int) :
void

95 1 0 1

Member EventTy
pe

status.g
et() :
bool

98 1 0 1

Member EventTy
pe

status.s
et(bool)
: void

95 1 0 1

Member EventTy
pe

Type.ge
t() :
string

98 1 0 1

Member EventTy
pe

Type.se
t(string

95 1 0 1

104

) : void

Type Manage
mentToo
lProjectE
ntities

 93 16 2 11 16

Member Manage
mentToo
lProjectE
ntities

CardTy
pes.get(
) :
DbSet<
CardTy
pe>

98 1 2 1

Member Manage
mentToo
lProjectE
ntities

CardTy
pes.set(
DbSet<
CardTy
pe>) :
void

95 1 2 1

Member Manage
mentToo
lProjectE
ntities

Events.g
et() :
DbSet<
Event>

98 1 2 1

Member Manage
mentToo
lProjectE
ntities

Events.s
et(DbSe
t<Event
>) : void

95 1 2 1

Member Manage
mentToo
lProjectE
ntities

EventTy
pes.get(
) :
DbSet<
EventTy
pe>

98 1 2 1

Member Manage
mentToo

EventTy
pes.set(

95 1 2 1

105

lProjectE
ntities

DbSet<
EventTy
pe>) :
void

Member Manage
mentToo
lProjectE
ntities

Manage
mentTo
olProjec
tEntitie
s()

98 1 1 1

Member Manage
mentToo
lProjectE
ntities

OnMod
elCreati
ng(DbM
odelBuil
der) :
void

98 1 2 1

Member Manage
mentToo
lProjectE
ntities

OrderPe
rforman
ceMapp
ing2.get
() :
DbSet<
OrderPe
rforman
ceMapp
ing2>

98 1 2 1

Member Manage
mentToo
lProjectE
ntities

OrderPe
rforman
ceMapp
ing2.set
(DbSet<
OrderPe
rforman
ceMapp
ing2>) :
void

95 1 2 1

106

Member Manage
mentToo
lProjectE
ntities

Orders.
get() :
DbSet<
Order>

98 1 2 1

Member Manage
mentToo
lProjectE
ntities

Orders.s
et(DbSe
t<Order
>) : void

95 1 2 1

Member Manage
mentToo
lProjectE
ntities

Perform
ances.ge
t() :
DbSet<
Perform
ance>

98 1 2 1

Member Manage
mentToo
lProjectE
ntities

Perform
ances.se
t(DbSet
<Perfor
mance>
) : void

95 1 2 1

Member Manage
mentToo
lProjectE
ntities

Users.ge
t() :
DbSet<
User>

98 1 2 1

Member Manage
mentToo
lProjectE
ntities

Users.se
t(DbSet
<User>)
: void

95 1 2 1

Type Order 92 41 1 7 42

Member Order BillingA
dress.ge
t() :

98 1 0 1

107

string

Member Order BillingA
dress.se
t(string
) : void

95 1 0 1

Member Order BillingC
ity.get()
: string

98 1 0 1

Member Order BillingC
ity.set(s
tring) :
void

95 1 0 1

Member Order BillingSt
ate.get(
) : string

98 1 0 1

Member Order BillingSt
ate.set(s
tring) :
void

95 1 0 1

Member Order BillingZi
pCode.g
et() :
int?

98 1 1 1

Member Order BillingZi
pCode.s
et(int?)
: void

95 1 1 1

Member Order CardTy
pe.get()
:
CardTy

98 1 1 1

108

pe

Member Order CardTy
pe.set(C
ardType
) : void

95 1 1 1

Member Order CardTy
peId.get
() : int?

98 1 1 1

Member Order CardTy
peId.set
(int?) :
void

95 1 1 1

Member Order CreditC
ard.get(
) : string

98 1 0 1

Member Order CreditC
ard.set(
string) :
void

95 1 0 1

Member Order Expirati
onDate.
get() :
DateTi
me?

98 1 2 1

Member Order Expirati
onDate.
set(Dat
eTime?)
: void

95 1 2 1

Member Order FirstNa
me.get(

98 1 0 1

109

) : string

Member Order FirstNa
me.set(s
tring) :
void

95 1 0 1

Member Order LastNa
me.get(
) : string

98 1 0 1

Member Order LastNa
me.set(s
tring) :
void

95 1 0 1

Member Order Order() 87 1 2 2

Member Order OrderId
.get() :
int

98 1 0 1

Member Order OrderId
.set(int)
: void

95 1 0 1

Member Order OrderPe
rforman
ceMapp
ing2.get
() :
ICollecti
on<Ord
erPerfo
rmance
Mappin
g2>

98 1 2 1

110

Member Order OrderPe
rforman
ceMapp
ing2.set
(ICollec
tion<Or
derPerf
ormanc
eMappi
ng2>) :
void

95 1 2 1

Member Order Perform
ance.get
() :
Perform
ance

98 1 1 1

Member Order Perform
ance.set
(Perfor
mance)
: void

95 1 1 1

Member Order Perform
anceId.g
et() :
int?

98 1 1 1

Member Order Perform
anceId.s
et(int?)
: void

95 1 1 1

Member Order Shippin
gAdress
.get() :
string

98 1 0 1

111

Member Order Shippin
gAdress
.set(stri
ng) :
void

95 1 0 1

Member Order Shippin
gCity.ge
t() :
string

98 1 0 1

Member Order Shippin
gCity.se
t(string
) : void

95 1 0 1

Member Order Shippin
gState.g
et() :
string

98 1 0 1

Member Order Shippin
gState.s
et(strin
g) : void

95 1 0 1

Member Order Shippin
gZipCod
e.get() :
int?

98 1 1 1

Member Order Shippin
gZipCod
e.set(int
?) : void

95 1 1 1

Member Order status.g
et() : int

98 1 0 1

112

Member Order status.s
et(int) :
void

95 1 0 1

Member Order TicketN
umber.g
et() :
int?

98 1 1 1

Member Order TicketN
umber.s
et(int?)
: void

95 1 1 1

Type OrderPe
rforman
ceMappi
ng2

 93 13 1 3 13

Member OrderPe
rforman
ceMappi
ng2

ID.get()
: int

98 1 0 1

Member OrderPe
rforman
ceMappi
ng2

ID.set(i
nt) :
void

95 1 0 1

Member OrderPe
rforman
ceMappi
ng2

OderId.
get() :
int

98 1 0 1

Member OrderPe
rforman
ceMappi
ng2

OderId.
set(int)
: void

95 1 0 1

113

Member OrderPe
rforman
ceMappi
ng2

Order.g
et() :
Order

98 1 1 1

Member OrderPe
rforman
ceMappi
ng2

Order.s
et(Orde
r) : void

95 1 1 1

Member OrderPe
rforman
ceMappi
ng2

OrderPe
rforman
ceMapp
ing2()

100 1 0 1

Member OrderPe
rforman
ceMappi
ng2

Perform
ance.get
() :
Perform
ance

98 1 1 1

Member OrderPe
rforman
ceMappi
ng2

Perform
ance.set
(Perfor
mance)
: void

95 1 1 1

Member OrderPe
rforman
ceMappi
ng2

Perform
anceId.g
et() : int

98 1 0 1

Member OrderPe
rforman
ceMappi
ng2

Perform
anceId.s
et(int) :
void

95 1 0 1

Member OrderPe
rforman

Quantit
y.get() :

98 1 1 1

114

ceMappi
ng2

int?

Member OrderPe
rforman
ceMappi
ng2

Quantit
y.set(int
?) : void

95 1 1 1

Type Perform
ance

 92 21 1 8 23

Member Perform
ance

Date.get
() :
DateTi
me?

98 1 2 1

Member Perform
ance

Date.set
(DateTi
me?) :
void

95 1 2 1

Member Perform
ance

Event.g
et() :
Event

98 1 1 1

Member Perform
ance

Event.se
t(Event)
: void

95 1 1 1

Member Perform
ance

EventId.
get() :
int?

98 1 1 1

Member Perform
ance

EventId.
set(int?
) : void

95 1 1 1

Member Perform EventN
ame.get

98 1 0 1

115

ance () :
string

Member Perform
ance

EventN
ame.set
(string)
: void

95 1 0 1

Member Perform
ance

OrderPe
rforman
ceMapp
ing2.get
() :
ICollecti
on<Ord
erPerfo
rmance
Mappin
g2>

98 1 2 1

Member Perform
ance

OrderPe
rforman
ceMapp
ing2.set
(ICollec
tion<Or
derPerf
ormanc
eMappi
ng2>) :
void

95 1 2 1

Member Perform
ance

Orders.
get() :
ICollecti
on<Ord
er>

98 1 2 1

Member Perform
ance

Orders.s
et(IColl
ection<
Order>)

95 1 2 1

116

: void

Member Perform
ance

Perform
ance()

80 1 3 3

Member Perform
ance

Perform
anceId.g
et() : int

98 1 0 1

Member Perform
ance

Perform
anceId.s
et(int) :
void

95 1 0 1

Member Perform
ance

Price.ge
t() :
decimal
?

98 1 2 1

Member Perform
ance

Price.se
t(decim
al?) :
void

95 1 2 1

Member Perform
ance

status.g
et() :
bool

98 1 0 1

Member Perform
ance

status.s
et(bool)
: void

95 1 0 1

Member Perform
ance

TotalTic
kets.get
() : int?

98 1 1 1

Member Perform TotalTic 95 1 1 1

117

ance kets.set
(int?) :
void

Type User 93 15 1 3 16

Member User EmailA
ddress.g
et() :
string

98 1 0 1

Member User EmailA
ddress.s
et(strin
g) : void

95 1 0 1

Member User Events.g
et() :
ICollecti
on<Eve
nt>

98 1 2 1

Member User Events.s
et(IColl
ection<
Event>)
: void

95 1 2 1

Member User FirstNa
me.get(
) : string

98 1 0 1

Member User FirstNa
me.set(s
tring) :
void

95 1 0 1

Member User LastNa
me.get(

98 1 0 1

118

) : string

Member User LastNa
me.set(s
tring) :
void

95 1 0 1

Member User Passwo
rd.get()
: string

98 1 0 1

Member User Passwo
rd.set(st
ring) :
void

95 1 0 1

Member User status.g
et() :
bool

98 1 0 1

Member User status.s
et(bool)
: void

95 1 0 1

Member User User() 87 1 2 2

Member User UserId.g
et() : int

98 1 0 1

Member User UserId.s
et(int) :
void

95 1 0 1

Namesp
ace

 58 55 1 51 240

Type Account 56 8 1 15 44

119

Mediator

Member Account
Mediator

Account
Mediato
r()

100 1 0 1

Member Account
Mediator

Authent
icate(Re
gisterV
M) :
bool

52 4 13 21

Member Account
Mediator

Register
User(Re
gisterV
M) :
bool

51 3 14 22

Type OrderMe
diator

 57 12 1 16 35

Member OrderMe
diator

AddPerf
ormanc
eOrder(
int) :
void

56 4 11 13

Member OrderMe
diator

CreateO
rder(Pa
ymentV
M) :
bool

49 7 15 21

Member OrderMe
diator

OrderM
ediator(
)

100 1 0 1

Type TicketMe 62 35 1 42 161

120

diator

Member TicketMe
diator

ClearCa
rt() :
void

91 1 2 1

Member TicketMe
diator

Complet
eOrder(
CartVM
) : void

100 1 1 0

Member TicketMe
diator

CreateE
vent(Ev
entVM)
: bool

62 2 7 8

Member TicketMe
diator

CreateP
erforma
nce(Per
formanc
eVM) :
bool

61 2 9 9

Member TicketMe
diator

GetActi
veEvent
s() :
List<Ev
entVM>

62 2 15 9

Member TicketMe
diator

GetAllP
erforma
nces() :
List<Pe
rforman
ceVM>

60 2 18 9

Member TicketMe
diator

GetCart
() :
CartVM

67 2 3 7

121

Member TicketMe
diator

GetEven
t(int) :
EventV
M

58 2 15 12

Member TicketMe
diator

GetEven
tItems()
:
List<Ev
entItem
>

65 2 5 7

Member TicketMe
diator

GetEven
ts() :
List<Ev
entVM>

64 2 9 9

Member TicketMe
diator

GetEven
tTypes(
) :
List<Cat
egory>

63 2 9 9

Member TicketMe
diator

GetPerf
ormanc
e(int) :
Perform
anceVM

58 2 15 12

Member TicketMe
diator

GetPerf
ormanc
es(int) :
List<Pe
rforman
ceVM>

57 2 18 13

Member TicketMe
diator

GetUpc
omingP
erforma
nces() :

58 4 19 10

122

List<Pe
rforman
ceVM>

Member TicketMe
diator

HasEno
ughSeat
s(int,
int) :
bool

70 2 1 6

Member TicketMe
diator

TicketM
ediator(
)

100 1 0 1

Member TicketMe
diator

Update
Event(E
ventVM
) : bool

53 2 16 19

Member TicketMe
diator

Update
Perform
ance(Pe
rforman
ceVM) :
bool

52 2 17 20

Namesp
ace

 93 13 1 0 13

Type Register
VM

 93 13 1 0 13

Member Register
VM

Email.g
et() :
string

98 1 0 1

Member Register
VM

Email.se
t(string

95 1 0 1

123

) : void

Member Register
VM

FirstNa
me.get(
) : string

98 1 0 1

Member Register
VM

FirstNa
me.set(s
tring) :
void

95 1 0 1

Member Register
VM

Id.get()
: int

98 1 0 1

Member Register
VM

Id.set(in
t) : void

95 1 0 1

Member Register
VM

LastNa
me.get(
) : string

98 1 0 1

Member Register
VM

LastNa
me.set(s
tring) :
void

95 1 0 1

Member Register
VM

Passwo
rd.get()
: string

98 1 0 1

Member Register
VM

Passwo
rd.set(st
ring) :
void

95 1 0 1

Member Register
VM

Register
VM()

100 1 0 1

124

Member Register
VM

VerifyP
asswor
d.get() :
string

98 1 0 1

Member Register
VM

VerifyP
asswor
d.set(str
ing) :
void

95 1 0 1

Namesp
ace

 95 31 1 4 32

Type CartVM 93 5 1 3 6

Member CartVM CartVM
()

87 1 2 2

Member CartVM Perform
ances.ge
t() :
List<Pe
rforman
ceVM>

98 1 2 1

Member CartVM Perform
ances.se
t(List<P
erforma
nceVM>
) : void

95 1 2 1

Member CartVM Total.ge
t() :
decimal

98 1 1 1

125

Member CartVM Total.se
t(decim
al) :
void

95 1 1 1

Type Confirma
tionVM

 100 1 1 0 1

Member Confirma
tionVM

Confirm
ationV
M()

100 1 0 1

Type Payment
VM

 92 25 1 1 25

Member Payment
VM

BillingA
ddress.g
et() :
Address

98 1 1 1

Member Payment
VM

BillingA
ddress.s
et(Addr
ess) :
void

95 1 1 1

Member Payment
VM

CreditC
ardNum
ber.get(
) : string

98 1 0 1

Member Payment
VM

CreditC
ardNum
ber.set(
string) :
void

95 1 0 1

126

Member Payment
VM

CreditC
ardType
.get() :
string

98 1 0 1

Member Payment
VM

CreditC
ardType
.set(stri
ng) :
void

95 1 0 1

Member Payment
VM

CVV.get
() :
string

98 1 0 1

Member Payment
VM

CVV.set
(string)
: void

95 1 0 1

Member Payment
VM

Email.g
et() :
string

98 1 0 1

Member Payment
VM

Email.se
t(string
) : void

95 1 0 1

Member Payment
VM

Expirati
onMont
h.get() :
string

98 1 0 1

Member Payment
VM

Expirati
onMont
h.set(str
ing) :
void

95 1 0 1

127

Member Payment
VM

Expirati
onYear.
get() :
string

98 1 0 1

Member Payment
VM

Expirati
onYear.
set(stri
ng) :
void

95 1 0 1

Member Payment
VM

FirstNa
me.get(
) : string

98 1 0 1

Member Payment
VM

FirstNa
me.set(s
tring) :
void

95 1 0 1

Member Payment
VM

LastNa
me.get(
) : string

98 1 0 1

Member Payment
VM

LastNa
me.set(s
tring) :
void

95 1 0 1

Member Payment
VM

NameO
nCard.g
et() :
string

98 1 0 1

Member Payment
VM

NameO
nCard.s
et(strin
g) : void

95 1 0 1

128

Member Payment
VM

Paymen
tVM()

100 1 0 1

Member Payment
VM

SameAs
Billing.g
et() :
bool

98 1 0 1

Member Payment
VM

SameAs
Billing.s
et(bool)
: void

95 1 0 1

Member Payment
VM

Shippin
gAddres
s.get() :
Address

98 1 1 1

Member Payment
VM

Shippin
gAddres
s.set(Ad
dress) :
void

95 1 1 1

Namesp
ace

 94 14 1 0 14

Type Category 94 7 1 0 7

Member Category Categor
y()

100 1 0 1

Member Category Categor
yId.get(
) : int

98 1 0 1

129

Member Category Categor
yId.set(i
nt) :
void

95 1 0 1

Member Category Name.g
et() :
string

98 1 0 1

Member Category Name.s
et(strin
g) : void

95 1 0 1

Member Category Selected
Indicato
r.get() :
bool

98 1 0 1

Member Category Selected
Indicato
r.set(bo
ol) :
void

95 1 0 1

Type EventIte
m

 94 7 1 0 7

Member EventIte
m

EventId.
get() :
int

98 1 0 1

Member EventIte
m

EventId.
set(int)
: void

95 1 0 1

Member EventIte
m

EventIt
em()

100 1 0 1

130

Member EventIte
m

Name.g
et() :
string

98 1 0 1

Member EventIte
m

Name.s
et(strin
g) : void

95 1 0 1

Member EventIte
m

Selected
Indicato
r.get() :
bool

98 1 0 1

Member EventIte
m

Selected
Indicato
r.set(bo
ol) :
void

95 1 0 1

Namesp
ace

 93 57 1 6 57

Type BuyTick
etsVM

 93 15 1 4 15

Member BuyTick
etsVM

BuyTick
etsVM()

100 1 0 1

Member BuyTick
etsVM

Categori
es.get()
:
List<Cat
egory>

98 1 2 1

Member BuyTick
etsVM

Categori
es.set(Li
st<Cate
gory>) :

95 1 2 1

131

void

Member BuyTick
etsVM

Events.g
et() :
List<Ev
entItem
>

98 1 2 1

Member BuyTick
etsVM

Events.s
et(List<
EventIt
em>) :
void

95 1 2 1

Member BuyTick
etsVM

FromDa
te.get() :
string

98 1 0 1

Member BuyTick
etsVM

FromDa
te.set(st
ring) :
void

95 1 0 1

Member BuyTick
etsVM

LblFro
mDate.g
et() :
string

98 1 0 1

Member BuyTick
etsVM

LblFro
mDate.s
et(strin
g) : void

95 1 0 1

Member BuyTick
etsVM

LblToD
ate.get(
) : string

98 1 0 1

132

Member BuyTick
etsVM

LblToD
ate.set(s
tring) :
void

95 1 0 1

Member BuyTick
etsVM

Perform
ances.ge
t() :
List<Pe
rforman
ceVM>

98 1 2 1

Member BuyTick
etsVM

Perform
ances.se
t(List<P
erforma
nceVM>
) : void

95 1 2 1

Member BuyTick
etsVM

ToDate.
get() :
string

98 1 0 1

Member BuyTick
etsVM

ToDate.
set(stri
ng) :
void

95 1 0 1

Type EventVM 93 21 1 3 21

Member EventVM Active.g
et() :
bool

98 1 0 1

Member EventVM Active.s
et(bool)
: void

95 1 0 1

133

Member EventVM Categori
es.get()
:
List<Cat
egory>

98 1 2 1

Member EventVM Categori
es.set(Li
st<Cate
gory>) :
void

95 1 2 1

Member EventVM Categor
y.get() :
int

98 1 0 1

Member EventVM Categor
y.set(int
) : void

95 1 0 1

Member EventVM Categor
yName.
get() :
string

98 1 0 1

Member EventVM Categor
yName.
set(stri
ng) :
void

95 1 0 1

Member EventVM Descrip
tion.get
() :
string

98 1 0 1

Member EventVM Descrip
tion.set(
string) :

95 1 0 1

134

void

Member EventVM EventV
M()

100 1 0 1

Member EventVM Id.get()
: int

98 1 0 1

Member EventVM Id.set(in
t) : void

95 1 0 1

Member EventVM Image.g
et() :
string

98 1 0 1

Member EventVM Image.s
et(strin
g) : void

95 1 0 1

Member EventVM Locatio
n.get() :
string

98 1 0 1

Member EventVM Locatio
n.set(str
ing) :
void

95 1 0 1

Member EventVM Name.g
et() :
string

98 1 0 1

Member EventVM Name.s
et(strin
g) : void

95 1 0 1

135

Member EventVM Perform
ances.ge
t() :
List<Pe
rforman
ceVM>

98 1 2 1

Member EventVM Perform
ances.se
t(List<P
erforma
nceVM>
) : void

95 1 2 1

Type Perform
anceVM

 93 21 1 2 21

Member Perform
anceVM

Availabl
eTickets
.get() :
int

98 1 0 1

Member Perform
anceVM

Availabl
eTickets
.set(int)
: void

95 1 0 1

Member Perform
anceVM

Cancelle
d.get() :
bool

98 1 0 1

Member Perform
anceVM

Cancelle
d.set(bo
ol) :
void

95 1 0 1

Member Perform
anceVM

EventId.
get() :
int

98 1 0 1

136

Member Perform
anceVM

EventId.
set(int)
: void

95 1 0 1

Member Perform
anceVM

EventN
ame.get
() :
string

98 1 0 1

Member Perform
anceVM

EventN
ame.set
(string)
: void

95 1 0 1

Member Perform
anceVM

LineNu
mber.ge
t() : int

98 1 0 1

Member Perform
anceVM

LineNu
mber.se
t(int) :
void

95 1 0 1

Member Perform
anceVM

Locatio
n.get() :
string

98 1 0 1

Member Perform
anceVM

Locatio
n.set(str
ing) :
void

95 1 0 1

Member Perform
anceVM

Perform
anceDat
e.get() :
string

98 1 0 1

137

Member Perform
anceVM

Perform
anceDat
e.set(str
ing) :
void

95 1 0 1

Member Perform
anceVM

Perform
anceId.g
et() : int

98 1 0 1

Member Perform
anceVM

Perform
anceId.s
et(int) :
void

95 1 0 1

Member Perform
anceVM

Perform
anceVM
()

100 1 0 1

Member Perform
anceVM

Price.ge
t() :
decimal

98 1 1 1

Member Perform
anceVM

Price.se
t(decim
al) :
void

95 1 1 1

Member Perform
anceVM

Quantit
y.get() :
int

98 1 0 1

Member Perform
anceVM

Quantit
y.set(int
) : void

95 1 0 1

Namesp
ace

 84 24 1 20 35

138

Type Account
Transfor
mer

 100 2 1 1 1

Member Account
Transfor
mer

Account
Transfo
rmer()

100 1 0 1

Member Account
Transfor
mer

Transfo
rm(Regi
sterVM)
: void

100 1 1 0

Type Category
Transfor
mer

 77 5 1 7 9

Member Category
Transfor
mer

Categor
yTransf
ormer()

100 1 0 1

Member Category
Transfor
mer

Transfo
rm(Eve
ntType)
:
Categor
y

77 1 2 3

Member Category
Transfor
mer

Transfo
rm(IEn
umerabl
e<Event
Type>) :
List<Cat
egory>

71 3 7 5

Type EventTra
nsformer

 70 7 1 13 13

139

Member EventTra
nsformer

EventTr
ansform
er()

100 1 0 1

Member EventTra
nsformer

Transfo
rm(Eve
nt) :
EventV
M

62 3 10 7

Member EventTra
nsformer

Transfo
rm(IEn
umerabl
e<Event
>) :
List<Ev
entVM>

71 3 7 5

Type OrderTr
ansform
er

 100 1 1 0 1

Member OrderTr
ansform
er

OrderTr
ansform
er()

100 1 0 1

Type Perform
anceTra
nsformer

 73 9 1 13 11

Member Perform
anceTra
nsformer

Perform
anceTra
nsforme
r()

100 1 0 1

Member Perform
anceTra
nsformer

Transfo
rm(IEn
umerabl
e<Perfo

64 7 11 7

140

rmance
>) :
List<Pe
rforman
ceVM>

Member Perform
anceTra
nsformer

Transfo
rm(Perf
ormanc
e) :
Perform
anceVM

72 1 6 3

141

Scope Approach Namespace Maintaina
bility

Cyclomatic Depth
of

Class
Coupli

Lines of

142

Index Complexity Inherit
ance

ng Code

Method FSDD Ticketing.Framework.

Models.Cart

100 1 0 1

Method FSDD Ticketing.Framework.

BusinessModels

93 13 1 0 13

Method FSDD Ticketing.Framework.

Data

98 1 3 3 1

Method FSDD Ticketing.Framework.

Data

98 1 3 3 1

Method FSDD Ticketing.Framework.

Data

75 25 1 12 55

Method FSDD Ticketing.Framework.

Data

98 1 3 3 1

Method FSDD Ticketing.Framework.

Data

98 1 3 3 1

Method FSDD Ticketing.Framework.

Data

96 2 2 2 3

Method FSDD Ticketing.Framework.

DBModels

93 9 1 3 10

Method FSDD Ticketing.Framework.

DBModels

92 25 1 7 26

Method FSDD Ticketing.Framework.

DBModels

93 9 1 3 10

143

Method FSDD Ticketing.Framework.

DBModels

93 16 2 11 16

Method FSDD Ticketing.Framework.

DBModels

92 41 1 7 42

Method FSDD Ticketing.Framework.

DBModels

93 13 1 3 13

Method FSDD Ticketing.Framework.

DBModels

92 21 1 8 23

Method FSDD Ticketing.Framework.

DBModels

93 15 1 3 16

Method FSDD Ticketing.Framework.

Mediators

56 8 1 15 44

Method FSDD Ticketing.Framework.

Mediators

57 12 1 16 35

Method FSDD Ticketing.Framework.

Mediators

62 35 1 42 161

Method FSDD Ticketing.Framework.

Models.Account

93 13 1 0 13

Method FSDD Ticketing.Framework.

Models.Cart

93 5 1 3 6

Method FSDD Ticketing.Framework.

Models.Cart

100 1 1 0 1

Method FSDD Ticketing.Framework.

Models.Cart

92 25 1 1 25

144

Method FSDD Ticketing.Framework.

Models.Common

94 7 1 0 7

Method FSDD Ticketing.Framework.

Models.Common

94 7 1 0 7

Method FSDD Ticketing.Framework.

Models.Ticket

93 15 1 4 15

Method FSDD Ticketing.Framework.

Models.Ticket

93 21 1 3 21

Method FSDD Ticketing.Framework.

Models.Ticket

93 21 1 2 21

Method FSDD Ticketing.Framework.

Transformers

100 2 1 1 1

Method FSDD Ticketing.Framework.

Transformers

77 5 1 7 9

Method FSDD Ticketing.Framework.

Transformers

70 7 1 13 13

Method FSDD Ticketing.Framework.

Transformers

100 1 1 0 1

Method FSDD Ticketing.Framework.

Transformers

73 9 1 13 11

Method FSDD CheckOutSteps() 100 1 0 1

Method FSDD GivenThatThereAreIt

emsInTheShoppingCa

rt() : void

77 1 4 2

145

Method FSDD ThenTheSystemDispl

aysOrderConfirmatio

n() : void

84 1 3 2

Method FSDD ThenTheSystemDoes

NotUpdateInventory(

) : void

94 1 2 1

Method FSDD ThenTheSystemUpda

tesTheInventory() :

void

77 1 4 2

Method FSDD WhenTheUserCancels

TheOrder() : void

81 1 3 1

Method FSDD WhenTheUserConfir

msTheOrder() : void

74 1 4 2

Method FSDD Main(string[]) : void 100 1 0 0

Method FSDD Program() 100 1 0 1

146

7.2. FORMAL SPECIFICATION-DRIVEN DEVELOPMENT CLASS-

LEVEL METRICS

These are all the class-level metrics for the FSDD solution created from the main

spreadsheet of all the metrics.

Table 10: FSDD Class-Level Metrics

Scope Approach Maintainability
Index

Cyclomatic
Complexity

Depth of
Inheritance

Class
Coupling

Lines of
Code

Class FSDD 93 13 1 0 13

Class FSDD 94 31 3 18 62

Class FSDD 93 149 2 16 156

Class FSDD 58 55 1 51 240

Class FSDD 93 13 1 0 13

Class FSDD 95 31 1 4 32

Class FSDD 94 14 1 0 14

Class FSDD 93 57 1 6 57

Class FSDD 84 24 1 20 35

Class FSDD 100 2 1 0 1

147

Class FSDD 83 7 1 13 11

7.3. FORMAL SPECIFICATION-DRIVEN DEVELOPMENT PROJECT-

LEVEL METRICS

These are the metrics for the FSDD solution created from the main spreadsheet of the FSDD
metrics.

Table 11: FSDD Project-Level Metrics

Scope Maintainability
Index

Cyclomatic
Complexity

Depth of
Inheritance

Class
Coupling

Lines of Code

Project 89 163 2 51 1203

148

8. APPENDIX B SOFTWARE DEVELOPMENT LIFE CYCLE

APPROACH METRICS

8.1. SOFTWARE DEVELOPMENT LIFE CYCLE - ALL METRICS

These are all the metrics for the FSDD solution extracted from Visual Studio Code Analyzer

output.

Table 12: SDLC Metrics

Scope Type Member Maintain
ability
Index

Cyclomatic
Complexit
y

Depth
of
Inherit
ance

Class
Coupling

Lin
es
of
Cod
e

Project 80 833 5 210 240

5

Type NVPAPICall

er

 57 27 4 15 111

Member NVPAPICall

er

buildCredentia

lsNVPString() :

string

60 5 2 12

Member NVPAPICall

er

DoCheckoutPa

yment(string,

string, string,

ref NVPCodec,

ref string) :

bool

52 4 2 19

149

Member NVPAPICall

er

GetCheckoutD

etails(string,

ref string, ref

NVPCodec, ref

string) : bool

54 4 2 16

Member NVPAPICall

er

HttpCall(string)

: string

55 4 8 16

Member NVPAPICall

er

IsEmpty(string)

: bool

83 2 0 2

Member NVPAPICall

er

NVPAPICaller() 63 1 1 10

Member NVPAPICall

er

NVPAPICaller() 89 1 0 1

Member NVPAPICall

er

SetCredentials(

string, string,

string) : void

80 1 0 3

Member NVPAPICall

er

ShortcutExpres

sCheckout(stri

ng, ref string,

ref string) :

bool

45 5 7 32

Type NVPCodec 76 14 3 5 32

Member NVPCodec Add(string,

string, int) :

void

92 1 1 1

Member NVPCodec Decode(string)

: void

65 3 2 8

150

Member NVPCodec Encode() :

string

60 3 3 12

Member NVPCodec GetArrayName

(int, string) :

string

75 2 1 4

Member NVPCodec NVPCodec() 100 1 1 1

Member NVPCodec NVPCodec() 83 1 0 2

Member NVPCodec Remove(string,

int) : void

92 1 1 1

Member NVPCodec this.get(string,

int) : string

84 1 1 2

Member NVPCodec this.set(string,

int, string) :

void

92 1 1 1

Namesp

ace

 84 36 5 48 82

Type BundleCon

fig

 75 2 1 5 6

Member BundleCon

fig

BundleConfig() 100 1 0 1

Member BundleCon

fig

RegisterBundle

s(BundleCollec

tion) : void

68 1 5 5

Type FilterConfig 95 2 1 2 2

151

Member FilterConfig FilterConfig() 100 1 0 1

Member FilterConfig RegisterGlobal

Filters(GlobalFi

lterCollection)

: void

94 1 2 1

Type MvcApplica

tion

 84 2 2 8 5

Member MvcApplica

tion

Application_St

art() : void

76 1 7 4

Member MvcApplica

tion

MvcApplicatio

n()

100 1 1 1

Type RouteConfi

g

 90 2 1 4 3

Member RouteConfi

g

RegisterRoutes

(RouteCollecti

on) : void

82 1 4 2

Member RouteConfi

g

RouteConfig() 100 1 0 1

Type Site 62 26 5 28 65

Member Site FillPage() : void 53 8 8 15

Member Site ImageButton1

_Click(object,

ImageClickEve

ntArgs) : void

94 1 3 1

152

Member Site lbRegister_Clic

k(object,

EventArgs) :

void

94 1 3 1

Member Site lbSignOut_Clic

k(object,

EventArgs) :

void

51 5 11 21

Member Site LoadPage() :

void

49 8 11 22

Member Site Page_Load(obj

ect, EventArgs)

: void

91 1 1 2

Member Site Search_Click(o

bject,

EventArgs) :

void

80 1 5 2

Member Site Site() 100 1 1 1

Type TermofServ

ice

 100 2 4 2 1

Member TermofServ

ice

Page_Load(obj

ect, EventArgs)

: void

100 1 1 0

Member TermofServ

ice

TermofService(

)

100 1 1 1

Namesp

ace

 58 32 4 25 122

153

Type ManageAc

count

 58 32 4 25 122

Member ManageAc

count

AccEdit_Click(o

bject,

EventArgs) :

void

81 1 3 3

Member ManageAc

count

EditAccCancel_

Click(object,

EventArgs) :

void

73 1 3 5

Member ManageAc

count

EditAccSave_Cl

ick(object,

EventArgs) :

void

49 7 16 24

Member ManageAc

count

EditLogCancel_

Click(object,

EventArgs) :

void

73 1 3 5

Member ManageAc

count

EditLogSave_Cl

ick(object,

EventArgs) :

void

48 11 13 25

Member ManageAc

count

IsValidEmail(st

ring) : bool

75 2 1 5

Member ManageAc

count

LoginEdit_Click

(object,

EventArgs) :

void

81 1 3 3

Member ManageAc ManageAccou 100 1 1 1

154

count nt()

Member ManageAc

count

Page_Load(obj

ect, EventArgs)

: void

71 2 4 6

Member ManageAc

count

RefreshAccInfo

() : void

40 5 14 45

Namesp

ace

 75 129 5 81 397

Type Administra

torPage

 100 2 4 2 1

Member Administra

torPage

AdministratorP

age()

100 1 1 1

Member Administra

torPage

Page_Load(obj

ect, EventArgs)

: void

100 1 1 0

Type AdminSite 73 15 5 14 41

Member AdminSite Admin_Click(o

bject,

EventArgs) :

void

94 1 3 1

Member AdminSite AdminSite() 100 1 1 1

Member AdminSite Cr_Cat_Click(o

bject,

EventArgs) :

void

94 1 3 1

155

Member AdminSite Cr_Event_Click

(object,

EventArgs) :

void

94 1 3 1

Member AdminSite Cr_PType_Clic

k(object,

EventArgs) :

void

94 1 3 1

Member AdminSite Cr_User_Click(

object,

EventArgs) :

void

94 1 3 1

Member AdminSite Cr_Venue_Clic

k(object,

EventArgs) :

void

94 1 3 1

Member AdminSite lbSignOut_Clic

k(object,

EventArgs) :

void

53 3 10 19

Member AdminSite LoadPage() :

void

57 4 7 14

Member AdminSite Page_Load(obj

ect, EventArgs)

: void

100 1 1 1

Type CreateE_Ca

tegory

 69 9 4 22 28

Member CreateE_Ca

tegory

CateGrid_Row

Command(obj

63 2 11 8

156

ect,

GridViewCom

mandEventArg

s) : void

Member CreateE_Ca

tegory

CateGrid_Row

Updating(obje

ct,

GridViewUpda

teEventArgs) :

void

95 1 2 1

Member CreateE_Ca

tegory

CreateE_Categ

ory()

100 1 1 1

Member CreateE_Ca

tegory

Page_Load(obj

ect, EventArgs)

: void

86 2 4 2

Member CreateE_Ca

tegory

SubCatBut_Clic

k(object,

EventArgs) :

void

56 3 10 16

Type CreateEven

t

 61 46 4 61 147

Member CreateEven

t

buttonSave_Cli

ck(object,

EventArgs) :

void

36 13 31 59

Member CreateEven

t

ClearTextFields

() : void

70 1 2 6

Member CreateEven

t

CreateEvent() 100 1 1 1

157

Member CreateEven

t

CustomValidat

or_ServerValid

ate(object,

ServerValidate

EventArgs) :

void

88 2 2 1

Member CreateEven

t

CustomValidat

or1_ServerVali

date(object,

ServerValidate

EventArgs) :

void

86 2 3 1

Member CreateEven

t

CustomValidat

or2_ServerVali

date(object,

ServerValidate

EventArgs) :

void

88 2 2 1

Member CreateEven

t

CustomValidat

or3_ServerVali

date(object,

ServerValidate

EventArgs) :

void

86 2 3 1

Member CreateEven

t

eDetails_Item

Deleted(object

,

DetailsViewDel

etedEventArgs

) : void

81 1 3 3

Member CreateEven

t

eDetails_Item

Updated(objec

t,

DetailsViewUp

98 1 2 1

158

datedEventArg

s) : void

Member CreateEven

t

EventGrid_Ro

wDeleting(obje

ct,

GridViewDelet

eEventArgs) :

void

61 2 12 10

Member CreateEven

t

GridView1_Sel

ectedIndexCha

nging(object,

GridViewSelect

EventArgs) :

void

69 2 10 5

Member CreateEven

t

isImage(string)

: bool

71 5 1 4

Member CreateEven

t

ListBox_Select

edIndexChang

ed(object,

EventArgs) :

void

91 1 5 1

Member CreateEven

t

Page_Load(obj

ect, EventArgs)

: void

100 1 1 1

Member CreateEven

t

price_Click(obj

ect, EventArgs)

: void

41 8 26 46

Member CreateEven

t

ShowImages() :

void

67 2 4 6

159

Type CreateP_M

ethod

 71 6 4 13 16

Member CreateP_M

ethod

C_PTButt_Click

(object,

EventArgs) :

void

60 3 8 12

Member CreateP_M

ethod

CreateP_Meth

od()

100 1 1 1

Member CreateP_M

ethod

Page_Load(obj

ect, EventArgs)

: void

80 2 4 3

Type CreateVen

ue

 57 42 4 54 152

Member CreateVen

ue

AddSeat_Click(

object,

EventArgs) :

void

42 9 23 43

Member CreateVen

ue

ClearVenueFiel

ds() : void

63 1 4 10

Member CreateVen

ue

CreateVenue() 100 1 1 1

Member CreateVen

ue

CustomValidat

or_ServerValid

ate(object,

ServerValidate

EventArgs) :

void

86 3 1 1

160

Member CreateVen

ue

GridView1_Sel

ectedIndexCha

nging(object,

GridViewSelect

EventArgs) :

void

69 2 10 5

Member CreateVen

ue

isImage(string)

: bool

71 5 1 4

Member CreateVen

ue

Page_Load(obj

ect, EventArgs)

: void

75 2 6 4

Member CreateVen

ue

TextValidate(o

bject,

ServerValidate

EventArgs) :

void

90 1 2 1

Member CreateVen

ue

VenDetail_Ite

mDeleted(obje

ct,

DetailsViewDel

etedEventArgs

) : void

81 1 3 3

Member CreateVen

ue

VenDetail_Ite

mUpdated(obj

ect,

DetailsViewUp

datedEventArg

s) : void

86 1 4 2

Member CreateVen

ue

VenueGrid_Ro

wDeleting(obje

ct,

GridViewDelet

eEventArgs) :

61 2 13 10

161

void

Member CreateVen

ue

venueSave_Cli

ck(object,

EventArgs) :

void

35 14 32 68

Type Seatlevel 92 9 1 0 12

Member Seatlevel ID.get() : int 98 1 0 1

Member Seatlevel ID.set(int) :

void

95 1 0 1

Member Seatlevel Seatlevel(int,

int, int)

78 1 0 4

Member Seatlevel SeatTotal.get()

: int

98 1 0 1

Member Seatlevel SeatTotal.set(i

nt) : void

95 1 0 1

Member Seatlevel Section.get() :

int

98 1 0 1

Member Seatlevel Section.set(int)

: void

95 1 0 1

Member Seatlevel VID.get() : int 98 1 0 1

Member Seatlevel VID.set(int) :

void

95 1 0 1

Namesp 88 255 1 35 825

162

ace

Type Cart 84 5 1 1 12

Member Cart Cart() 76 1 1 4

Member Cart Cart(string,

List<int>)

76 1 1 4

Member Cart Cusname.get()

: string

98 1 0 1

Member Cart Cusname.set(s

tring) : void

95 1 0 1

Member Cart getList() :

List<int>

91 1 1 2

Type CartItem 93 17 1 3 17

Member CartItem CartItem() 100 1 0 1

Member CartItem catenum.get()

: int

98 1 0 1

Member CartItem catenum.set(in

t) : void

95 1 0 1

Member CartItem EventDate.get(

) : DateTime

98 1 1 1

Member CartItem EventDate.set(

DateTime) :

void

95 1 1 1

163

Member CartItem EventName.ge

t() : string

98 1 0 1

Member CartItem EventName.set

(string) : void

95 1 0 1

Member CartItem eventtime.get(

) : TimeSpan

98 1 1 1

Member CartItem eventtime.set(

TimeSpan) :

void

95 1 1 1

Member CartItem Price.get() :

decimal

98 1 1 1

Member CartItem Price.set(deci

mal) : void

95 1 1 1

Member CartItem seatid.get() :

int

98 1 0 1

Member CartItem seatid.set(int) :

void

95 1 0 1

Member CartItem seatnum.get() :

int

98 1 0 1

Member CartItem seatnum.set(in

t) : void

95 1 0 1

Member CartItem VenueName.g

et() : string

98 1 0 1

Member CartItem VenueName.se 95 1 0 1

164

t(string) : void

Type Category 92 7 1 0 10

Member Category cat.get() :

string

98 1 0 1

Member Category cat.set(string) :

void

95 1 0 1

Member Category Category(int,

string, string)

78 1 0 4

Member Category ID.get() : int 98 1 0 1

Member Category ID.set(int) :

void

95 1 0 1

Member Category subcat.get() :

string

98 1 0 1

Member Category subcat.set(stri

ng) : void

95 1 0 1

Type Connection 57 109 1 32 613

Member Connection AddEvents(Eve

nt) : int

56 3 7 14

Member Connection AddSeat(int,

double, int) :

void

64 2 5 10

Member Connection AddSeatCat(int

, int) : int

61 2 4 12

165

Member Connection AddSeatSectio

n(Seatlevel) :

void

65 1 4 8

Member Connection AddSubCat(stri

ng, string) : int

59 3 5 14

Member Connection AddVenue(Ven

ue) : int

56 3 7 14

Member Connection ChangeSeatSta

tus(int, string) :

void

65 2 4 9

Member Connection CheckUserExist

(string) : int

59 3 5 14

Member Connection Connection() 68 1 4 6

Member Connection CreateOrder(in

t, DateTime,

double, string)

: int

58 3 6 14

Member Connection CreatePtype(st

ring) : int

59 3 5 14

Member Connection CreateTicket(in

t, int, double) :

void

65 2 5 9

Member Connection CusRegister(int

, string, string,

string, string,

string, string,

string, string,

57 3 5 14

166

string, int) : int

Member Connection Decrypt(string)

: string

58 1 10 12

Member Connection Encrypt(string)

: string

55 3 10 15

Member Connection GetAvlSeat(int,

int, string,

string) :

DataSet

60 2 6 12

Member Connection GetCartinfo(int

) : CartItem

52 3 6 21

Member Connection GetCategory() :

ArrayList

55 3 7 18

Member Connection GetEbyServal(s

tring) : int

59 3 5 14

Member Connection GetEventDetail

(int) : ArrayList

50 3 8 25

Member Connection GetFromVenue

Info(int, int) :

int

58 3 5 15

Member Connection GetIDbyUserna

meandEmail(st

ring, string) :

int

59 3 5 14

Member Connection GetNumofUser

ByUsernameA

ndEmail(string,

60 3 5 13

167

string) : int

Member Connection GetNumofUser

ByUsernameA

ndPassword(st

ring, string) :

int

59 3 5 13

Member Connection GetOrderConfi

rmation(int) :

PurchaseOrder

56 3 6 17

Member Connection GetPaymentTy

pe() :

DataTable

61 2 6 12

Member Connection GetSubCat() :

DataTable

61 2 6 12

Member Connection GetSubCategor

yBycat(string) :

DataTable

61 2 6 12

Member Connection GetUpcomingE

vent() :

ArrayList

49 3 9 27

Member Connection GetUserbyUser

ID(string) :

ArrayList

48 3 7 28

Member Connection GetUserbyUser

nameandPass

word(string,

string) :

ArrayList

48 3 7 28

168

Member Connection GetUserID(stri

ng) : int

59 3 5 14

Member Connection NumofCat(stri

ng, string) : int

59 3 5 14

Member Connection NumofPtype(st

ring) : int

59 3 5 14

Member Connection pass(string,

string) : string

58 3 6 15

Member Connection SuggestEvent()

: DataTable

61 2 6 12

Member Connection Upcome_Event

() : DataTable

61 2 6 12

Member Connection UpcomeByCat(

string) :

DataTable

61 2 6 12

Member Connection UpcomeBySer

Val(string) :

DataTable

61 2 6 12

Member Connection UpcomeBySub

Cat(string) :

DataTable

61 2 6 12

Member Connection UpdateCustom

erInfo(string,

string, string,

string, string,

string, string,

string, string,

63 2 5 9

169

string) : void

Member Connection UpdatePassByI

D(string,

string) : void

65 2 5 9

Member Connection UpdatePassby

UnameEmail(st

ring, string,

string) : void

64 2 5 9

Member Connection UserRegister(st

ring, string) :

void

64 2 5 9

Type Event 91 34 1 2 42

Member Event Category.get()

: string

98 1 0 1

Member Event Category.set(st

ring) : void

95 1 0 1

Member Event Date.get() :

string

98 1 0 1

Member Event Date.set(string

) : void

95 1 0 1

Member Event Datetime.get()

: DateTime

98 1 1 1

Member Event Datetime.set(D

ateTime) : void

95 1 1 1

170

Member Event Desc.get() :

string

98 1 0 1

Member Event Desc.set(string

) : void

95 1 0 1

Member Event E_SubCat.get()

:

IQueryable<Ev

ent>

98 1 1 1

Member Event E_SubCat.set(I

Queryable<Eve

nt>) : void

95 1 1 1

Member Event Event() 100 1 0 1

Member Event Event(string,

string, string,

string, string,

string, string,

string)

66 1 0 9

Member Event ID.get() : int 98 1 0 1

Member Event ID.set(int) :

void

95 1 0 1

Member Event Minprice.get()

: double

98 1 0 1

Member Event Minprice.set(d

ouble) : void

95 1 0 1

Member Event Name.get() : 98 1 0 1

171

string

Member Event Name.set(strin

g) : void

95 1 0 1

Member Event Picture.get() :

string

98 1 0 1

Member Event Picture.set(stri

ng) : void

95 1 0 1

Member Event SeatingChart.g

et() : string

98 1 0 1

Member Event SeatingChart.s

et(string) : void

95 1 0 1

Member Event Status.get() :

string

98 1 0 1

Member Event Status.set(strin

g) : void

95 1 0 1

Member Event Subcategory.g

et() : string

98 1 0 1

Member Event Subcategory.se

t(string) : void

95 1 0 1

Member Event Time.get() :

string

98 1 0 1

Member Event Time.set(string

) : void

95 1 0 1

172

Member Event Totalavailable.

get() : int

98 1 0 1

Member Event Totalavailable.

set(int) : void

95 1 0 1

Member Event Totalsold.get()

: int

98 1 0 1

Member Event Totalsold.set(i

nt) : void

95 1 0 1

Member Event Venue.get() :

string

98 1 0 1

Member Event Venue.set(strin

g) : void

95 1 0 1

Type PaymentTy

pe

 93 6 1 0 8

Member PaymentTy

pe

ID.get() : int 98 1 0 1

Member PaymentTy

pe

ID.set(int) :

void

95 1 0 1

Member PaymentTy

pe

Name.get() :

string

98 1 0 1

Member PaymentTy

pe

Name.set(strin

g) : void

95 1 0 1

Member PaymentTy

pe

PaymentType() 100 1 0 1

173

Member PaymentTy

pe

PaymentType(i

nt, string)

82 1 0 3

Type Seat 91 15 1 0 22

Member Seat Event.get() :

string

98 1 0 1

Member Seat Event.set(strin

g) : void

95 1 0 1

Member Seat Eventid.get() :

int

98 1 0 1

Member Seat Eventid.set(int

) : void

95 1 0 1

Member Seat Id.get() : int 98 1 0 1

Member Seat Id.set(int) :

void

95 1 0 1

Member Seat Price.get() :

float

98 1 0 1

Member Seat Price.set(float)

: void

95 1 0 1

Member Seat SCat.get() :

string

98 1 0 1

Member Seat SCat.set(string)

: void

95 1 0 1

174

Member Seat Seat(int, int,

string, string,

float, string,

int)

68 1 0 8

Member Seat Snum.get() :

int

98 1 0 1

Member Seat Snum.set(int) :

void

95 1 0 1

Member Seat Status.get() :

string

98 1 0 1

Member Seat Status.set(strin

g) : void

95 1 0 1

Type SeatCatego

ry

 94 9 1 0 9

Member SeatCatego

ry

level.get() : int 98 1 0 1

Member SeatCatego

ry

level.set(int) :

void

95 1 0 1

Member SeatCatego

ry

minprice.get()

: int

98 1 0 1

Member SeatCatego

ry

minprice.set(in

t) : void

95 1 0 1

Member SeatCatego

ry

SeatCategory() 100 1 0 1

175

Member SeatCatego

ry

totalavailable.

get() : int

98 1 0 1

Member SeatCatego

ry

totalavailable.s

et(int) : void

95 1 0 1

Member SeatCatego

ry

totalsold.get()

: int

98 1 0 1

Member SeatCatego

ry

totalsold.set(in

t) : void

95 1 0 1

Type ShoppingC

art

 92 5 1 1 8

Member ShoppingC

art

AddSeatID(int)

: void

95 1 1 1

Member ShoppingC

art

CustomerID.ge

t() : int

98 1 0 1

Member ShoppingC

art

CustomerID.se

t(int) : void

95 1 0 1

Member ShoppingC

art

GetSeatID(int)

: int

86 1 1 2

Member ShoppingC

art

ShoppingCart(i

nt)

80 1 1 3

Type Users 90 28 1 0 47

Member Users Address1.get()

: string

98 1 0 1

176

Member Users Address1.set(s

tring) : void

95 1 0 1

Member Users Address2.get()

: string

98 1 0 1

Member Users Address2.set(s

tring) : void

95 1 0 1

Member Users City.get() :

string

98 1 0 1

Member Users City.set(string)

: void

95 1 0 1

Member Users Email.get() :

string

98 1 0 1

Member Users Email.set(strin

g) : void

95 1 0 1

Member Users FirstName.get(

) : string

98 1 0 1

Member Users FirstName.set(

string) : void

95 1 0 1

Member Users ID.get() : int 98 1 0 1

Member Users ID.set(int) :

void

95 1 0 1

Member Users LastName.get()

: string

98 1 0 1

177

Member Users LastName.set(s

tring) : void

95 1 0 1

Member Users Password.get()

: string

98 1 0 1

Member Users Password.set(s

tring) : void

95 1 0 1

Member Users Phone.get() :

string

98 1 0 1

Member Users Phone.set(strin

g) : void

95 1 0 1

Member Users State.get() :

string

98 1 0 1

Member Users State.set(string

) : void

95 1 0 1

Member Users Username.get(

) : string

98 1 0 1

Member Users Username.set(

string) : void

95 1 0 1

Member Users Users(int,

string, string,

string, string,

string, string,

string, string,

string, string,

string, string)

60 1 0 14

178

Member Users Users(string,

string, string,

string, string,

string)

70 1 0 7

Member Users UserType.get()

: string

98 1 0 1

Member Users UserType.set(s

tring) : void

95 1 0 1

Member Users Zipcode.get() :

string

98 1 0 1

Member Users Zipcode.set(str

ing) : void

95 1 0 1

Type Venue 90 20 1 0 37

Member Venue Address1.get()

: string

98 1 0 1

Member Venue Address1.set(s

tring) : void

95 1 0 1

Member Venue Address2.get()

: string

98 1 0 1

Member Venue Address2.set(s

tring) : void

95 1 0 1

Member Venue City.get() :

string

98 1 0 1

Member Venue City.set(string) 95 1 0 1

179

: void

Member Venue Desc.get() :

string

98 1 0 1

Member Venue Desc.set(string

) : void

95 1 0 1

Member Venue Id.get() : int 98 1 0 1

Member Venue Id.set(int) :

void

95 1 0 1

Member Venue Name.get() :

string

98 1 0 1

Member Venue Name.set(strin

g) : void

95 1 0 1

Member Venue SeatingChart.g

et() : string

98 1 0 1

Member Venue SeatingChart.s

et(string) : void

95 1 0 1

Member Venue State.get() :

string

98 1 0 1

Member Venue State.set(string

) : void

95 1 0 1

Member Venue Venue(int,

string, string,

string, string,

string, string,

65 1 0 10

180

string, string)

Member Venue Venue(string,

string, string,

string, string,

string, string,

string)

66 1 0 9

Member Venue Zip.get() :

string

98 1 0 1

Member Venue Zip.set(string) :

void

95 1 0 1

Namesp

ace

 72 40 4 47 102

Type Default 71 6 4 13 13

Member Default Default() 100 1 1 1

Member Default GetImages() :

void

59 3 7 10

Member Default Page_Load(obj

ect, EventArgs)

: void

88 2 2 2

Type E_detail 60 18 4 39 46

Member E_detail Buybtn_Click(o

bject,

EventArgs) :

void

55 8 18 14

181

Member E_detail DisplayEventD

etail() : void

57 2 13 12

Member E_detail E_detail() 92 1 2 1

Member E_detail Page_Load(obj

ect, EventArgs)

: void

59 5 12 11

Member E_detail TicketSer_Click

(object,

EventArgs) :

void

63 2 17 8

Type E_DetailErr 100 2 4 2 1

Member E_DetailErr E_DetailErr() 100 1 1 1

Member E_DetailErr Page_Load(obj

ect, EventArgs)

: void

100 1 1 0

Type E_SubCat 56 14 4 13 42

Member E_SubCat D_Binding() :

void

42 11 10 38

Member E_SubCat E_SubCat() 100 1 1 1

Member E_SubCat Page_Load(obj

ect, EventArgs)

: void

78 2 4 3

Namesp

ace

 94 7 1 0 7

182

Type EventSeat 94 7 1 0 7

Member EventSeat Capacity.get() :

int

98 1 0 1

Member EventSeat Capacity.set(in

t) : void

95 1 0 1

Member EventSeat evenid.get() :

int

98 1 0 1

Member EventSeat evenid.set(int)

: void

95 1 0 1

Member EventSeat EventSeat() 100 1 0 1

Member EventSeat levelID.get() :

int

98 1 0 1

Member EventSeat levelID.set(int)

: void

95 1 0 1

Namesp

ace

 87 177 2 54 351

Type CartItem 93 13 1 3 13

Member CartItem CartId.get() :

string

98 1 0 1

Member CartItem CartId.set(strin

g) : void

95 1 0 1

Member CartItem CartItem() 100 1 0 1

183

Member CartItem DateCreated.g

et() : DateTime

98 1 1 1

Member CartItem DateCreated.s

et(DateTime) :

void

95 1 1 1

Member CartItem ItemId.get() :

string

98 1 0 1

Member CartItem ItemId.set(stri

ng) : void

95 1 0 1

Member CartItem Product.get() :

Product

98 1 1 1

Member CartItem Product.set(Pr

oduct) : void

95 1 1 1

Member CartItem ProductId.get()

: int

98 1 0 1

Member CartItem ProductId.set(i

nt) : void

95 1 0 1

Member CartItem Quantity.get() :

int

98 1 0 1

Member CartItem Quantity.set(in

t) : void

95 1 0 1

Type Category 94 9 1 6 9

Member Category Category() 100 1 0 1

184

Member Category CategoryID.get

() : int

98 1 0 1

Member Category CategoryID.set

(int) : void

95 1 0 1

Member Category CategoryName

.get() : string

98 1 0 1

Member Category CategoryName

.set(string) :

void

95 1 0 1

Member Category Description.get

() : string

98 1 0 1

Member Category Description.set

(string) : void

95 1 0 1

Member Category Products.get()

:

ICollection<Pro

duct>

98 1 2 1

Member Category Products.set(IC

ollection<Prod

uct>) : void

95 1 2 1

Type Order 92 33 1 10 33

Member Order Address.get() :

string

98 1 0 1

Member Order Address.set(str

ing) : void

95 1 0 1

185

Member Order City.get() :

string

98 1 0 1

Member Order City.set(string)

: void

95 1 0 1

Member Order Country.get() :

string

98 1 0 1

Member Order Country.set(str

ing) : void

95 1 0 1

Member Order Email.get() :

string

98 1 0 1

Member Order Email.set(strin

g) : void

95 1 0 1

Member Order FirstName.get(

) : string

98 1 0 1

Member Order FirstName.set(

string) : void

95 1 0 1

Member Order HasBeenShipp

ed.get() : bool

98 1 0 1

Member Order HasBeenShipp

ed.set(bool) :

void

95 1 0 1

Member Order LastName.get()

: string

98 1 0 1

Member Order LastName.set(s 95 1 0 1

186

tring) : void

Member Order Order() 100 1 0 1

Member Order OrderDate.get(

) : DateTime

98 1 1 1

Member Order OrderDate.set(

DateTime) :

void

95 1 1 1

Member Order OrderDetails.g

et() :

List<OrderDeta

il>

98 1 2 1

Member Order OrderDetails.s

et(List<OrderD

etail>) : void

95 1 2 1

Member Order OrderId.get() :

int

98 1 0 1

Member Order OrderId.set(int

) : void

95 1 0 1

Member Order PaymentTrans

actionId.get() :

string

98 1 0 1

Member Order PaymentTrans

actionId.set(str

ing) : void

95 1 0 1

Member Order Phone.get() :

string

98 1 0 1

187

Member Order Phone.set(strin

g) : void

95 1 0 1

Member Order PostalCode.get

() : string

98 1 0 1

Member Order PostalCode.set

(string) : void

95 1 0 1

Member Order State.get() :

string

98 1 0 1

Member Order State.set(string

) : void

95 1 0 1

Member Order Total.get() :

decimal

98 1 1 1

Member Order Total.set(deci

mal) : void

95 1 1 1

Member Order Username.get(

) : string

98 1 0 1

Member Order Username.set(

string) : void

95 1 0 1

Type OrderDetai

l

 93 13 1 1 13

Member OrderDetai

l

OrderDetail() 100 1 0 1

Member OrderDetai

l

OrderDetailId.

get() : int

98 1 0 1

188

Member OrderDetai

l

OrderDetailId.s

et(int) : void

95 1 0 1

Member OrderDetai

l

OrderId.get() :

int

98 1 0 1

Member OrderDetai

l

OrderId.set(int

) : void

95 1 0 1

Member OrderDetai

l

ProductId.get()

: int

98 1 0 1

Member OrderDetai

l

ProductId.set(i

nt) : void

95 1 0 1

Member OrderDetai

l

Quantity.get() :

int

98 1 0 1

Member OrderDetai

l

Quantity.set(in

t) : void

95 1 0 1

Member OrderDetai

l

UnitPrice.get()

: double?

98 1 1 1

Member OrderDetai

l

UnitPrice.set(d

ouble?) : void

95 1 1 1

Member OrderDetai

l

Username.get(

) : string

98 1 0 1

Member OrderDetai

l

Username.set(

string) : void

95 1 0 1

Type Product 93 15 1 6 15

189

Member Product Category.get()

: Category

98 1 1 1

Member Product Category.set(C

ategory) : void

95 1 1 1

Member Product CategoryID.get

() : int?

98 1 1 1

Member Product CategoryID.set

(int?) : void

95 1 1 1

Member Product Description.get

() : string

98 1 0 1

Member Product Description.set

(string) : void

95 1 0 1

Member Product ImagePath.get(

) : string

98 1 0 1

Member Product ImagePath.set(

string) : void

95 1 0 1

Member Product Product() 100 1 0 1

Member Product ProductID.get(

) : int

98 1 0 1

Member Product ProductID.set(i

nt) : void

95 1 0 1

Member Product ProductName.

get() : string

98 1 0 1

190

Member Product ProductName.

set(string) :

void

95 1 0 1

Member Product UnitPrice.get()

: double?

98 1 1 1

Member Product UnitPrice.set(d

ouble?) : void

95 1 1 1

Type ProductCo

ntext

 93 11 2 7 11

Member ProductCo

ntext

Categories.get(

) :

DbSet<Categor

y>

98 1 2 1

Member ProductCo

ntext

Categories.set(

DbSet<Categor

y>) : void

95 1 2 1

Member ProductCo

ntext

OrderDetails.g

et() :

DbSet<OrderD

etail>

98 1 2 1

Member ProductCo

ntext

OrderDetails.s

et(DbSet<Orde

rDetail>) : void

95 1 2 1

Member ProductCo

ntext

Orders.get() :

DbSet<Order>

98 1 2 1

Member ProductCo

ntext

Orders.set(DbS

et<Order>) :

95 1 2 1

191

void

Member ProductCo

ntext

ProductContex

t()

98 1 1 1

Member ProductCo

ntext

Products.get()

:

DbSet<Product

>

98 1 2 1

Member ProductCo

ntext

Products.set(D

bSet<Product>

) : void

95 1 2 1

Member ProductCo

ntext

ShoppingCartIt

ems.get() :

DbSet<CartIte

m>

98 1 2 1

Member ProductCo

ntext

ShoppingCartIt

ems.set(DbSet

<CartItem>) :

void

95 1 2 1

Type ProductDat

abaseInitial

izer

 71 6 2 9 12

Member ProductDat

abaseInitial

izer

GetCategories(

) :

List<Category>

73 1 2 3

Member ProductDat

abaseInitial

izer

GetProducts() :

List<Product>

68 1 3 3

Member ProductDat

abaseInitial

ProductDataba 100 1 2 1

192

izer seInitializer()

Member ProductDat

abaseInitial

izer

Seed(ProductC

ontext) : void

70 3 7 5

Type ShoppingC

artAction

 62 37 1 34 115

Member ShoppingC

artAction

AddToCart(int)

: void

47 2 16 29

Member ShoppingC

artAction

Dispose() :

void

80 2 2 3

Member ShoppingC

artAction

EmptyCart() :

void

67 3 16 5

Member ShoppingC

artAction

GetCart(HttpC

ontext) :

ShoppingCartA

ction

75 2 1 4

Member ShoppingC

artAction

GetCartId() :

string

63 3 5 8

Member ShoppingC

artAction

GetCartItems()

:

List<CartItem>

73 1 11 3

Member ShoppingC

artAction

GetCount() :

int

69 2 10 4

Member ShoppingC

artAction

GetTotal() :

decimal

65 3 12 5

193

Member ShoppingC

artAction

RemoveItem(s

tring, int) :

void

52 4 15 19

Member ShoppingC

artAction

ShoppingCartA

ction()

92 1 1 1

Member ShoppingC

artAction

ShoppingCartI

d.get() : string

98 1 0 1

Member ShoppingC

artAction

ShoppingCartI

d.set(string) :

void

95 1 0 1

Member ShoppingC

artAction

UpdateItem(st

ring, int, int) :

void

52 4 14 19

Member ShoppingC

artAction

UpdateShoppi

ngCartDatabas

e(string,

ShoppingCartA

ction.Shopping

CartUpdates[])

: void

56 8 10 13

Type ShoppingC

artAction.S

hoppingCar

tUpdates

 100 0 1 0 0

Type ShoppingC

artActions

 62 40 1 35 130

Member ShoppingC

artActions

AddToCart(int)

: void

47 2 16 29

194

Member ShoppingC

artActions

Dispose() :

void

81 2 2 3

Member ShoppingC

artActions

EmptyCart() :

void

67 3 16 5

Member ShoppingC

artActions

GetCart(HttpC

ontext) :

ShoppingCartA

ctions

75 2 1 4

Member ShoppingC

artActions

GetCartId() :

string

63 3 5 8

Member ShoppingC

artActions

GetCartItems()

:

List<CartItem>

73 1 11 3

Member ShoppingC

artActions

GetCount() :

int

69 2 10 4

Member ShoppingC

artActions

GetTotal() :

decimal

65 3 12 5

Member ShoppingC

artActions

MigrateCart(st

ring, string) :

void

56 3 19 15

Member ShoppingC

artActions

RemoveItem(s

tring, int) :

void

52 4 15 19

Member ShoppingC

artActions

ShoppingCartA

ctions()

92 1 1 1

195

Member ShoppingC

artActions

ShoppingCartI

d.get() : string

98 1 0 1

Member ShoppingC

artActions

ShoppingCartI

d.set(string) :

void

95 1 0 1

Member ShoppingC

artActions

UpdateItem(st

ring, int, int) :

void

52 4 14 19

Member ShoppingC

artActions

UpdateShoppi

ngCartDatabas

e(string,

ShoppingCartA

ctions.Shoppin

gCartUpdates[]

) : void

56 8 10 13

Type ShoppingC

artActions.

ShoppingC

artUpdates

 100 0 1 0 0

Namesp

ace

 78 46 4 47 173

Type CheckoutC

ancel

 96 3 4 4 2

Member CheckoutC

ancel

Button1_Click(

object,

EventArgs) :

void

94 1 3 1

Member CheckoutC

ancel

CheckoutCanc

el()

100 1 1 1

196

Member CheckoutC

ancel

Page_Load(obj

ect, EventArgs)

: void

100 1 1 0

Type CheckoutC

onfirmatio

n

 81 5 4 9 11

Member CheckoutC

onfirmatio

n

Button1_Click(

object,

EventArgs) :

void

83 1 4 2

Member CheckoutC

onfirmatio

n

CheckoutConfi

rmation()

100 1 1 1

Member CheckoutC

onfirmatio

n

ConfirmationO

rder() : void

66 2 7 7

Member CheckoutC

onfirmatio

n

Page_Load(obj

ect, EventArgs)

: void

100 1 1 1

Type CheckoutEr

ror

 90 4 4 7 4

Member CheckoutEr

ror

Button1_Click(

object,

EventArgs) :

void

94 1 3 1

Member CheckoutEr

ror

CheckoutError(

)

100 1 1 1

197

Member CheckoutEr

ror

Page_Load(obj

ect, EventArgs)

: void

81 2 5 2

Type CheckoutR

eview

 47 34 4 44 156

Member CheckoutR

eview

CheckoutRevie

w()

100 1 1 1

Member CheckoutR

eview

DisplayTicketD

etail() : void

36 7 20 63

Member CheckoutR

eview

MakePayment

_Click(object,

EventArgs) :

void

43 9 17 36

Member CheckoutR

eview

Page_Load(obj

ect, EventArgs)

: void

71 3 5 5

Member CheckoutR

eview

TicketList_Item

Command(obj

ect,

DataListComm

andEventArgs)

: void

42 10 24 37

Member CheckoutR

eview

timer1_tick(ob

ject,

EventArgs) :

void

55 4 12 14

Namesp

ace

 94 9 1 2 9

198

Type PurchaseOr

der

 94 9 1 2 9

Member PurchaseOr

der

confirmationC

ode.get() :

string

98 1 0 1

Member PurchaseOr

der

confirmationC

ode.set(string)

: void

95 1 0 1

Member PurchaseOr

der

orderid.get() :

int

98 1 0 1

Member PurchaseOr

der

orderid.set(int)

: void

95 1 0 1

Member PurchaseOr

der

ordertotal.get(

) : decimal

98 1 1 1

Member PurchaseOr

der

ordertotal.set(

decimal) : void

95 1 1 1

Member PurchaseOr

der

purchasedate.

get() :

DateTime

98 1 1 1

Member PurchaseOr

der

purchasedate.s

et(DateTime) :

void

95 1 1 1

Member PurchaseOr

der

PurchaseOrder

()

100 1 0 1

Namesp 59 61 4 30 194

199

ace

Type FogotPass 66 7 4 13 28

Member FogotPass FGPaSubmit_Cl

ick(object,

EventArgs) :

void

51 3 9 22

Member FogotPass FogotPass() 100 1 1 1

Member FogotPass IsValidEmail(st

ring) : bool

75 2 1 5

Member FogotPass Page_Load(obj

ect, EventArgs)

: void

100 1 1 0

Type Login 61 13 4 18 49

Member Login ForgotPass_Cli

ck(object,

EventArgs) :

void

94 1 3 1

Member Login Login() 100 1 1 1

Member Login LoginButton_C

lick(object,

EventArgs) :

void

40 9 14 46

Member Login Page_Load(obj

ect, EventArgs)

: void

100 1 1 0

200

Member Login RequestRegist

er_Click(object

, EventArgs) :

void

94 1 3 1

Type Register 54 23 4 22 64

Member Register IsValidEmail(st

ring) : bool

75 2 1 5

Member Register Page_Load(obj

ect, EventArgs)

: void

100 1 1 0

Member Register Register() 100 1 1 1

Member Register RegisterButton

_Click(object,

EventArgs) :

void

36 19 17 58

Type ResetPass

word

 56 18 4 21 53

Member ResetPass

word

Page_Load(obj

ect, EventArgs)

: void

53 5 8 16

Member ResetPass

word

RePaCancel_Cli

ck(object,

EventArgs) :

void

78 1 4 3

Member ResetPass

word

RePaSubmit_Cl

ick(object,

EventArgs) :

44 11 15 33

201

8.2. SOFTWARE DEVELOPMENT LIFE CYCLE METHOD-LEVEL

METRICS

These are all the method-level metrics for the SDLC solution created from the main

spreadsheet of all the SDLC metrics.

Table 13: SDLC Method-Level Metrics

void

Member ResetPass

word

ResetPassword

()

100 1 1 1

Scope Approach Maintaina
bility
Index

Cyclomatic
Complexity

Depth
of
Inherit

Class
Coupling

Lines
of
Code

202

ance

Method SDLC 57 27 4 15 111

Method SDLC 76 14 3 5 32

Method SDLC 75 2 1 5 6

Method SDLC 95 2 1 2 2

Method SDLC 84 2 2 8 5

Method SDLC 90 2 1 4 3

Method SDLC 62 26 5 28 65

Method SDLC 100 2 4 2 1

Method SDLC 58 32 4 25 122

Method SDLC 100 2 4 2 1

Method SDLC 73 15 5 14 41

Method SDLC 69 9 4 22 28

Method SDLC 61 46 4 61 147

Method SDLC 71 6 4 13 16

Method SDLC 57 42 4 54 152

203

Method SDLC 92 9 1 0 12

Method SDLC 84 5 1 1 12

Method SDLC 93 17 1 3 17

Method SDLC 92 7 1 0 10

Method SDLC 57 109 1 32 613

Method SDLC 91 34 1 2 42

Method SDLC 93 6 1 0 8

Method SDLC 91 15 1 0 22

Method SDLC 94 9 1 0 9

Method SDLC 92 5 1 1 8

Method SDLC 90 28 1 0 47

Method SDLC 90 20 1 0 37

Method SDLC 71 6 4 13 13

Method SDLC 60 18 4 39 46

Method SDLC 100 2 4 2 1

Method SDLC 56 14 4 13 42

204

Method SDLC 94 7 1 0 7

Method SDLC 93 13 1 3 13

Method SDLC 94 9 1 6 9

Method SDLC 92 33 1 10 33

Method SDLC 93 13 1 1 13

Method SDLC 93 15 1 6 15

Method SDLC 93 11 2 7 11

Method SDLC 71 6 2 9 12

Method SDLC 62 37 1 34 115

Method SDLC 100 0 1 0 0

Method SDLC 62 40 1 35 130

Method SDLC 100 0 1 0 0

Method SDLC 96 3 4 4 2

Method SDLC 81 5 4 9 11

Method SDLC 90 4 4 7 4

Method SDLC 47 34 4 44 156

205

8.3. SOFTWARE DEVELOPMENT LIFE CYCLE CLASS-LEVEL

METRICS

These are all the class-level metrics for the SDLC solution created from the main

spreadsheet of all the SDLC metrics.

Table 14: SDLC Class-Level Metrics

Method SDLC 94 9 1 2 9

Method SDLC 66 7 4 13 28

Method SDLC 61 13 4 18 49

Method SDLC 54 23 4 22 64

Method SDLC 56 18 4 21 53

Scope Approac
h

Maintaina
bility
Index

Cyclomatic
Complexity

Depth
of
Inherit
ance

Class
Coupling

Lines
of
Code

Class SDLC 84 36 5 48 82

Class SDLC 58 32 4 25 122

Class SDLC 75 129 5 81 397

Class SDLC 88 255 1 35 825

206

8.4. SOFTWARE DEVELOPMENT LIFE CYCLE PROJECT-LEVEL

METRICS

These are all the metrics for the SDLC solution extracted from Visual Studio 2013 Code
Analyzer.

Table 15: SDLC Project-Level Metrics

Scope Maintainability
Index

Cyclomatic
Complexity

Depth of
Inheritance

Class
Coupling

Lines of Code

Project 80 833 5 210 2405

Class SDLC 72 40 4 47 102

Class SDLC 94 7 1 0 7

Class SDLC 87 177 2 54 351

Class SDLC 78 46 4 47 173

Class SDLC 94 9 1 2 9

Class SDLC 59 61 4 30 194

207

9. APPENDIX .NET CODE ANALYSIS TOOL

This appendix presents only the tool used for automating metric collection and

analysis.

9.1. .NET CODE ANALYSIS TOOL

The .NET Compiler Platform is a set of open-source compilers and code analysis

APIs for C# and Visual Basic.NET languages from Microsoft. The project notably includes

self-hosting versions of the C# and VB.NET compilers – compilers written in the languages

themselves. The compilers are available via the customary command-line programs but

also as APIs available locally from within .NET code. The tool exposes modules for analysis

of code and also dynamic compilation. Correctness, performance and maintainability are all

involved in creating quality code. Visual Studio diagnostic tools can help you to develop and

maintain high standards of code.

208

10. APPENDIX D METRICS

The following list shows the code metrics results that Visual Studio calculates:

10.1. MAINTAINABILITY INDEX

The maintainability index value is between 0 and 100 and signifies the comparative

way of sustaining the code. The higher the value the better the maintainability. A

good maintainability value is usually between 20 and 100. Between 10 and 19

shows that the code is reasonably maintainable. Between 0 and 9 and indicates poor

maintainability (Code Metrics Results, 2015).

10.2. CYCLOMATIC COMPLEXITY

Measures the structural complexity of the code. The flow of the program, how is

breaks into different direction is a measure of the cylomatic complexity. This

measurement involves the way the program loops branches. The more the

complexity the more the test coverage to completely test the code and also the more

difficulties maintaining the code (Code Metrics Results, 2015).

10.3. DEPTH OF INHERITANCE

Depth of inheritance designates the number of class definitions that spread to the

root of the class structure. If the root is deeper, the structure will be more difficult to

understand the methods involved (Code Metrics Results, 2015).

209

10.4. CLASS COUPLING

Measures how many classes directly depend on a unique class. This is actually

measuring the link between objects in a class. It is more disirable to have high

cohesion and low coupling. High coupling will be difficult to reuse and maintain

because of its many linkages to other classes or objects (Code Metrics Results,

2015).

10.5. LINES OF CODE

This is an approximation of number of lines in the code. The count is based on the

intermediate language (IL) compiled during metric generation, so it is not the exact count

of the number of lines in a source code. When the count is very high, there is a problem of

maitainability due to many line to work with and difficulties understanding the code (Code

Metrics Results, 2015).

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	8-2015

	Formal Specification Driven Development
	Titus Fofung
	Recommended Citation

	Microsoft Word - 455642-convertdoc.input.443096.xQwP_.docx

