
Provenance, Journal of the Society of Georgia Archivists

Volume 26 | Number 1 Article 4

January 2008

The Elusive Simplicity of Container-Level Encoded
Archival Description: Some Considerations
Leah Broaddus
Southern Illinois University Carbondale

Follow this and additional works at: https://digitalcommons.kennesaw.edu/provenance

Part of the Archival Science Commons

This Article is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in
Provenance, Journal of the Society of Georgia Archivists by an authorized editor of DigitalCommons@Kennesaw State University. For more
information, please contact digitalcommons@kennesaw.edu.

Recommended Citation
Broaddus, Leah, "The Elusive Simplicity of Container-Level Encoded Archival Description: Some Considerations," Provenance, Journal
of the Society of Georgia Archivists 26 no. 1 (2008) .
Available at: https://digitalcommons.kennesaw.edu/provenance/vol26/iss1/4

https://digitalcommons.kennesaw.edu/provenance?utm_source=digitalcommons.kennesaw.edu%2Fprovenance%2Fvol26%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/provenance/vol26?utm_source=digitalcommons.kennesaw.edu%2Fprovenance%2Fvol26%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/provenance/vol26/iss1?utm_source=digitalcommons.kennesaw.edu%2Fprovenance%2Fvol26%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/provenance/vol26/iss1/4?utm_source=digitalcommons.kennesaw.edu%2Fprovenance%2Fvol26%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/provenance?utm_source=digitalcommons.kennesaw.edu%2Fprovenance%2Fvol26%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1021?utm_source=digitalcommons.kennesaw.edu%2Fprovenance%2Fvol26%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/provenance/vol26/iss1/4?utm_source=digitalcommons.kennesaw.edu%2Fprovenance%2Fvol26%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu


38	 	 							Provenance	2008

1	 Conversation	 with	 University	 of	 Illinois	 math	 graduate	 student	 Dan	 Lior,	
October	30,	2007,	Champaign,	Illinois.

The Elusive Simplicity of Container-Level 
Encoded Archival Description: 
Some Considerations

Leah Broaddus

provenance,	vol.	XXVI,	2008

INTRODUCTION
	 Web-managed	finding	aids	require	streamlined,	efficient	
intellectual	organization	of	materials.		It	is	not	just	a	question	of	
aesthetics,	but	of	pragmatics.	A	more	consistent,	generalizable	
system	of	organization	aids	institutions	in	adopting,	migrating,	
and	 building	 on	 the	 structure.	 The	 generalizable	 elements	
of	 a	 solution	 can	 be	 repeated,	 predicted,	 explained,	 taught,	
and	 further	 developed.1	 They	 also	 lend	 the	 skeletal	 structure	
necessary	to	support	unique	elements.	
	 Pinning	down	the	“unique”	and	“non-unique”	elements	
of	archival	finding	aids	has	been	a	 long	and	complex	process.	
Part	of	the	early	impetus	for	doing	so	cooperatively	was	the	push	
toward	the	creation	of	an	Encoded	Archival	Description	(EAD)	
Document	 Type	 Definition	 (DTD).	 This	 was	 to	 be	 a	 scripted	
language,	 much	 like	 the	 more	 commonly	 known	 HyperText	
Markup	 Language	 (HTML),	 for	 describing	 and	 posting	 the	
standardized	elements	of	finding-aid	documents	to	the	World	



39The Elusive Simplicity of Container-Level EAD

2	Dennis	Meissner.	“First	Things	First:	Reengineering	Finding	Aids	for	Imple-
mentation	of	EAD,”	american archivist	60,	n.	4	(2007):	373.

3	 Janice	E.	Ruth.	 “Encoded	Archival	Description:	A	Structural	Overview,”	
american archivist	60,	n.	3	(1997):	316.

Wide	Web,	allowing	for	some	higher	interactive	Web	functions.	
According	 to	 Dennis	 Meissner,	 leading	 up	 to	 the	 release	 of	
version	1.0,	many	of	the	archivists	involved	in	the	push	seemed	
to	nurse	some	small,	defiant	hope	that	for	their	institutions	the	
smallest	 number	 of	 collection-description	 revisions	 possible	
would	be	required	in	order	to	bring	them	into	compliance	with	
new	Web	structures.2	Even	the	smallest	changes	to	any	of	the	
thousands	of	local	finding-aid	structures	would	require	human	
resources	 that	 few	 archives	 had	 available	 or	 could	 afford.	
Making	changes	to	physical	labels	on	thousands	of	boxes	was	so	
impracticable	that	the	very	idea	was	understandably	offensive	
to	contemplate.		
	 Choosing	 their	 battles,	 the	 creators	 of	 EAD,	 according	
to	Janice	E.	Ruth,	focused	on	creating	a	standard	hierarchical	
structure	 for	 collection-level	 data.3	 To	 their	 immense	 credit,	
it	 is	 now	 a	 relatively	 simple	 process	 to	 transfer	 collection-
level	 data	 between	 institutions	 and	 software	 platforms.	 The	
quest	 that	 archives	 have	 not	 yet	 followed	 to	 its	 labyrinthine	
conclusion,	however,	is	that	of	creating	a	software-compatible,	
peer-institution-transferable,	 standardized	 container-level	
Extensible	Markup	Language	(XML)	hierarchy.	In	the	interim,	
EAD	is	very	cleverly	structured	to	accommodate	a	near-infinite	
system	 of	 possible	 data-hierarchies	 and	 arrangements	 at	 the	
container	level,	and	no	single	piece	of	collection-administration	
software	can	or	could	ever	navigate	all	of	 them.	Hence,	every	
archive’s	container-list	structure	is	local	or	nearly	local.	
	 The	purpose	of	this	article	is	to	advocate	the	development	
of	a	structural	goal	towards	which	container-level	data	standards	
might	evolve	over	time,	and	to	contribute	to	the	needed	corpus	
of	hypotheses	in	order	to	arrive	at	a	solution	to	the	problem	of	
universal	 transfer.	 To	 this	 end,	 a	 hypothesis	 is	 posited	 which	
points	to	a	possible	standardized	solution.	Illustrative	examples	
are	then	presented.



40	 	 							Provenance	2008

4	Michael	Holland	and	Elizabeth	Nielsen.	“Gophers	in	the	Archives:	Planning	
and	Implementing	an	archives	and	Records	Management	Gopher”	provenance	
XIII	(1995):	27.

5	Ibid.,	44-45.

6	Daniel	V.	Pitti	and	Wendy	M.	Duff,	“Introduction,”	encoded archival De-
scription on the Internet,	Pitti	and	Duff,	eds.	(New	York:	The	Haworth	Press,	
Inc.,	2001),	3.

BACKGROUND
	 One	 frequent	 conception	 among	 newcomers	 to	 EAD	
and	 Web-database-driven	 administrative	 software	 for	 the	
management	of	finding	aids	 is	 that	 such	programs	and	DTDs	
were	written	so	that	archivists	would	be	able	to	put	finding	aids	
on	the	Web.	This	is	not	really	an	adequate	summary	of	the	goal,	
however.	Finding	aids	had	been	put	on	the	Web	by	many	simpler	
and	more	widely	supported	full-text	searchable	methods.	Even	
Gopher,	as	described	by	Michael	Holland	and	Elizabeth	Nielsen	
in	1995,	supported	full-text	searching	via	the	Internet.4	HTML	
documents	 were	 all	 as	 full-text	 searchable	 as	 a	 specialized	
archival		XML	document	later	would	be.	But	Holland	and	Nielsen	
also	believed	that	 full-text	was	not	enough;	 it	did	not	“relieve	
one	 of	 the	 responsibility	 of	 following	 established	 professional	
guidelines	for	arrangement	and	description,	including	rigorous	
subject	analysis	and	vocabulary	control.”5	According	to	Daniel	
Pitti	and	Wendy	M.	Duff	six	years	later,	“during	the	early	stages	
of	EAD,	many	asked	why	it	was	necessary,	arguing	that	HTML	
appeared	to	be	‘good	enough’	to	do	the	job.”6	This	is	probably	
because	there	was,	and	still	is,	some	lack	of	universal	clarity	as	
to	what	that	“job”	was	to	be.
	 EAD	 documents	 provide	 a	 large	 hierarchical	 template	
for	a	collection,	and	to	represent	a	collection	in	the	hierarchy	an	
archivist	must	first	shred	a	finding	aid	into	standardized	pieces	
and	group	them	into	levels.	The	point	of	the	shredding	and	the	
standardized	 groupings	 and	 hierarchies	 is	 to	 lend	 machine-
readable	 meaning	 to	 the	 archival	 information	 elements	 that	
underlie	 the	visual	display.	The	computer	needs	 to	be	able	 to	
use	 the	 arrangement	 to	 translate	 the	 content	 according	 to	 an	
XML	DTD	 that	 tells	 it	what	 to	 expect	 to	 find,	 and	where.	 As	
Stephen	J.	DeRose	phrased	it	in	1997,	“Structured	information	is	
information	that	is	analyzed.	[O]nly	when	information	has	been	



41The Elusive Simplicity of Container-Level EAD

7	Steven	J.	DeRose,	“Navigation,	Access,	and	Control	Using	Structured	Informa-
tion,”	american archivist	60,	n.	3	(1997):	299.

8	Ibid.,	301.

9	Ruth,	encoded archival Description,	316.

divided	up	by	such	an	analysis	and	the	parts	and	relationships	
have	been	identified,	can	computers	process	it	in	useful	ways.”7	
	 Because	EAD	XML	limits	what	tags	can	be	used	inside	
of	 other	 tags,	 the	 computer	 can	 discern	 infinitely	 recurring	
hierarchical	relationships.	For	computers,	“navigation	requires	
naming.”8	 The	 nature	 of	 the	 data	 is	 recognizable	 by	 looking	
at	where	the	data	is	filed.	The	location	serves	as	a	structurally	
defined	“name”	for	the	piece	of	data.	When	EAD	was	created,	
the	idea	was	that	if	every	institution	used	a	standard	EAD	tag-
system	to	store	its	data,	not	only	would	any	institution	be	able	
to	take	in	foreign	EAD	trees	from	any	other	and	display	them	
using	 a	 local	 stylesheet,	 but	 it	 would	 be	 possible	 to	 do	 other	
things,	 like	 create	 a	 stylesheet	 modeled	 to	 look	 like	 a	 Swiss	
cheese	version	of	a	 library	catalog	entry	 to	create	a	draft	of	a	
MAchine-Readable	 Cataloging	 (MARC)	 record.	 The	 designers	
of	EAD	intended	that	eventually	such	use	of	the	structure	would	
be	possible,	though	they	did	not	include	it	in	the	primary	EAD	
development	project.	
	 As	 Janice	 Ruth	 has	 written,	 “The	 group	 ...	 felt	 that	 it	
would	be	burdensome	and	unwieldy	for	EAD	to	be	structured	so	
that	a	complete	MARC	record	could	be	harvested	automatically	
from	the	SGML	markup,”	but	 “for	 those	MARC-like	elements	
already	 represented	 in	 EAD,	 the	 team	 added	 an	 optional	
ENCODING	ANALOG	attribute,	which	permits	the	designation	
of	 the	 applicable	 MARC	 field	 or	 subfield	 together	 with	 the	
authoritative	form	of	the	data.”9

	 A	person	does	not	need	 to	have	an	EAD	tag	hierarchy	
in	place	to	put	a	finding-aid	display	on	the	Web,	and	someone	
visiting	 a	 Web	 site	 can	 successfully	 use	 a	 non-EAD	 finding	
aid,	but	without	the	hierarchies	underneath	the	display,	or	an	
administrative	software	program	with	spreadsheet	hierarchies	
that	tell	what	is	grouped	with—and	ranked	under—what,	meta	
searches	cannot	recognize	the	nature	of	the	pieces	of	data	in	the	
finding	aid,	down	to	the	granular	level	required	for	a	successful	
federated	archival	reference-search.



42	 	 							Provenance	2008

10	Pitti	and	Duff,	3.

11	Xiaomu	Zhou,	“Examining	Search	Functions	of	EAD	Finding	Aids	Web	Sites,”	
Journal of archival organization	4,	n.	3/4	(2006):	106	(table).	

	 EAD	 was	 meant	 to	 allow	 a	 researcher	 to	 search	 the	
archives	of	the	entire	world	all	at	once,	by	typing	in	a	question	that	
could	be	interpreted	and	answered	by	all	the	many	and	different	
worldwide	 machines.	 Daniel	 Pitti	 and	 Wendy	 M.	 Duff	 called	
this	 ideal	 “union	access”	and	 they	predicted	 that	users	would	
“be	able	to	discover	or	locate	archival	materials	no	matter	where	
they	are	located	in	the	world”	and	that	“Libraries	and	archives	
will	be	able	 to	easily	share	 information	about	complementary	
records	 and	 collections	 and	 to	 ‘virtually’	 integrate	 collections	
related	 by	 provenance,	 but	 dispersed	 geographically	 or	
administratively.”10		This	was	to	be	accomplished	by	convincing	
everyone	to	use	 the	same	EAD	structure	and	applying	 tags	 in	
a	software-generalizable	manner.	It	was	also	meant	 to	ensure		
that	 if	 one	 university	 sent	 another	 a	 file	 containing	 one	 of	
their	 collections’	 EAD	 documents,	 the	 new	 institution	 could	
download	it	straight	into	their	EAD	reader	and	have	no	trouble	
whatsoever	digitally	storing	it	and	“parsing”	or	parceling	out	the	
data	into	local	hierarchies.	The	goal	was	that	the	local	program	
should	be	able	to	pack	a	foreign	finding	aid	away	with	the	rest	of	
the	native	finding	aids	just	as	if	it	had	been	created	locally.	This	
ideal,	however,	has	not	yet	come	to	fruition.	

FROM EAD TO COLLECTION ADMINISTRATIVE SOFTWARE
	 According	to	a	Web	survey	of	fifty-four	institutions	done	
by	Xiaomu	Zhou	 in	2006,	database-driven	structures	are	one	
of	the	more	popular	solutions	for	Web	delivery.11	These	special	
complex	table	systems	allow	an	archivist	 to	 list	 the	data	 from	
each	of	the	XML	finding	aids	one	after	another,	as	one	would	
enter	multiple	 line-entries	 in	a	flat	spreadsheet	 like	Excel,	yet	
still	keep	track	of	all	of	the	complex	hierarchies	and	relationship	
groupings.	 The	 most	 common	 of	 these	 table-management	
systems	that	lets	an	archivist	list	multiple	XML	documents-worth	
of	information	inside	a	single	traditional	table-structure	is	called	
MySQL.	 “My”	 is	 an	 adornment,	 but	 SQL	 means	 “Structured	
Query	Language.”	It	is	called	“query	language”	because	it	allows	
for	 lots	 of	 advanced	 search	 capabilities	 by	 standardizing,	 or	
structuring,	the	layers	of	hierarchy	inside	of	which	unique	data	



43The Elusive Simplicity of Container-Level EAD

12	 Chris	 Prom	 and	 Scott	 Schwartz,	 Archon	 Web	 site,	 <http://www.archon.
org/>	(accessed	October	15,	2007);	University	of	California	San	Diego	Librar-
ies,	New	York	University	Libraries	and	Five	Colleges,	Inc.	Libraries,	Archivists’	
Toolkit	Project	Web	site	<http://archiviststoolkit.org/>	(accessed	October	28,	
2008).	

13	Zhou,	“Examining	Search	Functions,”	103.

are	 described.	 By	 using	 a	 MySQL	 table	 to	 store	 the	 data,	 all	
kinds	of	programs,	not	 just	 those	used	 in	 the	 library-archives	
industry,	can	reach	in,	interpret	data	relationships,	and	pull	out	
whatever	pieces	of	the	data	they	desire	to	display	or	use	at	the	
time.		
	 Administrative	 software	 designed	 to	 input	 and	 extract	
data	 to	 and	 from	 these	 hierarchical	 spreadsheets,	 or	 MySQL-
managed	 tables,	 allows	 archivists	 to	 manipulate	 data	 using	
customized	 interfaces.	 For	 example,	 one	 administrative	
software	component	might	be	fill-in-the-blank	forms	and	menu	
selections	for	new	collection	data	entry,	rather	than	requiring	
raw-encoded	 EAD.	 An	 early	 example	 of	 this	 would	 be	 the	
University	 of	 Illinois’s	 Archon	 (Archives-Online)	 software-
development	 project	 co-authored	 by	 Chris	 Prom	 and	 Scott	
Schwartz.	Another	emerging	example	is	the	Archivists’	Toolkit	
Project,	 an	 ongoing	 project	 of	 the	 University	 of	 California	
San	Diego	Libraries,	New	York	University	Libraries,	and	Five	
Colleges,	Inc.	Libraries.	Archivists	enter	collection	information	
into	programs	like	Archon	and	Archivists’	Toolkit	using	fill-in-
the-blank	online	form	interfaces.	Ideally,	the	software	takes	the	
information	out	of	the	forms,	stores	it	in	tables,	and	then	uses	it	
to	create	as	many	formats	as	desired,	such	as	an	online	finding	
aid	 that	 can	 be	 displayed	 in	 a	 standardized	 EAD	 tag-code,	 or	
even	a	MARC	record	draft.12	If	any	of	the	early	examples	of	this	
kind	 of	 administrative	 software	 system	 were	 to	 become	 fully	
functional,	it	would	no	longer	be	essential	for	an	archivist	to	be	
able	to	encode	raw	EAD	or	program	and	customize	a	delivery	
system	 in	 order	 to	 display	 EAD	 XML	 documents,	 though	 he	
might	still	choose	to	do	so,	working	from	raw	output	options.	
With	that	in	mind,	some	archivists	are	already	making	the	move	
to	focusing	now	on	user	studies	and	home-grown	programming	
to	help	archives	collaborate	 to	develop	non-commercial,	 local	
delivery	 systems	 that	 utilize	 these	 untapped	 functionalities.13		



44	 	 							Provenance	2008

Though	 it	 is	 possible	 that	 these	 local	 systems	 might	 one	 day	
compete	and	eventually	merge	 into	one	world-system,	 for	 the	
moment	the	“union	access”	proposal	simply	becomes	more	and	
more	encumbered	as	each	institution	or	region	strikes	out	on	its	
own.		
	 Software	 programmers	 generally	 attempt	 to	 write	
collection-administration	 programs	 so	 broad	 and	 open	 as	
to	 accommodate	 multi-institutions’	 local	 container-level	
structurings.	That	way	the	software	can	be	marketed	and	sold	
broadly.	 The	 software,	 once	 installed,	 however,	 requires	 that	
the	 local	 institution	 hire	 its	 own	 programmer	 to	 “finish	 off”	
and	 customize	 the	 functionality	 so	 that	 it	 will	 accommodate	
the	 locally	 chosen	 hierarchical	 structures	 for	 the	 container-
list,	and	the	end	result	is	that	inevitably	the	software	becomes	
locally	distinct	again,	incompatible	with	other	offshoots	of	the	
same	 original	 marketed	 package.	 Because	 many	 archives	 are	
still	 trading	 individual	 data	 sets	 between	 these	 systems	 using	
EAD	 documents	 as	 the	 “Esperanto”	 of	 the	 digital	 finding-aid	
lexicon,	 it	 might	 be	 efficient	 to	 consider	 that	 some	 further	
standardization	of	the	underlying	hierarchical	structure	of	EAD,	
even	 within	 single	 institutions,	 would	 simplify	 the	 process	 of	
delivery-system	development	and	EAD	markup,	to	the	benefit	
of	many.

PROBLEM
	 Structured	 database	 software	 systems	 like	 Archon,	
Archivists’	 Toolkit,	 and	 other	 homegrown	 local	 and	 regional	
systems	which	import	or	read	EAD-structured	XML	documents	
can	be	programmed	to	import	collection-level	data	from	other	
managed	databases	with	relatively	few	problems.	A	moderately	
experienced	 programmer	 can	 steer	 the	 collection-level	 fields	
from	one	EAD	XML-generating	program	into	any	other,	writing	
a	script	with	instructions	that	allow	the	computer	to	carry	out	
the	 transfer	 automatically.	 However,	 when	 it	 comes	 to	 the	
container-level	data,	much	of	this	potential	for	clean	exchange	
falls	apart.	It	is	rare	and	perhaps	unheard	of	for	one	archive’s	
local	 EAD-compatible	 administration-software	 platform	 to	
trade	 container-level	 data	 smoothly	 with	 another’s,	 or	 for	 a	
program	 that	 searches	 multiple	 institutions’	 data	 with	 any	
search	method	other	 than	full-text	keyword	searching	to	read	
and	negotiate	 in	a	 fully	 functional	manner	among	all	of	what	



45The Elusive Simplicity of Container-Level EAD

are	fundamentally	dissonant	EAD	container-level	management	
systems.	
	 When	an	archivist	makes	the	decision	to	start	entering	
finding	 aids	 into	 a	 table-driven	 piece	 of	 software	 instead	 of	
hand-coding	them,	he	or	she	faces	several	hurdles.	If	previous	
archivists	 have	 already	 implemented	 one	 of	 many	 arbitrary	
systems	 for	 hand-coding	 EAD	 documents	 one-by-one,	 it	 is	
unlikely	 that	 the	 box	 lists	 will	 upload	 correctly	 into	 any	 new	
commercial	 collection-management	 program.	 The	 collection-
level	 data	 will	 fare	 better,	 generally,	 but	 collection-level	 data	
are	 usually	 just	 a	 few	 pages	 long	 at	 most,	 whereas	 container-
level	 data	 may	 go	 on	 for	 thirty	 or	 forty	 pages.	 With	 that	 in	
mind,	 the	 archivists	 who	 previously	 have	 been	 hand-coding	
EAD	documents	for	the	institution	will,	quite	understandably,	
want	 to	 stick	 with	 their	 current	 non-database-structured	
process.	If	they	are	in	compliance	with	EAD	display	standards,	
they	will	see	no	advantage	to	re-coding	or	migrating	hundreds	
or	 thousands	 of	 lines	 of	 data,	 just	 so	 that	 it	 can	 be	 uploaded	
and	stored	in	a	particular	piece	of	software	that	allows	for	the	
same	sort	of	controlled	searching,	particularly	if	that	software,	
unlike	 the	 perceived-EAD,	 is	 not	 standard	 to	 all	 institutions.	
But	 again,	 though	 by	 hand-coding	 they	 are	 complying	 with	
allowable	structures	of	EAD,	all	they	may	have	accomplished	in	
hand-coding	the	hundreds	of	finding	aids	is	little	more	than	if	
they	had	coded	them	in	HTML	so	far	as	compatibility	with	other	
institutions	and	software	goes.	Yet	compatibility	was	a	primary	
purpose	for	EAD	and	all	of	the	recent	collection-administrative	
software.	Looking	ahead	a	little,	even	if	the	legacy	finding	aids	
must	 remain	 unchanged,	 surely	 at	 least	 the	 newly	 digitized	
finding	aids	could	be	brought	into	compliance	with	some	agreed-
upon	standard.	
	 Many	institutions	that	produce	articles	and	have	sought	
a	voice	in	EAD	development	naturally	also	have	a	large	legacy	of	
encoded	finding	aids.	On	the	other	hand,	many	of	the	institutions	
concerned	with	reading	the	literature	and	using	the	standards	
may	not	yet	have	implemented	EAD,	or	may	have	been	hand-
coding	a	very	small,	limited	set	of	finding	aids.	Some	archives	
are	 still	 trying	 to	 evaluate	 their	 first	 software	 solutions.	 As	
Zhou	points	out,	“Although	a	variety	of	archival	institutions	are	
considering	joining	the	EAD	community,	it	is	primarily	college	
and	university	archives	and	special	collections	that	have	adopted	



46	 	 							Provenance	2008

14	Ibid.,	100.	

EAD	to	encode	their	finding	aids.”14	 It	would	seem,	therefore,	
still	useful	to	establish	a	current	recommendation	for	optimal	
EAD-encoding	structure	down	to	the	container	list,	such	that	any	
unencumbered	institution	could	be	invited	to	adhere,	if	interested	
in	achieving	the	most	seamless	EAD	field-mapping	for	exchange	
of	finding	aids	with	future	peer	institutions	and	administration	
software	 platforms,	 realizing	 the	 fullest	 potential	 of	 having	 a	
specialized	XML	DTD.	If	an	institution	chooses	not	to	follow	the	
optimal-structure	recommendation,	they	could,	of	course,	still	
code	a	document	in	an	acceptable,	 locally	administrated	form	
of	EAD	that	would	function	as	a	freestanding	document	on	the	
World	Wide	Web,	even	if	the	container-level	data	would	not	be	
available	for	interchange	between	institutions.	But	this	is	not	an	
optimal	level	of	cooperation	for	an	academic	and	professional	
field	in	the	digital	age.	Working	together,	as	with	the	collection-
level	 data,	 it	 would	 seem	 possible	 for	 archivists	 to	 unite	 and	
determine	 an	 optimal,	 software-interpretable,	 generalizable	
skeleton	upon	which	to	model	new	container	lists.	
	 The	 most	 frequent	 explanations	 given	 for	 the	 lack	 of	
standardization	at	the	container	level	are	usually	one	or	both	of	
these	two	arguments:

1.	Archival	collections	are	unique;	and
2.	We	cannot	relabel	boxes,	so	physical	order	has	to	trump		
	 intellectual	coherence	in	the	digital	realm.

	
	 These	 arguments	 are	 based	 in	 part	 on	 a	 lack	 of	
understanding	 of	 the	 term	 “standardization”	 in	 the	 context	
of	 information	 technology.	 Standardization	 in	 a	 searchable	
database	 is	an	attempt	to	define	what	 is	new	or	unique	about	
an	element	by	building	on	what	is	known	and	non-unique	about	
it.	Take	library	cataloging	for	an	example.	Library	of	Congress	
subject	headings	form	a	standardized	lexicon	which	effectively	
serves	two	purposes:	

1.	It	provides	an	established	vocabulary	for	describing		 	
	 	materials	in	consistent	manner	across	institutions;	and
2.	It	demonstrates	by	rules	and	by	consistency	the	manner		
	 by	which	further	unique	words	may	be	added	to	that		 	
	 vocabulary.	



47The Elusive Simplicity of Container-Level EAD

	 The	 cataloger	 places	 the	 new,	 unique	 heading	 in	 a	
meaningful	 non-unique	 position	 within	 the	 existing	 body	 of	
vocabulary	 so	 that	 others	 can	 understand	 it,	 as	 well	 as	 locate	
it	for	later	applications.	The	system	of	using	headings	and	the	
process	 for	 creating	 new	 headings	 are	 standardized,	 whereas	
the	headings	themselves	remain	unique.
			 The	second	argument	is	a	symptom	of	under-utilization	
of	information	technology,	whether	EAD	or	spreadsheet	table-
based	collection-administrative	software	programs	in	general.		
It	is	possible	to	represent	illogical	physical	orderings	with	very	
logical	Web-accessible	 intellectual	descriptive	documentation.	
Historically,	 users	 have	 not	 “browsed”	 archival	 shelves,	 and	
boxes	from	a	single	collection	have	not	had	to	sit	next	to	each	
other	 on	 the	 shelf.	 Now,	 however,	 it	 has	 become	 possible	 to	
create	 virtual,	 browseable	 electronic	 shelves	 by	 presenting	
a	 falsely	 organized	 view	 of	 a	 collection	 that	 can	 quite	 easily	
refer	back	to	a	disordered	physical	reality.	EAD	and	collection-
administrative	 programs	 can	 impose	 some	 useful	 regulation	
on	this	wide-open	descriptive	situation	so	that	researchers,	as	
well	as	archivists,	can	make	informed	assumptions	about	where	
to	 look	 electronically	 for	 descriptive	 data	 even	 if	 the	 physical	
arrangement	of	the	materials	is	unique.	Many	of	the	scenarios	
that	archivists	 think	of	as	being	a	part	of	 the	 “uniqueness”	of	
collections	are	actually	the	result	of	physical	happenstance,	and	
are	furthermore	quite	commonplace	among	repositories,	even	
though	they	may	disobey	the	current	descriptive	practices.	For	
instance:

•	A	series	extends	over	three	boxes	with	nonconsecutive		 	
	 numbers.
•	A	series	ends	mid-box	and	another	begins.
•	A	new	box	needs	to	be	inserted	between	two	old	boxes
	 intellectually,	even	though	its	box	number	is	much	higher.
•	The	collection	is	too	small	for	series,	but	there	are	five		 	
	 distinct	intellectual	themes	inside	each	of	the	two	boxes.

	 Collections	may	sometimes	be	old,	and	they	may	have	
been	 processed	 before	 certain	 descriptive	 practices	 were	 put	
in	 place,	 or	 perhaps	 the	 current	 descriptive	 practice	 seems	
unclear.	 	 EAD,	 for	 its	 part,	 allows	 for	 a	 plethora	 of	 solutions,	
without	 making	 it	 clear	 which	 one	 will	 result	 in	 the	 most	



48	 	 							Provenance	2008

15	Ruth,	encoded archival Description,	315.

frequently	 applied	 structure	 for	 each	 case.	 If	 archivists	 could	
agree	 upon	 a	 standardized,	 optimal	 hierarchical	 container-
level	shell	schema	for	newly	encoded	finding	aids	that	directed	
structuring	 of	 these	 common	 scenarios,	 then	 even	 if	 archives	
keep	legacy	templates	intact,	looking	to	a	more	collective	future,	
it	 might	 enable	 commercial	 programmers	 to	 create	 programs	
with	higher	delivery	functions	for	a	larger,	more	viable	customer	
base,	rather	than	having	to	spend	their	energies	creating	one-
by-one	 compatibility	 patches	 for	 isolated	 customer	 systems.	
One	common	illustration	of	a	container-level	element	that	has	
eluded	much-needed	standardization	is	the	concept	of	the	box.
	 Hierarchically,	in	an	XML	document,	depending	on	one’s	
local	 system	 setup,	 a	 box	 tag	 might	 not	 be	 able	 to	 be	 opened	
and	closed	as	a	subcomponent	within	a	series	because	it	might	
also	contain	folders	of	another	series.	Concurrently,	a	single	box	
may,	in	some	institutions,	be	listed	in	a	single	EAD	document	
twice,	but	it	risks	confusing	those	other	institutions’	brands	of	
EAD	administrative	software	that	either	disallow	repetition,	or	
interpret	it	as	an	order	to	overwrite	on	import.	Within	a	single	
institution,	some	of	the	finding	aids	for	collections	treat	boxes	
as	 intellectual	 sub-sub-series	 bearing	 scope	 notes	 and	 dates,	
and	 others	 treat	 boxes	 as	 strictly	 physical	 locations	 whereas	
folders	bear	scope	notes	and	dates.	Sometimes	within	a	single	
finding	 aid	 it	 is	 possible	 to	find	 examples	 of	 both	 intellectual	
and	strictly	physical	treatments	of	“box.”	In	the	context	of	prose	
and	 individual	 free-standing	 EAD	 documents,	 such	 variety	 is	
permissible.	 For	 a	 programmer	 or	 a	 database,	 each	 of	 these	
forks	in	the	road	of	local	treatment	requires	an	entirely	separate	
customized	programming	path	and	an	increasingly	sophisticated	
understanding	on	the	part	of	a	non-cognitive	machine	in	order	
to	carry	out	each	small	function	across	institutions.	
	 According	 to	 the	 creators	 of	 EAD,	 “It	 was	 agreed	 that	
the	intellectual	arrangement	of	the	archival	materials	was	more	
important	and	more	permanent	than	the	physical	order,	and	the	
DTD	was	designed	accordingly.”15		It	may	be	impossible	to	settle	
on	one	single	standardized	physical	structure	that	would	meet	
all	collection-descriptive	needs.	But	on	the	other	hand,	it	might	
be	possible	for	intellectual	structure	to	ascend	still	further	and	
form	a	more	restrictive,	standardized	tag	structure	for	marked-



49The Elusive Simplicity of Container-Level EAD

up	EAD	container	lists.	If	physical	elements	could	be	exclusively	
relegated	 to	 serving	 an	 attribute-function	 within	 intellectual	
structure,	 it	 might	 in	 fact	 grant	 archivists	 more	 freedom	 of	
physical	 description	 without	 disrupting	 software-compatible	
container-level	arrangements.	
			 For	 optimal	 software	 and	 peer	 compatibility,	 tag	
hierarchy	must	be	consistent,	even	if	attributes	are	flexible.	On	
a	family	tree,	for	instance,	the	grandmother	must	always	be	the	
mother’s	 mother—she	 cannot	 sometimes	 be	 the	 sister	 of	 the	
grandchild,	but	 she	still	may	have	any	physical	attributes	 she	
likes.	For	optimal	software-compatibility,	EAD	XML	structure	
could	prohibit	physical	containers,	such	as	a	box,	from	bearing	
any	 intellectual	 sub-elements	 such	 as	 titles	 and	 dates.	 Any	
physical	item	such	as	a	box	or	folder	entered	in	EAD	could	be	
required	to	have	some	level	of	intellectual	structure	surmounting	
and	 anchoring	 it,	 from	 which	 it	 would	 consistently	 inherit	 its	
descriptive	traits.		
	 In	 XML	 markup	 terms,	 this	 would	 mean	 something	
like	 displacing	 all	 of	 the	 <container>	 tags	 and	 attributes	 and	
assigning	them	as	attributes	within	intellectual	tags	such	as	the	
<c>	tags.		The	“box”	might	not	sometimes	be	hierarchically	above	
a	series	and	at	other	 times	below	 it,	but	 rather	always	above.	
Alternately,	in	order	for	“container”	to	be	used	as	a	hierarchical	
indicator	within	EAD	tag	structure,	it	could	be	made	to	suffer	
a	concrete	hierarchical	boundary.	All	of	the	optional	container	
attributes,	 like	 “type,”	would	need	 to	be	physical	descriptions	
that	corresponded	to	the	hierarchical	station	of	that	box	or	its	
sub-elements.	Some	elements	of	physical	structure	in	a	finding	
aid	happen	to	sync	up	consistently	with	intellectual	structure.	
One	such	element	is	“folder,”	or	“file.”		No	two	series	or	subseries	
need	ever	be	housed	within	a	single	folder	in	any	archive.	For	
that	 reason,	 “file”	 is	 clearly	 always	 arranged	 hierarchically	
below	 the	 series	 and	 subseries,	 never	 above.	 “File”	 is	 thus	
already	 hierarchically	 stable	 as	 a	 part	 of	 the	 intellectual	 <c>	
tag	 structure,	 and	 the	 <container>	 tag’s	 attribute-destination	
“folder”	 should	 conceivably	 be	 able	 to	 cede	 to	 “file.”	 “Folder”	
is	 consistently	 intellectual,	 as	 well	 as	 consistently	 physical,	
whereas	“box”	is	only	consistently,	reliably	physical.



50	 	 							Provenance	2008

16	Society	of	American	Archivists,	Encoded	Archival	Description	Working	Group,	
encoded archival Description application Guidelines: version 1.0	(Chicago:	
Society	of	American	Archivists,	1999),	200-203.

ILLUSTRATIONS
	 For	those	already	using	XML,	or	for	those	planning	to	
design	 customized	 collection	 administrative	 software,	 one	 of	
the	 best	 ways	 to	 explicate	 this	 type	 of	 suggestion	 is	 through	
the	 use	 of	 illustrations.	 As	 explained	 in	 section	 7.2.5	 of	 the	
EAD	 Application	 Guidelines,	 version	 1.0,	 one	 XML	 tag	 can	
only	 inherit	 an	 attribute	 from	 another	 if	 it	 falls	 within	 the	
family	of	that	tag,	after	the	opening	parent-tag	and	before	the	
closing	 one.16	 Similarly,	 in	 a	 normal	 XML	 structure	 designed	
for	 an	 archive,	 if	 there	 were	 a	 series	 that	 consisted	 mostly	 of	
boxes,	 an	 XML	 document	 could	 assign	 the	 default	 container-
type	“box”	at	the	series	level.	This	is	not	to	say	that	the	series	
would	be	one	box,	but	rather	that	the	attribute	“container,”	 if	
used	by	any	tag	within	this	series	would	always	be	of	the	type	
“box.”	All	the	tags	that	were	listed	under	the	jurisdiction	of	that	
series,	 if	 they	 invoked	 the	 attribute	 “container”	 by	 assigning	
a	 container	 number,	 would	 inherit	 the	 container-type	 “box”	
attribute,	 without	 having	 to	 say	 so	 each	 time,	 unless	 another	
were	specified	locally	to	override	it.	
	 If	an	archivist	had	a	software	program	for	administrating	
collection	data,	he	could	input	a	complex	legacy	container	list	
such	as	 the	one	below,	exactly	 in	 the	progression	 it	 is	written	
here:

Series	1:	Correspondence,	packaged	awards,	and	standing	volume
	 Box	1
	 	 Folder	44	—	Correspondence	with	Jim	and	Ralph,	1920-1940
	 	 	 Item	1	—	Letter	from	Jim
	 	 	 Item	2	—	Letter	from	Ralph
	 Box	2
	 	 Folder	1	—	Correspondence,	2004-2006
	 Package	1
	 	 Item	1	—	Framed	Award
	 	 Item	2	—	Framed	Award
	 Item	1	(a	free-standing	unboxed	item)	—	Book

Behind	 the	 scenes,	 meanwhile,	 the	 administration	 software	
program	 could,	 among	 other	 things,	 format	 this	 list	 into	



51The Elusive Simplicity of Container-Level EAD

software	and	database-friendly,	consistently	hierarchical	XML	
code	similar	to	that	shown	in	Example A:

<c01	level=“series”	container-type=“box”>1
	 <did>
	 <unittitle	>
	 	 Correspondence,	packaged	awards,	and	standing	volume
	 </unittitle>
	 <c02	level=“file”	container=1>44
	 	 <did>
	 	 	 <unittitle>
	 	 	 Correspondence	with	Jim	and	Ralph
	 	 	 	 <unitdate	type=“inclusive”>
	 	 	 	 1920-1940
	 	 	 	 </unitdate>
	 	 	 </unittitle>
	 	
	 	 	 <c03	level=“item”>1
	 	 	 	 <did>
	 	 	 	 	 <unittitle	>Letter	from	Jim
	 	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>

	 	 	 <c03	level=“item”>2
	 	 	 	 <did>
	 	 	 	 	 <unittitle	>	Letter	from	Ralph
	 	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>
	 	 </did>
	 </c02>

	 <c02	level=“file”	container=2>1
	 	 <did>
	 	 	 <unittitle>
	 	 	 	 Correspondence
	 	 	 	 <unitdate	type=“inclusive”>
	 	 	 	 2004-2006
	 	 	 	 </unitdate>
	 	 	 </unittitle>
	 	 </did>
	 </c02>

	 <c02	level=“item”	container-type=“package”	container=1>1
	 	 <did>
	 	 	 <unittitle>
	 	 	 Framed	award
	 	 	 </unittitle>



52	 	 							Provenance	2008

	 	
	 	 </did>
	 </c02>
	 <c02	level=“item”	container-type=“package”	container=1>2
	 	 <did>
	 	 	 <unittitle>
	 	 	 Framed	award
	 	 	 </unittitle>
	 	
	 	 </did>
	 </c02>
	 <c02	level=“item”>3
	 	 <did>
	 	 	 <unittitle>
	 	 	 Book
	 	 	 </unittitle>
	 	
	 	 </did>
	 </c02>
	 </did>
</c01>

	 If	 a	 series	 were	 composed	 of	 two	 boxes	 and	 each	 box	
held	a	different	kind	of	content	that	required	titling,	rather	than	
assigning	 titles	 to	 the	boxes	 themselves	 in	XML,	 the	archivist	
would	 need	 to	 impose	 an	 extra	 level	 of	 “subseries”	 structure	
within	 the	 code	 (not	 on	 the	 box-labels	 of	 the	 actual	 boxes—
just	 electronically	 within	 EAD)	 using	 unnumbered	 subseries.	
Unnumbered	 <c>	 tags	 might,	 for	 example,	 always	 indicate	
that	a	 level	existed	only	 in	XML	hierarchical	structure,	not	 in	
the	 physical	 world.	 The	 two	 unnumbered	 subseries	 could	 be	
assigned	the	container-type	“box”	and	a	container	number	(box	
number)	which	would	indicate	the	existence	of	a	physical	box.	
As	before,	one	might	also	here	assign	the	container-type	“box”	
at	the	series	level,	so	that	it	could	be	left	out	of	all	the	subsequent	
“subseries”	 level	 tags	that	 fell	hierarchically	within	the	parent	
series.
	 The	 archivist	 would	 enter	 the	 collection	 into	 an	
administrative	 software	 database	 in	 the	 following	 structural	
order:

Series	1
	 Subseries	(unnumbered)	—	Correspondence	with	Mr.	Smith,			
	 	 	 1940-1943
	 	 Description:	This	subseries	contains	correspondence	with		



53The Elusive Simplicity of Container-Level EAD

	 	 	 Mr.	Smith.
	 	 Box	34	
	 	 	 Folder	1	—	Letters	about	floorboards
	 	 	 Folder	2	—	Letters	about	curtains
	 Subseries	(unnumbered)	—	Correspondence	with	Mr.	Jones,			
	 	 	 1940-1942
	 	 Description:	This	subseries	contains	correspondence	with		
	 	 	 Mr.	Jones.
	 	 Box	35	
	 	 	 Folder	1	—	Letters	about	light	fixtures
	 	 	 Folder	2	—	Letters	about	carpeting

The	 software	 would	 then	 generate	 roughly	 the	 XML	 code	 of	
Example B:

<c01	level=“series”;	container-type=“box”>1
	 <did>
	 <c02	level=“subseries”;	container=34>
	 	 <did>
	 	 	 <unittitle	>
	 	 	 Correspondence	with	Mr.	Smith
	 	 	 	 <unitdate	type=“inclusive”>
	 	 	 	 1940-1943
	 	 	 	 </unitdate>
	 	 	 </unittitle>
	 	 	 <scopecontent>
	 	 	 This	subseries	contains	correspondence	with	Mr.	Smith
	 	 	 </scopecontent>

	 	 	 <c03	level=“file”>1
	 	 	 	 <did>
	 	 	 	 <unittitle>	Letters	about	floorboards
	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>
	 	 	 <c03	level=“file”>2
	 	 	 	 <did>
	 	 	 	 <unittitle>	Letters	about	curtains
	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>
	 	 </did>

	 </c02>
	 <c02	level=“subseries”;	container=35>
	 	 <did>
	 	 	 <unittitle	>
	 	 	 Correspondence	with	Mr.	Jones



54	 	 							Provenance	2008

	 	 	 <unitdate	type=“inclusive”>
	 	 	 	 	 1940-1942
	 	 	 	 	 </unitdate>
	 	 	 </unittitle>
	 	 	 <scopecontent>
	 	 	 This	subseries	contains	correspondence	with		Mr.	Jones
	 	 	 </scopecontent>
	 	 	 <c03	level=“file”>1
	 	 	 	 <did>
	 	 	 	 <unittitle>	Letters	about	light	fixtures
	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>
	 	 	 <c03	level=“file”>2
	 	 	 	 <did>
	 	 	 	 <unittitle>Letters	about	carpeting
	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>

	 	 </did>
	 </c02>
	 </did>
</c01>

	 If	a	collection	were	too	small	 traditionally	to	have	had	
series,	and	was,	 for	example,	housed	within	a	single	box,	one	
would,	for	the	sake	of	optimal	XML	software-usable	structure,	
impose	an	unnumbered	(again,	electronic-only)	series	upon	the	
entire	collection,	assign	a	container	type	“box”	and	box	number	
to	indicate	an	actual	physical	box	within	that	series,	continuing	
by	 adding	 all	 of	 the	 files	 within	 it.	 Administrative	 software	
data	 entry	 would	 be	 something	 like	 the	 following,	 where	 the	
unnumbered	series	bears	the	descriptive	data	that	would	have	
belonged	to	the	box:

Series	(unnumbered)	—	Collection	of	correspondence	with	everyone,		
	 1920-1963
	 Box	1
	 	 Folder	1	—	Letters	about	floorboards
	 	 Folder	2	—	Letters	about	light	fixtures
	 	 Folder	3	—	Letters	about	rats



55The Elusive Simplicity of Container-Level EAD

XML	output	would	look	similar	to	Example C:

<c01	level=“series”;	container-type=“box”;	container=1>
	 <did>
	 <unittitle>Collection	of	correspondence	with	everybody
	 	 <unitdate	type=“inclusive”>1920-1963</unitdate>
	 <unittitle>
	 <scopecontent>This	series	contains	correspondence	with	Misters		 	
	 	 Yardley,	Smith,	and	Jones
	 </scopecontent>
	 <c02	level=“file”>	1
	 	 <unittitle>Letters	about	floorboards
	 	 </unittitle>
	 </c02>
	 <c02	level=“file”>2
	 	 <did>
	 	 <unittitle>Letters	about	light	fixtures
	 	 </unittitle>
	 	 </did>
	 </c02>
	 <c02	level=“file”>3
	 	 <did>
	 	 <unittitle>Letters	about	rats
	 	 </unittitle>
	 	 </did>
	 </c02>
	 </did>
</c01>

	 If	parts	of	a	single	series	appeared	in	multiple	boxes	that	
also	 contained	 parts	 of	 other	 series,	 the	 container	 attribute’s	
destination	number	(the	box	number)	could	be	repeated	as	an	
attribute	within	multiple	file-level	or	other	series-level	tags,	and	
software	 programmers	 would	 need	 to	 know	 that	 they	 should		
consistently	treat	multiple-mention	of	any	container	number	as	
an	“add-to”	command	rather	than	an	“overwrite”	command	or	
a	data	entry	error.	Data	entry	example:

Series	1
	 Subseries	(unnumbered)	—	Correspondence	with	Mr.	Smith
	 	 Box	2	
	 	 	 Folder	30	—	Letters	about	floorboards
	 	 	 Folder	31	—	Letters	about	curtains



56	 	 							Provenance	2008

Series	2
	 Subseries	(unnumbered)	—	Correspondence	with	Mr.	Jones
	 	 Box	2	
	 	 	 Folder	32	—	Letters	about	light	fixtures
	 	 	 Folder	33	—	Letters	about	carpeting
Series	3
	 Subseries	(unnumbered)	—	Correspondence	with	Mr.	Yardley
	 	 Box	3	
	 	 	 Folder	1	—	Letters	about	rats

The	XML	output	might	look	something	like	Example D:

<c01	level=“series”;	container-type=“box”>1
	 <did>
	 <c02	level=“subseries”;	container=2>
	 	 <did>
	 	 	 <unittitle	>
	 	 	 Correspondence	with	Mr.	Smith
	 	 	 </unittitle>

	 	 	 <c03	level=“file”>30
	 	 	 	 <did>
	 	 	 	 <unittitle>	Letters	about	floorboards
	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>
	 	 	 <c03	level=“file”>31
	 	 	 	 <did>
	 	 	 	 <unittitle>	Letters	about	curtains
	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>
	 	 </did>

	 </c02>
	 </did>
</c01>
<c01	level=“series”;	container-type=“box”>2
	 <did>
	 <c02	level=“subseries”;	container=2>
	 	 <did>
	 	 	 <unittitle	>
	 	 	 Correspondence	with	Mr.	Jones
	 	 	 </unittitle>

	 	 	 <c03	level=“file”>32
	 	 	 	 <did>
	 	 	 	 <unittitle>	Letters	about	light	fixtures



57The Elusive Simplicity of Container-Level EAD

	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>
	 	 	 <c03	level=“file”>33
	 	 	 	 <did>
	 	 	 	 <unittitle>Letters	about	carpeting
	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>

	 	 </did>
	 </c02>
	 </did>
</c01>
<c01	level=“series”;	container-type=“box”>3
	 <c02	level=“subseries”;	container=3>
	 	 <did>
	 	 	 <unittitle	>
	 	 	 Correspondence	with	Mr.	Yardley
	 	 	 </unittitle>

	 	 	 <c03	level=“file”>1
	 	 	 	 <did>
	 	 	 	 <unittitle>	Letters	about	rats
	 	 	 	 </unittitle>
	 	 	 	 </did>
	 	 	 </c03>
	 	 </did>
	 </c02>
	 </did>
</c01>

CONCLUSION
	 EAD	in	its	current	version	requires	that	archivists	impose	
one	of	many	possible	intellectual	structures	upon	a	box	list,	and	
simply	by	applying	one	of	any	number	of	possible	 structures,	
EAD	 serves	 to	 enable	 advanced-search	 functionalities	 locally.	
EAD	 markup	 tags	 can	 serve	 as	 markers/anchors	 for	 local	
programs	and	search	engines,	regardless	of	where	they	are	or	
how	they	are	arranged	at	a	single	institution.	However,	without	
consistency	across	collections,	it	is	difficult	to	find	administrative	
software	 that	can	work	 for	all	 the	disparately	structured	EAD	
documents.	The	problem	is	compounded	when	archivists	try	to	
create	cooperative	finding-aid	databases	across	institutions.	If	a	
functional	solution	could	lead	to	the	standardized	treatment	of	
the	container	list	across	archives,	then	that	alone	might	greatly	
reduce	the	amount	of	time	programming-code	software	designers	



58	 	 							Provenance	2008

must	 currently	 invest	 in	 composing	 compatible	 import	 and	
export	protocols.	An	optimal	standard	for	software	consciously	
structuring	 EAD	 container-level	 data	 as	 a	 whole	 would	 be	 an	
asset	 for	 both	 collection-administration	 system	 programmers	
and	archivists	at	institutions	who	just	want	to	know	“the	best”	
software	solution	for	managing	and	encoding	the	finding	aids	
for	 the	 Web.	 The	 axiom	 of	 Occam’s	 Razor,	 that	 “the	 simplest	
solution	is	probably	the	best	one,”	when	it	is	used	as	a	limit	on	
creativity	and	exploration,	is	probably	disputed	for	good	reason	
in	 many	 scenarios,	 but	 once	 the	 rules	 of	 a	 solution	 are	 fully	
explored	and	understood,	simplicity	has	its	structural	benefits.	
An	optimized	standard	may	not	preclude	the	usefulness	of	other	
local	or	legacy	solutions,	yet	it	is	certainly	at	least	an	asset	that	
archivists	might	want	to	have	in-pocket,	for	application	where	
there	is	a	choice.	

Leah Broaddus	is	the	university	archivist	at	Southern	Illinois	
University	 Carbondale’s	 Morris	 Library	 Special	 Collections	
Research	 Center.	 She	 is	 a	 graduate	 of	 the	 MLS	 special	
collections	program	at	Indiana	University	Bloomington	and	has	
a	background	in	Perl	programming	and	library	instruction.	With	
the	assistance	of	SIUC	information	services	staff	programmer	
Mickey	 Soltys,	 the	 mentorship	 of	 Special	 Collections	 director	
Pam	Hackbart-Dean,	and	the	support	of	University	of	 Illinois	
archivists	 Chris	 Prom	 and	 Scott	 Schwartz,	 she	 recently	 led	
the	 implementation	 of	 online-finding-aid	management	 at	 her	
institution.	 Research	 support	 was	 provided	 by	 SIUC	 Morris	
Library.


	Provenance, Journal of the Society of Georgia Archivists
	January 2008

	The Elusive Simplicity of Container-Level Encoded Archival Description: Some Considerations
	Leah Broaddus
	Recommended Citation


	v26_2008_006

