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SUMMARY

Nowadays, social networks are considered as the very important medium for

the spreading of information, innovations, ideas and influences among individuals.

Viral marketing is a most prominent marketing strategy using word-of-mouth adver-

tising in social networks. The key problem with the viral marketing is to find the set

of influential users or seeds, who, when convinced to adopt an innovation or idea, shall

influence other users in the network, leading to large number of adoptions. Therefore,

the major problem is to find the initial, well positioned set of individuals who will

be able to create word-of-mouth cascades. In our study, we propose and study the

competitive viral marketing problem from the host perspective, where the host of the

social network sells the viral marketing campaigns to its customers and keeps control

of the allocation of seeds. Seeds are allocated based on the budget of the company

and in such a way that it is creates the bang for the buck for each company (or Fair

Seed Allocation). Our study is to propose a new diffusion model considering the host

perspective in Online Social Networks (OSN) where the network model will have both

positive and negative edges. We take both negative and positive influences into con-

sideration and propose a novel problem, named Blocking Negative Influential Node

Set(BNINS) selection problem, to identify the positive node set such that the number

of negatively activated nodes is minimized for all competitors from host perspective.

In other words, we try to block the negative influence propagation in social networks

from host perspective. We first provide our newly proposed diffusion model, define

the novel BNINS problem, propose a solution to the problem (BNINS-GREEDY) and

simulation results to validate the proposed solution. We also compare our work with

the related work [16] to check the performance of BNINS-GREEDY under different

vii



metrics and we observed that BNINS-GREEDY outperforms the others algorithm. In

Random Graph, on average, BNINS-GREEDY blocks the negative influence 17.22%

more than CLDAG. At the same time, it achieves 7.6% more positive influence propa-

gation than CLDAG. We also analysed the BNINS-GREEDYś performance by testing

it on various performance metrics that includes total number of positive and negative

activations with varying number of nodes, varying number of companies and vary-

ing number of time iterations etc. The results clearly shows that BNINS-GREEDY

achieved its objective of minimizing the negative influence with great proficiency.
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CHAPTER I

INTRODUCTION

A social network is a graph of interactions as well as relationships among a group

of individuals. Social networks also play an important role as a medium to spread

influences, ideas and information among its users. An innovation or idea can either die

out quickly or can make considerable impacts upon the population, for example, rise

of political movement in unstable society, cell phone usage among college students or

adoption of new drug in medical profession etc. In order to understand the degree to

which such ideas are adopted, it is very critical to have the understanding of how the

dynamics of adoption are likely to unfold within the underlying social network: the

degree to which individuals are expected to be affected or influenced by the decisions

of their colleagues and friends, or the degree to which the word-of-mouth effects will

take hold.

Recently Domingos and Richardson motivated by the applications to marketing

posed a fundamental algorithmic problem for such frameworks [19, 20]. Let us assume

that we have some data on the social network. Therefore, by estimating the extent

to which individuals are influenced by each other, we would like to put a new prod-

uct in the market hoping that it will be adopted by large number of individuals in

the network. The premise of viral marketing is to conduct product promotions using

social influences between individuals cycles friends, families, or co-workers. The prod-

ucts are promoted by giving free or discounted items to highly influential individuals

(initial adopters) and the product adoptions are believed to be improved through

word-of-mouth effects. This technique is considered very effective due to trusted re-

lationships and is also gaining huge amount of popularity these days. This is called
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as viral marketing. When we have more than one player competing with each other

for similar products in the same social network then it is called competitive viral

marketing.

Motivated by this background, the community of researchers has recently studied

the aspect of influence maximization in social networks for viral marketing [1, 2, 3,

4, 5, 6, 7, 8, 9]. Influence Maximization is a fundamental data mining problem con-

cerning the propagation of ideas, opinions, and innovations through social networks.

Kempe et al. [1] formulated influence maximization as a problem in discrete opti-

mization: Given a network graph G with pair wise user influence probabilities on

edges, and a positive number k, find k users, such that by activating them initially,

the expected spread of influence is maximized under certain propagation models. Two

basic influence cascade models are used in these works: Independent Cascade (IC)

Model and Linear Threshold (LT) Model. Kempe et. al. in [1] originally defined

these models. In both the models, social network is modelled as a graph that starts

from an initial set of vertices. The stochastic process states how influence is propa-

gated from this initial set to their neighbors and neighbors of neighbors. This goes on

until the process ends and a some part of the social network is activated. Therefore,

the influence maximization problem is defined as finding an optimal seed set of size

at most k such that the expected number of vertices activated from this seed set,

referred to as its influence spread, is maximized. But the point of consideration is:

How to choose the few key individuals to use as the initial sets for this process? In

[19, 20] Richardson and Domingos considered this question in a probabilistic model

of interaction; heuristics were also given to choose the customers having large overall

effect on the network, and methods were also developed to infer the influence data

necessary for posing such kind of problems.

On the other hand, none of the above works considered one critical aspect of

influence maximization that we usually come across in the real world. That is, not
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only positive opinions propagate through the networks but the negative opinions do

too. And also, negative opinions are often more contagious and stronger in affecting

peoples decisions than positive opinions. For example, if we hear from one of our

friend that he/she found a cockroach in his/her meal in the nearby restaurant then

more likely we will try to avoid that restaurant for sometime. Furthermore, we

are likely to convey our other friends regarding this incident, discouraging them to

patronize the restaurant even though we did not have this bad experience ourselves.

On the contrary, if we hear some good words about some restaurant, then we are more

likely to visit there but probably we will spread the good words about it only after

experiencing a good meal there ourselves. Therefore negative opinions have much

more impact on an individual than positive impact.

The impact of negative opinions and its asymmetry with positive opinions have

long been studied in the social psychology literature [21, 23, 24, 25]. In these studies,

researchers proved that negative impact is mostly much stronger as well as dominant

than positive impact in shaping peoples decisions. Negative influences are also ex-

plicitly addressed in marketing literatures: individuals spreading negative opinions

are called detractors whereas people spreading positive opinions are called promoters

[22]. Hence, while studying the problem of influence maximization, it should be crit-

ically considered to incorporate the emergence and propagation of negative opinions

into the IC model as well as LC model and study the impact of negative influence

together with positive influence. This is exactly the goal of our study.

On the other hand, in social networks, it is often a case when there are different

campaigns and opposite ideas, information or products competing for their influence

in the social network. Motivated by this observation, we concentrate on the problem of

how to block the diffusion of an opposing company as much as possible. For example,

when there is a negative rumour spreading about a company, then that company

wants to react quickly by selecting seed nodes to inject the positive opinions about

3



itself to fight against the negative rumour. X. He et al. [16] considered the influence

blocking maximization with only two competing companies but in our work we will

generalize that model to k number of companies. And hence we proposed a novel

problem called Blocking Negative Influential Node Set Problem (BNINS) in social

networks where we have a negative seed set and we have to find all k positive seed

sets to minimize the effect of negative influences for k companies.

Another observation is that, in most of the research works, the seeds (initial

adopters) are selected based on some criteria or algorithm but this is actually not the

case. The social networks are owned by third party like Twitter, LinkedIn, Facebook

etc. The proprietary of the social graph is kept secret for privacy as well as company

benefits. The owner of the social network is called ”host” and companies trying to

run the viral campaigns are called ”clients” for the hosts. Clients cannot access the

social network directly and hence they cannot choose seeds for their campaign by

themselves. Clients would need the host permission and privilege to run. Motivated

by this observation, we propose and study the naive problem of competitive viral

marketing from the host perspective. In this study, we consider a business model

with host offering viral marketing as a paid service to its clients. The clients will

hence be able to run the campaigns by specifying the seed budget i.e. the number of

seeds desired. The host of the social network controls the seed selection and allocation

to companies. The seeds will be allocated in such a way that guarantees the bang

for the buck for all companies is nearly same. The bang for the buck for a company

is the cost benefit ratio between the expected number of adopters of its product over

its number of seeds. We call this the amplification factor, as it reflects how investing

in a small number of seeds gets amplified by the network effect. If the host allocates

the seeds carelessly to its clients, it can result in a wide variance in the amplification

factors, leading to resentful clients.

The rest of the Thesis is organized as follows: Chapter II gives the details about
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related works. Chapter III discusses the problem definition. This involves three

sections, Section 3.1 introduces the network model and then in Section 3.2 proposes

the new diffusion model. Section 3.3 formally defines the problem. BNINS-GREEDY

algorithm is presented in chapter IV. Chapter V discusses the simulation setting and

the results. Chapter VI confirms the Validation of Simulation. Finally Chapter VII

concludes the Thesis work and discusses the future work.
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CHAPTER II

RELATED WORK

This section summarizes previous related research work on diffusion models, influence

maximization problem and influence blocking maximization.

2.1 Network Model

Social network is usually modelled as a graph G = (V, E), where V is the set of nodes

representing individuals and E is the set of edges representing relationships between

each pair of individuals. Every edge is associated with weight value representing

social influences on pair of individuals. In many research works, two kinds of Network

Models are considered: Signed and Unsigned Network Model. These are discussed as

follows:

2.1.1 Unsigned Network Model

In Unsigned Network Model, the edges are neutral. They do not have positive or

negative weights associated with their edges. Both Independent Cascade (IC) model

[1, 7, 13, 14, 28] and Linear Threshold (LT) [1] model use unsigned networks. Kempe

et al. [1] studied the problem of identifying the influential set of nodes in order to

maximize the spread of influence. The greedy algorithm proposed by Kempe et al.[1]

and its improvements are too slow and unscalable. Therefore, W. Chen [7] considered

scalability factor and designed a new heuristic algorithm which is easily scalable to

billions of nodes as well as edges in the experiments. S. Bharthi [13] studies the

influence maximization problem when multiple companies are competing to promote

their products or services using viral marketing. C. Budak [14] considered the case

of limiting the spread of misinformation in social networks. Z. Wang [28] proposed a

6



new influence propagation model as the extension of the classic IC model in which he

added the propagation probability of each node in order to distinguish the influence

and propagation in social networks.

2.1.2 Signed Network Model

In Signed Network Model, the edges can hold both positive as well as negative in-

fluence. Both Linear Threshold (LT) model [16, 17, 26] and Independent Cascade

(IC) model [27] use signed networks. X. He [16] studied the competitive influence

propagation problem and he proposed a model in which one entity tries to block the

influence propagation of the opposing entity as much as possible. This is done by

strategically selecting a number of seed nodes that could initiate its own influence

propagation whereas W. Lu [17] considered maximizing the spread of information

from the host perspective without considering negative influences. Y. Ganjali [26]

considered the influence maximization problem from a different perspective. Instead

of identifying the most influential individuals, he generalized the problem of most in-

fluential groups. In [27], Y. Li investigated the influence diffusion as well as influence

maximization in OSNs. He also considered the friend and foe relationships among

individuals. These are modeled using positive and negative edges on signed networks.

J. He [29] discussed Minimum sized Positive Influential Node Set (MPINS) selection

problem, to identify the minimum set of influential nodes, such that every node in the

network can be positively influenced by these selected nodes no less than a threshold

θ. In our research work, we use the signed network model.

2.2 Diffusion Model

Kempe et al. [1] summarized two extensively studied influence diffusion models:

Independent Cascade (IC) Model and Linear Threshold (LT) Model based upon the

previous works [10, 11, 12]. M. Granovetter [10] studied the models of collective

behavior, based on behavioral thresholds, which account for collective outcomes by
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simple principles of aggregation whereas T. Schelling in his book [11], discussed about

how small and seemingly meaningless decisions and actions by individuals often lead

to significant unintended consequences for a large group. Kempe et al. [1] also proved

that the generalized versions of these two models are equivalent. Then they proposed

a greedy algorithm to solve the influence maximization problem under these two

influence diffusion models. In both the models, we have a social graph G = (V, E)

with edges (u, v) ε E labelled by influence weights p(u,v) ε (0, 1]. Each node is either

active or inactive. An active node never becomes inactive. At time 0, a set of nodes

called seeds become active.

2.2.1 Linear Threshold Model

In the LT model [1, 16, 17, 26], we have to consider a node which is influenced by its

neighbors. This model derives that the sum of the weights of all neighboring nodes

must be less than or equal to one. Each node v chooses a threshold θv uniformly at

random from [0, 1]. If at time t, the total incoming weight from active in-neighbours

of v is greater than or equal to θv, then v becomes active and this node tends to

adopt the tendencies of its neighboring nodes. The important constraint here is that

the node becomes active from inactive but not vice versa. So, the major study of this

paper is to work on the influence diffusion and influence maximization taking the LT

model concept. The model assumes that a node becomes active from inactive but not

vice versa.

2.2.2 Independent Cascade Model

Independent Cascade Model (IC) model [1, 7, 13, 14, 27, 28] describes that an active

node has the probability of p to activate one of its neighboring nodes. The IC model

is very basic and well-studied diffusion model. In the IC model, a process is initiated

with an initial set of active nodes A0 or seeds, and then the process unfolds in discrete

steps. When a node v becomes active in step t, then it has one chance to activate

8



one of its inactive neighboring node w. The node v succeeds in activating w with

probability p(v,w). If v succeeds, then node w becomes active in step t + 1. However,

whether v succeeds in its attempt or not , it cannot make any further attempts in

next rounds. This process continues until no other activations are possible. In case,

if node w has many incoming edges from numerous newly activated nodes, then their

attempts are sequenced in an arbitrary order.

2.3 Influence Maximization Problem and its Variations

2.3.1 Influence Maximization Problem

Given a propagation model (e.g., IC or LT) and a seed set S ⊆ V , the expected

number of active nodes at the end of the process, or the (expected) spread, is denoted

by σ(S). The influence maximization problem asks for a set S ⊆ V , | S | = k,

such that σ(S) is maximized, where k is an input parameter. In LT and IC model,

Influence Maximization is considered as is NP-hard [1]. Kempe et al.[1], also proved

that the function σ(S) is monotone as well as submodular. With these properties,

the simple greedy algorithm at each iteration greedily extends the current seed set

S with the node w providing the highest marginal gain value σ(S ∪ {w}) − σ(S),

gives a (1 − 1/e − ε)- approximation to the optimum [1, 18] (for any ε > 0). In

the later works, more efficient as well as scalable influence maximization algorithms

were developed [4, 7, 9]. A. Krause [4] presented a new methodology to select the

nodes in order to detect outbreaks of dynamic processes spreading over a graph. Prior

solutions to the influence maximization problem, such a greedy algorithm of Kempe

[1] and its modifications are slow and unscalable whereas other heuristic algorithms

do not provide consistently good performance on influence spreads. C.Wang in [7]

designed a new heuristic algorithm that is easily scalable to millions of nodes and

edges. L. Zhang in [9] showed that computing the exact influence spread in the LT

model is NP-hard, even if there is only one seed in the network. Also, based on
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the fast influence computation for directed acyclic graphs (DAGs), he proposed the

first scalable heuristic algorithm tailored for influence maximization in the LT model

called local DAG algorithm (LDAG).

2.3.2 Influence Maximization from Host Perspective

The host of the social network keeps the proprietary of social graph secret due to

various reasons like privacy legislation and company benefits etc. The authors in

[17] considered the host as the owner. Companies that intend to run viral marketing

campaigns are considered as clients of the host. Usually the clients cannot directly

access the network and hence they cannot select the seeds for the campaigns by

themselves. For any client to run viral marketing campaign, the host permission and

run privileges are needed for example, Twitter. Business owners or the clients of the

social network who wants to promote their products or services through Twitter can

create their own Twitter webpage, create display ads or promoted posts to reach users.

However, clients are not permissible to effectively run the viral marketing campaign

to reach the users. This is because of lack of access to the network graph as well as

privacy issues. W. Lu [17] proposed and studied the naive problem of competitive viral

marketing from the host perspective and considered a new business model in which the

host offers viral marketing as a service, for a price to its clients. The host also allows

its clients to run the campaigns by specifying a seed budget, i.e., number of seeds

desired. The host also keeps control over the selection as well as allocation of seeds

to the companies. After the seeds are allocated to the companies, various companies

with similar products or services compete for adopters on the shared network. In

traditional non-competitive influence maximization problem, the objective is to select

the seeds in such a way that maximizes the expected number of final adopters. But,

in a competitive setting, from the hosts perspective, it is critical not just to select the

seeds to maximize the collective expected number of adoptions across all companies,
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but also to allocate the seeds to companies in a way that guarantees the bang for the

buck for all companies is nearly the same. A. Goyal in [17] discussed the diffusion

model from the host perspective but he did not considered the competitive setting

with multiple companies competing to promote their products/services. However

their work did not considered the negative influences. That is why we would like to

study the problem of influence maximization from the host perspective by considering

the negative influences.

2.4 Influence Blocking Model

Whenever a company sees a negative rumor spreading against its products or services

then the company may decide to react to it quickly by choosing the seed nodes to

inject the positive opinions in order to fight against the negative rumor. Similar type

of situations may arise when public officials try to abort rumors regarding public

safety and health, terrorist threat and a political candidate tries to do everything

to stop that negative rumor about him or her etc. The authors of [16] identify this

problem of choosing positive seeds in social network in order to lessen the effect of

negative influence diffusion or to maximize the blocking effect on negative influence,

the influence blocking maximization (IBM) problem [16]. Motivated by this, we want

to consider the blocking of negative influence in our study to solve the influence

maximization problem.

Recently there had been studies on competitive influence diffusion [13, 14]. The

commonality among these studies is that they concentrate on the clients perspective

as opposed to the host perspective. Bharathi et al. [13] and Carnes et al. [15] studied

the influence maximization problem from the followers perspective. The follower is

also a player who tries to bring in a new product into the social network where a

competing product already exists. Both of these studies show the problem for the

follower maintains the desired properties of monotonicity and submodularity and
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hence the greedy algorithm can be applied to provide approximation guarantees.

Goyal et al. [17] considered the influence diffusion but the objective of their study

was to maximize the influence spread. Budak et al. [14] and Chen et al. [16] studied

the influence blocking maximization problem, where one entity tries to block the

influence propagation of its competitor as much as possible, under extended IC and

LT models, respectively.

Hence, in this work, we propose an influence diffusion model from the host per-

spective, which has both positive and negative influence propagating. We try to

maximize the positive spread and conversely minimize the negative spread. We name

it as Blocking Negative Influence Node Set (BNINS) Selection problem where the

positive influence tries to block the negative influence.
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CHAPTER III

PROBLEM DEFINITION

3.1 Network Model

A social network can be modeled as a weighted directed graph G = (V, E, W) as

shown in Figure 1 where V is the set of nodes representing individuals and E is the

set of edges representing influential relationships among individuals. An edge can be

represented as follows:

e =

 e(vi,vj) = { represents an edge from node vi to node vj }

e(vj ,vi) = { represents an edge from node vj to node vi }
(1)

Figure 1: A social network with social influences on edges.

In the context of influence spread, ∀vi ∈ V can be viewed as a user of the social

network and i is the user ID. In addition to this, W is a set of weights. Each edge

e(vi,vj) ∈ E is assigned a weight value representing the direct influence node vi has on

node vj. i.e., W = {wij | ∀e(vi,vj) ∈ E} and each edge e(vi,vj) ∈ E has two weights:
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w+
ij and w−ij .

wij =

 w+
ij = {vij | vi has positive opinion on vj }

w−ij = {vij | vi has negative opinion on vj }
(2)

We can think of it as e(vi,vj) splitting into two virtual edges, one positive edge prop-

agating positive influence and one negative edge propagating negative influence. As

shown in Figure 1. v1, v2, ......, v10 represents the different nodes. e(v1,v3) represents an

edge from node v1 to node v3 and w13 is 0.9, that represents the positive opinion that

node v1 has on node v3.

3.2 Diffusion Model

In a social network, a node can have either an active or inactive status. Every node

in the network holds one of the two opinions (positive or negative). So, we further

divide the active status into positive active and negative active. Every company will

have an initial positive active and an initial negative active seed set assigned by the

host. There will be one of the following conditions:

Definition II.1. Company (Ck). In a social graph with m competing companies, Ck

is the kth company for k ∈ {1, 2,......., m} and k is the company ID.

Definition II.2. Budget (bk). Budget is defined as a number of seeds or initial

adopters for every company. Each company has to specify its budget in order to

introduce their products or services into the social network.

Definition II.3. Active Seed Set (Ak(t)). For a network G = (V, E, W), the Active

Seed Set is defined as the set of all positive and negative active nodes in Company

Ck at time t.

Ak(t) = {vi | vi ∈ V and is active with Company Ck at time t }

Definition II.4. Positive Active Seed Set (Ak(t)
+). For a network G = (V, E, W),

the Positive Active Seed Set is defined as the seed set with all positive active nodes

in Company Ck at time t. When t=0, Ak(0)+ represents the initially positive seed set
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for company Ck.

Ak(t)
+ = {vi | vi ∈V and is positively active for Company Ck at time t}

Definition II.5. Negative Active Seed Set (Ak(t)
−). For a network G = (V, E, W),

the Negative Active Seed Set is defined as the seed set with all negative active nodes

in Company Ck at time t. When t=0, Ak(0)− represents the initially negative seed

set for company Ck.

Ak(t)
− = {vi | vi ∈V and is negatively active for Company Ck at time t}

The relationship of the pre-defined three sets can be summarized as:

Ak(t) = Ak(t)
+ ∪ Ak(t)−

Definition II.6. Active Node Set (A(t)). For a network graph G = (V, E, W), A(t)

is the set of nodes activated by any Company C at time t.

A(t)= {vi | vi ∈ V and is active with any Company C at time t }

i.e., A(t)=
m∑
k=1

Ak(t)

Definition II.7. Positive Active Node Set (A(t)+). For a network G = (V, E, W),

the Positive Active Node Set is defined as the set of all positive active nodes in any

Company C at time t. When t=0, A(t)+ represents the initially positive seed set for

any company C.

A(t)+ = {vi | vi ∈V and is positively active for any Company C at time t}

Definition II.8. Negative Active Node Set (A(t)−). For a network G = (V, E, W),

the Negative Active Node Set is defined as the set of all negative active nodes in any

Company C at time t. When t=0, A(t)− represents the initially positive seed set for

any company C.

A(t)− = {vi | vi ∈V and is negatively active for any Company C at time t}

The relationship of the pre-defined three sets can be summarized as:

A(t) = A(t)+ ∪ A(t)−

Definition II.9. Neighbouring Set (Nvi(t)). At time t, for a network graph G= (V,

E, W), Neighbouring Set is defined as the set of all the nodes approaching vi ∈ V .
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Nvi(t) = {vj | e(vj ,vi) ∈ E,wji 6= 0}

Definition II.10. Positively Active In-Neighbours(Nvi(t)
+). At time t, for a network

graph G = (V, E, W), Positively Activated In-neighbours are defined as the nodes

approaching vi ∈ V which are positively activated. It is defined as:

Nvi(t)
+ = {vj | e(vj ,vi) ∈ E,wji > 0 at time t}.

Definition II.11. Negatively Active In-Neighbours(Nvi(t)
−). At time t, for a net-

work graph G = (V, E, W), Negatively Activated In-neighbours are defined as the

nodes approaching vi ∈ V which are negatively activated.

Nvi(t)
− = {vj | e(vj ,vi) ∈ E,wji < 0 at time t}.

The relationship of the above three sets can be summarized as:

Nvi(t) = Nvi(t)
+ ∪Nvi(t)

−

The diffusion model will work as follows:

For each company, the seed set Ak(t) is further divided into Ak(t)
+ and Ak(t)

− where

Ak(t)
+ is the positive seed set of Company Ck and vice versa. Every node vi ∈ V

picks two activation thresholds θ+i and θ−i uniformly at random from [0, 1].

θi =

 θ+i represents the positive threshold for node vi

θ−i represents the negative threshold for node vi

(3)

Initially all the nodes are inactive i.e., Ak(t) = φ.

At time t=0,

For each Company Ck, a seed set Ak(0)+ and Ak(0)− is assigned by the host. This

means that if vi ∈ Ak(0)+ or Ak(0)−, then vi becomes positively activated or nega-

tively activated with Company Ck respectively.

At time t ≥ 1,

The activation of node will take place in two phases:
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In the diffusion model, a node will be influenced if it possess some positive or nega-

tive influence but a node will be activated if it is influenced as well as associated with

some company.

Phase 1:

An inactive node vi ∈ V becomes influenced when the total incoming influence weight

from its in-neighbours (Nvi(t)
+ and Nvi(t)

−) which are active (regardless of Company)

reaches vi
′s threshold: if

∑
vj∈Nvi (t)

+ |wji| ≥ θ+i , then vi will be positive influenced

if
∑

vj∈Nvi (t)
− |wji| ≥ θ−i , then vi will be negative influenced

(4)

In sum, if the total positive or negative influence is greater or equal to the correspond-

ing positive or negative activation threshold, then the node will become influenced

with that influence. If there is a tie between the total positive and negative influ-

ence then the negative influence is given the priority due to negative dominance rule.

This rule reflects the negativity bias phenomenon well studied in social psychology,

in which negative opinions usually dominate over positive opinions [21].

Phase 2:

In the previous phase, the node became positively or negatively influenced. In this

phase, a node vi ∈ V becomes active by picking a Company out of those of its

in-neighbours that activated at time t-1 with the same influence in which it got influ-

enced in Phase 1. At t, a node vi becomes active with Company Ck with probability:

pj =

 p+j =
∑

vj∈Ak(t−1)+/Ak(t−2)+ w
+
ji/

∑
vj∈A(t−1)+/A(t−2)+ w

+
ji

p−j =
∑

vj∈Ak(t−1)−/Ak(t−2)− w
−
ji/

∑
vj∈A(t−1)−/A(t−2)− w

−
ji

(5)

The node will be activated with p+j or p−j based upon the influence in which it got

influenced in Phase 1. If it is positively influenced then it will be activated with

probability p+j and otherwise with probability p−j . Ak(t − 1)+/Ak(t − 2)+ means
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set of all positive nodes activated by Company Ck at time t-1 but not at time t-

2. For example, at t=1 in Figure 2, the set of positively activated nodes in C1

i.e., (Ak(t − 1)+) or (A1(0)+) is {v1, v4} and (Ak(t − 2)+) or (A1(−1)+) is φ, then

A1(0)+/A1(−1)+ = {v1, v4}. Similarly, A(t− 1)+/A(t− 2)+ for any Company.

If this probability comes out to be greater than zero than the node will become active

with the company Ck where k ∈ {1, 2, .......,m}, otherwise the node will stay inactive.

For better understanding of our proposed diffusion model, we use an example of a

network to explain it. From Figure 2(a), at t=0, the seed set of every company is

targeted and A1(0)+ = {1, 4}, A1(0)− = {2} and A2(0)− = {3}. The status of these

nodes is changed to active corresponding to the company whose seed set it belongs

to. Given two thresholds θ+5 and θ−5 for v5 are 0.5 and 0.5 respectively. At time

t=1 (Phase 1), the total positive influence from positive active in-neighbours on v5 is

(0.2+0.2) = 0.4, which is less than v5’s positive threshold i.e. 0.5. The total negative

influence from negative active in-neighbours on v5 is (0.4+0.3) = 0.7, which is greater

than v5’s negative threshold. So, the node v5 will be negatively influenced as shown

in Figure 2(b). At time t=1 (Phase 2), The node v5 will choose a company out of C1

and C2 based on the following criteria:

pj =

 p+j =
∑

vj∈Ak(t−1)+/Ak(t−2)+ w
+
ji/

∑
vj∈A(t−1)+/A(t−2)+ w

+
ji

p−j =
∑

vj∈Ak(t−1)−/Ak(t−2)− w
−
ji/

∑
vj∈A(t−1)−/A(t−2)− w

−
ji

(6)

Now we know that v5 is negatively influenced. Therefore it will be activated using

probability p−j . For C1, the set of negative nodes activated by Company C1 at time t-1

i.e., A1(0)− = v2. Here A1(−1)− = φ. So A1(0)−/A0(−1)− = v2. The total incoming

influence from the node v2 is 0.4. Similarly A(−1)− = φ and the set of negative nodes

activated by any Company C at time t-1 i.e., A(0)− = {v2, v3}. The total incoming

influence from all the companies C activated at time t-1 i.e. A(0)− = (0.3+0.4) =
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Figure 2: Demonstration of Diffusion Model
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0.7. v5 will be activated with C1 with probability 0.4/0.7= 0.57. Similarly, for C2,

the probability comes out to be 0.3/0.7= 0.43. So the node v5 will be negatively

activated with C1 with probability 4/7 and with C2 with probability 3/7 as shown in

Figure 2(c).

At time t=2 (Phase 1), Given two thresholds θ+6 and θ−6 for v6 are 0.5 and 0.5 re-

spectively. The total positive influence from positive active in-neighbours on v6 is

0.2, which is less than v6’s positive threshold i.e. 0.5. The total negative influence

from negative active in-neighbours on v6 is (0.7+0.3) = 1.0, which is greater than

v6’s negative threshold. So, the node v6 will be negatively influenced as shown in

Figure 2(d). At time t=2 (Phase 2), A1(1)− = v5, A1(0)− = v2. So, A1(1)−/A1(0)−

= {v5}. The total incoming influence of node v5 on v6 is 0.7. A(1)− = v5, A(0)− =

{v2, v3}. So, A(1)−/A(0)− = v5. The total incoming influence here is 0.7. Hence the

node v6 will be activated by C1 with probability 0.7/0.7=1 as shown in Figure 2(e).

Similarly the probability of activating v6 by C2 is 0. To be specific, v6 will be nega-

tively activated with C1 for sure at t=2. This process keeps on repeating until all the

nodes get activated.

3.3 Blocking Negative Influential Node Set (BNINS) Se-
lection Problem From the host perspective

As we mentioned before that our goal is to maximize the spread of positive opinion

such that the negative opinion is minimized, or equivalently, the reduction in the

number of negatively activated nodes is maximized. Now we are ready to define the

problem statement for this Thesis work.

Definition III.1. Expected value of Ak(t)
+(ρk(t)).The expected value of Positive

Active Seed Set with Company Ck is ρk(t) =
∑

t t | Ak(t)+ | at time t.

Definition III.2. Blocking Negative Influential Node Set (BNINS) Selection Prob-

lem. Given a graph G = (V, E, W), initial negative seed sets Ak(0)− for Company

Ck and positive integers Pk where k ∈ {1, 2, .......,m}, the BNINS selection problem
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is to find positive active seed sets Ak(t)
+ of size at most Pk such that the number of

negatively activated nodes is minimized, or equivalently, ρk(t) is maximized.
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CHAPTER IV

PROPOSED SOLUTION TO THE BNINS PROBLEM

4.1 BNINS-GREEDY Algorithm

This section discusses the BNINS-GREEDY algorithm for BNINS Problem but be-

fore introducing BNINS-GREEDY, we first define a useful Amplification Function as

follows:

Definition IV.1. Amplification function(f(vi, k)). For a social network G = (V,E,W),

the Amplification function of vi is defined as follows:

f(vi, Ck)=
(
∑

vj∈Ak
w+

ji)θ
+
i +(

∑
vj∈Ak

w−ji)θ
−
i

θ+i +θ−i

Amplification function denotes the contribution of a node towards the Company.

More the value of the Amplification Function, more is the contribution of the node

towards the Company. It can be illustrated as follows:

Figure 3: Amplification function for v5

In the Figure 3, A1(0)− = {v1}, A1(0)+ = {v3}, A2(0)− = {v4} and A2(0)+ = {v2}.

Let us assume the value for θ+5 = 0.5, θ−5 = 0.5, θ+6 = 0.5 and θ−6 = 0.5. For node v5,
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the Amplification Function values can be calculated as follows:

• f(v5, C1) = (0.7)(0.5)+(−0.3)(0.5)
0.5+0.5

= 0.20

• f(v5, C2) = (0.3)(0.5)+(0)(0.5)
0.5+0.5

= 0.15

Likewise, for node v6, the Amplification Function values are as follows:

• f(v6, C1) = (0)(0.5)+(−0.6)(0.5)
0.5+0.5

= -0.30

• f(v6, C2) = (0.7)(0.5)+(−0.2)(0.5)
0.5+0.5

= 0.25

From the above results, we infer that node v5 has more contribution for C1 and

v6 has more contribution for C2. This is because the value of Amplification Function

for Company C1 is greater for v5 than v6 and similarly for C2. And hence Amplifica-

tion Function is very useful for selecting the seeds based upon their contributions to

different companies.

Now we will discuss the BNINS-GREEDY Algorithm to find the positive seed set

so as to minimize the negative activated nodes.

Algorithm 1: BNINS-GREEDY Algorithm

Input: Ak(0)− and bk, ∀k ε {1, 2, ........,m},

To find: Ak(0)+ where |Ak(0)+|+ |Ak(0)−| = bk, ∀k,

1. Initialize Ak(0)+ = φ

- Initialize all positive seed sets to be empty.

2. T ← {k | k ∈ {1, 2, ......,m}, |Ak(0)+| < bk − |Ak(0)−|};

- T is the set of companies for which the budget has not been exhausted.

3. for each t ∈ T

4. for each vi ∈ V − (A(0)− + A(0)+) do

5. Calculate f(vi, Ct) and store it in a MAP< vi, f(vi, Ct) > ;
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6. End for loop

7. Traverse MAP and find out one node that has maximum amplification

function value for Company Ct.

8. then that node will be assigned to Company Ct.

9. Repeat step 2-9 until the budget of all the companies has been exhausted.

As shown in Algorithm I, we first set Ak(0)+ to φ (line 1), then we check all the com-

panies whose budget has not been exhausted yet and store it in a set T (line 2). After

this, we loop through all the Companies in T (line 3) and all the nodes in V − (A(0)−

+ A(0)+) (line 4). And we calculate the value of Amplification Function (f(vi, Ct))

of each node vi ∈ V − (A(0)− + A(0)+) for Company Ct ∈ T and store it in the

MAP data structure (line 5,6). Then we traverse the MAP to check the contribution

of each node towards each Company Ct ∈ T and pick one node having the maximum

Amplification value for that Company (line 7). In case when more than one node is

having the same and maximum value of the Amplification Function value then we

use a tuple < out − degree, nodeID > to break the tie in order. We calculate the

out-degree of those nodes and higher out-degree node wins and selected as a seed

node. Now there can be a case, when its a tie on the higher out-degree, then node

ID is used to break the tie. The lower node ID wins and will be assigned to the

respective Company as illustrated in Definition 4.1. Now we repeat the steps from 2

through 9 (line 9). We will notice that the size of set T will reduce as the budget

of Companies is exhausted. The algorithm will terminate when the budget of all the

Companies will be exhausted.

4.2 BNINS-GREEDY Example

To better understand the proposed heuristic algorithm, we use the following example:
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We use the social network represented by the graph shown in Fig.4(a). In the figure,

blue color nodes represent Company C1, green color nodes represent Company C2 and

grey nodes represent inactive nodes. The selection procedure is illustrated as follows:

Input: A1(0)− = {v1, v2}, A2(0)− = {v3}, T = {C1, C2}, b1 = 4, b2 = 2, V −(A(0)−+

A(0)+) = {v4, v5, v6, v7}, θ+4 = 0.4, θ−4 = 0.5, θ+5 = 0.6, θ−5 = 0.7, θ+6 = 0.3, θ−6 = 0.2,

θ+7 = 0.5, θ−7 = 0.4.

We will first set Ak(0)+ = φ. We know that the Companies whose budget has not been

exhausted yet are C1 and C2. We will process all the nodes in V − (A(0)− + A(0)+)

for each Company.

Iteration 1:

Initially we start to process all the nodes in vi ∈ V − (A(0)− + A(0)+). We calculate

the Amplification function value of v4, v5, v6, v7 for C1 and C2. The results are stored

in the MAP data structure. MAP will have the following results for C1:

v4 v5 v6 v7

C1 -0.17 -0.11 -0.12 0.00

Table 1: Iteration 1: Company 1

After traversing MAP, we observe that v7 has more contribution towards C1 than

any other node as seen in Table 1. So, v7 will be assigned as a positive seed to

Company C1 as shown in Figure 4(b).

Now we calculate the Amplification function of rest of the nodes for C2 in the same

way and we get the following results.

Now from Table 2. we see that, the nodes v4 and v5 have maximum and equal
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(e)

Figure 4: Amplification Function Demonstration
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v4 v5 v6

C2 0.00 0.00 -0.04

Table 2: Iteration 1: Company 2

Amplification Function value. So we break the tie by picking the node with maxi-

mum out-degree. We notice that the out-degree of v4 is 1 and out-degree of v5 is 0.

So, v4 with the more out-degree will be selected as a seed for C2 as seen in Figure 4(c).

NOTE: We are considering the maximum out-degree because we want to influence

maximum number nodes. But if there are nodes with same out-degree then we use

node ID to break the tie. Smaller node ID wins. For example, if node 4 and node 5

have the same out-degree, then node 4 wins.

Here we notice that the budget of C2 has been exhausted and we are only left with C1.

We repeat the steps 2 to 9 of BNINS-GREEDY Algorithm because the budget of

all the companies has not been exhausted yet. Now we, have these conditions:

A1(0)− = {v1, v2}, A1(0)+ = {v7}, A2(0)− = {v3}, A2(0)+ = {v4}, T = {C1}, b1

= 4, b2 = 2, V − (A(0)− + A(0)+) = {v5, v6}.

Iteration 2:

We check the set T. Then we process all the nodes vi ∈ V − (A(0)− + A(0)+) for

Company C1 as shown in Figure 4(c). We calculate the Amplification Function value

for every node and store it in the MAP< vi, f(vi, Ck) >. The results in the MAP

will be as follows:

From the results in Table 3, we infer that node v5 is contributing more towards

Company C1 than any other node. So, v5 will be set as a positive seed node for C1
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v5 v6

C1 0.08 -0.12

Table 3: Iteration 2: Company 1

as shown in Fig.4(d). Here we observe that the budget of all the companies has been

exhausted and set T is empty. So, the BNINS-GREEDY Algorithm terminates here.

Now we have received the initial adopters or seeds for every Company Ck. The

next step is to implement the diffusion model in rest of the social network. As we

can see in the Fig.4(d), we are left with a node v6. We will implement the diffusion

model on this node as discussed in Section 3.2 and find out its status.

PHASE 1:

We check the total positive and negative influence of v6. If it is greater than or equal

to its corresponding positive or negative activation threshold, then v6 will become

influenced with that influence. The total positive influence on v6 is 0 as v6 is not

having any positive in-neighbours whereas the total negative influence on v6 is 0.3 +

0.1 = 0.4 which is greater than its negative threshold i.e. 0.2. So, v6 is negatively

influenced in Phase 1 as shown in Fig.4(e).

PHASE 2:

Now we know that v6 is negatively influenced. Therefore it will be activated using p−6

as discussed in Equation 5. For C1, p
−
6 is 0.75 and for C2, p

−
6 is 0.25. So, v6 will be

negative activated by C1 with probability 75%, and be negative activated by C2 with

probability 25%.
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CHAPTER V

PERFORMANCE EVALUATION

In addition to verifying the performance of our approximation algorithm, we are also

interested in understanding its behaviour in practice, and comparing its performance

to other heuristics for identifying influential individuals. We find that our greedy

algorithm achieves significant performance gains over several widely-used structural

measures of influence in social networks.

5.1 Simulation Setting

5.1.1 Real Online Social Data

For evaluation, it is highly desirable to use a network dataset that exhibits many

of the structural features of large-scale social networks. We conduct simulations on

Epinions dataset [30]. Epinions dataset has 76K nodes and 509K edges. We pre-

processed the dataset to record the results by varying number of nodes. We use the

BNINS-GREEDY algorithm to select the seed set S. Every edge is given positive and

negative weights which are randomly generated. We randomly provide some initial

budget (bk) and the negative seed set (Ak(0)−) per company. Below simulation results

discusses the performance of our algorithm and comparison results.

5.1.2 Random Graphs

To test the performance of our algorithm, we build our own simulator to generate the

random graphs based on random graph model G(n,p) = {G | G has n nodes, and an

edge between any pair of nodes is generated with probability p}. For G = (V,E,W)

∈ G(n,p), vi, vj ∈ V, and (vi, vj) ∈ E, the associated social influence 0 < pij ≤ 1 is

randomly generated. We also provide some random positive and negative weights to
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each edge, budget (bk) per Company and the negative seed set (Ak(0)−) per Company.

5.1.3 Comparison Setting

Currently there is no existing work studying the BNINS selection problem under the

Linear Threshold model. The Simulation results of BNINS-GREEDY are compared

to a related maximum blocking algorithm titled CLDAG algorithm [16] with our

proposed BNINS-GREEDY algorithm. We used two metrics to compare the perfor-

mance: number of positive activated and number of negative activated nodes with

the time iterations. Then we check which Algorithm has more blocking effect.

5.2 Simulation Results

The objective of BNINS is to block the negative influence and hence maximize the

positive influence propagation in the social networks. In this section, we use Random

Graph and Real Online Social Data to check the performance of the BNINS GREEDY

algorithm. We also compare our results with the related work proposed in [16]. We

run the algorithm on a network size of 100 to 500 nodes and we obtained the following

results.

5.2.1 Simulation Results of Real Social Data

In this section, we first compare our proposed algorithm with the related work

and then followed by the comprehensive analysis of the performance of our BNINS-

GREEDY algorithm.

Comparison with related work

In this subsection, we compare the performance of BNINS and CLDAG under real

social data. We implemented the BNINS-GREEDY and CLDAG on 1000 nodes

Epinions dataset with one Company (C1), b1=100 and |A1(0)−|=55. The compari-

son results considering two metrics i.e. total negative and total positive nodes with
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different time iterations are discussed as below:

• Total Number of Negative Activated Nodes (|A(t)−|):

Here we analyse the total negative influence using BNINS and CLDAG. From

Figure 5, we can see that the number of negative activated nodes for both

BNINS and CLDAG decreases when t increases. This is because more negative

nodes are getting blocked as the network size increases. As the diffusion process

goes on, more and more positive influence is spreading leading to the blockage

of negative influence. Additionally, CLDAG produces more number of negative

activated nodes. At t=100, the number of negative nodes for CLDAG is 50

whereas number of negative activated nodes for BNINS is 45. Similarly, t=200,

the ratio of CLDAG to BNINS is 45:38. This is because in CLDAG, initially two

Local Directed Acyclic Graphs (LDAGs) are constructed: LDAG+ and LDAG−

based upon the influence of nodes on all v ∈ V . Then, BFS is implemented to

find the initial adopters or seeds by traversing LDAG+ and LDAG− and one

seed is picked per iteration to be put in positive or negative seed set based on

its activation probability. Whereas in BNINS, we already have negative seed set

and we just have to find positive seeds by analyzing the Amplification Function.

So, the diffusion process starts in BNINS earlier than CLDAG and hence BNINS

is blocking more nodes as compared to CLDAG at the same time. BNINS

achieves the complete blocking effect at t=900, whereas CLDAG reaches this

level at t=1100. So, we see that BNINS always had lesser number of negative

activated nodes and also BNINS completely blocks all the negative effect long

time before CLDAG. On average, BNINS has 12.5% better performance than

CLDAG.

• Total Number of Positive Activated Nodes (|A(t)+|):

Here we analyse the total positive influence using BNINS and CLDAG Algo-

rithm. We check the total number of positive nodes activating with the time
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Figure 5: Total negative active nodes with time when n=1000, C1 and b1 = 100

iterations. In Figure 6, x-axis shows the time iteration t and y-axis shows the

number of positive activated nodes. We see that the number of positive acti-

vated nodes for both BNINS and CLDAG increases with the time iterations.

This is because more positive nodes are activated with the blockage of negative

nodes as the network size increases. The reason is that, both the algorithm se-

lects the most influential seed nodes that keeps spreading influence to more and

more nodes. Additionally, BNINS produces more number of positive nodes. At

t=100, the number of positive nodes for CLDAG is 50 whereas number of pos-

itive activated nodes for BNINS is 55. Similarly, t=200, the ratio of CLDAG

to BNINS is 55:62. This trend goes on till t=900, when number of positive

activated nodes for BNINS is 100 but CLDAG still have 92 positive activated

nodes. So, we see that trend for BNINS is always above CLDAG. That means

BNINS always had more positive nodes than CLDAG or we can say that BNINS

is blocking more negative nodes than CLDAG. This is because BNINS starts

long time before CLDAG, leading to blocking as much negative influence as

possible and conversely leading to more and more positive influence. BNINS

reaches the maximum number of positive activations at t=900 by blocking all

the negative influence whereas CLDAG do the same at t=1100. So, we see that

BNINS always had more number of positive activated nodes and also BNINS
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achieves the maximum positive effect long before CLDAG. On average, BNINS

has 7.6% better performance than CLDAG.

Figure 6: Total positive active nodes with time when n=1000, k=1 and b1 = 100

• Performance Analysis of BNINS-GREEDY

From the above comparison results, we see that BNINS-GREEDY outperform

CLDAG. BNINS-GREEDY always had more blocking effect than CLDAG which

leads it to always having more number of positive activations and less number of

negative activations than CLDAG. BNINS-GREEDY performed 12.5% better

while blocking the negative influence and 7.6% better while maximizing the

positive influence. Now we start to analysis our proposed method for multiply

companies.

Number of Positive and Negative activated nodes with regard to all

Companies

This section discusses the performance of the BNINS-GREEDY algorithm based upon

the number of positively as well as negative activated nodes when the number of

companies is greater than 1.

• Number of Positive Activated nodes when k=2:

Here we discuss the number of positively activated nodes when all the nodes are

processed or there are no more inactive nodes. We are considering 2 Companies
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C1 and C2 here. The budget of each Company is b1 = 15, b2 = 10, |A1(0)−|=5,

|A2(0)−|=3. The number of nodes in the network vary from 100 to 500. The

results are shown in Figure 7. x-axis shows the varying number of nodes in the

network and y-axis shows the number of positive activated nodes.

Figure 7: Positive active nodes when n = 100-500, k=2, b1 = 15 and b2 = 10

We see that when the number of nodes in the network is 100, number of positive

activated nodes for C1 is 48 and for C2, its 20 at time iteration t=100. When

n=200, the ratio of number of positive nodes in C1 to number of positive nodes

in C2 is 100:72 at time iteration t=200. This trend keeps going up as the number

of nodes in the network keeps on increasing. This is because, we are using the

Amplification function to find the most influential nodes to be used as positive

seed set depending upon the budget of the Company. And these positive seeds

try to spread as much positive influence as possible. This influence spread keeps

increasing as the number of nodes in the network increases. Hence we have the

rising trend for positive activated nodes.

We also observe that the time iterations are also increasing with the increasing

number of nodes. This is because we need to traverse each node in the network

and apply BNINS-GREEDY or diffusion model on it. So more the number of
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nodes, more is the time to process them.

Not just this, we also see that C1 always have more positive activated nodes

than C2. This is because the budget of C1 is 15 which is greater than the bud-

get of C2 which is 10. Moreover, the number of positive seeds for C1 which is

10, is also greater than number of positive seeds for C2, which is 7. Hence C1

always had more number of positive initial adopters which are influencing more

number of nodes.

• Number of Negative Activated nodes when k=2:

Here we discuss the number of negatively activated nodes when all the nodes

in the social network are processed or their are no more inactive nodes left. We

are considering 2 Companies C1 and C2 here. The budget of each Company

is b1 = 15, b2 = 10, |A1(0)−|=5 and |A2(0)−|=3. The number of nodes in the

network vary from 100 to 500. The results are shown in Fig.8. x-axis shows

the number of nodes (n) and y-axis shows the number of negatively activated

nodes.

Figure 8: Negative active nodes when n = 100-500, k=2, b1 = 15 and b2 = 10

We see that when the number of nodes in the network is 100, number of neg-

atively activated nodes for C1 is 20 and for C2, its 12 at time iteration t=100.
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When n=200, the ratio of number of positive nodes in C1 to number of posi-

tive nodes in C2 is 18:10 at time iteration t=200. This trend keeps going down

as the number of nodes in the network keeps on increasing. This is because,

firstly we are picking the most influential nodes as positive seeds using Ampli-

fication function to spread maximum positive influence and block the negative

influence. Secondly, in the diffusion model we pick the node to be negative or

positive based upon its influence. So, having more positive influential nodes

as seeds will mostly lead to positive influence. The negative influence keeps

decreasing with every iteration because the positive activations keeps block-

ing the negative influence and a stage comes where all the negative influence is

completely blocked. Hence we have the falling trend for positive activated nodes.

We also observe that the time iterations are increasing with the increasing

number of nodes. This is because we need to traverse each node in the network

and apply BNINS-GREEDY or diffusion model on it. So more the number of

nodes, more is the time to process them. Also the number of negatively acti-

vated nodes are decreasing as the time iterations increases. This is because of

the blocking effect as discussed above.

We see that C1 has more negative nodes than C2, this is because initially at

t=0, C1 had 5 negative activated seed nodes and C2 had 3 negative activated

seed nodes. So, C1 has more negative influence as compared to C2.

Total activated nodes vs. Time iterations

This section analyzes the BNINS-GREEDY algorithm based upon the number of ac-

tivated nodes with the time for n=500, k=1, b1= 100 and , |A1(0)−|=40 as shown

in Figure 9. x-axis represents the time iterations and y-axis represents number of

activated nodes.
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Figure 9: Number of activated nodes with time iterations when n=500, k=1 and
b1= 100

We observe that, at t=0, total number of positive activations is 60 whereas total

negative activations is 40. Then at t=100, positive activations increase to 65 and

negative activations reduce to 35. Then at t=200, same trend follows giving us an

upwards trend for positive and downward trend for negative. The reason for this is

already discussed in the previous sections. We clearly see that the number of posi-

tive activated nodes are gradually increasing with the time and number of negative

activated nodes is gradually decreasing with the time.

5.2.2 Simulation Results of Random Graph

In this section, we first compare our proposed algorithm with the related work

and then followed by the comprehensive analysis of the performance of our BNINS-

GREEDY algorithm.

Comparison with related work

In this subsection, we compare the performance of BNINS-GREEDY and CLDAG

under Random Graph G(n,p). We implemented the BNINS-GREEDY and CLDAG
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on 1000 nodes with One Company C1, b1=100 and |A1(0)−|=45. The comparison re-

sults considering two metrics i.e. total negative and total positive nodes with different

time iterations are discussed as below:

• Total Number of Negative Activated Nodes(|A(t)−|):

We analyse total negative influence using BNINS-GREEDY and CLDAG al-

gorithm. From Figure 10, we observe that the number of negative activated

nodes is decreasing as the number of time iterations increases. This is due to

the blocking effect. More negative nodes are getting blocked as the time passes.

We also notice that the number of negative activated nodes for CLDAG is al-

ways greater than BNINS. At t=100, the number of negative activated nodes

for CLDAG is 44 whereas for BNINS-GREEDY, its 40. Similarly, at t=200,

the ratio of CLDAG to BNINS is 43:37. The trends follows. This is because of

the reason we discussed in the previous section. In CLDAG, it takes more time

to select the initial adopters than BNINS-GREEDY and hence the diffusion

process for BNINS-GREEDY starts early leading to more blocking effect than

CLDAG at the same time iterations. We also notice the comparison trends for

the real social data (Figure 5) and random graph (Figure 10) have one common

thing and that is, falling trends. The differences arises due to the difference in

network topology because for random graph, the topology is randomly gener-

ated. Random graph is less denser than real social data for which we are using

real world topology. On average, BNINS has 17.22% times better performance

than CLDAG.

• Total Number of Positive Activated Nodes (|A(t)+|):

In this section, we analyze the same for positively activated nodes. In Figure 11,

x-axis represents the time iterations and y-axis represents the number of posi-

tively activated nodes. We notice the increase in number of positive activated

nodes as the time iterations increases and the network size increases. Blocking
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Figure 10: Total negative active nodes with time when n=1000, k=1 and b1 = 100

effect leads to blocking the negative nodes and conversely increase the number

of positive activated nodes with every iteration. Also, we see that the curve

for BNINS-GREEDY is above the CLDAG curve. At t=100, when BNINS-

GREEDY has 60 positive nodes, CLDAG has 56 positive activated nodes. Sim-

ilarly, the trend follows for t=200, when the ratio is 63:57. The reason behind

this already discussed in the previous section that BNINS-GREEDY starts the

diffusion process before CLDAG and hence producing more positive nodes for

the same corresponding time iterations. On average, BNINS has 5.9% better

performance than CLDAG. If we compare the comparison results of BNINS-

GREEDY and CLDAG for real social data in Figure 6 and Figure 11, we ob-

serve that number of positively activated nodes are increasing with the increase

in time iterations. This is because the algorithm has been efficient in selecting

most influential nodes as seed nodes which are increasing the spread influence.

There is a slight difference in the number of nodes getting positively activated

for both the figures. For n=1000, BNINS had 55 positively activated nodes for

real input data but 60 for random graph. The reason behind that is the degree

of nodes in random graph is greater than the degree of nodes in real online

social data graph. For n=100, in real online social data, the maximum degree

of node for node is 26 whereas for random graph, its 31. On average, BNINS
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has 5.9% times better performance than CLDAG.

Figure 11: Total positive active nodes with time when n=1000, k=1 and b1 = 100

• Performance Analysis of BNINS-GREEDY

From the above comparison results on Random Graph, we see that BNINS-

GREEDY outperform CLDAG. BNINS-GREEDY always had more blocking

effect than CLDAG which leads it to always having more number of positive

activations and less number of negative activations than CLDAG. Now we start

to analysis our proposed method for multiply companies.

Number of Positive and Negative activated nodes with regard to all

Companies

This section discusses the performance of the BNINS-GREEDY algorithm based upon

the number of positively as well as negative activated nodes when the number of

companies is greater than 1.

• Number of Positive Activated nodes when k=2:

We consider two Companies C1 and C2 with budget b1=20 and b2=20, initial

negative seed set |A1(0)−|=7 and |A2(0)−|=10. The number of nodes in the

network varies from 100 to 500. The results are discussed in Figure 12. x-axis

represents the number of nodes and y-axis represents the number of positively

activated nodes with time.
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We observe that, when n=100, number of positive activated nodes in C1 is

48 and in C2, its 20 at time iteration t=100. At n=200, the positive activated

nodes ratio for C1 to C2 is 99:72 for t=200. For n=300, its 151:123 at t=300.

So, we see that the number of positive activated nodes keep on increasing with

the increasing size of the network. This is because seed nodes are picked by

selecting the nodes having the most contribution towards company. This in

turn lead to more positive influence spread.

Also, C1 is always having more number of positive nodes than C2 because pos-

itive initial adopters for C1 is 13 which is more than for C2 which is 10. Hence

contributing to more positive activations.

The difference in topology for random graph and real social data has gener-

ated the difference in number of activated nodes as seen in Figure 7 and 12.

More the density more the chances for number of activations. Regardless of

topological difference, we see that the number of nodes is continuously increas-

ing.

We also notice that, with the increase in time iteration, the number of positive

activated nodes is gradually increasing. This is because the positive influence

increases as the time and number of nodes increasing due to reason already

discussed above.

• Number of Negative Activated nodes when k=2:

Here we discuss the number of negatively activated nodes when all the nodes in

the social network are processed or their are no more inactive nodes left. We are

considering 2 Companies C1 and C2 here. The budget of each Company is b1 =
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Figure 12: Positive active nodes when n=100-500, k=2, b1 = 20, b2 = 20, |A1(0)−|=7
and |A2(0)−|=10

20, b2 = 20, |A1(0)−|=10 and |A2(0)−|=7. The number of nodes in the network

vary from 100 to 500. The results are shown in Figure 13. x-axis represents the

number of nodes and y-axis represents the number of negatively activated nodes.

We see that number of negative activated nodes keeps decreasing as the size

of the network is increasing. At n=100, number of negative activated nodes

in C1 to C2 is 17:15 at time iteration t=100. When n=200, the ratio is 16:13

at t=200. This is because negative influence is getting blocked as the diffusion

process follows. The reason is that, BNINS-GREEDY picks the most influen-

tial set of nodes to be the positive seed set. The nodes in this seed set try to

spread as much influence as possible. Plus the diffusion model activates the

nodes based upon the influence on it. So we mostly get the positive influence

and followed by the reduction in negative influence.

As compared to Figure 8, Figure 13 has less number of negatively activated

nodes. The difference arises because of the topological changes. In the random

graph, topology is randomly generated unlike the real online social data. For

n=100, for real online social data, C1 has 20 and C2 has 12 negatively activated
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nodes whereas for random graph, C1 has 17 and C2 has 15 negatively activated

nodes. The reason behind this is already discussed above. The random graph

is less denser than the real online social network graph.

We also notice that, with the increase in time iteration, the number of negative

activated nodes is dropping. This is because the negative nodes are getting

blocked as the time and number of nodes increasing due to reason already dis-

cussed above.

Also, we see that C1 has more negatively activated nodes than C2. This is

because C1 had 10 negatively activated nodes at t=0 whereas C2 had 7. 10

nodes have more influence than 7 nodes. Hence the difference arises.

Figure 13: Negative active nodes when n=100-500, k=2, b1 = 20, b2 = 20,
|A1(0)−|=10 and |A2(0)−|=7

Total activated nodes vs. Time iterations

This section analyzes the BNINS-GREEDY algorithm based upon the number of ac-

tivated nodes with the time for n=500, k=1, b1= 100 and |A1(0)−|=45 as shown in

Figure 14. Here x-axis represents the different time iterations and y-axis represents

the total number of activated nodes.
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At t=0, total number of positive activated nodes is 55 and total number of nega-

tive activated nodes is 45. Then at t=100, positive activations increase to 60 and

negative activations reduce to 40. Then at t=200, same trend follows giving us an

upwards trend for positive and downward trend for negative. The reason for this is

already discussed in the previous sections. We clearly see that the number of positive

activated nodes are gradually increasing with the time and number of negative acti-

vated nodes is gradually decreasing with the time. For both Real Social Data (Figure

9) and Random Graph (Figure 14), the number of positive nodes increases with time

iterations and number of negative activated nodes decreases with time iterations. The

only difference is number of activations. This arises due to the density of the graph

and the influences on the edges.

Figure 14: Number of activated nodes with time iterations when n=500, k=1 and
b1= 100

5.3 Performance Under Varying Input Parameters

In this section, we check the performance of BNINS-GREEDY algorithm under dif-

ferent values for the input parameters like budget and number of negative seeds.
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5.3.1 Simulation Results for Smaller Network Size

Constant Budget, Changing the size of Negative Seeds set

The performance of BNINS-GREEDY is analysed by keeping the budget of the com-

pany constant but varying the size of Negative Seed Set. We perform the simulations

for this with n=1000, k=1, b1=100. Now, for the constant budget value 100, we plot a

chart that shows how the different size of negative seed set affects the output results.

In the chart 15, x-axis represents the number of negative seeds and y-axis represents

the total number of activated nodes.

(a)

Figure 15: Number of activated nodes when n=1000, k=1 and b1= 100

From Fig.15, we analyse that, when A1(0)− =40, the total number of positive acti-

vated nodes is 840 and the total number of negative activated nodes is 160. When

A1(0)− =45, A1(t)
+ =840 and A1(t)

− =160. We see that no matter how many number

of negatively activated seeds are there, BNINS-GREEDY always achieves maximum

positive spread. This is because of effectively picking most influential positive seed

nodes. We also notice that when A1(0)− =50 and A1(0)+ =50, then also the positive

spread is 745 and the negative spread is 255. So, for equal number of positive and

negative initial adopters also, BNINS-GREEDY achieves more number of positive

activated nodes than the negative activated nodes because of efficient seed selection.
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Constant size of Negative Seed Set, Changing Budget

We discuss the total number of negative and positive activated nodes when all the

nodes in the network are processed. Here we keep the size of negative seed set fixed

and we vary the budget which will ultimately lead to change in the size of positive

seed set as well because the budget is the sum of number of negative and positive

seeds. We have the network with n=1000, k=1 and Ak(0)−=40. In Fig.16 x-axis

represents the budget and y-axis represents the total number of activated nodes.

(a)

Figure 16: Number of activated nodes when n=1000, k=1 and Ak(0)−=40

We see when the budget is 80, A1(t)
+ =800 and A1(t)

+ =200. When budget is 100,

A1(t)
+ =840 and A1(t)

+ =160. So we observe that the number of positive activated

nodes gradually keep on increasing and the number of negative activated nodes keeps

on decreasing. This is because the size of negative activated seed set remains constant

but the budget keeps on increasing which impact the size of positive seed set leading

to the increase in the number of positive initial adopters. This in turn lead to more

positive influence and also have more blocking effect because of the reason already

discussed in the previous sections. The results are concluded in the following table:
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(a)

Figure 17: Number of activated nodes when n=1000, k=1

5.3.2 Simulation results for Larger Network Size

In this section, we show the results of simulations for large size network by varying

the values of input parameters. Figure 5.3.2 shows the output results for network size

varying from 2000 to 20,000 nodes. After observing all the results, it confirms that no

matter how big the network size is, we always receive the maximum positive spread.

Additionally, the negative influence is always blocked resulting in lesser number of

negative activated nodes.

5.4 Performance Summary

After conducting the simulations and testing the algorithm on different parameters,

we observe that BNINS-GREEDY achieves its objective by minimizing the number

of negative activated nodes and hence maximizing the number of positive activated

nodes. Also, BNINS-GREEDY has been generalized to run for k competing compa-

nies. We compared the results of BNINS-GREEDY with CLDAG [16]. On average, in

terms of total number of negative activated nodes, for real online social data, BNINS-

GREEDY achieved 12.5% better performance than CLDAG and for random graph,

BNINS-GREEDY achieved 17.22% better performance than CLDAG. Similarly, for

total number of positive activated nodes, on average, BNINS-GREEDY achieved
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(a)

(b) (c)

Figure 18: n=2000, k=1

(a)

(b) (c)

Figure 19: n=5000, k=1
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(a)

(b) (c)

Figure 20: n=10,000, k=1

(a)

(b) (c)

Figure 21: n=20,000, k=1
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5.9% better performance than CLDAG for real online social data and 7.6% for ran-

dom graph. We also evaluated the performance of BNINS-GREEDY for multiple

companies and achieved the desired results. Apart from this, we analysed BNINS-

GREEDY’s performance with varying number of nodes from 100-500 in the networks

and we observed that, the number of positive activated nodes are increasing with the

time iterations and number of negative nodes is gradually decreasing with the time

iterations. So, BNINS-GREEDY achieved its objective by minimizing the number of

negative activated nodes and hence maximizing the number of positively activated

nodes.
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CHAPTER VI

VALIDATION OF SIMULATION

This section applies the proposed work on the graph and finds out the status of every

node. The graph is shown as follows:

(a)

Figure 22: BNINS Application

Input: n=17, T = {C1, C2}, b1 = 3, b2 = 4, |A1(0)−| = 1, A1(0)− = {0}, |A2(0)−| =

2, A2(0)− = {v15, v16}. Table 4 shows the threshold values for every node.

Now we will first find out the most influential nodes in the network. We process every

inactive node and perform BNINS-GREEDY on it.

51



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

θ+i 0.3 0.4 0.7 0.3 0.4 0.2 0.4 0.3 0.5 0.6 0.4 0.1 0.3 0.6 0.2 0.1 0.3
θ−i 0.8 0.2 0.6 0.6 0.3 0.6 0.3 0.5 0.6 0.7 0.4 0.3 0.5 0.1 0.4 0.8 0.7

Table 4: Threshold Values

Iteration 1:

We first find out the amplification values for every node for Company C1. Table 5

shows the results.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

f(vi, C1) 0.13 0.37 0 0 -0.08 0.13 0.31 0 0 0.1 0 0.56 0 -0.2

Table 5: Iteration 1, Company C1

We see that v12 has most contribution towards Company C1, so it will be chosen as

a positive seed node for C1. Now, we check the budget of C1. Now we calculate the

same for C2.

1 2 3 4 5 6 7 8 9 10 11 13 14

f(vi, C2) 0.13 0.37 -0.13 0 -0.08 0.13 0.31 0 0 0.1 0.05 0 -0.2

Table 6: Iteration 1, Company C2

We observe that v2 has most contribution towards Company C2, so it will be chosen

as a positive seed node for C2. Now, we check the budget of C1 and C2. None of

themś budget has been exhausted. So we perform the next iteration.

Iteration 2:

The new Amplification function values for C1 are shown in Table 7.

We observe that v7 has more contribution towards C1 than any other node. So, it

will be selected as a positive seed for C1. Now we check the same for C2 and we get

the results shown in Table 8.

52



1 3 4 5 6 7 8 9 10 11 13 14

f(vi, C1) 0.13 0 0 -0.08 0.13 0.39 0 0.14 0.1 0.05 0 -0.2

Table 7: Iteration 2, Company C1

1 3 4 5 6 8 9 10 11 13 14

f(vi, C2) 0.13 0 0 -0.08 0.13 0 -0.28 0.1 0.05 0 -0.2

Table 8: Iteration 2, Company 2

v1 will be selected as a positive seed for C2 because of maximum contribution and

more out-degree.

Now the budget of Company C1 and C2 has been exhausted and we have received the

initial adopters or seeds for both companies. We are left with nodes v3, v4, v5, v6, v8,

v9, v10, v11, v13, v14. The next step is to implement the diffusion model on rest of the

social network. We will implement the diffusion model on these nodes as discussed

in Section 3.2 and find out its status.

For v3:

Phase 1:

• Total Positive Influence is 0.8

• Total Negative Influence is 0.

The total positive influence of v3 is greater than its positive threshold. So, v3 will be

positive influenced.

Phase 2:

v3 will be activated with C1 with p+3 =0.5.

For v4:
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Phase 1:

• Total Positive Influence is 0.1

• Total Negative Influence is 0

Here, both the total positive and negative influence is less than the corresponding

positive and negative threshold of v4. Therefore, v4 will stay uninfluenced for now.

For v5:

Phase 1:

• Total Positive Influence is 0.4

• Total Negative Influence is 0.7

Here both influences are greater than corresponding thresholds. So,v5 will be consid-

ered as negatively influenced.

Phase 2: Here v5 will be activated with C1 with p−5 = 0.63 as per Equation (5).

For v6:

Phase 1:

• Total Positive Influence is 0.3

• Total Negative Influence is 0.

Here the total positive influence is equal to v6ś positive threshold. So v6 will be pos-

itively influenced.

Phase 2:

Here v5 will be activated with C1 with p+6 = 1 as per Equation (5).

For v8:

Phase 1:
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• Total Positive Influence is 0.7.

• Total Negative Influence is 0.

Here the total positive influence is greater than to v8ś positive threshold. So v8 will

be positively influenced.

Phase 2:

Here v8 will be activated with C2 with p+8 = 1 as per Equation (5).

For v9:

Phase 1:

• Total Positive Influence is 1.4.

• Total Negative Influence is 0.

Here the total positive influence is greater than to v9ś positive threshold. So v9 will

be positively influenced.

Phase 2:

Here v9 will be activated with C1 with p+9 = 0.79 as per Equation (5).

For v10:

Phase 1:

• Total Positive Influence is 0.

• Total Negative Influence is 0.

So, this node will stay uninfluenced or inactivated for now. The same is the case will

be for v11, v13.

NOTE: v13 doesnt́ have any in-neighbours to influence them. So, it will always stay

uninfluenced or unaffected.
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For v14:

Phase 1:

• Total Positive Influence is 0.

• Total Negative Influence is 0.3

Here, both the total positive and negative influence is less than the corresponding

positive and negative threshold of v4. Therefore, v4 will stay uninfluenced for now.

We will re-iterate through the rest of the nodes i.e., v4, v10, v11 and v14 until all

the nodes until no more node can be activated. After processing these nodes we see

that these nodes will stay uninfluenced because these doesnt́ have sufficient influential

relationships with activated nodes. Additionally the graph is not denser enough. But

we see in Figure 23 that the total number of positively activated nodes are always

greater than the number of negatively activated nodes and hence the objective is

achieved. In figure, C+
1 denotes the positively activated nodes for Company C1 and

C−1 denotes the negatively activated nodes with Company C1. Similarly with C2.

Now, we run the simulations for Figure 22 (n=17), by varying the input parame-

ters and the results are shown in Figure 24. From there we conclude that no matter

what the size of the network is, BNINS-GREEDY always try to achieve the maximum

positive spread and at the same time minimizing the negative spread of influence.
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(a)

Figure 23: Simulation Validation

(a)

(b) (c)

Figure 24: n=17, k=1
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CHAPTER VII

CONCLUSION AND FUTURE WORK

In this thesis work, we proposed a new diffusion model considering both positive and

negative influences and applied it to solve the Blocking Negative Influential Node Set

(BNINS) Selection problem from host perspective, which will be very useful for pro-

moting the products in marketing applications in social networks. We formally define

the BNINS Selection problem and proposed a BNINS-GREEDY algorithm to solve

it. We validated the proposed algorithm through simulations on random graphs and

real online social data. We compared the performance of BNINS-GREEDY with the

related work [16] and analysed that BNINS-GREEDY always achieved its objective

earlier than CLDAG and that too with great proficiency. Using the random graph,

on average, BNINS-GREEDY achieved 17.22% better performance than CLDAG for

blocking the negative influence and 5.9% better performance than CLDAG for maxi-

mizing the positive influence. Similarly, using the real online social data, on average,

BNINS-GREEDY achieved 12.5% better performance than CLDAG for blocking the

negative influence and 7.6% better performance than CLDAG for maximizing the

positive influence. Apart from that, we tested BNINS-GREEDY on various per-

formance metrics including total number of positive and negative activations with

varying number of nodes, varying number of companies and varying time iterations

etc. After conducting all these tests, we analyzed the test results and found out that

BNINS-GREEDY has achieved its objective with good and favourable results. As

a future work, I would like to perform Theoretical Analysis on it and validate the

simulation by looking into the order of magnitude for the algorithm.
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