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ABSTRACT 

 Nutrient acquisition is critical to survival and infection by the opportunistic bacterium 

Pseudomonas aeruginosa. This pathogen expresses a number of virulence factors that are a 

part of the starvation response and are important in host-pathogen interactions. Additionally, 

P. aeruginosa is resistant to a large number of antibiotics and has become difficult to treat once 

it has colonized a tissue. New pharmaceutical treatments are sought while the metabolism of 

this organism must be fully understood to select new targets for therapy. The leucine-

responsive regulatory protein (Lrp) could be a promising target for treatment. The ortholog in 

Escherichia coli is a global regulator of metabolism and regulates many genes related to amino 

acid degradation, transport and synthesis. There are structural and functional similarities that 

indicate that Lrp in both species plays a similar role. In this study, the role of Lrp in P. 

aeruginosa was investigated using a microbial and molecular approach to determine if Lrp 

regulates more genes than the published single operon, dadRAX. The results of this study 

suggest that Lrp plays a role in regulating important virulence factors and growth patterns in 

both nutrient-rich and nutrient-poor media, and thus may act as a global regulator in the 

metabolism of P. aeruginosa.  
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INTRODUCTION 

Pseudomonas aeruginosa, a Gram-negative bacillus native to soil and aqueous 

environment, is capable of inhabiting a wide variety of environments. This bacteria has been 

shown to attach and grow in biofilms on PVC pipes, persist in distilled water, live on the surface 

of human skin or cause infection within many body tissues. It is an opportunistic pathogen of 

burn victims, immunocompromised individuals, and cystic fibrosis (CF) patients.  P. aeruginosa 

is problematic in hospital settings, causing an estimated 51,000 healthcare-acquired infections 

(HAI) in the U. S. per year (www.cdc.gov). Since the treatment of P. aeruginosa infections with 

antibiotics became common practice, antibiotic resistant strains have developed and pose 

serious complications in successful treatment (1). About 13% of HAI are from multi-drug 

resistant strains, and 6% of these infections are fatal (www.cdc.gov).  P. aeruginosa is 

particularly challenging for CF patients because it can inhabit the lungs (often as a co-infection 

with Staphylococcus aureus) and form a biofilm in the sticky mucus that cannot be penetrated 

by therapeutic antibiotics (2). Once their respiratory pathway is colonized, the biofilm is difficult 

to remove from these patients.   The vast majority of CF patients will die from these infections. 

Virulence Factors 

Pseudomonads express a number of virulence factors during infection that cause 

damage to host tissues. For this study, the focus was on two particular virulence factors 

produced by P. aeruginosa that previous studies indicate are toxic in animal models: the 

siderophore pyoverdine and biofilm formation. Both of these virulence factors are under the 

control of the quorum-sensing network (3, 4, 5), a complex signaling system found in many 
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bacteria that coordinates cell-cell communication. Bacteria secrete signaling molecules called 

autoinducers that accumulate at high population densities. Bacteria have the ability to change 

the genetic expression of the entire population based on the concentration of these 

autoinducers (reviewed in 6, 7). P. aeruginosa has three quorum sensing circuits, two of which 

are homologs of the LuxR/LuxI system common to Gram-negative bacteria. The other system is 

called the Pseudomonas quinolone signal (PQS) system and is closely connected to the other 

two systems. All three systems are responsible for virulence factor production, including 

elastase, exotoxin A, pyocyanin, and rhamnolipids (reviewed in 6, 8). This information has made 

the quorum sensing network a popular target for pharmaceutical development, motivating 

many researchers to develop quorum sensing inhibitors.  

Siderophores are fluorescent peptides that chelate iron from the environment for use in 

metabolic pathways and are under the control of quorum sensing under iron limited conditions. 

Siderophores are produced in response to low internal iron levels and are secreted into the 

environment where they bind iron. Receptors on the outer membrane of the bacterium attach 

and transport the iron-loaded siderophores. Once internal iron levels reach a specific 

concentration, siderophore secretion is halted in order to prevent toxic levels of iron 

accumulating inside the cell (9).  

Siderophores such as pyoverdine are considered virulence factors because infection of a 

host is dependent on iron extracted from host tissues for bacterial growth. Naturally, mammals 

produce lactoferrins and transferrin to remove soluble iron from their tissues thereby making 

iron unavailable to invading pathogens (10). Siderophores are secreted in response to this 
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deprivation, allowing the bacterium to survive in an environment that would otherwise be 

inhospitable for the species. 

Pyoverdine is secreted by an efflux pump composed of three genes, pvdRT-ompQ and is 

located close to the biosynthetic genes of pyoverdine (11). An outer membrane protein, FpvA, 

receives both iron-bound and metal-bound pyoverdine from the exterior of the cell and 

transports it to the periplasmic space. Iron is released from pyoverdine, but other metals 

remain bound, and both free and metal-bound pyoverdine are expelled back to the exterior by 

the efflux pump to extract more iron from the cell’s surroundings.  

Liquid-killing assays performed on the nematode animal model Caenorhabditis elegans 

have shown that pyoverdine leads to disruption of iron homeostasis and death (12). A study 

conducted in immunodeficient mice challenged with P. aeruginosa demonstrated that 

pyoverdine produced during infection contributes to overall ability to cause disease and 

lethality (13). A mutant strain deficient in pvdA, an L-ornithine N
5
-oxygenase that is critical to 

the production of pyoverdine, showed reduced virulence and dissemination when inoculated 

intranasally, measured by relative CFUs in the blood (9). These studies demonstrated that a 

molecule that is utilized for nutrient acquisition acts as a virulence factor in a host-pathogen 

interaction.  

Biofilm formation is another important virulence factor used by P. aeruginosa. The 

transition from a planktonic lifestyle (free swimming) to a biofilm community (attached) 

requires genetic changes that alter cellular morphology and metabolism. These transcriptional 

changes involve alternative metabolic pathways and resistance to chemical treatment, which 
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lead to an increase in virulence (14). As previously mentioned, bacteria including P. aeruginosa 

secrete signaling molecules called autoinducers that coordinate cell-cell communication. These 

autoinducers are primary signals in biofilm formation. Cyclic di-GMP serves as the second 

messenger in biofilm formation. High levels of internal cyclic di-GMP induce the changes 

needed to begin construction of the biofilm matrix, and low levels signal morphological changes 

to a motile, planktonic form (3). Biofilm formation, therefore, is linked to nutrient availability to 

the cell.  

Since antibiotic treatment is problematic against P. aeruginosa, other methods are 

sought to inhibit or prevent infection. In order to discover new methods of treatment, the 

organism must first be fully understood. P. aeruginosa has the ability to survive in a large 

variety of environments, which desmonstrates a diversity of metabolic pathways enabling the 

utilization of a variety of carbon sources. The genetic regulation of these metabolic pathways 

may be a key target for drug therapy, thus investigation into the role of both the enzymes 

involved and their transcriptional regulators may be important.  

Leucine-Responsive Regulatory Protein (Lrp) 

One transcription factor that is conserved among many prokaryotes is the leucine-

responsive regulatory protein, Lrp. These proteins belong to the Lrp/AsnC family of 

transcriptional regulators. Both bacterial and archaeal species have Lrp orthologs that 

demonstrate conservation of structure and function of the protein. 

The DNA binding capability of Lrp from Vibrio cholerae and Proteus mirabilis, which 

share 92% and 98% identity with the E. coli Lrp protein (LrpEC), respectively, have been 
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extensively characterized.  Microarray analysis revealed that the Lrp from these two bacteria 

significantly affected half of the 400 genes regulated by the E. coli Lrp when expressed in an lrp-

deficient E. coli strain, demonstrating conservation of function (15).  Although these proteins 

are very similar in amino acid sequence, the authors of this study also investigated the effects 

of minor changes within the sequence on the transcriptional efficacy. The sequence of the 

helix-turn-helix (HTH) motif of E. coli was altered to contain the sequence from either V. 

cholerae or P. mirabilis. The V. cholerae mutant showed reduced transcription of the lrp gene in 

E. coli, but the P. mirabilis mutant showed a 2- to 3-fold increase in transcription. This 

demonstrates that minor changes in amino acid sequence influence the level of transcription of 

the genes under the regulation of Lrp. However, these hybrid proteins were still able to bind to 

genes in E. coli, which shows some functional conservation. 

Three other enteric bacteria also have amino acid sequence similarity (16). The lrp 

primers of E. coli also amplify sequences from Salmonella typhimurium, Enterobacter 

aerogenes, and Klebsiella aerogenes.  Each strain produced a protein product of the same size 

that had been previously demonstrated to bind to the ilvIH promoter region, a characterized 

lrp-regulated operon of E. coli. This further demonstrates high sequence similarity and function 

in these three species.  

 Bacillus subtilis, a Gram-positive, spore-forming bacillus, uses an lrp homolog to regulate 

branched-chain amino acid transport, which has also been described for LrpEC (17).  It was 

determined to be encoded as the first gene in an operon for the transport of these amino acids. 

It is identical to the azlB gene, which is the gene that allows resistance of 4-azaleucine (18).  
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 Pyrococcus furiosis, a thermophilic archaean, possesses the protein LrpA, which has 28% 

sequence identity with LrpEC (19). This protein, like LrpEC, down regulates its own expression. In 

addition, Sulfolobus sulfataricus, another thermophilic archaean, uses a homolog of Lrp to 

negatively regulate its own promoter region (20), which shows conservation of this specific 

function across eubacteria and archaea.   

 As previously mentioned, the most widely studied Lrp is found in E. coli.  In E. coli, a 

Gram-negative bacillus species, about 400 genes, or ten percent of the total genome, are 

regulated by Lrp (21). Because it regulates 10% of the genome of E. coli, LrpEC is considered a 

global regulator of metabolism. The lrp gene in E. coli is about 494 nucleotides long and codes 

for a 18.8 kDa protein product.  

The DNA binding region of Lrp is found at the N-terminus, which contains a helix-turn-

helix (HTH) motif (22). The leucine-binding domain is located at the C-terminus. X-ray 

crystallography has revealed that the protein first forms homodimers that can bend DNA 90
o
 

and assemble to form an octameric ring, capable of bending DNA 360
o
 (23). The assembly of Lrp 

is shown in Figure 1. Some genes show several Lrp binding sites in the same promoter region, 

which would also support the findings that Lrp forms polymers when bound to DNA.  
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Figure 1. Lrp assembly in E. coli. Lrp monomers assemble into dimers then form homooctamers 

to bend DNA 360
o
. (A) An Lrp monomer forms (B) a homodimer with both HTH domains 

adjacent and both ligand-binding domains adjacent. (C) A complete octameric assembly of Lrp 

can bend DNA 360
o
 to regulate DNA, which is shown in (D). Images were taken from (23). 

 

Some of the genes up regulated by LrpEC are involved in amino acid biosynthesis, pilin 

synthesis, and ammonia assimilation, while LrpEC down regulates amino acid catabolism, 

peptide transport, and lrp itself (21, 22, 24). Lrp responds differentially to the presence of 

leucine, depending on the promoter to which it is bound. In genes negatively or positively 

D 
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regulated by Lrp, the response to leucine binding can be positive, negative, or neutral (25). This 

flexibility in genetic regulation likely contributes to the adaptability of organisms with these 

transcription factors (26). Because of the role in metabolic gene regulation, LrpEC has been 

placed in the family of proteins known as feast/famine regulatory proteins (FFRP) (25).  

The conservation of structure and function across these diverse groups of prokaryotes 

indicates that the role of Lrp may be conserved among all bacteria that possess this gene. The 

P. aeruginosa genome includes a leucine-responsive regulatory protein (LrpPA), but it has not 

been studied as extensively as LrpEC. It has only been demonstrated to bind to the promoter of 

the dadRAX operon (27). This operon is comprised of dadX, which is one of two alanine 

racemases in the P. aeruginosa chromosome, and dadA, which is an alanine dehydrogenase 

that has broad specificity. Lrp of P. aeruginosa, also published as DadR, will be referred to as 

LrpPA in this study. There are four binding regions for Lrp on the dadRAX promoter region, one 

of which is more divergent than the others (28). The explanation for the divergent regions was 

that binding affinities for Lrp would vary resulting in differing regulatory effects on gene 

expression.  The presence of the four binding boxes also demonstrated that LrpPA may also form 

an assembly similar to that of LrpEC when bound to the promoter of dadRAX (28).  Even more 

similarly, the homolog of dadRAX in E. coli is also regulated by LrpEC. Beyond these studies, 

however, the role of Lrp in P. aeruginosa is not well understood. 

 The conservation of structure and some function supports the possible role that Lrp can 

act as a global regulator of the P. aeruginosa genome.  A side-by-side comparison of Lrp in E. 

coli and P. aeruginosa using 3-D modeling (Figure 2) shows that the N-terminus and the C-



 

terminus, which are the DNA-binding domain

conserved in both proteins. The N

binding domain.  

 

LrpEC   

Figure 2. Structural comparison of Lrp

of an Lrp monomer from E. coli 

(HTH) motif at the N-terminus, a known DNA binding region. The C

amino acid binding region for both proteins as well. Images were obtained using the RaptorX 

Protein Structure Prediction Tool

 Parks and Griffin (2011) demonstrated that 

knockout of E. coli is partially functional and can restore 

protein (29). Through expressing Lrp

A 

N 

C 

binding domain and the leucine-binding domain, respectively, are 

conserved in both proteins. The N-terminus shows the helix-turn-helix motif, which is the DNA

     LrpPA 

 

Structural comparison of LrpEC and LrpPA. A side-by-side comparison of the structure 

 (A) and P. aeruginosa (B). Both proteins show a helix

terminus, a known DNA binding region. The C-terminus contains the 

amino acid binding region for both proteins as well. Images were obtained using the RaptorX 

Protein Structure Prediction Tool. 

 

Parks and Griffin (2011) demonstrated that in trans complementation of Lrp

is partially functional and can restore partial function of the native Lrp 

Through expressing LrpPA in E. coli, the investigators were able to complement a 
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N 
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growth-deficient lrpEC mutant in minimal media. LrpPA could not, however, activate expression 

of gltB::lacZ, another characterized LrpEC – regulated gene. This demonstrated some 

conservation of structure-function between the two species, but it also suggested that some 

functions are likely species-specific. This emphasizes the need for careful study of individual Lrp 

proteins.   

 Due to the partial complementation of an lrp-deficient strain of E. coli by LrpPA and the 

demonstration that LrpPA regulates a metabolic operon in P. aeruginosa, it is plausible to expect 

that there may be other nutrient-acquisition genes that LrpPA regulates. Conservation of the 

structure and function of this protein across both bacteria and archaea also demonstrates that 

LrpPA may have a larger regulon than has been previously published. In this study, the LrpPA 

regulon was examined by characterizing the phenotype of an lrp knockout of P. aeruginosa. The 

P. aeruginosa lrp- mutant was used to study virulence factor production and lethal effects on C. 

elegans and the results were compared to the wild-type strain of P. aeruginosa.  

  

    



 

Strains and Media 

Pseudomonas aeruginosa

the early 1950s from a wound infection

2000 and is maintained on a publically

Pseudomonas aeruginosa PAO1 

PAO1 transposon mutant library available through the Manoil Lab at the University of 

Washington Genome Sciences and is designated PW9942:

transposon used to generate the 

tetracycline and β-lactam antibiotics. 

Figure 3. Transposon insertion into 

mutant library. The lrp gene is 489 base pairs in 

C04::ISlacZ/hah, the transposon insertion containing tetracycline resistance and a β

gene is inserted at 293 base pairs into the 

MATERIALS AND METHODS 

Pseudomonas aeruginosa strain PAO1 was originally isolated in Melbourne, Australia in 

the early 1950s from a wound infection.  The whole genome of this strain was sequenced in 

maintained on a publically-accessible database, www.pseudomonas.com

PAO1 lrp knock-out mutant was obtained from the 

PAO1 transposon mutant library available through the Manoil Lab at the University of 

Washington Genome Sciences and is designated PW9942:lrp-C04::ISlacZ/hah 

transposon used to generate the lrp-knock-out mutant are genes providing resistance to 

lactam antibiotics. A graphic illustrating the insertion is shown in 

Transposon insertion into P. aeruginosa PAO1 lrp from a transposon

gene is 489 base pairs in P. aeruginosa strain PAO1. In 

, the transposon insertion containing tetracycline resistance and a β

gene is inserted at 293 base pairs into the lrp gene, confirmed by sequencing.  

13 

strain PAO1 was originally isolated in Melbourne, Australia in 

genome of this strain was sequenced in 

ww.pseudomonas.com (30). A 

out mutant was obtained from the P. aeruginosa 

PAO1 transposon mutant library available through the Manoil Lab at the University of 

 (31). Within the 

out mutant are genes providing resistance to 

A graphic illustrating the insertion is shown in Figure 3.  

 

from a transposon-mediated 

strain PAO1. In PW9942:lrp-

, the transposon insertion containing tetracycline resistance and a β-lactamase 
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The strain of Caenorhabditis elegans used in the killing assays was the wild-type N2 

strain (Caenorhabditis Genome Center), isolated by Warwick L. Nicholas in Bristol, Great Britain 

in 1951 from mushroom compost (www.wormbase.org). C. elegans was used as a model for 

virulence in P. aeruginosa because of its suitability for studying host-pathogen interactions, its 

easy maintenance and short generation time, its similar innate immunity to humans, and its 

response to human pathogens (32). Worms were maintained at room temperature and grown 

on Nematode Growth Medium (NGM) Lite with E. coli strain OP50 as the food source.  

P. aeruginosa PAO1 and PW9942:lrp-C04::ISlacZ/hah were grown in either Luria-Bertani 

broth (LB) (Difco, Franklin Lakes, NJ) or succinate broth (0.4% succinic acid, 0.02% MgSO4 

heptahydrate, 0.1% (NH4)2SO4, 0.6% K2HPO4, 0.3% KH2PO4) under aeration on a rotating 

platform at 220 rpm within a 37
o
C incubator.   E. coli strains were grown at 37 °C in Luria-

Bertani broth (LB) (Difco, Franklin Lakes, NJ) with shaking at 220 rpm.  

 

PCR Confirmation of PW9942:lrp-C04::ISlacZ/hah 

 The strains of P. aeruginosa from University of Washington Genome Center were 

subjected to polymerase chain reaction to determine the presence of lrp. The lrp gene was 

amplified by polymerase chain reaction from Pseudomonas aeruginosa O1 (PAO1) 

chromosomal DNA with the forward primer 5’-

GGAATTCCCGAGCCAGACGGGGAGCCTCCATCCATGCGTACC-3’ and reverse primer 5’-

GTGAATTCGGTCAATCCTAATCCGGAACCGGTAGGTCGAGCGA-3’. GoTaq G2 Hot Start MasterMix 

(Promega, Madison, WI) was used to amplify lrp using the following PCR cycle: 94
o
C for 1 
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minute, then 32 cycles of 94
o
C for 30 seconds, 55

o
C for 1 minute, and 72

o
C for 1 minute. The 

500-base pair PCR product was run on a 1.5% agarose gel containing ethidium bromide with a 

100 base pair ladder (Thermo Scientific, Waltham, MA) and visualized by UV 15luorescence 

using a Biorad Imaging System. 

 

Growth Curve 

 24-hour growth curves were generated in both LB broth and succinate broth. Both P. 

aeruginosa PAO1 and P. aeruginosa PW9942:lrp-C04::IslacZ/hah were grown in 25 mL of broth 

with shaking at 220rpm at 37
o
C. At 0, 8, 16, and 24 hours, 500 μL of the broth culture was 

collected, serially diluted and spread onto LB agar for the LB broth cultures and on Minimal A 

agar for the succinate broth cultures. Colonies were counted as an indication of viable cell 

count and colony forming units (CFUs) per mL were calculated at each time point. For each type 

of media, trials were run in duplicate and repeated 3 times. Statical relevance was determined 

using the student t-test. 

 

Cell Size 

 In order to observe differences in cellular structure, cell length was compared in both LB 

and succinate broth at 16 hours for both P. aeruginosa PAO1 and P. aeruginosa PW9942:lrp-

C04::IslacZ/hah. Sixteen hours was selected based on the results of the virulence factor assays, 

where a significant difference was measured between P. aeruginosa PAO1 and P. aeruginosa 
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PW9942:lrp-C04::IslacZ/hah. Cultures of both P. aeruginosa PAO1 and P. aeruginosa 

PW9942:lrp-C04::IslacZ/hah were grown in 3 mL of either LB or succinate broth and a loopful of 

each was harvested at 16 hours and spread onto a glass microscope slide. The cells were heat-

fixed to the slide surface, stained with 1% crystal violet for 1 min, and rinsed with distilled 

water. Slides were viewed under an inverted microscope at 1000X magnification. Between 50 

and 100 cells were measured from each slide using the Image Processing and Analysis in Java 

(ImageJ), a program designed to edit and analyze images. This program was written by Wayne 

Rasband (Research Services Branch, National Institutes of Mental Health, Bethesda, MD) and 

inspired by NIH Image for Macintosh. This experiment was repeated 4 times in duplicate for LB 

and succinate broth. To determine a significant difference between cell sizes of P. aeruginosa 

PAO1 and P. aeruginosa PW9942:lrp-C04::IslacZ/hah, a t-test of the average cell length was 

determined for each type of media. 

 

Siderophore Assay 

 Siderophores are pigmented iron-chelating agents that solubilize exogenous iron in 

order to support metabolism. Pyoverdine, a yellow-green siderophore, is a nutrient acquisition 

compound and is hypothesized to be regulated by Lrp. To determine if a correlation between 

pyoverdine production and Lrp could be observed, pyoverdine production was measured in 

both the wild-type and the mutant.  

 P. aeruginosa PAO1 and P. aeruginosa PW9942:lrp-C04::IslacZ/hah were streaked from 

a frozen stock onto MinA agar and incubated at 37
o
C for 24 hours. Importantly, the use of fresh 
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strains is important for siderophore production (Griffin, unpublished data).  An approximately 

equal amount of inoculum, confirmed by CFU collection, was added to 25 mL of succinate 

broth. At 0, 8, 16, and 24 hours, 500 μL of the culture was harvested and centrifuged at 13,200 

rpm at 4
o
C for 10 minutes. One hundred microliters of the supernatant was pipetted into a 96-

well plate and a measurement of the OD was taken at a wavelength of 405 nm to measure 

pyoverdine production. CFUs were determined at each time point to demonstrate viable cell 

counts in each flask at each time. This experiment was done in duplicate and repeated three 

times.  

For each time trial, a t-test was done to measure for significant differences in 

pyoverdine production between the wild-type and the mutant.  

 

Biofilm Assay 

 Biofilm formation is influenced by nutrient availability for many bacterial species. Lrp is 

hypothesized to play a role in biofilm formation and was therefore measured in both the wild-

type and the mutant.  

 P. aeruginosa PAO1 and P. aeruginosa PW9942:lrp-C04::IslacZ/hah were streaked onto 

Minimal A agar and allowed to grow at 37
o
C for 24 hours. One colony from each species was 

selected and resuspended into 5 mL of either LB or succinate broth. One mL of each suspension 

was removed and added to 3 separate wells of a 24-well plate. Cultures were allowed to grow 

statically for 24 hours at 37
o
C then the free cells were removed using a micropipette. One 
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percent crystal violet was added to each well and was allowed to incubate at room temperature 

for 5 minutes.  The liquid supernatant containing free cells were removed. Wells were rinsed 

with distilled water three times and allowed to dry.  OD measurements were taken at 540 nm. 

This experiment was done in triplicate and repeated 3 times. A t-test was used for the optical 

density of the crystal violet-stained biofilm for P. aeruginosa PAO1 and P. aeruginosa 

PW9942:lrp-C04::IslacZ/hah to determine a significant difference in biofilm formation. 

 

Caenorhabditis elegans Killing Assay 

   C. elegans Maintenance and Growth 

 To determine if Lrp plays a role in overall virulence in an established animal model, a C. 

elegans killing assay was used as in previous publications (32, 33).  Adult C. elegans N2 

hermaphrodites were selected and killed with a bleach solution (500 mM NaOH and 20% 

household bleach) in order to harvest eggs and assure young adults for the assay. The larvae 

were allowed to develop to adulthood for four days before use in an experiment. 

  Preparation of P. aeruginosa strains 

 60mm plates with MinA agar were used for the growth of P. aeruginosa and for the 

killing assays. MinA agar was chosen because of higher expression of virulence factors under 

nutrient stress. P. aeruginosa PAO1 and P. aeruginosa PW9942:lrp-C04::IslacZ/hah were 

inoculated into 3 mLs of succinate broth and grown for 24 hours at 37
o
C. Fifteen microliters of 

this broth was spread onto 60mm Petri dishes containing MinA and grown for 24 hours at 37
o
C. 
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The plates were allowed to cool from 37
o
C to room temperature for one hour before worms 

were added to prevent heat shock and death.  

   Killing Assay 

 Thirty adult hermaphrodite C. elegans were seeded onto a MinA agar plate containing 

either P. aeruginosa PAO1 or P. aeruginosa PW9942:lrp-C04::IslacZ/hah and NGM-Lite plate 

with E. coli OP50 as a control, and worms analyzed every 24 hours for 96 hours. Every 24 hours, 

the worms were transferred to a new plate of the same bacteria. Worms were considered dead 

when they no longer responded to touch, and were removed from the plate. Worms that died 

for reasons other than bacterial consumption (ie. during plate transfer or from desiccation) 

were not included in the calculation of survival. Percentage of survival was calculated for each 

time point by dividing the sum of total worms surviving by total of worms that died. The results 

were subjected to a t-test to determine a difference in virulence between P. aeruginosa PAO1 

and P. aeruginosa PW9942:lrp-C04::IslacZ/hah. This assay was repeated for three independent 

trials. A t-test was used at each time point to determine differences in survivability between the 

control strain E. coli OP50 and P. aeruginosa PAO1. A t-test was also used to determine a 

significant difference between OP50 and P. aeruginosa PW9942:lrp-C04::IslacZ/hah and 

between P. aeruginosa PAO1 and P. aeruginosa PW9942:lrp-C04::IslacZ/hah. 
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Construction of pET300:lrpPA  

 The lrp gene was amplified by polymerase chain reaction from Pseudomonas aeruginosa 

O1 (PAO1) using the same procedure as the confirmation of the lrp knockout (described above). 

The 500-base pair product was extracted from a 1.5% agarose gel (Qiagen, Germantown, MD) 

and inserted into the vector pCR2.0 using standard TA cloning (Invitrogen, Carlsbad, CA). The 

plasmid was then used in the pET300NT destination vector kit (Invitrogen, Carlsbad, CA) and 

was transformed into E. coli BL21(DE3), a strain of E. coli that is engineered to express high 

quantities of protein. The plasmid was purified with a MiniPrep Spin Kit (Qiagen, Germantown, 

MD) and sequenced to ensure the correct orientation (Functional Biosciences).  E. coli BL21 + 

pET300NT:lrpPA was maintained on media containing 50  μg/mL of carbenicillin.  

 

Purification of Lrp 

 E. coli BL21(DE3) + pET300NT:lrpPA was streaked on LB agar containing 50 μg/mL of 

carbenicillin and grown at 37
o
C overnight.  A 12 mL broth was inoculated using a single colony 

and allowed to grow overnight with shaking (220 rpm) in a 37
o
C incubator.  One liter of broth 

was inoculated with a 1:100 dilution of the overnight broth and was allowed to grow under the 

same shaking conditions for 2 hours and 15 minutes.  At an OD 600 nm of 0.6, the culture was 

induced with 10 mLs of 100mM IPTG and allowed to continue to grow for 4 additional hours. 

The culture was centrifuged at 5,000 rpm for 15 minutes at 4
o
C.  The supernatant was removed 

and the resulting pellets were frozen overnight in a 
-
80

o
C freezer to aid in the lysis of the cells.  

The cells were then resuspended in lysis buffer (10mM Tris pH 8.0, 500mM NaCl, 10mM 
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imidazole, 0.05% Tween 20) containing DNase I and lysozyme (10µg/ml) and allowed to sit on 

ice for 30 minutes. The suspension was homogenized briefly and passed through a French Press 

at 1280 Psi.  The cell lysate was centrifuged at 10,000 rpm for 30 minutes at 4
o
C.  The 

supernatant was collected and mixed with HisPur cobalt resin beads (Thermo Scientific, 

Rockford, IL) and incubated on a rotating table at 4
o
C for 2 hours. The lysate and beads were 

passed through a column equilibrated with 2 mLs of lysis buffer. The beads were washed 3 

times with 10mLs of wash buffer (10mM Tris pH 8.0, 500mM NaCl, 25mM imidazole, 0.05% 

Tween 20).  Five elution fractions of 1mL each were collected using elution buffer (10mM Tris 

pH 8.0, 500mM NaCl, 250mM imidazole, 0.05% Tween 20).  25μLs of each sample were mixed 

with 25 μLs of Laemmli Sample Buffer (Bio-Rad, Hercules, CA), boiled at 100
o
C for 5 minutes 

and centrifuged at maximum speed for 5 minutes.  15 μLs of each sample were run through a 5-

15% SDS-PAGE gradient gel for visual confirmation of Lrp production. The concentrations of 

protein in each elution was calculated by Bradford Assay then combined and dialyzed in 20mM 

Tris pH 7.6 overnight at 4˚C.    

 

Electromobility Shift Assay 

  DNA regions were selected as targets for the activity of Lrp in an electromobility shift 

assay (EMSA). The targets selected for this assay were a positive and negative control segment 

amplified by PCR from PAO1. Positive control DNA was the dadRAX operon, selected based on 

the work of He et al. (2011) (28). The dad operon amplified contained three of the four 

published binding boxes and was amplified using the forward primer 5’ – 
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CATCGGCGCCGGCAACATGG – 3’ and the reverse primer 5’ – GCGCCAAGGCCTGGCACACGG – 3’. 

The following PCR program was used: 1 minute at 94
o
C, then 94

o
C 1 minute, 55

 o
C for 1 minute, 

72
 o

C for 90 seconds repeated 30 times. GoTaq G2 Hot Start MasterMix (Promega, Madison, WI) 

with 10% DMSO (due to the high genomic GC content of Pseudomonas DNA) was used for the 

reaction. The negative control segment was the proC gene, a standard housekeeping gene that 

is constitutively expressed and is not known to be regulated by lrp. The proC gene was 

amplified using GoTaq G2 Hot Start MasterMix (Promega, Madison, WI) with 10% DMSO and 

the forward primer 5’ – CCATGGCTTCTGCGACAGGAATTCCCG – 3’ and reverse primer 5’ – 

CCGATGACACCGCTGCCAAGG – 3’. The PCR cycle used was as follows: 94
o
C for 1 minute, then 

32 cycles of 94
o
C for 30 seconds, 55

o
C for 1 minute, and 72

o
C for 1 minute. The product was 

gel-extracted using Qiagen DNA extraction kit (Qiagen, Germantown, MD) and 

spectrophotmetrically-quantified for use in this assay.  

 The EMSA protocol was adopted from a previous publication (28). A 4-15% Tris-Glycine 

electrophoresis gel (BioRad, Hercules, CA) was used with Tris-Glycine native running buffer and 

run at 100V. The target DNA and the protein were used at ten times the concentration due to 

no visibility of DNA in early trials, but the same buffer was used for the incubation for the 

binding.  

 

  



23 

 

BioLayer Interferometry 

  In addition to the EMSA, the DNA-binding capability of Lrp to target regions of the P. 

aeruginosa chromosome was also monitored using biolayer interferometry (BLI). BLI uses 

coated biosensors, which detect white light as it is reflected by two surface boundaries, the 

molecule coating the surface as well as the internal boundary of the sensor. Changes in 

interference occur as the number of molecules bound to the sensor changes during molecular 

interaction. This allows binding to be observed in real time and allow not only confirmation of 

interaction but the kinetics of both binding and release (www.ForteBio.com).  

The same DNA targets from the EMSA were used in this assay to represent positive and 

negative controls for binding. BLI was monitored using the OctectQK System (ForteBio, Menlo 

Park, CA) equipped with Ni-NTA bound biosensors (ForteBio, Menlo Park, CA) that were used to 

bind to the His-tag on the N-terminus of the purified Lrp protein. Because previous trials of 

dipping the biosensor in eluted Lrp did not show activity with DNA, the sensor was instead 

dipped into cleared lysate to capture the protein in its native conformation before it was 

subjected to column purification. The sensors were dipped in cleared lysate from E. coli 

BL21(DE3) with or without the DNA construct containing lrpPA to show background noise from 

nonspecific binding. The sensors were mixed in cleared lysate for 15 minutes then transferred 

to TBS-T for 5 minutes to wash nonspecific proteins from the sensor.  This established a 

baseline of nonspecific binding. The sensor was placed in TBS-T and a saturating concentration 

of target DNA for five minutes then subjected to a wash step for five minutes to measure 
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dissociation of the DNA. Binding was measured at 25
o
C. The nm shift in interference that occurs 

as the proteins bind was measured in real-time.  
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RESULTS 

PCR Confirmation of Knockout 

 In order to demonstrate the disruption of the lrp gene by the presence of the 

transposon insertion, PCR was utilized to amplify lrp from P. aeruginosa PAO1 and the mutant. 

The transposon in the mutant contains a tetracycline and lacZ fusion gene.  This insertion 

lengthens the lrp gene to nearly 7Kb, which is not expected to amplify using Taq polymerase in 

a standard PCR cycle. The expected size of the product is 532 base pairs in the wild-type. The 

results of the PCR are shown in Figure 4. Amplification of lrp was achieved in PAO1 as expected 

and is shown in lane 2. The product is approximately 530 base pairs, which was the expected 

size of the amplicon. In the mutant, lrp did not amplify, which suggested that the transposon 

renders the amplicon too long for Taq amplification and is consisted with published results from 

the Manoil mutant library paper (31). This indicates that lrp is no longer a functional gene and 

that it is a true knockout. Any phenotypic differences observed between the wild-type and the 

mutant are due to a disruption of lrp. The amplification was attempted a minimum of three 

times on three independently isolated genomic samples for both mutant and wild-type. 

 

 



 

Figure 4. lrp amplification by PCR

through a 1.5% agarose gel.  Lane 1: 100 base pair ladder. Lane 2: 

for P. aeruginosa PAO1. Lane 3: 

The absence of an amplicon is consistent with the presence of the transposon inserted into the 

lrp gene.  
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only genetic difference between both strains.  The exact role of LrpPA in these morphological 

changes has yet to be determined. 

  

  

Figure 5. Phenotype of P. aeruginosa PAO1 and P. aeruginosa PW9942:lrp-C04::ISlacZ/hah on 

minimal A agar. (A) The wild-type strain P. aeruginosa PAO1 displayed cream colonies and 

green pigmentation of siderophores. (B) P. aeruginosa PW9942:lrp-C04::ISlacZ/hah displayed 

colonies that were reduced in size and the pigmentation from siderophores also appeared to be 

lower than that of P. aeruginosa PAO1.  

 

Growth Curves 

 Wild-type and mutant P. aeruginosa were monitored for growth in nutrient-rich LB 

broth and nutrient-poor succinate broth for 24 hours. Growth was monitored every 8 hours by 

A B 
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colony forming units (CFU). P. aeruginosa PAO1 grew exponentially between 0 and 8 hours then 

began to decrease in cell count before 16 hours. The CFU count remained about the same from 

16 to 24 hours. P. aeruginosa PW9942:lrp-C04::ISlacZ/hah, however, did not enter exponential 

growth until after 16 hours and appeared to grow more slowly than the wild-type strain PAO1. 

The trends in growth are shown in Figure 6.  

 

 

Figure 6. Growth of Pseudomonas aeruginosa PAO1 and P. aeruginosa PW9942:lrp-

C04::ISlacZ/hah (PW9942) in LB broth. The growth curves for P. aeruginosa PAO1 and P. 

aeruginosa PW9942:lrp-C04::ISlacZ/hah (PW9942) in LB broth over 24 hours were measured 

every 8 hours and expressed as a concentration of CFU/mL. The error bar above each point 

represents 1 standard deviation for three trials done in duplicate. 
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 In contrast to nutrient-rich LB broth, a growth curve in minimal broth was also 

conducted for both P. aeruginosa strains as shown in Figure 7. The growth curves for P. 

aeruginosa PW9942:lrp-C04::ISlacZ/hah in succinate broth displayed comparable growth to 

those observed in LB broth. P. aeruginosa PAO1 showed exponential growth through 8 hours 

then stationary and decline phases between 8 and 24 hours. For P. aeruginosa PW9942:lrp-

C04::ISlacZ/hah growth was exponential through 24 hours. 

 

Figure 7. Growth of Pseudomonas aeruginosa PAO1 and P. aeruginosa PW9942:lrp-

C04::ISlacZ/hah (PW9942) in succinate broth. The growth curves for P. aeruginosa PAO1 and P. 

aeruginosa PW9942:lrp-C04::ISlacZ/hah (PW9942)in succinate broth over 24 hours, measured 

every 8 hours by CFUs. Colony forming units of P. aeruginosa PAO1 increase until 16 hours then 

begin to decrease. P. aeruginosa PW9942:lrp-C04::ISlacZ/hah CFUs continue to increase for the 

24 hours and growth is exponential between 16 and 24 hours. The error bars represent 1 

standard deviation for three trials done in duplicate. 
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 A side-by-side comparison of the wild-type in both media is shown in Figure 8.  Viable 

cell count decreased by approximately two orders of magnitude in succinate broth compared to 

the more nutritious LB broth. The limited nutrients in succinate broth were unable to support 

as high of a concentration of cells at each time point that was measured.  The same media 

comparison is seen with mutant in Figure 9.  However, all a reduction in growth is seen in 

succinate as compared to LB by the mutant, the mutant demonstrated a continuation in 

growth.  It appears that it has not yet saturated nutrients that are available in the media.  

Whether this is due to a reduction in nutrient assimilation of transport or decreased 

metabolism as a result of lacking Lrp remains to be determined. 

 

Figure 8. Growth rate of P. aeruginosa PAO1 in LB and succinate broth. Viable cell counts were 

higher in LB broth than in succinate broth for P. aeruginosa PAO1. The higher nutrient 

availability of LB allowed a higher concentration of cells at each time point. 
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Figure 9. Growth rate of P. aeruginosa PW9942:lrp-C04::ISlacZ/hah in LB and succinate broth. 

P. aeruginosa PW9942:lrp-C04::ISlacZ/hah (PW9942) grows to a higher concentration of cells in 

LB broth than in succinate broth. The nutrients are more limiting in succinate broth and did not 

allow as much growth as LB broth. 

 

Cell size 

 We hypothesized that cell size could be affected as a consequence of nutrient 

acquisition and loss of Lrp activity. Cell size was determined using an inverted light microscope 

and ImageJ imaging program. A sample cell from each slide that represents the average is 

shown in Figure 10. Cell size was determined for both P. aeruginosa strains grown in LB broth 

and in succinate broth. The results are shown in Figure 11. In LB broth (panel A and C), P. 
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aeruginosa PAO1 had a significantly larger size than P. aeruginosa PW9942:lrp-C04::ISlacZ/hah. 

However, the cell size of P. aeruginosa PW9942:lrp-C04::ISlacZ/hah was significantly larger than 

PAO1 when grown in succinate broth (panel B and D).  

  

  

Figure 10. Micrographs comparing cell morphologies of P. aeruginosa PAO1 and P. aeruginosa 

PW9942:lrp-C04::ISlacZ/hah grown in two different broths. A sample of cells from each 

specimen that represent typical sizes are shown in each panel. (A) P. aeruginosa PAO1 grown in 

LB broth. (B) P. aeruginosa PW9942:lrp-C04::ISlacZ/hah grown in LB broth. (C) P. aeruginosa 

PAO1 grown in succinate broth.  (D) P. aeruginosa PW9942:lrp-C04::ISlacZ/hah in succinate 

broth.  

 

A B 
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Figure 11. Cell size in LB and succinate broth. P. aeruginosa PAO1 and P. aeruginosa 

PW9942:lrp-C04::ISlacZ/hah (PW9942) were not significantly different sizes in LB broth. P. 

aeruginosa PAO1 was significantly smaller than P. aeruginosa PW9942:lrp-C04::ISlacZ/hah in 

succinate broth, shown in the second set of bars. Error bars represent 1 standard deviation of 4 

trials in duplicate. 

 

Siderophore Assay 

 Pyoverdine, a siderophore produced by P. aeruginosa, is considered a virulence factor 

and is important for iron acquisition from the environment. To determine if Lrp activity affected 

the production of this virulence factor, pyoverdine production was measured 

spectrophotometrically at 405 nm from a cell-free extract every 8 hours for 24 hours. Colony 

forming units (CFUs)/mL were calculated for each strain at all four time points to confirm 
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similarity in cell concentrations. The results of siderophore production for both P. aeruginosa P. 

aeruginosa PAO1 and P. aeruginosa PW9942:lrp-C04::ISlacZ/hah in succinate broth are shown 

in Figure 12. The cell concentration appeared to be slightly lower for P. aeruginosa PW9942:lrp-

C04::ISlacZ/hah than P. aeruginosa PAO1 at 8 hours, but had reached the same concentrations 

by 16 hours. Most notably, the mutant grew to a higher living cell density at 24 hours than the 

wild-type.   

Pyoverdine production was significantly reduced for the PW9942:lrp-C04::ISlacZ/hah at 

later stages of growth. Pyoverdine production was first detected in the wild-type at 16 hours 

while P. aeruginosa PW9942:lrp-C04::ISlacZ/hah did not produce detectable pyoverdine until 

24 hours. Pyoverdine levels were significantly different between P. aeruginosa PAO1 and P. 

aeruginosa PW9942:lrp-C04::ISlacZ/hah at both 16 and 24 hours.  

 

 



 

Figure 12. Spectrophotometry of pyoverdine production. 
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biofilm thickness. At 24 hours, biofilm production by P. aeruginosa PAO1 in LB broth was 

significantly greater than P. aeruginosa PW9942:lrp-C04::ISlacZ/hah (p<0.05)  as shown in 

Figure 13. There was no significant difference found between the bacteria strains when grown 

in succinate broth, which suggested that the media is not nutritious enough to allow the dense 

biofilm layer to form for either the wild-type or the mutant.  

 

 

Figure 13. Twenty four hour biofilm formation in LB and succinate broth. Biofilm formation of 

static cultures of P. aeruginosa PAO1 and PW9942:lrp-C04::ISlacZ/hah (PW9942) at 24 hours in 

LB and succinate broths. Biofilm formation was indicated by absorbance of light at 540 nm. A 

significant difference was measured for LB broth, which is shown in the first set of bars. No 

significant difference was observed for biofilm formation when grown in succinate broth. 
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Because P. aeruginosa PAO1 and P. aeruginosa PW9942:lrp-C04::ISlacZ/hah showed no 

significant difference in biofilm formation in 24 hours in succinate broth, a 48 hour assay was 

performed. With more time, the cells might have been able to form a biofilm. The extended 

time did not result in significant differences as shown in Figure 14. These results suggested that 

the nutrients available to both strains were limiting and did not provide a suitable supply of 

energy to form a biofilm. 

 

Figure 14. P. aeruginosa PAO1 and PW9942:lrp-C04::ISlacZ/hah biofilm formation in succinate 

broth. Biofilm formation in 48 hour static cultures of P. aeruginosa PAO1 and P. aeruginosa 

PW9942:lrp-C04::ISlacZ/hah (PW9942) in succinate broth shows no significant difference 

calculated between the wild-type and the mutant. Error bars represent 1 standard deviation of 

three trials in triplicate. 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

PAO1 PAO1 lrp::Tn

A
b

so
rb

a
n

ce
 (

5
4

0
 n

m
)

    PW9942 



38 

 

C. elegans Killing Assay 

 Siderophore production and biofilm formation vary significantly when comparing P. 

aeruginosa PAO1 to the lrp knock-out mutant.  We wanted to determine if lethality would also 

differ between the wild-type and the mutant. C. elegans is an established model organism for 

infection by P. aeruginosa and was used in a 96-hour assay to determine differences in killing 

between P. aeruginosa PAO1 and PW9942:lrp-C04::ISlacZ/hah. Percentage survival was 

calculated every 24 hours for 96 hours as shown in Figure 15. Originally, all strains were grown 

on NGM-Lite however no death occurred over a four-day span with the wild-type PAO strain 

(data not shown). We attributed this as possibly being due to a lack of virulence factor 

induction due to the nutrient composition of the medium. P. aeruginosa PAO1 and P. 

aeruginosa PW9942:lrp-C04::ISlacZ/hah were grown on MinA plates for all subsequent assays 

to induce the expression of virulence factors in future experiments. Using a t-test, a significant 

difference in lethal effect occurred as compared to E. coli OP50 and P. aeruginosa PAO1 

(p=0.04), as well as E. coli OP50 and P. aeruginosa PW9942:lrp-C04::ISlacZ/hah (p=0.015). 

Previous reports have shown that P. aeruginosa is toxic to C. elegans, which was supported by 

the data and analyses from this assay (32, 33). However, no significant difference (0.942) was 

determined between P. aeruginosa PAO1 and the P. aeruginosa lrp- mutant (PW9942:lrp-

C04::ISlacZ/hah). These results are contradictory to the predicted outcomes of this assay in 

which P. aeruginosa PAO1 whould have caused greater fatalities in the challenged nematode 

population than P. aeruginosa PW9942:lrp-C04::ISlacZ/hah.  
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Figure 15. Pathogenicity of P. aeruginosa PAO1 and P. aeruginosa PW9942:lrp-

C04::ISlacZ/hah. Percentage survival of C. elegans was calculated every 24 hours for 4 days. C. 

elegans were on a lawn of E. coli OP50, P. aeruginosa PAO1, and P. aeruginosa PW9942:lrp-

C04::ISlacZ/hah (PW9942) and were transferred at the time of counting to a new culture of 

bacteria. A t-test reveals a significant difference between survival on E. coli OP50 and both P. 

aeruginosa strains, but no observable difference between PAO1 and PW9942:lrp-

C04::ISlacZ/hah was seen. 

 

 

0

20

40

60

80

100

120

24 48 72 96

P
e

rc
e

n
ta

g
e

 S
u

rv
iv

a
l

Time (Hours)

OP50

PAO1

PW9942



40 

 

Purification of Lrp 

 To test the binding of Lrp to specific DNA targets, the protein was purified using an 

affinity column. Lrp was over-expressed in E. coli BL21 DE3 + pET300:lrpPA in LB supplemented 

with carbenicillin (50µg/ml) and purified with using a cobalt resin column. The large-scale 

purification resulted in successful isolation of His-tagged Lrp. (Of note, small scale protein 

purification using Qiagen his-tag columns was attempted many times and was unsucessful).  

SDS-PAGE analysis revealed a product of 22kDa, which is the predicted size of the monomer of 

Lrp with the 6X-histidine tag on the N-terminus. A Bradford assay was performed to calculate 

the amount of protein from each elution. Table 1 shows typical readings of the elutions at 595 

nm. Concentration of Lrp in the elutions was highest in the second elution therefore this 

fraction was dialyzed and used in all subsequent purifiction procedures. 

 Elution 1 Elution 2 Elution 3 Elution 4 Elution 5 

OD (595nm) 0.336 0.615 0.433 0.313 0.294 

Concentration 

(μg/mL) 

166.75 460.61 237.41 153.36 143.11 

Table 1. Purification of LrpPA from an E. coli expression system. Protein concentrations from 5 

column elutions were measured by Bradford assay at 595nm. A standard curve constructed 

from known concentrations of bovine serum albumin was used to calculate the concentration 

of protein in each elution.  
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 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed 

a purified protein  of about 20 kDa, which is the predicted size of the monomer of Lrp with the 

6X-histidine tag on the N-terminus. A SDS-PAGE of the dialyzed protein product is shown in lane 

2 in Figure 16. All 5 elutions of protein showed a strong single band at the expected size of the 

Lrp product, with the highest amount of protein recovered in the second elution. This indicated 

that there was a high Lrp concentration in the column prep and was suitable for use in binding 

assays. 

 

Figure 16. SDS-PAGE of LrpPA column purification. SDS-PAGE of the elution from a preparation 

of 6X his-tagged Lrp reveals a large single band of product at the expected size of 20 kDa. Lane 

1 shows a standard protein ladder. Lane 2 contains the product from the second elution of Lrp. 

Lane 3 is the product of the third elution of Lrp.  
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 Positive and negative control DNA probes were amplified by PCR for the EMSA to 

determine Lrp activity. The published binding site of the dad operon was amplified as the 

positive control. The DNA probe was successfully amplified by PCR to produce a single band, 
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EMSA with positive control DNA probe. Negative and positive DNA controls were 

subjected to an EMSA with Lrp to detect activity of the purified protein. The gel shows a 100 

base pair ladder in lane 1. Lane 2 has no Lrp to show the migration pattern of free probe. Lane 3 

as 400 nM Lrp, and lane 5 has 800 nM. All samples were run with 5 mM 

alanine and EMSA buffer at 100V in a Tris-Glycine buffer.  
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subjected to an EMSA with Lrp to detect activity of the purified protein. The gel shows a 100 

of free probe. Lane 3 

as 400 nM Lrp, and lane 5 has 800 nM. All samples were run with 5 mM 
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BioLayer Interferometry 

 In addition to the EMSA, BioLayer Interferometry (BLI) was used to detect binding of Lrp 

to DNA targets. BLI also allows measurement of the kinetics of binding and release and makes it 

a useful tool for measuring molecular interactions. Cleared lysate from E. coli BL21 with and 

without the DNA construct was added to Ni-NTA sensors. Recombinant Lrp showed strong 

binding indicating that the 6X His-tag on the protein is present and exposed in the E. coli 

containing lrpPA expression vector construct. The interferometry signal from the binding of Lrp 

to the probe is shown in Figure 18. The steep peak labeled “+ Lrp” demonstrates the change in 

refraction as Lrp from the cleared lysate bound to the biosensor. Some nonspecific binding 

occurs in the cleared lysate from the strain with no plasmid, but this binding is significantly less 

is less than that of the cleared lysate containing plasmid expressing Lrp. 
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Figure 18. Cleared lysate interaction with Ni-NTA biosensors measured by BioLayer 

Interferometry (BLI). Refraction changes occur as Lrp from cleared lysate binds to Ni-NTA 

coated sensors in BLI. The shift in absorbance is shown on the y-axis as LrpPA binds, and the x-

axis shows the time in seconds. E. coli BL21 cleared lysate is shown in green and lysate from E. 

coli BL21 with pET300:lrpPA is shown in red.  

 

To test the ability of DNA-binding by the purified protein product, the positive control 

DNA sequence dad binding site was added to the sample. No binding was detected, which 

means that the purified product is inactive in the selected buffer, most likely due to misfolding.  

 

  

+ 
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DISCUSSION 

 Reports on lrp in P. aeruginosa suggest that it plays a role in nutrient acquisition and 

may regulate a larger spectrum of genes than has been previously published. The homology of 

LrpPA to the Lrp of other bacteria along with the findings of this study provide evidence that Lrp 

is part of a larger regulatory network and may serve as a potential drug target to reduce the 

virulence of P. aeruginosa.  

P. aeruginosa lacking Lrp does not grow at the same rate as wild-type strain in both 

nutritious and minimal media, which suggests that lrp is influential in standard growth patterns. 

Growth is delayed because lrp may play a role in nutrient acquisition. If the ability to acquire 

nutrients for metabolism is affected by lrp as proposed, growth would be expected to be slower 

in comparison to the wild-type. Since Lrp may regulate metabolic genes, the response to 

changes in the media as nutrients are depleted may cause a delayed reaction to alterations in 

the metabolic pathway being utilized. This would lead to slower growth, which is what was 

observed in the lrp
-
 mutant P. aeruginosa PW9942:lrp-C04::ISlacZ/hah. 

In addition to affecting the growth rate, the lrp gene was also influential in cell size. 

Because the growth of P. aeruginosa PW9942:lrp-C04::ISlacZ/hah was slower than PAO1 in 

nutritious broth, we expected that the cell size may be smaller. However, there was no 

difference in cell size in rich media. In minimal media, the wild-type was similar in size to both 

wild-type and mutant in nutritious broth. The mutant, however, was significantly larger than 

PAO1 in minimal media. Despite the fact that the mutant has a lower viable cell count at 16 

hours, the cell size is significantly larger. The cells do not grow to large densities yet their cell 
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size is larger than that of wild-type.  One suggestion for this observation involves the Krebs 

cycle, a metabolic pathway present in P. aeruginosa. One intermediate of this pathway involves 

succinate, which is the sole carbon source in the minimal media used in this assay. The finding 

that there is no difference in cell size in succinate broth indicates that the involvement of Lrp in 

this metabolic pathway is unlikely. Succinate is a sugar and may not be metabolized by enzymes 

that are regulated by Lrp. In contrast, the change in cell size in the more nutrient-rich LB broth 

suggests that there is a metabolic pathway used by P. aeruginosa in this medium that is 

affected by the presence of Lrp.  Tryptone is one ingredient in the broth, which is a peptide 

resulting from the cleavage of casein by trypsin. If LrpPA plays a similar role as LrpEC, metabolism 

of proteins and amino acids may also be regulated by LrpPA. Individual metabolic pathways that 

are regulated by Lrp must be identified before a relationship between cell size and Lrp can be 

determined. 

One observation of note in regards to the slides observed in the cell size assay was the 

presence of extracellular material (not quantified). Extracellular materials were visible on slides 

containing P. aeruginosa PAO1 (Figure 10), but little to none of the same extracellular materials 

were observed on slides of P. aeruginosa PW9942:lrp-C04::ISlacZ/hah.  The cells were the same 

size as the wild-type at the same time period, however no presence of extracellular substances 

when grown in either LB or succinate broths was observed. This could also support the previous 

suggestion that Lrp interacts with nutrient acquisition because extracellular materials may be 

metabolic and structural waste products and dependent on metabolic pathways within the 

bacterium. An example of this link between nutrient metabolism and extracellular material is 

biofilm formation, which is also limited in the lrp
-
 mutant. 
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Biofilm formation on untreated surfaces was also limited in statically-grown P. 

aeruginosa PW9942:lrp-C04::ISlacZ/hah when compared to P. aeruginosa PAO1 in nutritious 

broth. At 24 hours, P. aeruginosa PAO1 forms a significantly larger biofilm compared to that of 

PW9942:lrp-C04::ISlacZ/hah, indicating that lrp plays a role in biofilm formation. However, 

there is no difference between the strains in biofilm formation at 24 and 48 hours in succinate. 

This suggests that the media is not supportive enough to provide for both the metabolic needs 

of the bacterium in addition to the formation of a complex, polysaccharide biofilm. LB broth 

contains more organic carbon compounds, which allows the wild-type bacterium to maintain its 

metabolism in addition to forming a biofilm. In contrast, P. aeruginosa PW9942:lrp-

C04::ISlacZ/hah is presumed not to be able to acquire its nutrients as efficiently and therefore 

does not form a biofilm as thick as the wild-type.  

P. aeruginosa is a known pathogen of C. elegans.   A killing assay was used to measure 

virulence in wild-type and mutant strains. C. elegans was chosen because of similarities of the 

innate immune system to humans making it an acceptable animal model of infection. The C. 

elegans killing assay was expected to demonstrate that overall virulence of P. aeruginosa 

PW9942:lrp-C04::ISlacZ/hah was less than that of PAO1 because the two strains had shown a 

significant difference in individual virulence factors in previous assays. However, the killing 

assay demonstrated that there was no significant difference in virulence between the two 

strains. Both strains were virulent in comparison to the avirulent control strain E. coli OP50, 

which confirmed previous reports using the same killing assay with P. aeruginosa.  C. elegans 

has been determined to be affected by colonization of P. aeruginosa and consequent 

production of hydrogen cyanide in the gut (33). Although all factors that make P. aeruginosa 
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virulent in C. elegans are not known, it is highly likely that the hcn gene responsible for the 

manufacturing of HCN is not regulated by lrp, therefore the absence of the lrp gene does not 

affect virulence toward C. elegans.  

In addition to characterizing the phenotype of an lrp-deficient mutant, protein-DNA 

interactions were attempted to detect binding of Lrp to select DNA targets. Large-scale 

purification of Lrp showed that a single product can be obtained using the pET300NT plasmid. 

In a small-scale experiment using the same construction in a 50 mL culture and a Qiagen Ni-NTA 

spin kit, no product was detected either by Coomassie stain in a SDS-PAGE gel or by a western 

blot. This may be because there was not enough protein from a 30 mL culture to be detected by 

either of these methods. The nickel in the spin column may also have a lower affinity for the 

His-tag in the 3-dimensional structure of the protein for attachment to the column surface. 

Large-scale protein preparations of 500 mls or higher with cobalt-coated resin beads were the 

best conditions for the preparation of the Lrp protein at concentrations that produced a visible 

band on a Coomassie-stained SDS-PAGE gel. 

The EMSA and BLI assays did not demonstrate DNA binding with sequences published to 

be regulated by Lrp.  The protein product from the elution step was present as a single band yet 

no interaction with DNA containing the Lrp binding sites of the dad operon could be 

demonstrated. The same publication demonstrated that dialysis into 20mM Tris pH 7.6 would 

be suitable for Lrp activity in an EMSA.  We could not reproduce this result as no activity was 

detected by either method during our analysis. The EMSA showed a presence of the dad gene 

by SYBR green staining. A change in interference would have been detected if the protein was 
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in an active conformation and was able to bind to the target DNA. Lrp shows a sharp increase in 

refraction when binding to the biosensor, which indicates that the His-tag is exposed and has a 

high affinity for the Ni-NTA coated biosensors. However, no change in refraction occurs when 

the protein-bound biosensors are exposed to either negative or positive control DNA. BLI was 

also tested in the presence of 5 mM alanine for DNA targets, yet still no activity was detected.  

Although the molecular interaction assays were unsuccessful in determining whether 

Lrp is capable of binding to DNA targets with specificity, there are other findings in these 

molecular assays that support the hypothesis that lrp regulates metabolic genes beyond the 

dad operon. Because there is a constitutively expressed alanine racemase in P. aeruginosa, 

there is still racemase activity without the use of dadX. That indicates that the differences 

observed between the wild-type and the mutant cannot be attributed to changes in the 

expression of dadRAX. For example, biofilm formation decreases significantly on non-treated 

surfaces. More metabolic genes must be affected by the absence of lrp than dadRAX to create a 

statistically significant difference in the phenotype. Also, the differences in growth rates cannot 

be fully dependent on an alanine racemase and dehydrogenase being expressed at different 

levels. The only carbon source available to P. aeruginosa was succinate in the minimal broth, 

which will not interact with DadA or DadX, but there was still an effect on the growth curve in 

the lrp deficient mutant.  

There are several phenotypic effects observed in the mutant that appear to be beyond 

changes to the regulation of dad. Although the Lrp regulon seems to be larger than has been 

previously published, it may not regulate as many genes as Lrp does in E. coli. The overall 
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virulence of P. aeruginosa does not decrease significantly in a C. elegans killing assay even 

though two known virulence factors are significantly decreased in the mutant. This means that 

P. aeruginosa virulence in an animal model is not affected by lrp.  

Biofilm formation is under the control of quorum sensing and this study shows that 

biofilm formation is limited in an lrp knock-out mutant strain of P. aeruginosa. This suggests 

that Lrp, as a transcription factor, interacts with or is a part of the quorum sensing network. 

Several of the effects observed in the mutant are similar to the findings of a previous study that 

used quorum sensing inhibitors (34). The authors demonstrated that there was a decrease in 

production of the virulence factor pyocyanin, formally classified as a siderophore, a reduction in 

biofilm formation and a reduction in virulence toward both C. elegans and human lung 

epithelial cells. Because the results of the quorum sensing study was similar to the findings of 

this study, it is reasonable to conclude that Lrp behaves similarly and may interact with the 

quorum sensing network in P. aeruginosa. O’Loughlin et al. (2014) concluded that the inhibitor 

partially prevented RhlR, a quorum sensing regulator, from allowing the expression of these 

virulence factors.  It may be possible that Lrp is directly or indirectly regulated by this protein.  

To continue this research and support these findings, a phenotypic characterization of 

an RhlR mutant using the same assays of this study could test the hypothesis that Lrp is 

regulated by RhlR. If the same effects in pyoverdine and biofilm formation and C. elegans killing 

assay are observed that may suggest that RhlR positively regulates Lrp. Because RhlR may play a 

larger role than Lrp, more extreme phenotypic changes may occur and virulence in C. elegans 

may decrease. A second project that will show the Lrp regulon is measuring RNA levels of DNA 



51 

 

targets in the lrp mutant. Quantitative PCR may be used to demonstrate changes in the levels of 

transcription of target DNA, such as genes that code for the changes observed in P. aeruginosa 

PW9942:lrp-C04::ISlacZ/hah measured in this study, or genes with homologs in E. coli that are 

regulated by LrpEC. If LrpPA demonstrates activity in the future by BLI or EMSA, it may also be 

used for a DNA footprinting assay to isolate target sequences that Lrp is bound to in P. 

aeruginosa. In combination with the bioinformatics output, this may provide the necessary 

information to identify the regulon of Lrp.  

Lrp may play a larger role than previously thought and may serve as a target for 

pharmaceutical treatment in the future. Innate antibiotic resistance is on the rise in P. 

aeruginosa and Lrp may be a suitable alternative target to down regulate the virulence factors 

that are problematic in infection. The advantage of selecting a target that does not cause death 

in the bacteria but rather a suppression of virulence factors is that there is no selection for 

resistance to the treatment. This and previous studies indicate that Lrp may be a suitable long-

term treatment for infection by P. aeruginosa.  
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