
Kennesaw State University
DigitalCommons@Kennesaw State University

Dissertations, Theses and Capstone Projects

5-2014

Tapjacking Threats and Mitigation Techniques for
Android Applications
Vanessa Cooper
Kennesaw State University, vcooper3@students.kennesaw.edu

Follow this and additional works at: http://digitalcommons.kennesaw.edu/etd
Part of the Computer Security Commons

This Thesis is brought to you for free and open access by DigitalCommons@Kennesaw State University. It has been accepted for inclusion in
Dissertations, Theses and Capstone Projects by an authorized administrator of DigitalCommons@Kennesaw State University. For more information,
please contact digitalcommons@kennesaw.edu.

Recommended Citation
Cooper, Vanessa, "Tapjacking Threats and Mitigation Techniques for Android Applications" (2014). Dissertations, Theses and Capstone
Projects. Paper 632.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/231821963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.kennesaw.edu?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/etd?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/etd?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.kennesaw.edu/etd/632?utm_source=digitalcommons.kennesaw.edu%2Fetd%2F632&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

Tapjacking Threats and Mitigation Techniques for
Android Applications

Master's Thesis

by

Vanessa N. Cooper
Kennesaw State University

Bachelor of Science
Computer Science

Kennesaw State University
2011

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Science

May 2014

Tapjacking Threats and Mitigation Techniques for
Android Applications

This thesis is approved for recommendation to the Graduate Council.

DEDICATION

To my mother: Ona Cooper

To my siblings: Jeff, O.T., and Courtney

The loving memory of my father: Ronnie Cooper

The loving memory of my grandparents:

Ivy and Ruby Polk & Otis and Viola Cooper

ACKNOWLEDGEMENTS

I want to thank my thesis advisors,

Drs. Hisham Haddad and Hossain Shahriar.

LIST OF TABLES

Table 1: A List of Gesture Types Supported in Android .. 16	

Table 2: Architectural Overview of Android OS .. 17	

Table 3: A List of Malicious Actions Performed by Android Malware 19	

Table 4: A Description of SMS Operational Element for Building Population Set 42	

Table 5: Occurrence of Elements in the P Set .. 44	

Table 6: KLD Between Good (P') and Malware (Q') Applications 45	

Table 7: KLD Between Good (P') and Good (Q') Applications ... 45	

Table 8: Sum of Elements in the P Set ... 46	

Table 9: Accuracy of Metric-Based Approach for the P Set .. 47	

Table 10: Occurrence of Elements in the Malicious Q Set ... 47	

Table 11: Sum of Elements in the Malicious Q Set .. 48	

Table 12: Accuracy of Metric-Based Approach for the Malicious Q Set 48	

Table 13: Occurrence of Elements in the Benign Q Set ... 48	

Table 14: Sum of Elements in the Benign Q Set .. 49	

Table 15: Accuracy of Metric-Based Approach for the Benign Q Set 49	

Table 16: Output of Method Call Occurrence for the P Set (Part 1) 53	

Table 17: Output of Method Call Occurrence for the P Set (Part 2) 54	

LIST OF FIGURES

Figure 1: Screenshot of Android application that shows three UI elements 10	

Figure 2: Tapjacking attack triggered by button click .. 21	

Figure 3: Required source code to change wallpaper ... 22	

Figure 4: Required permission for changing wallpaper .. 22	

Figure 5: Silence the sound settings on an Android device .. 22	

Figure 6: Required source code to access user account information 23	

Figure 7:Required permission for retrieving user account information 23	

Figure 8: Required permission to send SMS message .. 24	

Figure 9: Hidden method to send SMS message .. 24	

Figure 10: Visible method to send SMS message .. 25	

Figure 11: Initiating a phone call without using phone dialer .. 25	

Figure 12: Required permissions to make phone call without phone dialer 26	

Figure 13: Lock an Android device and disable keyguard ... 26	

Figure 14: Required permissions to disable keyguard .. 27	

Figure 15: Code snippet for updating social network account ... 27	

Figure 16: Required permissions to update social network profile .. 28	

Figure 17: GUI of application that decompiles the APK .. 51	

Figure 18: Demonstration of selecting an APK to decompile .. 51	

Figure 19: Verification that APK file was converted to jar file .. 52	

Figure 20: Verification of readable source code ... 52	

 ABSTRACT

With the increased dependency on web applications through mobile devices, malicious attack

techniques have now shifted from traditional web applications running on desktop or laptop

(allowing mouse click-based interactions) to mobile applications running on mobile devices

(allowing touch-based interactions). Clickjacking is a type of malicious attack originating in

web applications, where victims are lured to click on seemingly benign objects in web pages.

However, when clicked, unintended actions are performed without the user’s knowledge. In

particular, it is shown that users are lured to touch an object of an application triggering

unintended actions not actually intended by victims. This new form of clickjacking on mobile

devices is called tapjacking. Much of the research work has focused on developing

mitigation techniques on web application level clickjacking issue. However, none of the

research has thoroughly investigated attacks and mitigation techniques due to tapjacking in

mobile devices. In this thesis, we identify coding practices that can be helpful for software

practitioners to avoid malicious attacks and define a detection techniques to prevent the

consequence of malicious attacks for the end users. We first find out where tapjacking attack

type falls within the broader literature of malware, in particular for Android malware. In this

direction, we propose a classification of Android malware. Then, we propose a novel

technique based on Kullback-Leibler Divergence (KLD) to identify possible tapjacking

behavior in applications. We validate the approach with a set of benign and malicious

android applications. We also implemented a prototype tool for detecting tapjacking attack

symptom using the KLD based measurement. The evaluation results show that tapjacking

can be detected effectively with KLD. This thesis is organized in the following format: a

classification of Android malware, a survey of mitigation techniques, a discussion of our

proposed KLD-Based approach, and an application implementation.

 TABLE OF CONTENTS
	
Chapter 1: Motivation, Problem Statement, and Contribution ... 10
1.1 Overview ... 10
1.2 Motivation ... 10
1.3 Problem Statement .. 11
1.4 Research Methodology ... 12
1.5 Contribution .. 12

Chapter 2: Technology Overview ... 14
2.1 Technology Overview ... 14
2.2 Android OS ... 15
2.3 Android Architecture .. 16
2.4 Security Features ... 17
2.5 Android Malware .. 19
2.6 Classification of Android Malware ... 20
2.7 Changing Wallpaper (M1) .. 21
2.8 Accessing User Credentials (M2) ... 22
2.9 SMS Message and Premium Rate Call (M3) .. 24
2.10 Phone Ransom (M4) ... 26
2.11 Hacking Social Networks (M5) .. 27

Chapter 3: Literature Review .. 29
3.1 Overview ... 29
3.2 Sandboxing Detection ... 29
3.3 Machine Learning Detection ... 30
3.4 Static Analysis Detection .. 32
3.5 Permission Analysis Detection ... 34
3.6 Other Work ... 35

Chapter 4: Proposed KLD-Based Malware Detection .. 38
4.1 Overview ... 38
4.2 Related Work .. 39
4.3 KLD-Based Approach .. 40
4.4 Elements of Population ... 41
4.5 Back-off Smoothing .. 43
4.6 Evaluation using Data Set ... 43
4.7 Discussion ... 46

Chapter 5: Application Implementation .. 50
5.1 Overview ... 50
5.2 Decompiling the APK ... 50
5.3 Analysis of the Source Code ... 52
5.4 Reviewing the Obtained Results ... 55

5.5 Performance .. 55
5.6 Deployment ... 55

Chapter 6: Dissemination of Research Findings ... 56

Chapter 7: Conclusion and Future Work .. 59
7.1 Conclusion .. 59
7.2 Future Work .. 60

Appendix A: TestAndroidKLD.java Source Code ... 62

References ... 68

10

CHAPTER 1

Motivation, Problem Statement, and Contribution

1.1 Overview

With mobile applications, the user’s actions are always passed back to an activity. An activity is

a representation of a screen or view. Tapjacking takes advantage of this process by initiating

methods when a user gestured user interface (UI) elements in the activity. These can cause

damage in a variety of ways. Some methods simply aim to be a nuisance by changing the user’s

mobile phone background. Other methods can be much more detrimental by changing the user’s

mobile phone lock password and taking over control of a mobile application or device. Figure 1

shows three UI elements that could trigger hidden malicious code: the Sign in button and the two

editable text fields Email and Password.

Figure 1: Screenshot of Android application that shows three UI elements

1.2 Motivation

Little work has been done on understanding the scope and extent of tapjacking attacks within

mobile devices. Moreover, end users do not have any protection to reduce unwanted

consequences caused by tapjacking. The most affected individuals are those who are not aware

of the characteristics of possible malware. Malicious code triggers activities which could be as

simple as copying user input from a text field to infinitely running a program in the foreground

without user knowledge. Most mobile application developers are oblivious to the importance of

security within their mobile applications. There are many potential losses when taking into

11

account that many mobile device users access their bank accounts, school information, and daily

schedules using applications.

Most mobile applications require access to very sensitive user information, such as birthdates,

physical and mailing addresses, and other uniquely identifiable information (such as the device

International Mobile Station Equipment Identity (IMEI)). The IMEI is the "social security

number" of the mobile device. When considering a mobile application such as Facebook,

tapjacking attacks would provide access to a user’s most personal information and photos, as

well as a list of the user’s family and closest friends. Within LinkedIn, a user’s business contact

information, current employer, and professional profile are heavily exposed. For example, a

malicious attack could post unflattering information on a LinkedIn user’s profile. These are just

few examples of tapjacking threats to Android mobile applications.

1.3 Problem Statement

Tapjacking allows malicious developers to completely hijack a mobile device or to simply

perform malicious acts. In addition, if malicious mobile applications have unnecessary

permissions to the mobile device, then they can perform even more malicious activities.

Fortunately, most security experts are able to scan for unneeded permissions and prevent

applications from being published into their respective App Stores. However, if mobile users

decide to download applications from unknown sources, and enable permissions, then they open

themselves up to vulnerabilities. In this thesis, detection and mitigation techniques for tapjacking

malware are explored so that mobile users have a chance to check mobile applications before

installing to their devices. By detecting malicious code before installation, mobile users will have

a peace of mind in the safety of the personal information and their mobile devices.

This research is intended to answer the following question:

Given that we have an access to both legitimate and malicious applications performing a
specific functionality, how do we distinguish a good behavior (or functionality) from a bad
behavior?

12

1.4 Research Methodology

 The research methodology involved an intensive literature review of over 30 papers involving

malware detection in Android mobile applications and the overview of the Android operating

system. We identified the primary detection techniques such as sandboxing, machine learning,

and permission analysis based methods. In identifying the advantages and disadvantages of each

technique, we were able to determine appropriate measures to detect malware with the least

disadvantages. Our literature review concluded with the KLD-based approach and its newfound

popularity in security mechanisms. We also performed an experiment to evaluate our proposed

KLD-Based approach with a metric-based approach.

Our analysis included the identification of the required source code and permissions that would

allow us to perform some very popular malicious actions. By linking the source code and

permissions, we were able to determine the intention of source code by checking the permissions

in the application’s Android Manifest file and reviewing the results of the static code analysis.

Each application’s functionality is tied to a permission and set of elements. We identified the set

of elements and permissions required for our SMS case study. The next step in our process was

to devise a way to decompile and analyze mobile applications in a secure environment before

computing the occurrence probability. We then implemented a java application that allows the

user to select an Android application, decompile the application to readable source code, and

analyze the application using our developed prototype class. Our application implementation

produces a CSV file that includes the data from our KLD-Based approach. Using the data, we are

able to compute the KLD value for each of the evaluated Android applications in relation to the

known good Android application. Using this method, a user is able to accurately determine the

malicious nature of an Android application with the least error.

1.5 Contribution

This work addresses the stated research question by performing an in-depth study of tapjacking

attacks and applications that are responsible for these attacks. In particular, emulating tapjacking

attacks with a mobile application and understand the application code elements including API

call patterns and permissions causing tapjacking attacks. This work also identifies a new

detection technique based on Kullback-Leibler Divergence metric in an effort to help not only

13

mobile application developers, but also end users who may not have any technical knowledge on

tapjacking attack. More specifically, the contributions of this work include the following:

a) An overview of the Android Operating System (OS) and a classification of Android

malware, understanding the code level and permission level features (Cooper et al. 2014)

that are responsible for malicious activities (Chapter 2)

b) A survey of literature work intended to mitigate malware activities during application

development and deployment stages, discuss the importance of mobile device security

and user information, outline common vulnerabilities in mobile applications (Chapter 3)

c) A KLD-Based approach to differentiate between malware and good applications based on

source code level features and apply the concept to detect suspected malware (Chapter 4)	

d) An explanation of the application implementation for our KLD-Based approach,

outlining the required steps and intended results in our experiment (Chapter 5)	

14

CHAPTER 2

Technology Overview

2.1 Technology Overview

Android has become the leading smartphone OS in the world with staggering sales figure of 60

million phones in the third quarter of 2011, 50% market share (Aaron, 2011). A recent study

shows that more than 50% of Android mobile have unpatched vulnerabilities, opening them up

to malicious applications (malware) and attacks. A compromised smartphone can inflict severe

damage to both users and the cellular service provider. Malware applications can make the phone

partially or fully unusable, cause unwanted billing, steal private information, or infect every

name in a user’s phonebook (Reza & Mazumder, 2012).

Recently, a malware affected more than 100,000 Android devices in China (known as

MMarketPay). This malware is a hidden application that appeared to be legitimate and is

designed to purchase applications and contents without the consent of the device users (victims).

As a result, victims saw a staggering amount of bills (Baldwin, 2012). The incident prompted

Google, the developer of the Android OS, to introduce stricter rules for applications on Android

such as naming of applications and banning applications that disclose personal information

without user permission. An Android Short Message Service (SMS) malware firm was fined

£50,000 by the UK premium phone services regulator PhonepayPlus (“PhonePay Plus”, 2013).

An SMS is a text messaging service available on most mobile devices and is a very popular

choice of communication.

Possible attack targets into smart phones include Cellular networks, Internet connections (via

Wi-Fi, General Packet Radio Service / Enhanced Data rates for Global Evolution (GPRS/EDGE)

or 3G network, Universal Serial Bus (USB) and other peripherals (Shabtai, Fledel, & Elovici,

2010). Given all these, it is important to study malicious Android applications and their

characteristics. A solid understanding of the characteristics of malware is the beginning step to

prevent much of the unwanted consequences. This chapter is intended to overview the Android

OS, its architecture, and security threats posed by Android malware. In particular, we focus on

15

the characteristics commonly found in malware applications and understand the code level

features that may lead to the detection of the malicious signatures for prevention. We also

discuss some common defense techniques to mitigate the impact of malware applications.

2.2 Android OS

Android is an open source OS based on the Linux first launched in 2007 and intended for mobile

phones (Rehm, 2012). Between the two major variants of smartphone (Android and iOS),

Android is the most popular one. As of October 2013, the latest version of Android OS is 4.4

(commonly known as KitKat supporting API level 19). Being developed and supported by

Google, all Android devices allow users to synchronize access to storage and communication

services provided by Google. For example, users can login to Google Gmail to check email and

access contact list, calendar, and other free applications automatically. The default desktop of

Android has five screens that can be switched by tapping. A user can move any icon to any place

on the desktop by tapping and hovering. Android devices allow users to download and install

new applications for legitimate purposes that may include game, business, communication,

photography, and service. The common place to find applications is the Google Play Store

(“Google Play”, 2013).

The Android Developer manual recommends some common practices for programmers for

developing applications (“Android Design”, 2013). These include the guidelines for developing

applications that are visually appealing to users. A developer can reuse standard theme that

control visual properties of the elements for user interface of an application such as color, height,

padding, and font size. Recommended guidelines for color and illumination of icons are provided

to represent different state of an icon (e.g., a gray colored icon means static, illuminated icon

means “pressed”, 50% illumination means “focused”, 30% of illumination means “disable”).

Developers can choose different color styles and text font sizes. The guidelines recommend

using textColorPrimaryInverse and textColorSecondaryInverse for light themes. Also to

maintain consistency of look and feel in the same UI, it is recommended to use scale-

independent pixels (sp) wherever possible.

16

Legitimate applications support well-known gestures to allow users interacting with applications

based on the screen objects. Table 1 shows the core gesture set that is supported in Android.

Unlike desktop or laptop computers, activities and operations can be performed on Android

devices based on touching (also known as tapping). Note that a "tap" is a brief touch followed by

the release of touch on a certain entity of Android screen. Usually, “tap” is considered as a single

event for smartphone device and applicable for a visible icon. Most legitimate applications are

developed in a way so that useful operations are performed based on user-initiated gestures.

Nevertheless, some legitimate applications may not need gestures to perform operations (e.g., an

application that is intended to clear cache data periodically upon installation). For this thesis, we

can fairly assume that most good applications have a visible Graphical User Interface (GUI) or

UI elements to enable tapping, and the actions preformed are expected by users. In contrast, for

malware, a visible GUI may trigger different or hidden actions without the user's knowledge.

Table 1: A List of Gesture Types Supported in Android

(“Android Design”, 2013)
Type Description Action

Touch (tap) Triggers the default functionality for a given item. Press, lift

Long press
Enters data selection mode. Allows a user to select
one or more items in a view and act upon the data
using a contextual action bar.

Press, wait, lift

Swipe Scrolls overflowing content or navigates between
views in the same hierarchy. Press, move, lift

Drag Rearranges data within a view, or moves data into a
container (e.g. folders on Home Screen). Long press, move, lift

Double touch Zooms into content. Also used as a secondary gesture
for text selection.

Two touches in quick
succession

Pinch open Zooms into content. 2-finger press, move
outwards, lift

Pinch close Zooms out of content. 2-finger press, move
inwards, lift

2.3 Android Architecture

The Android OS framework has a number of layers to facilitate the execution of applications

(Shabtai et al. 2010). Table 2 shows an overview of the OS framework (“Android Design”,

2013). The bottom layer has the Linux kernel. On top of the kernel, a set of native libraries

(C/C++) and the Android virtual machine (Dalvik, which is the Android-specific implementation

of the Java virtual machine) reside. The Dalvik VM relies on the underlying Linux kernel to

17

handle low-level functionalities such as process and memory management. The Dalvik VM

executes .dex files (Dalvik executable), which can be created by transforming Java classes using

the SDK tools (“Memory Management in Android”, 2010). The next layer is the Application

Framework encompassing the Java core libraries, which rely on the native libraries. The topmost

layer contains the Java-based applications that are created using the Application Framework

layer. Java Applications communicate with the Android Framework through a variety of key

applications, such as Messaging, Gallery, and the Camera (Shabtai et al. 2010).

Table 2: Architectural Overview of Android OS

(“Android Design”, 2013)
APPLICATIONS layer

Home Contacts Phone Browser
APPLICATION FRAMEWORK layer

Activity Manager Window Manager Content Providers View System
Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

Notification
Manager

LIBRARIES ANDROID RUNTIME
Surface

Manager
Media Framework SQLite Core Libraries

OpenGL | ES FreeType WebKit Dalvik Virtual Machine
SGL SSL libc

LINUX KERNEL layer
Display Driver Camera Driver Flash Memory Driver Binder (IPC) Driver
Keypad Driver WiFi Driver Power Management Audio Drivers

2.4 Security Features

Android has a number of built-in security features to protect the data and memory that belong to

processes or applications running on the device (“Security Tips”, 2013). We discuss core

security features including sandbox, permission-based access control, secure Inter Process

Communication (IPC), safe memory management, and data encryption.

Sandbox:

In Android, each application runs on a sandbox (i.e., each process has its own copy of the virtual

machine). As a result, an application cannot access the data and code of another Android

application. Sandboxes are regularly used for scanning programs and applications that contain

unverified developer certificates. Because sandboxing isolates each application, it provides a

18

more stable environment and prevents other applications from being infected from a malicious

application.

Permission-based access control:

User-granted permissions for each application are the basis to grant or restrict access to system

features and user data. During installation of an application, the permissions required to operate

different peripherals are declared and a user is prompted whether or not he/she intends to

grant/deny the permission. If a user does not grant any of the needed permission, the application

is not installed.

Secure IPC:

An application cannot directly access other application’s memory spaces (containing data). Thus,

the Inter Process Communication (IPC) mechanism plays a key feature in accessing data from

one application to another application. A developer needs to implement IPC based on the

following three steps (“Android IDL Example with Code Description – IPC”, 2013):

implementation of Android Interface Definition Language (AIDL) interface, implementation of

remote service, and exposing the remote service to local clients.

Safe memory management:

Each Android application runs in a separate process within its own Dalvik instance. Dalvik is a

register-based virtual machine optimized to ensure that a device can run multiple instances

efficiently. Dalvik is responsible for memory and process management during run time and can

stop and kill processes as necessary. Memory management related vulnerabilities such as buffer

overflow, memory leak, and uninitialized pointer usage are eliminated by incorporating some of

the well-known technologies like Address Space Layout Randomization (to prevent code

injection attack), NX (non-executable stack due to buffer overflow), and ProPolice (return

address space corruption prevention).

Data encryption:

 Android allows users to encrypt their data and other profile information. It is possible to encrypt

accounts, downloaded applications, media files, and settings. An encrypted device can be

19

decrypted based on a user chosen password (during each time the device is powered on). The

encryption process is costly both in terms of processing power (device needs to be plugged with

power) and time (can take more than an hour) (Brinkmann, 2012).

2.5 Android Malware

Malware or "malicious software" is implemented with malicious intention. Malware is often

installed without the victim’s knowledge of the capability of unintended actions that can be

performed. More specifically, victims usually overlook the list of permissions needed to run the

malware and voluntarily grant the permission without understanding the effect of malicious

actions. Under the broad definition of malware, several categories are well-known including

virus (a malicious program that can copy itself in an infected computer), worms (similar to virus,

except having the ability of propagation in new machines), and Trojan horses (a program that

installs a backdoor in an infected computer to communicate with hacker-controlled computer)

(“What is Malware?”, 2013).

Table 3: A List of Malicious Actions Performed by Android Malware
(Felt et al. 2011)

Malware Type Example Action Required Permissions

Changing
Wallpaper Setting
(M1)

Novelty and amusement by change the
default wallpaper without user’s
permission (personal).

SET_WALLPAPER

Accessing User
Credentials (M2)

Secretly accessing user information
stored on the Android device. GET_ACCOUNTS

SMS Message and
Premium Rate Calls
(M3)

Bills victim by arbitrarily initiating
phone calls to premium numbers or
sending text messages to premium
numbers.

SEND_SMS
CALL_PHONE
CALL_PRIVILEGED

Phone Ransom
(M4)

Locking a client’s phone by changing
default setting on password or other
profile information.

DISABLE_KEYGUARD
WRITE_SETTINGS
WRITE_SECURE_SETTINGS

Hacking Social
Networks (M5)

Secretly accessing and updating user
profile information on a social network
(device).

READ_SOCIAL_STREAM
WRITE_SOCIAL_STREAM

20

Tapjacking is another form of malware. The act of tapjacking occurs when a user unknowingly

triggers a malicious code by clicking a button or a view. There are several ways to initiate

tapjacking attacks, and this thesis explores five different types of malicious tapjacking actions.

Table 3 shows a classification of tapjacking malware that are capable of performing specific

operations in the Android platform. Tapjacking malware includes the changing of the desktop

setting by installing wallpaper without user knowledge (M1), accessing device and personal

profile information and sending it over the Internet to unwanted third parties (M2), launching

phone calls and sending messages to premium numbers (M3), asking for ransom by locking the

phone and suggesting to pay for unlocking (M4), and hacking social network accounts (M5).

Each of these malware types requires one or more permission changes for the malware to take its

course.

Note that some of the malware applications are known as spyware. Spywares are programs

developed to monitor and log activities performed on a computer (e.g., Keylogger). Spyware not

only collects sensitive personal information (e.g., websites visited, typed password), but also

steals information, and in the worst case can send them to others for further damages

(“Difference between Adware and Spyware”, 2005).

Adware is another malware application type. Adware displays advertisements and marketing

contents automatically after the installation. Advertisements are displayed in a small section of

the interface or as a pop-up window. It is used for legitimate reason such as generating revenues

for companies who intend to sell products. An example of adware is the popular e-mail program

named Eudora ("Eudora", 2014). It can be purchased in sponsored mode, when Eudora displays

an advertisement window containing toolbar links. We do not consider such adware as

malicious.

2.6 Classification of Android Malware

In this section, we show code level examples of tapjacking malware that can represent the five

types of tapjacking malware discussed in Table 3. Tapjacking is the root cause of the five

mentioned malware types because of its similar deceptive, malicious acts. Figure 2 shows how a

tapjacking attack could occur when a user clicks a submit button in a mobile application. The

21

submit button could be as simple as sending an SMS or even updating your Facebook profile.

Each time the user clicks the submit button, the onClick() method is called and the

openNextUIView() and startMaliciousCode() methods are executed. As the user views the next

UI view, malicious code is being executed without their knowledge.

Figure 2: Tapjacking attack triggered by button click

We discuss the key part of Java code and the list of permissions that appear in

AndroidManifest.xml file for the reader’s convenience. It is important to note that both sections

of code, Java code and permissions, are necessary to perform the listed malware actions. All java

source files and interactive user views (activities) must be listed. This is a requirement for all

mobile applications. In all malicious actions, a user is first required to agree to the permission list

when downloading and installing the mobile applications. Therefore, it is very important for a

user to remain vigilant about requested permissions in mobile applications.

2.7 Changing Wallpaper (M1)

Earlier, we discussed how malicious code could be used to change the mobile phone’s wallpaper.

Though this may seem like a fairly trivial act, one must realize that changing the wallpaper is

accessed through the mobile device settings. If malicious developers can gain access to your

mobile device settings, then they can do almost anything that they desire on your mobile device.

In Figure 3, we examine the source code responsible for executing the malicious action of

changing the wallpaper without the user’s specification. In this case, the required permission is

SET_WALLPAPER, shown in Figure 4. Without this line of code, the malicious code would be

ineffective. During development, permissions are automatically added when a developer invokes

//user clicks a submit button on the screen
Button submitButton = findViewById(R.id.clickButton);

submitButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 openNextUIView(); //show the next UI screen
 startMalicousCode(); //display malicious code
 }});

22

Android classes directly linked to that permission. However, the system is not able to determine

if the developer is attempting to use the permission in a malicious way.

Figure 3: Required source code to change wallpaper

Source: “Set Wallpaper using WallpaperManager”, 2011

Figure 4: Required permission for changing wallpaper

Source: “Set Wallpaper using WallpaperManager”, 2011

In Figure 5, we examine a code snippet on how to change the sound settings on the mobile

device. A malicious application can access the AudioManager and set the ringer volume to zero.

As a result, a victim will not be altered or notified for related activities such as incoming phone

call or SMS messages. On the contrary, their phone’s ringtone could sound very loudly during an

important business meeting.

Figure 5: Silence the sound settings on an Android device

Source: “How to make android phone silent in java”, 2012

2.8 Accessing User Credentials (M2)

As stated above, the mobile device settings are the key to the control of the mobile device.

However, it is also equally important to secure personal information on the device. Most mobile

applications have the ability to run continuously in the foreground. These mobile applications

could be anything from Gmail, Facebook, or Instagram. In order to gain access to the accounts

//Retrieve instance of the application
WallpaperManager myWallpaperManager =
 WallpaperManager.getInstance(getApplicationContext());

//R.drawable.five presents a stored image
myWallpaperManager.setResource(R.drawable.five);

<uses-permission
 android:name="android.permission.SET_WALLPAPER" />

//Access system settings for the audio
AudioManager audio =
(AudioManager)getSystemService(Context.AUDIO_SERVICE);

//Change Ringer to Silent
audio.setRingerMode(0);

23

linked to your Facebook or Instagram, you only need a username and password. The username

and password are both treated as a string of characters. If your mobile application is running in

the foreground in an open session, it is possible to retrieve the data associated with that mobile

application.

Figure 6: Required source code to access user account information

Source: “How to get the Android device’s Primary Email Address”, 2010

Figure 6 shows how a malicious mobile application can access and retrieve a user’s email

address. It’s important to note that this source code applies to devices with an API level of 8 or

greater. First, the malicious code seeks to retrieve the email address. Then, the code searches the

device for all accounts, denoted by getAccounts(), associated with that email address. Most

times, we use the same email address for our social networking accounts, school accounts, and

personal accounts. Lastly, all of the accounts are iterated over in order to find the user’s login, or

account.name.

The GET_ACCOUNTS permission, shown in Figure 7, is the only required permission for

retrieving user accounts. However, if a developer wanted to make changes to the user account

information, they would be required to list permissions for editing the user account. This means

that the mobile application would seek to acquire read and write access for user account

information. However, this case only seeks to retrieve or get the user’s accounts.

Figure 7:Required permission for retrieving user account information

Source: “How to get the Android device’s Primary Email Address”, 2010

Pattern emailPattern = Patterns.EMAIL_ADDRESS;

// Functionality is available for API level 8+
Account[] accounts = AccountManager.get(context).getAccounts();

for (Account account : accounts) {
 if (emailPattern.matcher(account.name).matches()) {
 String possibleEmail = account.name;
 }}

<uses-permission
 android:name="android.permission.GET_ACCOUNTS" />

24

2.9 SMS Message and Premium Rate Call (M3)

An SMS is the primary choice of communication for most people today. Unfortunately, SMS

message sending is also one of the most popular types of malicious activities. SMS messages can

be easily sent, received, and read while at work, in meetings, etc. In addition, most people carry

their mobile devices everywhere; this makes SMS a very efficient portal of communication.

Figure 8 shows the only permission, SEND_SMS, required to send an SMS message. However,

sending an SMS message is also a motivating case because there are two ways to send a

message.

Figure 8: Required permission to send SMS message

Source: “Send SMS in Android”, 2013

The first option is shown in Figure 9. It outlines a hidden attempt to send an SMS message. Here,

SmsManager.getDefault() returns the default SMS engine. The sendTextMessage() method is

called to send a message. This way of sending a message can easily be included in any method or

loop without the user’s knowledge. Since the action is hidden and does not require user input, it

can be flagged as suspicious or malicious activity. However, this method could also be used to

send the SMS message after retrieving the user input from the UI elements. Therefore, scanning

for this method signature could also lead to a false positive warning. The key indicator to

determining if it’s being using maliciously is to look for hard-coded values that are not passed

back from the user’s input into the UI.

Figure 9: Hidden method to send SMS message

Source: “Send SMS in Android”, 2013

Note that among the five parameters, the first is used to supply a phone number (variable or hard

coded), the second is the service center address but is not required because the default will be

<uses-permission
 android:name="android.permission.SEND_SMS"/>

//Retrieve the default SMS engine
SmsManager sms = SmsManager.getDefault();

//Send a text message using desired text
sms.sendTextMessage(phoneNumber, null, message, null, null);

25

used, the third is for the message contents, the fourth broadcasts when the message is sent (if this

parameter is not null), and the fifth broadcasts when the message is delivered (if this parameter is

not null).

Figure 10 shows the second option of sending an SMS message using Intent object creation

followed by launching an activity running on the background (startActivity() method call). Note

that during the Intent object creation, a Uri.parse() method is invoked to indicate the sending of

SMS message to a phone number. Such SMS sending operation also does not require any

interaction with a user, hence, can be considered as potentially malicious. Note that the

destination phone number and the desired message are retrieved directly from the UI elements

and sent to the next view, or activity.

Figure 10: Visible method to send SMS message

Source: “Send SMS in Android”, 2013

In Figure 11, we show how a mobile application can initiate a phone call. In this case, a phone

call is initiated using the Intent object creation (specifying appropriate flag of

Intent.ACTION_CALL). Note that the dialer is never used here, as a result a user will not notice

that a phone call is initiated. Moreover, the supplied phone number (number) can be a fixed hard-

coded premium number is called without the user’s knowledge. This can lead to expensive phone

bill, especially if the mobile application is left running overnight while the user is away from the

device. In order to perform this action, a malicious developer would include the permissions

listed in Figure 12.

Figure 11: Initiating a phone call without using phone dialer

Source: "How to make a phone call in Android", 2011

//Send a text message using text from user’s screen
startActivity(new Intent(Intent.ACTION_VIEW, Uri.parse("sms:"
+ phoneNumber)));

//Initiate a phone call using desired phone number
String number = “1-900-444-8821”;

Intent callIntent = new Intent(Intent.ACTION_CALL, Uri.parse(number));

startActivity(callIntent);
	

26

Figure 12: Required permissions to make phone call without phone dialer

Source: "How to make a phone call in Android", 2011

2.10 Phone Ransom (M4)

Phone ransom is a fairly new occurrence in mobile malware. By gaining access to the user’s

settings, a malicious developer can change the mobile device password and lock the mobile user

out of their own device. Normally, a message is then displayed on the wallpaper or lock screen,

which prompts the user to either pay to unlock the phone or to simply taunt the user for being

breached.

Figure 13 shows how to lock the screen of a mobile device. The KeyguardManager is accessed

which further accesses the KeyguardLock for enabling or disabling the default lock. One

objective of malware is to disable the lock for the purpose of ransom. A message is later

displayed prompting the user to pay a fee in order to unlock the device and continue unharmed.

However, this is often just a ploy in order to retrieve funds from a very desperate person. Figure

14 shows the required permissions to edit phone settings and save them accordingly.

Figure 13: Lock an Android device and disable keyguard

Source: “Lock and Android phone”, 2012

<uses-permission
 android:name="android.permission.CALL_PHONE"/>

<uses-permission
 android:name="android.permission.CALL_PRIVILEGED"/>

//Access system settings for the keyguard
KeyguardManager mgr =
 (KeyguardManager)getSystemService(Activity.KEYGUARD_SERVICE);

// Lock the device
KeyguardLock lock = mgr.newKeyguardLock(KEYGUARD_SERVICE);

lock.disableKeyguard(); //Disable the keyguard from showing

27

Figure 14: Required permissions to disable keyguard

Source: “Lock and Android phone”, 2012

By listing WRITE_SETTINGS and WRITE_SECURE_SETTINGS, we are able to cover more

circumstances. The first simply allows a malicious developer to make changes to all of the

device settings. The second is used for mobile applications signed by the operating system.

Together, this is a very strong combination for having complete access to alter a mobile device

according to the malicious developer’s desires.

2.11 Hacking Social Networks (M5)

Malicious activities have escalated even higher with Android’s added ability to synch mobile

application with social networks in API Level 15. Now, a user can update his/her status on

Facebook, Twitter, and other social networks directly from the mobile device. With this added

implementation, many security threats have emerged and malicious attacks can be mounted. In

Figure 15, we examine how a malicious mobile application can easily gain access to a user

account and send fraudulent status updates to the user profile.

Figure 15: Code snippet for updating social network account

Source: “Get Social Updates of your contact list using Ice cream sandwich”, 2012

<uses-permission
 android:name="android.permission.DISABLE_KEYGUARD "/>

<uses-permission
 android:name="android.permission.WRITE_SETTINGS "/>

<uses-permission
 android:name="android.permission.WRITE_SECURE_SETTINGS"/>

//Create status update to post on user profile
ContentValues values = new ContentValues();
values.put(StreamItems.RAW_CONTACT_ID, rawContactId); //destination
values.put(StreamItems.TEXT, "Lunch at 3.00 PM"); //message
values.put(StreamItems.TIMESTAMP, timestamp); //timestamp
values.put(StreamItems.COMMENTS, "Family and Friends"); //comments

//Specify where content will be posted and send request to post content
Uri.Builder builder = StreamItems.CONTENT_URI.buildUpon();
builder.appendQueryParameter(RawContacts.ACCOUNT_NAME, accountName);
builder.appendQueryParameter(RawContacts.ACCOUNT_TYPE, accountType);
Uri streamItemUri = getContentResolver().insert(builder.build(), values);
long streamItemId = ContentUris.parseId(streamItemUri);

28

In the first section of Figure 15, the code fills in required format and the desired contents to be

posted on the account. Then, the code acquires access to that user account. After gaining access

to the user profile, a malicious activity can then gather the user’s interests, friend’s list, and a

multitude of other details. Since individuals tend to post birthday pictures, pet names, and other

private information, they are vulnerable to identity theft. As shown in the last section of the

figure, the request is sent in a readable format to the destination address, and the user’s account

is updated with the fraudulent information. Figure 16 outlines the required permissions for

accessing and updating a user profile on a social network.

Figure 16: Required permissions to update social network profile

Source: “Get Social Updates of your contact list using Ice cream sandwich”, 2012

<uses-permission
 android:name="android.permission.READ_SOCIAL_STREAM "/>

<uses-permission
 android:name="android.permission.WRITE_SOCIAL_STREAM"/>

29

CHAPTER 3

Literature Review

3.1 Overview

This section presents a literature review of recent work on Android malware and the various

techniques for mitigation of Android malware applications. Many detection techniques have

been proposed in the literature to enhance the security of Android platforms and deployed

applications. We chose three detection techniques that closely relate to our proposed KLD-based

detection technique. These techniques include sandboxing systems for Android applications

(Blasing et al. 2010), machine learning to extract static features of Android applications (Shabtai

et al. 2010), decompiler-based static analysis (Enck et al. 2011), and permission-based detection

techniques (Barrera et al. 2011). These techniques were compiled during a literature study of

malware in mobile applications; we briefly explain the advantages and disadvantages of these

related works.

3.2 Sandboxing Detection

A sandbox (Blasing et al. 2010) provides a realistic execution environment, but in an isolated

manner. As a result, the effect of a potential malicious application does not affect the outside

environment. It is useful not only for signature identification, but also for disinfecting a malware.

The sandbox has two steps: static and dynamic analysis.

An Android application is shipped as a compressed (apk extension) installation file. In static

analysis, the sandbox decompresses installation files and disassembles executable files to

identify malicious code fragments. When decompressed, the content is saved into three main

parts: AndroidManifest.xml (an XML file having the meta-information of the application

including its description and security permissions), classes.dex (a file having the Java bytecode

that can be interpreted by Dalvik Virtual Machine), and res (a special folder having files that

define the layout, language, and so on).

30

The manifest file contains the main “launchable activity” information. The byte code (from

classes.dex) of the application is converted to human readable format having a folder hierarchy

containing files with parsable pseudo-code. The code is then scanned for suspicious patterns. A

list of static code patterns that are commonly considered as Android malware (Blasing et al.

2010) are as follows: the usage of the Java Native Interface, the usage of getRuntime, the usage

of Java reflection, the usage of services and IPC provision, and the usage of android permissions.

The dynamic analysis phase of the sandbox system is intended to monitor system and library

calls with arguments. In general, system calls are function invocations made from user space into

the kernel to request services or resources from the operating system (Hyatt, 2013). A Loadable

Kernel Module (LKM) is implemented and placed in the Android emulator environment. The

modified kernel keeps logging the function calls invoked by applications and their arguments for

later analysis. This gives a low-level system call sequence responsible for malicious activities.

Advantages: The sandbox reduces the generation of signatures based on system level call

tracing. It has been shown that on average it takes 48 days to come up with the signatures of a

new malware, which leaves the window of damaging opportunity by malware wide (Oberheide,

Cooke, & Jahanian, 2008).

Disadvantages: As the lowest level of system calls are intercepted and logged, implementation

of a loadable kernel module (LKM) is daunting and error prone task. Special attention is needed

as emulator tends are very unstable if low-level changes are performed.

3.3 Machine Learning Detection

Machine Learning algorithms originated as heuristic-based detection methods that could easily

evaluate software in search of malware. Since machine learning is automated, malicious features

are predetermined and normally classified by their distinct code patterns. In addition, machine

learning can process static code and determine its malicious capability. Static analysis uses

significantly less time and resources. More importantly, it does not require the mobile

application to be executed as in dynamic analysis. Shabtai et al. (2010) apply the machine

learning technique to differentiate the characteristic of applications between two categories: tools

31

and games. They extracted features from the byte-code (dex files) and XML (permission). The

learned features were used to identify the general type of the application, which can be used as

an indicator for potential malicious activities.

The machine learning process has two phases: training and testing. First, a classification model is

derived from a group of predetermined vectors and labels that represent the learning algorithm.

This model is referred to as the training set. For accuracy and inclusion, the training set should

include a wide variety of malicious applications. However, it’s equally important that learning

algorithm is able to properly identify the varying code patterns the malicious mobile

applications. Then, a testing set of APKs is parsed according to its identifier, or its obvious

malicious features. Each of the malicious actions exists within a representative vector and can be

used to predict the origin of the malicious activity. If a malicious feature is flagged in the testing

phase, the learning algorithm is able to determine which class files are affected.

There are three main problems with the extraction of malicious features: misleading the learning

algorithm with inaccurate features, over-fitting or crowding with the amount of features to be

evaluated, and creating a model complexity which exceeds the power of the learning algorithm

(Shabtai et al. 2010). For accuracy and efficiency, filters are used to prevent the occurrence of

the three difficulties above. These filters are responsible for ranking and scoring the features and

determining which features are selected for the classification model.

Advantages: The approach is automated and can enable the static detection of malware

applications. This proves to be extremely beneficial in cases where executing a possibly

malicious application would cause harm to the evaluator's machine.

Disadvantages: Depending on the type of classification algorithms, performance will vary. Also,

the accuracy of training is important. A good initial dataset representing all types of applications

are needed. If an application fits into overlapping category (e.g., a game application need to send

information over the internet to store score of a user online which may be of similar to an

application intended for browsing on the web), then machine learning is prone to false positive

warning for benign application.

32

3.4 Static Analysis Detection

Enck et al. (2011) analyzed a large set of android applications collected from market to identify a

set of dataflow, structure, and semantic patterns. It is also very important to evaluate the

development background and run-time environment compilation of an Android application, such

as the application structure, register architecture, and the instruction set. The dataflow patterns

identify whether any sensitive data information piece should not be sent to outside (e.g., IMEI,

IMSI, ICC-ID). The structural analysis logs any API usage for retrieving sensitive information

such as device ID or telephone manager. The semantic analysis performs the arguments of

parameter method calls. For example, when a text message is being sent, it is checked if it is

being used either to a constant or a dynamic number. The earlier might represent a malicious

application activity. Their observation from seemingly benign applications can be considered as

features to develop signatures.

Their ded decompiler (Enck et al. 2011) can recover the original application source code. The

source code is then scanned and analyzed to uncover possible security threats. Though Enck et

al. did not focus malware analysis in their study, the decompiler uncovered misuse of phone

metadata. The analysis of the application source code revealed 27 findings of data misuse and

improper coding practices. Some of those findings include “Phone identifiers are frequently

leaked through plaintext requests”, “Phone identifiers are sent to advertisement and analytics

servers”, “Some developer toolkits probe for permissions”, and “Few applications unsafely

delegate actions”.

Batyuk et al. (2011) proposed not only the detection of malicious application’s signature but also

proposed a flexible mitigation approach. They performed static analysis on binary code of

android applications (after decompressing APK and decoding Java bytecode into Smali assembly

language). They looked for the presence of APIs that may be relevant to reading sensitive

information (e.g., IMEI or device identifier, IMSI or subscriber identifier, phone number, ICC-

ID or SIM card serial number, writing information to output stream) as well as any functionality

for third party usage related to “Ads” and “Analytics”. The mitigation approach can

accommodate users’ needs, which could be to either deny the installation of application based on

the generated report or apply patching to mitigate potential security risks.

33

Yang et al. (2012) detected money-stealing malware. They examine the manifest file of android

applications to see if a billing permission is present. Then they looked for specific method calls

or APIs that perform SMS messaging or calls to premium phone numbers. Finally, they check

for the presence of notification suppressor (i.e., extending SmsReceiver or BroadcastReciever

classes and overriding onReceive or abortBroadCast methods, respectively to suppress message

sent notification supplied from the corresponding ISPs) that prevents victims from knowing that

messages are being sent or calls have been made without their consent.

Seo et al. (2012) developed a framework to automatically decompile the package of android

applications from both official websites (e.g., Google’s Android Market, Apple’s AppStore) and

third party (or black marketers). Then analyzed the decompressed source files to obtain the API

calls present in methods and applied known information about risky API calls to classify

applications as malware or benign. In particular, they label method calls obtaining sensitive

information. For example, getSimSerialNumber() for getting SIM card serial number,

sendDataMessage() for sending data, reading local file with File(), changing background image

with WallpaperManager.setResource(), downloading files from Internet with openStream(), and

getting latitude and longitude with getLatitude(), getLongitude()) calls. They checked the

execution of the APIs using a virtual machine.

Schmidt et al. (2008) developed an anomaly detection approach for mobile devices. In particular,

they collected feature data from mobile devices running the Symbian operating system.

Examples of features range from simple (user inactivity, free RAM), medium (process count),

and complex (CPU usage, and outbox SMS message count). By relying on native APIs supported

by the OS, simple features can be collected. While relying on multiple APIs and heuristics,

specific algorithms can also collected the medium and complex features. The features can detect

anomaly activities due to malware. For example, if a malware sends SMS message due to a

keystroke, then the number of processes increases (for sending each of the message), the amount

of free RAM decreases, and the number of message count in the outbox increases.

Advantages: There are a wide variety of possible threats identified by this method and could be

used to set a new standard of proper coding practices. Though the findings were not malware,

34

they illustrate how easily a mobile application can be infiltrated due to poor coding practices or

suspicious activity.

Disadvantages: It is very difficult to uncover malicious applications using this method because

many poorly written mobile applications would be flagged as malicious causing false positive

warnings. Therefore, it is important to note that this detection technique is more useful for

determining potential risks and allow developers to close possible loopholes beforehand.

3.5 Permission Analysis Detection

Barrera et al. (2010) applied a self-organizing map-based learning algorithm to cluster different

permission sets. Although the study relies on a set of general Android applications, it cannot be

applied for detecting malware due to the observation that both malicious and benign applications

may have similar types of permissions. Similarly, Porter et al. (2011) compared the permission

system between Google Chrome and Google Android, and performed a subjective analysis for

improving permission model in general for security and user level awareness. Nevertheless, a

detection technique is still needed to identify malicious behaviors of malware, and our approach

is complementary to these earlier efforts.

Schimidt et al. (2009) detected malware running on iOS platform. They analyzed executable

code and performed machine learning (leveraging clustering algorithms) to identify features

common in malicious applications. In particular, the features target the low level network and

file system operations such as file copying and getting the host address.

Enck et al. (2009) developed a rule-based certification technique named Kirin that can check the

presence of undesirable properties in applications suspected as malware. The approach starts

from general functionality requirements and then analyzed whether required permissions can

create conflicting operations that are used in malware operations. For example, an application

should not have both RECEIVE_SMS and WRITE_SMS permission. The success of the

certification process relies on the types of rules specified by the system and required.

35

Advantages: Because permissions are displayed to the user at install time, mobile users can

determine whether an application’s permissions relate to the purpose of the mobile application.

Unknown or unused permissions are a great indicator of potential malicious activity. The

permission-based detection technique is also intelligent enough to discern whether a mobile

application’s settings and properties align with its stated intention.

Disadvantages: Permissions can be maliciously inserted into an AndroidManifest.xml file after

the user has installed the mobile application to the device Chin et al. (2011). Therefore, it is not

ideal to rely on permission-based analysis as the sole detection technique.

3.6 Other Work

Nicolaou et al. (2013) explore the exponential rise of web browsing since 1999. With the rise of

mobile devices, web browsing on mobile application devices will soon dominate web traffic. The

authors also explore how companies and mobile developers will need to begin making the

transition to mobile websites or mobile applications. More importantly, with the transition of

web applications onto your mobile device, mobile users are susceptible to the many issues of

web traffic and HTTP connections. In addition, network connectivity is not as stable in mobile

applications as it is in desktop and laptop browsers. Therefore, users could experience many

dropped requests. Furthermore, users would be required to keep an updated mobile device so that

their machines can still efficiently process data from the applications.

Rastogi et al. (2013) developed a systematic framework named DroidChameleon for evaluation

purposes. In the ten popular commercial anti-malware applications used, none of the applications

was able to thwart attacks from modified malware. It appears that malware authors frequently

use that polymorphism as an obfuscation technique to avoid detection by transforming the

malware into different forms. Metamorphism is also used because it mutates the code so that it is

removed but still executes the same behavior.

The author's findings were as follows:

• All the studied anti-malware products are vulnerable to common transformations.

• At least 43% signatures are not based on code- level artifacts.

36

• 0% of signatures do not require static analysis of bytecode. Only one of ten anti-malware

tools was found to be using static analysis.

• Anti-malware tools have evolved towards content-based signatures over the past year (or

since 2012).

Chin et al. (2011) analyzed 20 mobile applications; 60% of them contained exploitable security

vulnerabilities. The authors used the ComDroid tool for analyzing the apps. Message passing

vulnerabilities are dangerous because they leave the user susceptible to stolen passwords, emails,

banking information, etc. Android’s message passing system can be very vulnerable for non-

savvy developers and unsuspecting end-users. Their findings are shown below:

• Broadcast theft – silently reading (or eavesdropping) the contents of a broadcast intent

without actually interrupting or stealing the broadcast

• Activity hijacking – malicious activities are launched instead of the actual activity

Service hijacking – malicious services intercept an intent that was meant to be sent to a

legitimate service.

• Special intents – Intent uses a Uniform Resource Identifier (URI) reference and is able to

add permissions for that intent without the end-users’ knowledge.

• Malicious broadcast injection – malicious intents can propagate throughout the

application by using commands in a broadcast intent

• Malicious activity launch – launching malicious activities implicitly or explicitly

through the use of the Intent

• Malicious service launch – any application can start and bind to unprotected services

Chin et al. (2011) also explore “Intents”, which can be used for intra-application and inter-

application communication. There are four main components for the Intents: activities, services,

broadcast receivers, and content providers. Intents can use message passing for three of the

components: activities, services, and broadcast receivers. From a permissions level, services and

activities must be declared in the AndroidManifest.xml in order to receive other intents. The

message passing system uses the same “Intents” for transmitting data outside of the application

to third party by the use of links or APIs or by passing information between views of a mobile

application. The main red flag is the use of an explicit Intent that calls a developer specified

37

recipient. Using the default Android platform, one would simply allow the Android application

to use the correct calls to communicate with the appropriate intra-application Intent.

38

CHAPTER 4

Proposed KLD-Based Malware Detection

4.1 Overview

Instead of using heuristic-based approaches, such as Euclidean Distance or other measures, to

compare an application with known sample applications, this work uses a formal method based

on probabilistic models. It is assumed that all benign applications are generated by a hidden

probabilistic model (say M_benign); and each malicious application is generated from a hidden

probabilistic model (say M_malicious). The hypothesis is that the divergence between the

models M_benign and M_malicious should be detectable. Then, Kullback-Leibler Divergence

(KLD) is used to evaluate the divergence between the M_benign and M_malicious models.

Since the hidden probabilistic models are unknown, observable features generated from either

model are used to approximate the model. For this purpose, features (f1 to f10) are extracted. It is

further assumed that each application is generated by randomly sampling (f1 to f10) from the

hidden model. Since the observed population is very limited, a smoothing technique is needed to

avoid zero probability of feature observation.

The KLD computes the divergence between two given probability distributions. Let us assume

that P and Q represent two probability distributions,

where P = {p1, ..., pn} and Q = {q1, ..., qn}.

 Then, the KLD is defined as follows (Cover & Thomas, 2006):

KLD (P, Q) = * log2 (pi / qi) ……… Equation i

39

Here, the following two constraints are satisfied:

 = 1 ………………………………. Equation ii

 = 1 ………………………………. Equation iii

Cooper (2014a) starts with a hypothesis that the KLD between benign and malicious application

for performing a specific operation should be relatively high. On the other hand, the KLD among

benign applications performing the same operation should be relatively low. This approach uses

different features to detect malicious applications. We define feature elements from the source

code that relate to the primary purpose of the application’s functionality. Using this information,

we are able to determine suspicious malware applications. Our prototype implementation

analyzes the source code of a suspected malware application in a secure environment without

running the malware application on a mobile device.

4.2 Related Work

Our work is motivated by a number of works that apply the concept of Kullback-Leibler

Divergence (KLD) as a measure to solve a number of problems from various domains including

document’s author identification (Bigi, 2003), masquerade attack detection for network security

(Tapiador & Clark, 2010), outlier data value detection in wireless sensor network (Li & Wang,

2012), quality of non-object oriented software modularization (Sarkar, Rama, & Kak, 2007), and

risk analysis in the domain of fuel cell study (Fukui, Sato, Mizusaki, & Numao, 2010).

Bigi (2003) applied KLD to identify authorship of documents. The approach first builds a model

of each document author by aggregating documents generated by that author. It first develops a

set of candidate models. Then, for a given document of unknown author, the approach finds the

smallest KLD between a known model and the document. The model that is closest to the

document is selected as the author. Similar to this work, we apply constant back-off smoothing

technique to address the missing elements (or tokens derived from Java code of the malware).

40

Specifically, we compare the KLD between the code level features captured by population

elements of an application and the expected population obtained from benign applications. The

deviation, if exceeds a given threshold value, provides an indication of the presence of malware

operation in an application.

Tapiador et al. (2010) detected masquerade attacks based on an anomaly-based technique that

compares a given request with known normal request using KLD measure. In a masquerade

attack, an attacker steals credentials of legitimate users and performs further malicious actions

using the credentials. The KLD enables the detection of padding in command sequences

independent of the length and position in a block of request. In contrast, we apply KLD to detect

malware activities based on code level features.

Li et al. (2012) applied differential KLD to detect anomalous data value in wireless sensor

networks. The network is divided into clusters. In each cluster, the sensors remain physically

close to each other and sense similar values. The outlier values are detected using KLD. Sarkar et

al. (2007) applied information theoretic measure including KLD to measure the quality of

modularization in non-object oriented software systems. Fukui et al. (2010) measured the

similarity of events based on KLD and applied it in the domain of fuel-cell study.

4.3 KLD-Based Approach

 KLD is not a distance; it is a divergence between two probability distributions that are

asymmetric in nature. All of the literature work that we studied employs KLD to detect anomaly

or security issues; none has compared the KLD value with any distance metrics, such as

Euclidean or cosine. We consider SMS message sending as a case study for this work. For a

given SMS functionality, we identify the source code responsible for invoking it along with

source of inputs. The malicious applications typically do not accept inputs from users and mostly

supplies static values during the invocation of method calls. On the other hand, the legitimate

applications, while performing the same functionality, rely on user-supplied inputs. This makes a

difference between the behavior of a malicious and a legitimate application. KLD can be a

suitable measure to understand it as an automated process; hence, it can be used to detect

malicious applications.

41

To compute the KLD between two population sets (or probability distributions), we need to

define a set of elements relevant to the specific SMS operations and obtain a collection of

legitimate application samples to build P set. Now, given that we have a new application (Q), we

can then find how divergent is the new application compared to the P set with respect to SMS

operation to label the new application as malware or good application.

However, the challenge here is computing the term pi * log2 (pi/qi). It can be rewritten as

subtraction of two terms: pi * log2 (pi) – pi * log2 (qi). While we compute KLD (P, Q), if either pi

or qi is zero (no occurrence of probability is observed from applications), then the term becomes

infinite, which results in KLD (P, Q) to be zero. To address this issue, we propose to apply a

well-known smoothing technique known as constant back-off (Bigi et al. 2003). Here, all zero

probability values in both P and Q are substituted with a very negligible constant value and all

the non-zero values are equally subtracted with the same constant amount proportionally so that

Equations (ii) and (iii) are still satisfied. This simple step results in two smoothed probability

distributions denoted as P' (derived from P) and Q' (derived from Q). So, we essentially compute

KLD (P', Q') to avoid infinity problem instead of KLD (P, Q).

4.4 Elements of Population

Table 4 shows the list of 10 elements (f1-f10) that we consider in building the population of

elements and compute their occurrence probabilities from Android applications. Among them,

the first five elements are commonly found to be legitimate ways of sending (f1-f4) or receiving

(f5) SMS messages (based on extensive survey and reports from related work).

For example, f1 represents sending SMS message by creating a visual Action window where a

user can provide message and destination number for sending a message. At the Java source code

level, we then look for the following sequence of method call invocation: setContentView() that

allows for displaying of an Action window on the screen, one or more call of getText() to access

the current values of input from GUIs passed as SMS sending operation argument, and the

presence of the event handler that invokes the text retrieval operation and SMS sending

operation. Good applications send SMS messages using variables as part of their argument of the

42

respective method (sendTextMessage() and variable argument) as shown in f2. An application

may rely on creating an Intent object and store SMS messages as part of the method call

argument (putExtra) followed by launching the Activity (f3). The Uri.parse() method can be

invoked as well for sending messages (f4).

Table 4: A Description of SMS Operational Element for Building Population Set

Type Name Description Signature Sequence

Benign

f1
SMS message is sent with
visual input, through even
handler method

setContentView(),
getText(),EventHandler

f2
SmsManager object is created,
sendTxtMsg is invoked,
variable argument is present

SmsManager class,
sendTextMessage(), variable argument

f3
Create Intent object, write SMS
message, variable argument
message, start Activity

Intent class, putExtra(), variable SMS
message or phone number,
startActivity()

f4

Start activity with “smsto:”
string in Uri.parse method and
variable parameter for SMS
message

startActivity(),Uri.parse(), presence of
“smsto:”, variable argument in
Uri.parse()

f5
Message delivery or receiving
status is notified

Presence of Toast.makeToast() with
SMS keyword or presence of
exception handling for message
sending or receiving error code

Malicious

f6

SMS message is sent without
input from visual interfaces,
and in presence or absence of
event handler method

SmsManager, no getText(), no event
handler for the SMS sending operation

f7
SmsManager object is created,
sendTxtMsg is invoked,
constant argument present

SmsManager, sendTextMessage(),
constant SMS message or phone
number

f8
Using intent object, putting
SMS body, and constant
argument message

Intent class, putExtra(), constant
argument for SMS message or phone
number

f9

Start activity with “smsto:”
string in Uri.parse method and
constant parameter
representing SMS message

startActivity(),Uri.parse(), presence of
"smsto:" string, constant argument for
message or phone number in
Uri.parse()

f10
Message delivery or receiving
status is not notified

No presence of Toast.makeToast(),
and no exception handling for
message sending or receiving error
code

43

Finally, a legitimate application notifies users about the receiving of any incoming message that

could be due to the failure of sending an earlier message from a phone, or receiving a message

from new source. In this case, we check the presence of viewable Activity window and explicit

code for handling the status (f5). More specifically, we look for the presence of the

Toast.makeToast()method invocation with short message containing the keyword “SMS” and

exception handling code that does not suppress the SMS sending error message or receiving

information. Similarly, the last five elements (f6 - f10) represent malicious ways of sending (f6 - f9)

or receiving (f10) SMS messages. For example, one way of sending SMS would be not to display

any Activity window (no setContentView() call), no extraction of inputs (no getText() call), and

no event handler method invocation where SMS sending is taking place. Similarly, we look for

the sequence of the absence of other API sequence to identify these elements.

4.5 Back-off Smoothing

For a given set of legitimate Android applications, we compute the P set containing the

occurrence of f1 - f10 and the probability distribution. Then, given a new Android application we

identify the Q set containing the occurrence probability of f1 - f10 and see how distant the two sets

are to understand the closeness. The less divergence we find, the closer the two sets, hence Q is

identified to be good application with respect to the specific SMS operation. On the other hand,

if the divergence is very high, then we label Q as malware. As one or more elements from P and

Q may not have any occurrence (zero probability), they need to be smoothed (already discussed

in Section 4.3).

4.6 Evaluation using Data Set

We evaluated our approach as follows: first we gather a set of legitimate Android applications

downloaded randomly from the web, where each of the applications contains Java code for

performing SMS functionalities. To ensure diversity in the test applications, selected applications

rely on different known techniques of sending or receiving SMS messages (SmsManager,

putExtra for Intent, Uri.parse). We have total 17 applications in our data set to construct the P

set. The P set applications are shown in table 5 along with the occurrence (frequency) of their

44

population elements. The last row of Table 5 shows the combined frequency of all population

elements (the P set).

For the Q set, we use one application that we are comparing with the P set. Table 6 shows the

KLD between P and each of the malware (Q). We show the results in terms of P' and Q' (after

smoothing the sets). The value ranges between 12.47 and 17.25, which provides a basis of

threshold values for consideration to detect new malware samples for their benign or

maliciousness.

Table 5: Occurrence of Elements in the P Set

Application f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
SMS_Android-Build-In-SMS-
Application-Example 0 0 0 0 0 0 0 1 0 0

SMS_Android-Send-SMS-
Example 1 1 0 0 1 0 0 0 0 0

SMS_AndroidSMSExample_1 1 1 0 0 1 0 0 0 0 0
SMS_AndroidSMSExample_2 0 0 0 0 1 0 0 0 0 0
SMS_apriorit_SecureMessages 0 0 0 0 0 0 0 0 0 0
SMS_Cloud SMS 0 1 0 0 0 0 0 0 0 0
SMS_Free SMS India 0 1 0 0 7 0 2 0 0 0
SMS_GO SMS Pro 0 2 0 0 9 0 1 0 1 0
SMS_Handcent SMS 0 0 0 0 0 0 0 0 0 0
SMS_javacodegeeks_AndroidSM
SExample_1 1 1 0 0 1 0 0 0 0 0

SMS_MightyText.src 0 4 0 0 4 1 0 0 0 0
SMS_mkyong-Android-Send-
SMS-Example 1 1 0 0 1 0 0 0 0 0

SMS_mkyoung-Android-Build-
In-SMS-Application-Example 0 0 0 0 0 0 0 1 0 0

SMS_msatpathy_SMSTest 1 2 0 0 3 0 0 1 0 0
SMS_Ninja SMS 0 0 0 0 0 1 0 0 0 0
SMS_SecureMessages 0 0 0 0 0 0 0 0 0 0
SMS_SMSTest 1 2 0 0 3 0 0 1 0 0
Total 6 16 0 0 31 2 3 4 1 0

45

Table 6: KLD Between Good (P') and Malware (Q') Applications

Malware Application Name (Q') KLD (P', Q')

AndroidDogwar 16.93
DroidDeluxe 17.25
DroidDreamlight2 17.25
DroidKungFu2A 12.47
DroidSlasher_1_1.0.1(GoldDreamA) 12.47
HippoSMS 12.47
Lovetrap 12.47
Spitmo 16.38
Zitmo 17.25
zj_NinjaChicken_other 12.47

To further complement our evaluation, we randomly computed the KLD between the trained

samples (P) and another new set of good applications performing SMS operations. Table 7

shows a snapshot of the obtained KLD values showing the divergence between good and good

applications ranges between 5.12 and 17.25. Our experiment led to one false-positive warning.

Considering the threshold values obtained from malware analysis in Table 2 (12.47-17.25), we

find that Virtual Table Tennis 3D application is labeled as malware. The other nine applications

are considered as benign. Thus, KLD can be a suitable measure to identify malware and benign

applications for SMS operations if the threshold of divergence is considered carefully.

Table 7: KLD Between Good (P') and Good (Q') Applications

Good Application Name (Q') KLD (P', Q')

Barcode Scanner 10.81
FxCamera 9.97
Huffington Post 11.82
My Currency – Converter 8.77
Skype 7.23
To-Do Calendar Planner 5.12
Viber 9.42
Virtual Table Tennis 3D 17.25
WhatsApp 12.32
YouTube 8.65

46

4.7 Discussion

Here, we will demonstrate how another metric-based approach will give less accurate results

when compared to applying our KLD-based approach.

The metric-based approach is defined as follows:

Malicious: Sum(f6-f10) > Sum(f1-f5) ……… Equation iv

Benign: Sum(f1-f5) ≥ Sum(f6-f10) ……… Equation v

Table 8 compares the sum of the benign, Sum(f1-f5), elements with the sum of the malicious,

Sum(f6-f10), elements. We see that this metric-based approach does show that the total sum for all

benign elements is greater than all of the malicious elements.

Table 8: Sum of Elements in the P Set

Application Sum(f1-f5) Sum(f6-f10)
SMS_Android-Build-In-SMS-Application-Example 0 1
SMS_Android-Send-SMS-Example 3 0
SMS_AndroidSMSExample_1 3 0
SMS_AndroidSMSExample_2 1 0
SMS_apriorit_SecureMessages 0 0
SMS_Cloud SMS 1 0
SMS_Free SMS India 8 2
SMS_GO SMS Pro 11 2
SMS_Handcent SMS 0 0
SMS_javacodegeeks_AndroidSMSExample_1 3 0
SMS_MightyText.src 8 1
SMS_mkyong-Android-Send-SMS-Example 3 0
SMS_mkyoung-Android-Build-In-SMS-Application-Example 0 1
SMS_msatpathy_SMSTest 6 1
SMS_Ninja SMS 0 1
SMS_SecureMessages 0 0
SMS_SMSTest 6 1
Total 53 10

47

When we compare the sums for each of the applications in the P set, we also see that most of the

applications have a higher Sum(f1-f5) value that indicates the application is harmless. However,

we also see in Table 9 that Sum(f1-f5) is not always greater than Sum(f6-f10). Three of the

applications had a Sum(f1-f5) value that was less than the Sum(f6-f10). Our KLD-Based approach

shows that all of the applications in the P set were within the benign threshold of values.

Therefore, our approach gives more accurate results.

Table 9: Accuracy of Metric-Based Approach for the P Set

P set Correct 14/17
Incorrect 3/17

Next, we tested the metric-based approach on the suspected malicious applications in the Q set.

In Table 10, we see the occurrence of elements in our first Q set that represent the suspected

malicious applications. Table 11 compares the sum of the benign, Sum(f1-f5), elements with the

sum of the malicious, Sum(f6-f10), elements. In Table 12, we see that the accuracy of the metric-

based approach continues to decrease even though it still holds true to our hypothesis. As shown

in Table 6, our KLD-Based approach shows that all of the applications in the malicious Q set fall

within the threshold of values.

 Table 10: Occurrence of Elements in the Malicious Q Set

Application f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
AndroidDogwar 0 0 0 0 0 0 2 0 0 0
DroidDeluxe 0 0 0 0 0 1 0 0 0 0
DroidDreamlight2 0 0 0 0 0 1 0 0 0 0
DroidKungFu2A 0 0 0 0 0 0 0 0 0 0
DroidSlasher_1_1.0.1(GoldDreamA) 0 1 0 0 0 1 0 0 0 0
HippoSMS 0 0 0 0 0 1 0 0 0 0
Lovetrap 0 1 0 0 0 1 0 0 0 0
Spitmo 0 0 0 0 0 1 1 0 0 0
Zitmo 0 0 0 0 0 1 0 0 0 0
zj_NinjaChicken_other 0 1 0 0 0 1 0 0 0 0

48

Table 11: Sum of Elements in the Malicious Q Set

Application Sum(f1-f5) Sum(f6-f10)
AndroidDogwar 0 2
DroidDeluxe 0 1
DroidDreamlight2 0 1
DroidKungFu2A 0 0
DroidSlasher_1_1.0.1(GoldDreamA) 1 1
HippoSMS 0 1
Lovetrap 1 1
Spitmo 0 2
Zitmo 0 1
zj_NinjaChicken_other 1 1

Table 12: Accuracy of Metric-Based Approach for the Malicious Q Set

Malicious
Q set

Correct 6/10
Incorrect 4/10

Lastly, we tested the metric-based approach on the suspected benign applications in the other Q

set. In Table 13, we see the occurrence of elements in our second Q set that represent the

suspected benign applications. Table 14 compares the sum of the benign, Sum(f1-f5), elements

with the sum of the malicious, Sum(f6-f10), elements. In Table 15, we see that the accuracy of the

metric-based approach is poor in comparison to our KLD-Based approach. We received only

one false-positive warning for the Virtual Table Tennis 3D application.

Table 13: Occurrence of Elements in the Benign Q Set

Application f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Barcode Scanner 0 0 0 0 0 1 0 0 0 0
FxCamera 0 0 0 0 0 0 0 0 0 0
Huffington Post 0 0 0 0 0 0 0 0 0 0
My Currency – Converter 0 0 0 0 0 0 0 0 0 0
Skype 0 0 0 0 0 0 0 0 0 0
To-Do Calendar Planner 1 0 0 0 0 0 0 0 0 0
Viber 0 1 0 0 0 0 0 0 0 0
Virtual Table Tennis 3D 0 0 0 0 0 1 0 0 0 0
WhatsApp 0 0 0 0 0 0 0 0 0 0
YouTube 0 0 0 0 0 1 0 0 0 0

49

Table 14: Sum of Elements in the Benign Q Set

Application Sum(f1-f5) Sum(f6-f10)
Barcode Scanner 0 1
FxCamera 0 0
Huffington Post 0 0
My Currency – Converter 0 0
Skype 0 0
To-Do Calendar Planner 1 0
Viber 1 0
Virtual Table Tennis 3D 0 1
WhatsApp 0 0
YouTube 0 1

Table 15: Accuracy of Metric-Based Approach for the Benign Q Set

Benign
 Q set

Correct 7/10
Incorrect 3/10

50

CHAPTER 5

Application Implementation

5.1 Overview

We implemented a prototype application to demonstrate the functionality of our proposed KLD-

Based approach. There are three stages:

(i) decompiling the APK file into readable source code,

(ii) analyzing the source code using our prototype Java class, and

(iii) determining the status of a mobile application as good or bad by reviewing the data set.

Our approach is partially automated, and the P set is calculated beforehand from a set of known

good samples. In this section, we apply Kullback-Leibler Divergence (KLD) to differentiate

malware and legitimate application behavior for SMS message functionality. We also explain the

decompiling process in detail using screenshots from our GUI. Note that this application

implementation is in progress. This chapter presents the work completed as of March 17, 2014.

5.2 Decompiling the APK

As mentioned above, we first convert the APK file into readable source code. The prototype

application can automate the decompiling process of the APK file before computing the

occurrence probability, which is the second stage of our KLD-based approach. Figure 17

displays the GUI of the decompiling of the APK file. Here, we have three steps: (a) to choose the

APK file, (b) to convert the APK file to a jar file, and (c) to extract the source code from the jar

file. The white space will serve as a logger to update the user on their selections and the

decompiling process. Using the file browser, Figure 18 shows how to browse to the desired

location and select the APK file after clicking the Choose File button (step (a)).

51

Figure 17: GUI of application that decompiles the APK

Figure 18: Demonstration of selecting an APK to decompile

Now, we convert the APK file to a jar file. To do that, we select the APK to JAR button (step

(b)). In order to decompile the APK file, we use the command lines from the open source

dex2jar utility ("dex2jar", 2013). Dex2jar is a very useful tool for extracting source code of

mobile applications. It is also capable of maintaining the integrity of the folder structure. Once

the process is complete, we can go back to the file browser and see that Zitmo-dex2jar.jar has

been created, as shown in Figure 19.

52

Figure 19: Verification that APK file was converted to jar file

Now, we initiate the Extract Source button (step (c)). The contents of Zitmo-dex2jar.jar are

extracted, and the Java class files are generated. Figure 20 shows a screenshot where the jar file

is converted to Java class files. The next step is to convert all .class files into .java files using the

JD-GUI ("Java Decompiler", 2013).

Figure 20: Verification of readable source code

5.3 Analysis of the Source Code

We implemented a prototype Java class, TestAndroidKLD.java that analyzes the decompiled

APK files at the Java code level and can compute the occurrence probability of elements of

interest (f1 - f10) from java source files (See Appendix A for TestAndroidKLD.java source code).

53

TestAndroidKLD.java has a method, scanJavaFile(File file), that checks the main Zitmo

directory and each of its subdirectories for java files. Each of those java files is then scanned and

checked for the occurrence of the elements of population. For example, f1, explained in Table 4,

refers to an SMS message being sent with visual input. scanJavaFile(File file) checks for the

presence of setContentView(); if it is present, that is an indication of a benign action.

Table 16: Output of Method Call Occurrence for the P Set (Part 1)

Application Activity View setContentView() getText() EventHandler SmsManager

SMS_Android-Build-In-
SMS-Application-
Example

1 0 1 0 1 0

SMS_Android-Send-
SMS-Example 1 0 1 1 1 1

SMS_AndroidSMSExa
mple_1 1 0 1 1 1 1
SMS_AndroidSMSExa
mple_2 1 0 1 0 1 0
SMS_apriorit_SecureMe
ssages 1 0 1 0 1 0

SMS_Cloud SMS 15 20 0 2 17 5
SMS_Free SMS India 11 0 0 2 5 5
SMS_GO SMS Pro 20 52 0 12 599 24
SMS_Handcent SMS 4 17 0 11 404 28
SMS_javacodegeeks_An
droidSMSExample_1 1 0 1 1 1 1

SMS_MightyText.src 9 0 0 0 0 16
SMS_mkyong-Android-
Send-SMS-Example 1 0 1 1 1 1

SMS_mkyoung-
Android-Build-In-SMS-
Application-Example

1 0 1 0 1 0

SMS_msatpathy_SMST
est 1 0 1 1 1 6

SMS_Ninja SMS 9 22 0 0 16 0
SMS_SecureMessages 1 0 1 0 1 0
SMS_SMSTest 1 0 1 1 1 6
Total 79 111 11 33 1052 94

54

Table 17: Output of Method Call Occurrence for the P Set (Part 2)

Application sendTextMessage Const arg Var arg Intent putExtra (sms_body)

SMS_Android-Build-In-
SMS-Application-Example 0 0 0 1 1
SMS_Android-Send-SMS-
Example 1 0 1 0 0
SMS_AndroidSMSExample
_1 1 0 1 0 0
SMS_AndroidSMSExample
_2 0 0 0 1 0
SMS_apriorit_SecureMessa
ges 0 0 0 0 0

SMS_Cloud SMS 1 0 1 0 0

SMS_Free SMS India 3 2 1 0 0

SMS_GO SMS Pro 3 1 2 0 0

SMS_Handcent SMS 0 0 0 0 0
SMS_javacodegeeks_Androi
dSMSExample_1 1 0 1 0 0

SMS_MightyText.src 4 0 4 0 0
SMS_mkyong-Android-
Send-SMS-Example 1 0 1 0 0
SMS_mkyoung-Android-
Build-In-SMS-Application-
Example

0 0 0 1 1

SMS_msatpathy_SMSTest 2 0 2 1 1

SMS_Ninja SMS 0 0 0 0 0

SMS_SecureMessages 0 0 0 0 0

SMS_SMSTest 2 0 2 1 1
Total 19 3 16 5 4

The P set computation requires adding up of all the fi counts from all sample applications. A

counter keeps track of each element's occurrence. While TestAndroidKLD.java scans the source

code, it creates and writes all data to a CSV file. Tables 16 and 17 show the generated outputs

that have been saved into the KLD_Results.csv file.

55

5.4 Reviewing the Obtained Results

The first two steps, mentioned in Sections 6.2 and 6.3, are repeated for multiple mobile

applications that have the same type of functionality. By evaluating a large number of

applications, we are able to prevent KLD values from being skewed too heavily in one direction.

Using the values generated in the CSV file, we can compare the known good and malicious KLD

values. First, we calculate the final tabulation for each element in the population set, as shown in

Table 5. Then, we are able to calculate its KLD value and determine if it has malicious

operations.

5.5 Performance

Currently, our KLD-based approach is being executed as a desktop application. The average time

to build our P set was a total of 0.146 seconds. The average time to build our malicious Q set

was a total of 0.153 seconds. The average time to build our benign Q set was a total of 0.113

seconds. These average times are considered to be fairly efficient since they do not require an

excessive amount of time to analyze the chosen applications and generate the CSV file that

tracks the occurrence of the population elements. This performance would change once

transitioning from an offline desktop application to a running service on a mobile device.

5.6 Deployment

The offline analysis of scanning Android applications does not require an Internet connection.

However, as malicious activities continue to evolve, the P set would require updating. Our initial

intention for the deployment phase was to distribute the approach as a running service on the

Android device. After careful consideration, we realized that the large variety of device hardware

would affect the consistency of implementation and efficiency. The added constraint of declining

battery power and device lifespan would deter users from running our service on their devices. In

our future research, we plan to deploy our approach as a service in the cloud environment in

order to maximize performance.

56

CHAPTER 6

Dissemination of Research Findings

Android Malware Detection Using Kullback-Leibler Divergence
Vanessa N. Cooper, Hisham M. Haddad, and Hossain Shahriar.
Work in Progress.

Abstract
Many recent reports suggest that malware applications cause high billing to victims by
sending and receiving of hidden SMS messages Given that, there is a need to develop
necessary technique to identify malicious SMS operations as well as differentiate between
good and bad SMS operations within applications. In this paper, we apply Kullback-Leibler
Divergence (KLD) as a distance to identify the difference between good and malicious SMS
operations. We develop a set of elements that represent sending or receiving of SMS
messages both legitimately and maliciously. Then, we compare the divergence of the trained
set of elements. Our evaluation shows that the divergence between good and bad
applications remains significantly high, whereas between two applications performing the
same SMS operations remain low. We evaluate the proposed KLD-based concept for
identifying a set of malware applications. The initial results show that our approach can
identify all known malware and has less false positive warning.

57

Development and Mitigation of Malicious Android Applications
Vanessa N. Cooper, Hossain Shahriar, and Hisham M. Haddad.
Book Chapter. Contribution to the book titled Handbook of Research on Digital Crime,
Cyberspace Security, and Information Assurance, Edited by Maria Manuela Cruz-Cunha,
Polytechnic Institute of Cávado and Ave, Portugal. Published by IGI Global, Spring 2014.

A Survey of Android Malware Characteristics and Mitigation Techniques
Vanessa N. Cooper, Hossain Shahriar, and Hisham M. Haddad.
Conference Proceedings. Proceedings of the IEEE International Conference on Information
Technology: New Generations (ITNG 2014), Las Vegas, Nevada, April 2014.

Abstract
As mobile applications are being developed at a faster pace, the security aspect of user
information is being neglected. A compromised smartphone can inflict severe damage to both
users and the cellular service provider. Malware on a smartphone can make the phone
partially or fully unusable; cause unwanted billing; steal private information; or infect every
name in a user’s phonebook. A solid understanding of the characteristics of malware is the
beginning step to prevent much of the unwanted consequences. This chapter is intended to
provide an overview of security threats posed by Android malware. In particular, we focus on
the characteristics commonly found in malware applications and understand the code level
features that allow us to detect the malicious signatures. We also discuss some common
defense techniques to mitigate the impact of malware applications.

Abstract
As mobile applications are being developed at a faster pace, the security aspect of is being
neglected. A solid understanding of the characteristics of malware is the first step to
preventing many unwanted consequences. This paper provides an overview of popular
security threats posed by Android malware. In particular, we focus on the characteristics
commonly found in malware applications and understand the code level features that can
enable detection techniques. We also discuss some common defense techniques to mitigate
the impact of malware applications.

58

Android Malware Detection Based on Kullback-Leibler Divergence
Vanessa N. Cooper.
Invited Student Research Abstract to the ACM SAC 2014 Student Research Competition (SRC)
Program. Proceedings of the ACM-SIGAPP Conference on Applied Computing (SAC 2014),
Gyeongju, Korea, March 2014, pp. 1695-1696.

Study of Agility in Mobile Application Development
Vanessa N. Cooper and Hisham M. Haddad.
Conference Proceedings. Proceedings of the International Conference on Software Engineering
Research and Practice (SERP 2013), Las Vegas, Nevada, July 2013, pp. 384-390.

Abstract
A recent study shows that more than 50% of mobile devices running Google's Android mobile
operating system (OS) have unpatched vulnerabilities, opening them up to malicious
applications and malware attacks. The starting point of becoming a potential victim due to
malware is to allow the installation of applications without knowing in advance the operations
that an application can perform. In particular, many recent reports suggest that malware
applications caused unwanted billing by sending SMS messages to premium numbers without
the knowledge of the victim [1,2]. Given that, there is a need for techniques to identify
malicious behaviors of applications before installing them.

Abstract
Not only has Agility infiltrated enterprise and consumer mobile application development,
but it has also become an integral part of most IT departments and the standard for younger
generation developers. Despite the numerous benefits of Agile development, software
developers often find out that there are also several pitfalls to avoid during mobile
application development. In this study, we will explore the potential pitfalls of incorporating
agility into the development of mobile applications. The motivation behind this work stems
from professional and personal experience of the primary author.

59

CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

This thesis provides an overview of security threats posed by Android malware. We discuss the

overall structure of the Android OS and how its security features attempt to prevent malware

attacks. We also discuss the details of Android’s privacy features and overall architecture. We

discuss three different types of malware (grayware, spyware, and malware) and how they affect

Android security. In particular, we focus on the characteristics commonly found in malware

applications and understand the code level features that allow us to detect the malicious

signatures. In addition, our examination of the code level demonstrates the likelihood of an

Android application’s malicious activities by those specific method signatures.

We also discuss some common defense techniques to mitigate the impact of malware

applications. Those defense techniques are as follows: sandboxing, machine learning algorithms,

decompiler-based static analysis, and secure software architecture for Android applications. A

secure Android operating system and better coding practices will greatly reduce the possibilities

of Android malware. These defense techniques enhance the security of the Android platform and

deployed applications. We discuss both the advantages and disadvantages of each of these

techniques.

In this thesis, we propose to choose the Kullback-Liebler Divergence (KLD) as a measurement

to differentiate between legitimate and malicious application behavior at source code level. The

methodology builds probability distributions from the available source code of an application

performing a specific functionality. We show some highlights of choosing possible elements of

interest that can be useful to differentiate between a benign and malicious application behavior.

Then, we apply the KLD measure to show that the difference between a legitimate and malicious

application is infinite, whereas the difference between two legitimate applications is close to

zero.

60

We also develop a prototype application that can partially automate the decompiling process of

the APK file before computing the occurrence probability. We address the detection of malicious

SMS operations within malware based on a set of proposed elements that can be used to build

population for computing KLD. Furthermore, to address the elements having zero probability,

we propose to apply constant back-off smoothing technique. We evaluated our approach using a

set of known good applications to build one population set followed by a set of malware

applications obtained from the web. The results show that KLD between good and malware

applications are high and ranges from 12.47 to 17.25. In addition, we also measured the KLD

between the trained applications and another set of good applications, and found that the KLD

between good and good applications may range from 5.12 to 17.25. Based on the study of

Android malware, we conclude that there should be a pair of threshold values for identifying

malware applications using KLD. In our evaluation, only one good application has been labeled

as malware (false positive).

 We believe that the application of KLD is very practical and simply deduces the elements of

population for each functionality type into a threshold of values (which can identify a simple

pass/fail). False positives were also investigated to ensure that the range of values is correct for

both benign and malignant applications. We conclude that our application implementation of the

KLD method accounts for more mitigation techniques. By examining the Android Manifest file

(permission analysis), we can determine the intended functionality of each application and

automatically generate its elements of population from a predetermined list. Using that

information, our static analysis of the source code will yield more accurate results by checking

for obfuscated code. Also, this is being done in an isolated environment (sandboxing) and the

application is not being dynamically executed which greatly reduces risk of infection.

7.2 Future Work

Our future research includes theoretical and implementation goals. On the theoretical side, our

goals are: (i) choosing an appropriate smoothing technique to practically compute KLD, when

one of the elements occurrence probability is found to be zero, (ii) finding more elements of

population to cover more cases, (iii) documenting all possible known code patterns for

61

performing specific functionality of interests that are common in malware applications, and (iv)

validating our hypothesis using a larger collection of sample Android applications consisting of

both legitimate and malicious behaviors.

On the implementation side, the conditions that we used to check the occurrence of population

elements may not be exhaustive and accurate for all types of malware activities. However, we

plan to create an interface where the end user can specify the population elements based on the

activity. Our future goal includes automating the process for decompiling the APK file and

analyzing the source code. We also plan to research the possibilities of deploying the application

as a service in the cloud environment

62

 Appendix A: TestAndroidKLD.java Source Code

import java.io.BufferedReader;
import java.io.DataInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;

public class TestAndroidKLD {

public static int scanJavaFile (File file){

 int store=0;

 try{

 FileInputStream fstream = new
 FileInputStream(file.getAbsolutePath().toString());

 DataInputStream in = new DataInputStream(fstream);

 BufferedReader br = new BufferedReader(new InputStreamReader(in));

 String str;

 while ((str = br.readLine()) != null) {

 if ((str.indexOf(" Activity") > 0) && str.indexOf(" class ") > 0){
 result[0]++;
 store=1;
 }

 if ((str.indexOf(" View") > 0) && str.indexOf(" class ") > 0){
 result[1]++;
 store=2;
 }

 if ((str.indexOf("setContentView") > 0) &&
 (str.indexOf("R.layout.main") > 0)){
 result[2]++;
 System.out.println ("setContentView() stmt: " + str);
 store=3;
 }

 if ((str.indexOf("getText().toString()") > 0) && store==5){
 result[3]++;
 System.out.println ("getText() call within event handler stmt:
" + str);
 store=4;
 }

63

 if ((str.indexOf("public void on") > 0) && (str.indexOf("View ") >
0)
 && !str.contains(",")){

 result[4]++;
 System.out.println ("event handler stmt: " + str);
 store=5;
 }

 if (str.indexOf("SmsManager") > 0 && !(str.indexOf("import") >= 0)){
 result [5]++;
 System.out.println ("SmsManager stmt: "+ str);
 store=6;
 }

 if (str.indexOf("sendTextMessage") > 0){
 result [6]++;
 System.out.println ("sendTextMessage () stmt: "+ str);
 store=7;
 }

 if ((str.indexOf("sendTextMessage") > 0) && str.contains("\"")){
 result [7]++;
 System.out.println ("constant argument in sendTextMessage ():
"+ str);
 store=8;
 }

 if ((str.indexOf("sendTextMessage") > 0) && !str.contains("\"")){
 result [8]++;
 System.out.println ("variable argument in sendTextMessage ():
"+ str);
 store=9;
 }

 if (str.indexOf("Intent") > 0 && str.indexOf("new ") > 0 &&
str.indexOf("=") > 0 && str.indexOf("Intent.ACTION_VIEW") > 0){

 result [9]++; //intent++;
 System.out.println ("Intent creation stmt: "+ str);
 store=10;
}

if (str.indexOf("sendIntent.putExtra") > 0 && str.indexOf("sms_body") > 0
){
 result [10]++;
 store=11;
 System.out.println ("sms using Intent stmt: "+ str);
 if (!str.contains("\"")){
 System.out.println ("variable sms stmt: "+ str);
 result [11]++;
 }
}

64

 if (str.indexOf("sendIntent.putExtra") > 0 &&
str.indexOf("sms_body") > 0){
 result [10]++;
 store=11;
 System.out.println ("sms using Intent stmt: "+ str);
 if (!str.contains("\"")){
 System.out.println ("variable sms stmt: "+ str);
 result [11]++;
 }
 if (str.contains("\"")){
 System.out.println ("const sms stmt: "+ str);
 result [12]++;
 }
 }

 if (str.indexOf("startActivity") > 0){
 result [13]++;
 store=12;
 if (str.indexOf("Uri.parse") > 0){
 result [14]++;

 System.out.println ("Activity with Uri stmt: "+ str);

 if (str.indexOf("smsto:") > 0){
 result [15]++;

 System.out.println ("Activity with Uri and smsto
stmt: "+ str);

 String msg =
str.substring(str.indexOf("smsto:")+2, str.length()-1);
 if (!msg.contains("\"")){
 result [16]++;
 System.out.println ("Activity with Uri,
smsto with variable msg: "+ str);
 }
 (msg.contains("\"")){
 result [17]++;
 System.out.println ("Activity with Uri,
smsto with const msg: "+ str);
 }
 }
 }
 }

 if (str.indexOf("Toast.makeText") > 0 && str.indexOf("SMS") >0){
 System.out.println ("Toast.makeText stmt: "+ str);
 result [18]++;
 }

65

 if (str.indexOf("RESULT") > 0 && str.indexOf("SMS") >0){
 System.out.println ("Result notification for SmsManager
stmt: "+ str);
 result [19]++;
 }

 }
 in.close();

 }catch (Exception e){ //Catch exception if any
 System.err.println("Error: " + e.getMessage());
 }
 return store;
 }

 public static void walk(String path) {

 File root = new File(path);
 File[] list = root.listFiles();

 if (list == null) return;

 for (File f : list) {
 if (f.isDirectory()) {

 walk(f.getAbsolutePath());
 }
 if (f.getName().endsWith("java")){
 fcount++;
 }

 }
 }

 public static int fcount=0, dcount =0, imgCount=0;
 public static int activityCount=0, viewCount=0;
 public static int obs1_getText=0;
 public static int intent=0, settype_sms=0, uriparse=0;
 public static int startActivityWithContext=0,
startActivityNoContext=0, putExtra=0;
 public static int smsto=0, smsmanager=0, sendtxtmsg=0;

66

static String csvFile = "C:\\Users\\TechDev\\Desktop\\KLD_Results.csv";
 static String header[] =
 {"Application", "Activity", "View",
 "setContentView()", "getText()", "EventHandler", //obs1(ben): sms
is sent with visual input and through even handler method
 "SmsManager", "sendTextMessage", "Const arg", //obs2(mal):
SmsManager object is created, sendTxtMsg is invoked, constant arg present
 "Var arg", //obs3 (ben): SmsManager object is created, sendTxtMsg
is invoked, variable arg present
 "Intent", "putExtra(sms_body)", "variable SMS", //obs4 (ben):
using intent object, putting sms body, and variable is used for message
 "Constant SMS", //obs5 (mal): using intent, constant sms message
 "StartActivity", "Uri.parse", "smsto:", "Uri_variable SMS", //obs6
(ben): start activity with smsto uri and variable param (ben)
 "Uri_const SMS", //obs7 (mal): start activity with smsto uri and
const param
 "Toast", "SmsManager.RESULT" //obs8(ben): result is notified
SmsManager based msg delivery

 //"StartActivity_NoContext" //obs7 (mal): start activity with no
context

 };
 static int [] result = new int [20];

 public static void main(String[] args) {
 // TODO Auto-generated method stub

 int appcount=0;

 String path = "C:\\Users\\TechDev\\Desktop\\SMS_sample";
 String appName="";
 writeHeader(header, csvFile);

 File root = new File(path);
 File[] list = root.listFiles();

 if (list == null) return;

 for (File f : list) {
 if (f.isDirectory()) {
 appcount++;
 System.out.println("\n****Dir:" + f.getAbsoluteFile()
);
 String temp = f.getName();
 StringTokenizer stk = new StringTokenizer (temp, "\\");
 while (stk.hasMoreTokens()){
 appName = stk.nextToken();

 fcount= dcount = imgCount=
activityCount=viewCount =
 intent=settype_sms=0;
 startActivityWithContext = startActivityNoContext
= putExtra = uriparse= 0;
 smsto= smsmanager=sendtxtmsg=0;
 }

67

 walk(f.getAbsolutePath());
 generateCsvFile(csvFile, appName, result);

 for (int i =0; i<result.length; i++){
 result[i] =0;
 }

 }
 }

 System.out.println("\nApplication count:" + appcount);

 }
 public static void writeHeader(String [] header, String csvFile){

 try{
 FileWriter writer = new FileWriter(csvFile, true);

 for (int i =0; i< header.length; i++){
 writer.append(header[i] + ",");

 }
 writer.append ("\n");
 writer.flush();
 writer.close();
 }
 catch(IOException e)
 {
 e.printStackTrace();
 }
 }

 private static void generateCsvFile(String sFileName, String
appName, int result[]){
 try{
 FileWriter writer = new FileWriter(sFileName, true);
 writer.append(appName+ ",");
 for (int i =0; i<result.length; i++){
 writer.append (result[i] + ",");
 }
 writer.append('\n');

 writer.flush();
 writer.close();
 }
 catch(IOException e){
 e.printStackTrace();
 }
 }
}

68

 References

Aaron, D. B. (2011, November 17). Google android passes 50% of Smartphone Sales. Bloomberg

Businessweek. Retrieved August 21, 2013, from http://www.businessweek.com/news/2011-11-
17/google2android-passes-50-of-smartphone-sales-gartner-says.html

Android Design. (2013). Retrieved August 21, 2013, from
http://developer.android.com/design/index.html

Android IDL Example with Code Description – IPC. (2013, July 20). Retrieved August 21, 2013, from
http://techblogon.com/android-aidl-example-with-code-description-ipc

Baldwin, C. (2012, September 17). Android devices vulnerable to security breaches.
ComputerWeekly.com. Retrieved August 21, 2013, from
http://www.computerweekly.com/news/2240163351/Android-devices-vulnerable-to-security-
breaches

Barrera, D., Kayacik, H., Oorchot, P., & Somayaji, A. (2010). A Methodology for Empirical Analysis of

Permission-Based Security Models and Its Application to Android. In Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS), 2010, pp. 73-84.

Batyuk, L., Herpich, M., Camtepe, S., Raddatz, K., Schmidt, A. & Albayrak, S. (2011). Using Static

Analysis for Automatic Assessment and Mitigation of Unwanted and Malicious Activities within
Android Applications. In Proceedings of 6th International Conference on Malicious and
Unwanted Software (MALWARE), October 2011, pp. 66-72.

Bigi, B. (2003). Using Kullback-Leibler Distance for Text Categorization. Lecture Notes in Computer

Science (LNCS). Volume 2633, 2003, pp. 305-319.

Blasing, T., Batyuk, L., Schmidt, A., Camtepe, S. & Albayrak, S. (2010). An Android Application
Sandbox System for Suspicious Software Detection. In Proceedings of the Proceedings of the 5th
International Conference on IEEE Malicious and Unwanted Software, 2010, pp. 55-62.

Brinkmann, M. Encrypt all data in Android phone. (2012, October 13). Retrieved August 21, 2013, from
http://www.ghacks.net/2012/10/13/encrypt-all-data-on-your-android-phone

Chin, E., Felt, A.P., Greenwood, K., & Wagner, D. (2011). Analyzing inter-application communication in
Android. In Proceedings of the 9th international conference on Mobile systems, applications, and
services (MobiSys '11). ACM, New York, NY, USA, 239-252.

Cooper, V. N. (2014a). Android Malware Detection Based on Kullback-Leibler Divergence”, Invited
Student Research Abstract to the SAC 2014 Student Research Competition (SRC) program.
Proceedings of the ACM-SIGAPP Conference on Applied Computing (SAC 2014), Gyeongju,
Korea, March 2014, pp. 1695-1696.

69

Cooper, V. N. & Haddad, H. M. (2013). Study of Agility in Mobile Application Development.
Proceedings of the International Conference on Software Engineering Research and Practice
(SERP 2013), Las Vegas, Nevada, July 2013, pp. 384-390.

Cooper, V. N., Shahriar, H., & Haddad, H. M. (2014b). A Survey of Android Malware Characteristics and

Mitigation Techniques. Proceedings of the IEEE International Conference on Information
Technology: New Generations (ITNG 2014), Las Vegas, Nevada, April 2014.

Cooper, V. N., Shahriar, H., & Haddad, H. M. (2014c). Book Chapter titled Development and Mitigation

of Malicious Android Applications. Contribution to the book titled Handbook of Research on
Digital Crime, Cyberspace Security, and Information Assurance, Edited by Maria Manuela Cruz-
Cunha, Polytechnic Institute of Cávado and Ave, Portugal. Published by IGI Global, Spring 2014.

Cover, T.& Thomas, J. Elements of Information Theory, John Wiley and Sons, 2006.

Difference between Adware and Spyware. (2005, July 17). Retrieved August 21, 2013, from
http://www.techiwarehouse.com/engine/41cc4355/Difference%20Between%20Adware%20&%2
0Spyware

dex2jar. (2013). Retrieved August 21, 2013, from https://code.google.com/p/dex2jar/

Enck, W,, Octeau. D., McDaniel, P., & Chaudhuri, S. (2011). A study of android application security.
In Proceedings of the 20th USENIX conference on Security (SEC 2011). August 2011. USENIX
Association, Berkeley, CA, USA, 21-21.

Enck, W., Ongtang, M., & McDaniel, P. (2009). On Lightweight Mobile Phone Application Certification.

In Proceedings of the 16th ACM Conf. Computer and Communications Security (CCS 09), ACM,
2009, pp. 235-245.

Eudora. (2014). Eudora.com. Retrieved August 21, 2013, from http://www.eudora.com

Felt, A. P., Finifter, M., Chin, E., Hanna, S. & Wagner, D. (2011). A survey of mobile malware in the
wild. In Proceedings of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices (SPSM 2011). ACM, New York, NY, USA, 3-14.

Felt, A. P., Greenwood, K., & Wagner, D. (2011). The Effectiveness of Application Permissions. In

Proceedings. of the 2nd USENIX Conference on Web Application Development (WebApps), 2011.

Fukui, K., Sato, K., Mizusaki, J., & Numao, M. (2010). Kullback-Leibler Divergence Based Kernel SOM

for Visualization of Damage Process on Fuel Cells. IEEE International Conference on Tools with
Artificial Intelligence, October 2010, pp. 233-240.

Get Social Updates of your contact list using Ice cream sandwich. (2012). Retrieved August 21, 2013,
from http://creativeandroidapps.blogspot.com/2012/07/get-social-updates-of-your-contact-
list.html

Google Play. (2013), Google Play Store. Retrieved August 21, 2013, from
https://play.google.com/store?hl=en

70

How to get the Android device’s Primary Email Address. (2010). Retrieved August 21, 2013, from
http://stackoverflow.com/questions/2112965/how-to-get-the-android-devices-primary-e-mail-
address

How to make android phone silent in java. (2012). Retrieved August 21, 2013,
from://stackoverflow.com/questions/10360815/how-to-make-android-phone-silent-in-java

How to make a phone call in Android. (2011). Retrieved August 21, 2013, from
http://stackoverflow.com/questions/1556987/how-to-make-a-phone-call-in-android-and-come-
back-to-my-activity-when-the-call-i

Hyatt, E. C. Custom Android Phone, (2013), Retrieved August 21, 2013, from
http://sites.google.com/site/edwardcraighyatt/projects/custom-android-phone

Java Decompiler. (2013). Retrieved August 21, 2013, from http://jd.benow.ca/

Li, G. & Wang, Y. (2012). Differential Kullback-Leibler Divergence Based Anomaly Detection Scheme
in Sensor Networks. In Proceedings of 12th IEEE International Conference on Computer and
Information Technology (CIT), October 2012, pp. 966-970.

Lock and Android phone. (2012). Retrieved August 21, 2013, from
http://stackoverflow.com/questions/4793339/lock-an-android-phone

Memory Management in Android. (2010, July 5). Retrieved August 21, 2013, from
http://mobworld.wordpress.com/2010/07/05/memory-management-in-android/

Nicolaou, A. (2013). Best Practices on the Move: Building Web Apps for Mobile
Devices. Communications of the ACM. August 2013, Vol. 56 Issue 8, p45-51.

Oberheide, J., Cooke, E., & Jahanian. F. (2008). Cloudav: Nversion antivirus in the network cloud. In
Proceedings of the 17th USENIX Security Symposium (Security’08), San Jose, CA, July 2008.

PhonePay Plus. (2013). Phonepayplus.org.uk. Retrieved August 21, 2013, from
http://www.phonepayplus.org.uk

Rastogi, V., Chen, Y., & Jiang, X. (2013). DroidChameleon: evaluating Android anti-malware against
transformation attacks. In Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security (ASIA CCS '13). ACM, New York, NY, USA, 329-334.

Rehm, L. (2012, October 25). A Guide to Android OS. (2012). Retrieved August 21, 2013, from
http://connect.dpreview.com/post/8437301608/guide-to-android-os

Reza, H. & Mazumder, N. (2012). A Secure Software Architecture for Mobile Computing. In
Proceedings of the 9th International Conference on Information Technology- New Generations
(ITNG 2012), Las Vegas, NV, pp. 566-571.

Sarkar, S., Rama, G. & Kak, A. (2007). API-Based and Information-Theoretic Metrics for Measuring the

Quality of Software Modularization. IEEE Transactions on Software Engineering, January 2007,
Vol. 33, No. 1, pp. 14-32.

71

Schmidt, A., Peters, F., Lamour, F. & Albayrak, S. (2008). Monitoring Smartphones for Anomaly

Detection. In Proceedings of the 1st International Conference on Mobile Wireless MiddleWARE,
Operating Systems, and Applications (MOBILEWARE), Article No. 40, Innsbruck, Austria,
February 2008.

Schmidt, A.D., Clausen, H., & Camtepe, A. (2009). Detecting Symbian OS Malware through Static

Function Call Analysis. In Proceeding of the 4th International Conference on Malicious and
Unwanted Software (Malware 09), IEEE, 2009, pp. 15-22.

Security Tips. (2013). Retrieved August 21, 2013, from
http://developer.android.com/training/articles/security-tips.html

Send SMS in Android. (2013). Retrieved August 21, 2013, from
http://stackoverflow.com/questions/4967448/send-sms-in-android

Seo, S., Lee, D., &Yim, K. (2012). Analysis on Maliciousness for Mobile Applications. In Proceedings of
the 2012 Sixth International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS '12), IEEE Computer Society, Washington, DC, USA, 126-129.

Set Wallpaper using WallpaperManager.(2011, March 28). Retrieved August 21, 2013, from
http://android-er.blogspot.com/2011/03/set-wallpaper-using-wallpapermanager.html

Shabtai, A., Fledel, Y. & Elovici, Y. (2010). Automated Static Code Analysis for Classifying Android
Applications Using Machine Learning. In Proceedings of the 2010 International Conference on
Computational Intelligence and Security (CIS 2010). 329-333.

Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., & Glezer, C. (2010). Google Android: A
Comprehensive Security Assessment. IEEE Security & Privacy, March 2010, pp. 35-44.

Tapiador, J. & Clark, J. (2010). Information-Theoretic Detection of Masquerade Mimicry Attacks. In
Proceedings of 4th International Conference on Network and System Security (NSS), September
2010, pp. 183-190.

What is Malware?. (2013). Retrieved August 21, 2013, from
http://www.microsoft.com/security/resources/malware-whatis.aspx

Yang, C., Yegneswaran, V., Porras, P., & Gu, G. (2012). Detecting Money-Stealing Apps in Alternative
Android Markets. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS), October 2012, Raleigh, North Carolina, USA, pp. 1034-1036.

	Kennesaw State University
	DigitalCommons@Kennesaw State University
	5-2014

	Tapjacking Threats and Mitigation Techniques for Android Applications
	Vanessa Cooper
	Recommended Citation

