Simplifying Inductive Schemes in Temporal Logic

Pablo Cordero

Dept. Applied Mathematic, University of Malaga, Spain
http://webpersonal.uma.es/~pcordero/My_personal_web/Wellcome.html
pcordero@Quma.es

Inmaculada Fortes
Dept. Applied Mathematic, University of Malaga, Spain
ifortes@ctima.uma.es

Inmaculada P. de Guzman

Dept. Applied Mathematic, University of Malaga, Spain
guzman@ctima.uma.es

Sixto Sanchez

Dept. Applied Mathematic, University of Malaga, Spain
sixtoQuma.es

—— Abstract

In propositional temporal logic, the combination of the connectives “tomorrow” and “always in the

future” require the use of induction tools. In this paper, we present a classification of inductive
schemes for propositional linear temporal logic that allows the detection of loops in decision
procedures. In the design of automatic theorem provers, these schemes are responsible for the
searching of efficient solutions for the detection and management of loops. We study which of these
schemes have a good behavior in order to give a set of reduction rules that allow us to compute
these schemes efficiently and, therefore, be able to eliminate these loops. These reduction laws can
be applied previously and during the execution of any automatic theorem prover. All the reductions
introduced in this paper can be considered a part of the process for obtaining a normal form of a
given formula.

2012 ACM Subject Classification Theory of computation — Modal and temporal logics
Keywords and phrases Linear Temporal Logic, Inductive Schemes, Loop-check
Digital Object Identifier 10.4230/LIPIcs. TIME.2019.19

Funding Pablo Cordero: Partially supported by Project TIN2017-89023-P of the Science and
Innovation Ministry of Spain, co-funded by the EU Regional Development (ERDF).

Inmaculada Fortes: Partially supported by Project PGC2018-095869-B-100 of the Science and
Innovation Ministry of Spain.

Inmaculada P. de Guzmdn: Partially supported by Project TIN2017-89023-P of the Science and
Innovation Ministry of Spain, co-funded by the EU Regional Development (ERDF).

1 Introduction

The notion of induction is a relevant topic in temporal logic and related areas. In fact,
n [11], for the philosophical question: What is temporal logic? five answers are provided
by Michael Fisher. One answer is that Propositional Temporal Logic characterizes simple
induction. Another is that “Propositional Temporal Logic can be seen as a multi-modal
logic, comprising two modalities, and [], which interact closely”. The modal operator
corresponds to the “next” relation and is a modal operator that corresponds to the
“always” relation. As usual, possibility modal operators are denoted by (1) and (*). Thus,
the interaction axiom between both modal operators is given by the induction axiom i.e.

Fxle = [1he) = (¢ = [xJo).

© Pablo Cordero, Inmaculada Fortes, Inmaculada P. de Guzman, and Sixto Séanchez;
37 licensed under Creative Commons License CC-BY

26th International Symposium on Temporal Representation and Reasoning (TIME 2019).

Editors: Johann Gamper, Sophie Pinchinat, and Guido Sciavicco; Article No. 19; pp. 19:1-19:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5506-6467
http://webpersonal.uma.es/~pcordero/My_personal_web/Wellcome.html
mailto:pcordero@uma.es
https://orcid.org/0000-0002-0614-1301
mailto:ifortes@ctima.uma.es
https://orcid.org/0000-0001-7861-1280
mailto:guzman@ctima.uma.es
https://orcid.org/0000-0002-1883-8341
mailto:sixto@uma.es
https://doi.org/10.4230/LIPIcs.TIME.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2

Simplifying Inductive Schemes in Temporal Logic

It is well-known the mathematical induction principle can be generalized. In the same
way, in Propositional Temporal Logic, there are other formulas which match with the idea
of induction. Thus, for example, the formula [x]((x)¢ — [1][1lp) — (1][1][1][1le —
<p) is a tautology that follows the induction idea. This kind of scheme is especially
relevant in the design of automatic theorem provers for temporal logics where they are
responsible for the searching of efficient solutions for the detection and management of loops
(see, for example [3, 7, 12]).

The applicability of temporal logics in the field of information sciences does not need
to be justified. As a simple example, an important application of temporal logics is the
specification of the properties to be formally verified in a model checking [5] where the system
requirements are usually expressed by means of temporal logic formulas [13]. What makes
temporal logic particularly attractive is the enormous success of model checking, which,
under appropriate assumptions on the system specification, can make the verification of
temporal logic properties automatic.

In verification, temporal logics are usually enriched with modal connectives such as
knowledge, beliefs, intentions, norms, etc. Although, the extension of results in temporal
logics to these modalxtemporal logics is not straightforward [16], any advance in temporal
logic technics is a positive enhancement.

Induction is also a relevant issue in model checking, since it is related to the analysis
of invariants and loops and, specifically, with infinite loops detection. Induction itself is
relevant because reasoning about the partial correctness of programs often requires proofs by
induction, in particular for reasoning about recursive functions. In [10], a proof method for
inductive theorem proving is developed in rewriting a system framework. In [9], the author
develops a general proof method that combines logic and induction. He provides a solid
and uniform mathematical foundation to induction proof methodologies for a wide variety
of formal specification frameworks and shows its applicability through several examples of
formal verification proof. As it has been mentioned, induction plays a central role in temporal
logic. Combining both topics, in [1], a linear temporal logic of rewriting is introduced to be
used in model checking.

One of the main problems with the model checking technique is to make it as least
expensive as possible. That is, a balance is needed between expressivity of the language and the
cost of the logic-based methods. Numerous logics have been used for this objective [16, 2, 17].
In this paper we center on the very influential Linear Temporal Logic, considering the “always”
and the “next” operators, introduced by Pnueli [19]. In [21], Sistla and Clarke studied the
complexity of the satisfiability and model checking problems in this logic and, in [8], a more
general study can be found regarding the complexities of temporal logic model checking.

Specifically, the considered logic in this paper is F'Next, which is a propositional linear
discrete temporal logic with three temporal connectives (using Prior’s notation): @ (tomor-
row), G (always in the future) and F (some time in the future). As mentioned, it is well-known
that the combination itself of the connectives @ and G requires the study of induction [11].

Among the formulas which involve the induction idea, we are especially interested in
those where a unique propositional symbol has incidence. In propositional logic, literals
are limited to propositional symbols and their negations (aside from constants) whereas
in modal/temporal logics they are extended to include modal/temporal connectives (see
Section 2.2). In the medium term, our aim is to extend the notion of literal including
induction schemes. There is no doubt about the relevance of literals in issues such as normal
forms, automatic reasoning and the SAT problem. As an example, in [14], literals are used
to find rough and fuzzy-rough set reducts. In [20] they are used to extend formal concept
analysis considering negative information.

P. Cordero, I. Fortes, |. P. de Guzman, and S. Sanchez

In this paper we focus on the study of induction schemes as a previous stage in the
generalization of literals towards the improvement of normalization processes. To this aim,
we analyze those formulas which involves the induction idea. Thus, in the same way that
the interaction axiom can be extended, the pure induction (i.e. ®p A G(p — @p) = Gp) can
be generalized into induction schemes. That is, we consider formulas A A G(B — C) where
A semantically implies FB and C' implies FB. As mentioned, we especially center on those

cases in which A, B and C' are formulas where a unique propositional symbol has incidence.

Specifically, in this paper we characterize those formulas that can be simplified providing an
equivalent without loops.

All simplifications introduced in this paper have a general purpose and can be used in
deduction processes, automatic reasoning, normalization techniques, etc. Some of the given
equivalences are able to simplify the formula by reducing the size and are useful in problems
where cost depends on the size of the input. Moreover, although we describe our method on
F Next, our approach can also be applied to totally expressive logic US developed by Hans
Kamp [15].

The paper is organized as follows: In Section 2, the preliminary definitions and F Next
logic are introduced. In Section 3, the aim of the paper is specified in detail. In Section 4,
G-clauses are studied and, in Section 5, inductive schemes are defined and, from among all
the studied formulas, we classify them into those that can be transformed into an equivalent
expression that does not involve loops and those corresponding with inductive schemes. The
final section is devoted to conclusions and future works.

2 F Next Logic

In this section, we introduce a temporal propositional logic, with an infinite, linear and
discrete flow of time denoted by F'Next. We develop the language, semantics, modalities
and simplification laws for F'Next.

The alphabet of the language of the logic F'Next consists of the following: A denumerable
set, V, of propositional variables, a set of Boolean connectives: {T, L, =, AV, —}, and a set
of temporal connectives: {®,F,G}. The language is denoted by £ and well-formed formulas,
(hereafter, wifs), in F"Next are generated by the construction rules of classical propositional
logic, plus the following rule: “If A is a wff, then ®A,FA and GA are wffs”.

The meaning of an expression like @A, is : “A will occur tomorrow”; while the meaning
of an expression like FA is: “in the future, A will occur” and of an expression like GA is: “in
the future, A will always occur”. We shall consider F and G as connectives of strict future. In
what follows, we consider ®*A = @ @* 14 if £ > 1 and &°A4 = A.

2.1 Semantics for FFNext

For the semantics of F Next we consider always the temporal flow (Z, <) (i.e., the existence
of a first instant of time is not demanded), where < is the standard ordering on Z, and
interpretations, which are mappings from the language to 2% assigning to each wif the set of
instants in Z where such wff is true.

» Definition 1. A model is a tuple (Z,<,h) where h: L — 27 is a function, called temporal
interpretation, satisfying the following conditions:

1. i(T)=12Z, h(L) =g,

2. h(—mA)=Z~ h(A), h((AANB)=h(A)Nh(B), h(AV B) = h(A) U h(B)

3. h(@A)={teZ|t+1e€h(A)}

19:3

TIME 2019

19:4

Simplifying Inductive Schemes in Temporal Logic

4. h(FA)={t € Z| (t,00) N h(A) # &}
5. h(GA)={te€Z| (t,0) C h(A)}
where (t,00) ={z € Z |t < z}.

As usual, other classical connectives are introduced as follows:

A—)B:def_\A\/B and A(-}B:def(A*)B)/\(BHA)

Observe that the connective F can be also introduced as a definite connective like FA =g ¢
=G—A. Thus, from now on, we focus our study on formulas involving G.

Given two wifs A and B, the notions of validity, satisfiability, logical consequence and
equivalence are defined in standard way: A is walid if, for every interpretation h, we have
that h(A) = Z, and it is denoted by = A. A is satisfiable if an interpretation h and t € Z
exists, such that ¢t € h(A). In this case, we say that A is true at ¢, and it is denoted by
(h,t) E A and, when no confusion arises, it is denoted as t = A. B is a logical consequence of
A, denoted by A |= B, if for all interpretation h and all t € Z, (h,t) = A implies (h,t) = B.
Finally, A and B are equivalent, denoted by A = B, if A = B and B = A. That is, for all
interpretation h, h(A) = h(B).

In F Next, the propositional classical logical laws hold. Moreover, the following proposition
establishes the basic laws concerning temporal connectives.

» Proposition 2. If A, B € L, then the following equivalences hold:

1. FFA=®FA=F® A; GGA=®GA=GD A,

2. If y € {&, F, G}, then yGFA = GFA and vFGA = FGA.

The following laws concern the interaction between classical and temporal connectives.

» Proposition 3. If A, B € L, then the following equivalences hold:
1. el=Fl=GL=1Land @T=FT=G6T=T

2. " ®A=d-A; —-FA=G A, —-GA=F-A,

3. (AVB)=®AV®B; ®(AANB)=0ANGB,

4. F(AV B) =FAV FB and G(AN B) = GA A GB.

2.2 Modalities and literals in FNext

Proposition 2 leads to the definition of modalities (sequences of temporal connectives) and
their canonical representation.

» Definition 4. The set of modalities is defined as follows
Md={T=v...7|neNy €{® FG} foralll <i<n}
and the set of canonical modalities is as follows
Md. = {FG,6F} U {aF™ Fo* eaF | k € N}

Thus, as a direct consequence of Proposition 2, we have the following theorem that gives
meaning to the name of canonical modalities.

» Theorem 5. Given a wff A, for any modality I' € Md, there exists a canonical modality
I'. e Md. such thatTA=T_A.

» Example 6. FCOF O P EFD A=F D% A and F © GF © &G ® A = FGA, for any wif A.

P. Cordero, I. Fortes, |. P. de Guzman, and S. Sanchez 19:5

» Definition 7 (Literals). Let V be the propositional variable set and p € V. Then:

1. A formula p or —p will be named classical literal on p and denoted by £,. Then, V*
denotes the set of classical literals {p,—p | p € V}.

2. Given f, € V*, the set of temporal literals on £, is

Lit(¢,) = {T, LY U{Fal,, GFl,}y U {@*e, Far 1, ¢ar ¢, | k € N}

3. The temporal literal set is: Lit = U Lit(¢y).
L,eVE

From now on, when no confusion arises, the adjective “temporal” will be omitted.

Theorem 5 ensures that, for any classical literal £, € V* and any modality I' € Md there
exists one (and only one) temporal literal ¢ € Lit such that I'¢,, = ¢. The unicity of this
literal is because there does not exist two different literals that are equivalent.

On the other hand, in Subsection 2.1, we have introduced the notion of logical consequence,
denoted by |=, which, in the set of literals, can be seen as an order relation. Moreover, the
poset (Lit, =) is a lattice as the following proposition states.

» Proposition 8 ([6]). (Lit,|=) is a lattice satisfying the following conditions:
1. (Lit(¢y), =) is a sublattice, for all £, € V* (see Figure 1).
2. For all 4y € Lit(£y) and ¢y € Lit({y) with £, # {4.

biELl ifandonlyif (=L orly=T

Te—Flp——F&ly«—F®* L, «— F@®3 L, —— - «—— GFY,
| ! 1 1 f |

Ly ®lp @20, @30, e, ...

I ! 1 1 !

1L— Gl — GOl — Gl — G&*), — - — FGly

Figure 1 The sublattice (Lit({p), =).

2.3 Specific distribution laws

The item 2 in Proposition 2 reveals the special behavior of the modalities FG and GF: both
“absorb to any other finite sequence of temporal connectives”. This is due to the fact that, for
any interpretation, if there exists an instant in which the formula is true then it is true in
every instant. This characteristic will be named using the adjective atemporal. Similarly,
there exist formulas that can be projected toward the future or the past. The following
definition formalize these ideas.

» Definition 9. Let [t,00) = {t' € Z|t < '} and (—oo,t] ={t' € Z|t' <t}. A wff A is said

to be
projectable to the future if t € h(A) implies [t,00) C h(A), for all temporal interpreta-
tion h, i.e. either h(A) = @, or h(A) =Z, or h(A) = [tg,00) for some to € Z.
projectable to the past if t € h(A) implies (—oo,t] C h(A), for all temporal interpreta-
tion h, i.e. either h(A) = @, or h(A) =Z, or h(A) = (—o0, tg] for some ty € Z.
atemporal if h(A) = & or h(A) = Z, for all temporal interpretation h. So, A is atemporal
if and only if A is projectable to the future and to the past.

The following immediate results allow to characterize syntactically the formulas that are

projectable: for all wffs A and B,

TIME 2019

19:6

Simplifying Inductive Schemes in Temporal Logic

T and 1 are atemporal.

GA is projectable to the future.

FA is projectable to the past.

If A is projectable to the future, @A and GA are also projectable to the future, —A is

projectable to the past and FA is atemporal.

5. If A is projectable to the past, ®A and FA are also projectable to the past, —A is
projectable to the future and GA is atemporal.

6. If A and B are projectable to the future/past, so are AV B and A A B.

ol o\

Proposition 3 ensures the distributivity of & and F over V, and the distributivity of &
and G over A. However, we cannot ensure neither the distributivity of F over A nor the
distributivity of G over V, as the following example illustrates.

» Example 10. The formula G(p V ¢) is not equivalent to Gp V Gg because, for example, given
an interpretation such that h(p) = {t € Z | t is odd} and h(q) = {¢t € Z | t is even}, we have
that 0 = G(p V ¢) but 0 £ Gp V Gg.

Counterexamples for the distributivity of F respect to A can be obtained by duality.

In the following proposition, we give the conditions in which G distributes respect to V. The
result of the distributivity F respect to A is obtained by duality.

» Proposition 11. Let {A; | i € I} be a finite set of wffs in FNext. Then, the following
equivalences hold:

1. If A; is projectable to the future, for alli € I, then G(Vier Ai) = V,er GAi.

2. If A; is projectable to the past, for all i € I, then G(Vier Ai) = Vs GAi.

3. If J={ieI|A; is atemporal} then G(Vier A,») =V,es AV G(\/ieI\JA,-).

Proof. We shall prove the item 1. The proof of item 2 can be obtained in a similar way.

Let t € h(G(\V,;e; As)). Then (t,00) € h(\/;c; Ai) = U;e; h(A;). Thus, there exists i € 1
such that t + 1 € h(A;). Since A; is projectable to the future, then (¢,00) C h(A4;) and
therefore ¢ € h(GA;) € U;c; h(GA;). Thus, t € h(\/,c;GA;).

Conversely, let ¢ € h(\/,c;GA;). Then t € [J;c; h(GA;). Thus, there exists i € I such
that t € h(GA;) and therefore (t,00) C h(A;) € U,y h(Ai). Then, t € h(G(V,c; As)).

For item 3, let ¢ € h(G(\/,c; As)). Then, (t,00) C h(V,;c; Ai) = U;e; h(Ai). Therefore,
there exists ¢ € I such that t +1 € h(A4;). There are two cases: if ¢ € I also belongs to
J, then A; with i € J is atemporal, and h(A;) = Z. Therefore, t € h(A;) € U;c; h(4i).
Thus, ¢t € h(\/;c; Ai). The other case is if i € I~ J then t € h(G(\,;c;;4i)). So,
t€h(Vies AiVG(Vier s 4i))-

Conversely, let t € h(\/,;c; Ai VG(V,c7 s Ai)). Then, t € h(\,c, A;) or
t € h(G(V;c;s Ai)). Then, there exists i € J such that t € h(A;). Since 4; is atemporal,
(t,00) C h(A;) € U;ey h(A;). Thus, t € h(G\/,.; Ai). Therefore, t € h(G(\V,c; Ai)). <

3 Stating the problem

Classical induction in temporal logic can be expressed in FNext by the following equivalence
BANG(A — ®A) = GA. However, induction can be easily extended by considering formulas
as @"ANG(A — @™ A). Each model of these formulas has an infinite sequence of instants in
which A is true.

Following with this idea to generalize the induction, we consider formulas A A G(B — C)
where A = FB and C |= FB. These formulas satisfy that, for every model h = AAG(B — C),
the set A(C) is infinite (an infinite sequence of instants in which C' is true exists).

P. Cordero, I. Fortes, |. P. de Guzman, and S. Sanchez

Looking for a balance between the expressiveness and the complexity of management, we
are interested in formulas in which A, B and C are literals. That is, we consider induction
schemes like ¢1 A G(ly — £3) = €1 A G(—¢3 V £3). Due to the structure of the set of literals, to

ensure {1 |= Fly and 3 |= Flo, it is necessary that 1,02, (3 € Lit({,) for a classical literal £,,.

For some of these formulas, it is possible to find equivalent formulas in which temporal
connectives appear only in the literals. For example,

®2pAG(-pV Dp) =GP p.

GR'pAG(-@2pVEip)=GaipA (-3 pV dlp)

However, there exist formulas in which it is not possible, such as F @° p A G(= @2 p vV &4p).

The aim of this paper is to distinguish those formulas that can be simplified from those that
are not.

To study the induction schemes, ¢1 A G(la — €3) = €1 A G(—l3 V £3) such that ¢; = Fly
and /3 = Fly, we characterize those formulas as G(—¢3 V £3) for which no simplest equivalent
formulas exist. These formulas are going to be named irreducible 2-G-clauses. Observe that,
in particular, we are interested in those irreducible 2-G-clauses satisfying ¢5 = Fl.

4 Irreducible 2-G-Clauses on p

In this section we center on the first step. That is, formulas G(¢; V ¢3) that cannot be
simplified are going to be characterized. We begin by studying clauses that can be simplified
to a literal (i.e. there exists a literal that is equivalent to the clause). Obviously, there are
clauses where it is not possible.

It is not difficult to see that, if a clause £; V{5 is equivalent to a literal ¢, then sup{¢y, fs} = ¢
in the lattice (Lit, =) by definition of the order relation. For example, sup{®¢,,F®{,} = F{,
and F{, = ®¢, VF @ {,. However, the converse is not true, e.g. sup{®¢,, ®*(,} = F{, but
Fl, % Dl, V 3L,

Now, we characterize the disjunctions of two literals such that there does not exist an
equivalent literal.

» Definition 12. Let ¢1,¢5 € Lit(p) U Lit(—p).

The wff £1 V £s is named a 2-clause on p.

{1 V Uy is said reducible if there exists £ € Lit such that {1V lo = 4.

2-Cla(p) is the set of irreducible 2-clauses on p.
The following remark, which provides the cases where a 2-clause can be reduced, is simply a
matter of computation from the semantics of F'Next.

» Remark 13. Analyzing exhaustively all the possible pairs of literals and the lattice shown
in Figure 1 it is easy to conclude that the cases in which a 2-clause is reducible are the
following:

If 01,4y € Lit(¢y,) with ¢4 = lo, then l1 V o = {5,

If fl € th(ép) and 42 S LZt(_'Ep) with _\61 ': fg, then 61 vV EQ =T.

@F+Le, VF ekt g, =F @ ¢, for all k € N.

To give a characterization of irreducible 2-clauses on p, we introduce the following
definitions

» Definition 14. Let v1,...,v, € {F,G, &} and £, € {p,—~p}. The opposite of the wff
C=1,..., by is defined as £ = ~1,...,pl, where: F=G, G=F, & =&, p=—p and
p =Dp.

The following proposition follows from Remark 13

19:7

TIME 2019

19:8

Simplifying Inductive Schemes in Temporal Logic

» Proposition 15 (Characterization of irreducible 2-clauses on p). The elements of 2-Cla;,(p)

are the following:

1. &0, vV @&™Ly, for allm,n € N with m #n and £, € {p,p}.

2. @,V L, for alln €N, £, € {p,B} and for all ¢ € {F&™ {, | m > n} U{GF{l,, FGl,} U
{6a™ 6, [m > n)

3. €1V by, where {1 € Lit({,), by € Lit(€,) such that {1 [.

We have just characterized irreducible 2-clauses on p and now we properly center on
studying formulas G(¢; V ¢3) that cannot be simplified.

» Definition 16. Let p be a propositional variable. Then

A 2-G-clause on p is a wff GA where A € 2-Cla;..(p).

A 2-G-clause on p, GA, is said to be reducible if there exists £ € Lit such that GA= ¢ or

there exists B € 2-Cla;q(p) such that GA = B.

2-G-Cla;r(p) is the set of irreducible 2-G-clauses on p.
With the idea of simplifying formulas in induction schemes, we are interested in the reduction
from 2-G-clauses to 2-clauses or literals, when it is possible. Thus, the equivalences provided
in Proposition 2 and Proposition 11 are to be read from left to right. For example, since
G(FpVF@®P)=GFpV GF &P because of Proposition 11 (both disjuncts are past projectable) and,
by Proposition 2, GF & p = GFp, then G(Fp V F @ D) can be reduced to GFp V GFp. Moreover,
GFp V GFp = T by Remark 13

Now, to give a characterization of irreducible 2-G-clauses on p, we introduce new reduction
laws for the 2-G-clauses on p. The results will be established (if it is possible) in their broader
extent.

» Proposition 17. Let A € L and n,m € N. The following equivalences hold:
1. GFa" AV @™A) = GFA.
2. If n > m then

GFa" AV Ga™ -A) =GFAV Ga™ ! =A=GFa" Ava™ti-A)

Observe that, item 2 in proposition above only considers the case in which n > m because
otherwise G(F & AV G@®™ —A) and G(F &" AV @™+ 1=A) are not 2-G-clauses. In fact, when
n<m,FA"AVGR" - A=F@" AVventl-A=T.

Proof. For item 1, it is a trivial task to check that F @™ AV @™ A = FA and therefore, by
monotonicity of G, we have that G(F ®™ AV @™ A) = GFA. Conversely, GFA = GF @™ A by
Proposition 2, and GFA = G(F&™ AV @™ A).

For the equivalence G(F ®" AV G @™ —A) = GFAV G @™ =A in item 2, it is trivial
that GFAV G @™ -4 = G(F @™ AV G&™ —-A4). Conversely, assume n > m and ¢t €
GF®" AVG@™ —A). We can distinguish two cases:

If (t,00) C h(F @™ A), then t € h(GF @™ A) = h(GFA) C h(GFA V G @™+ -A).

Otherwise, there are instants greater than ¢ that do not belong to h(F @™ A). Then, let ¢,

be the smallest of them, i.e. tg = min((¢,00)NA(GE™—A)). Thus, to+m € h(G-A) (T5).

By definition of tg, we have to—1 € h(F®" A) (t,), i.e. to—1+n € h(FA), and sincen > m

we get to—14+n > to+m and so, we should have that (f5) contradicts to (f;), which is not

possible except that to =t + 1, in which case t € h(G @™ —A) C h(GFAV G @™t —A).

Finally, to prove GFAV G @™+ =A = G(F @™ AV @™ 1=A4) when n > m, we have that
GFAVGO™H —AEGF®™ AV @™ Ti-A) is trivial.
Conversely, suppose t € h(G(F &™ AV &™T1=A4)) (1). We have two cases:

P. Cordero, I. Fortes, |. P. de Guzman, and S. Sanchez

If [t +1,00) C h(®™T1=A), then clearly we obtain t € h(GFA V G ®™ 1! = A).

Otherwise, A = [t + 1,00) N h(d™T1A) # @. We shall prove that A is infinite, and
therefore t € h(GFA) C h(GFA V G @™ *! - A). If A is finite, consider ty = mazA. Then
[to +1,00) C h(&™T1=A) (7). On the other hand, ty € h(&™ "1 A), so by the hypothesis
(1) we get tg € h(F @™ A), that is, (to + 1,00) N h(@™+1A) # & (since n > m), in
contradiction with (}1). <

In Table 1, we collect the laws previously obtained, which are denoted as Red;. These
laws are going to be considered as rewriting rules to transform 2-G-clauses into 2-clauses and
are always read from left to right.

Table 1 G-Reduction Laws.

Law ‘ Name ‘

G(AV B) =GAVGB,
if A and B are past projectable, Red;

or A and B are future projectable

G(AV B) =GAV B, if B is atemporal Reds

GF@" AV@™A) =GFA Reds

(
GFO"AVGO™ -~A) =GFAVGO™ ™ —A, ifn >m | Reds
GFO" AVP™T'-A) =GFAVGP™ =4, if n >m | Reds

Reductions Red; and Reds are due to Proposition 11. On the other hand, Reds, Red,
and Reds will be applied only in 2-G-clauses and hence, reductions correspond with the
equivalences given in Proposition 17.

These equivalences are those that ensure a 2-G-clause on p is irreducible only in the
case that none of the reductions Red; with 1 < ¢ < 5 is applicable to it. The following
characterization theorem for irreducible 2-G-clauses on p is a consequence of this assertion.

» Theorem 18 (Characterization of Irreducible 2-G-clauses on p). The elements of the set
2-G-Cla(p) are the following:

(a) G@™, v a™Ly,), ifn#m

(b) (@™, Vv @™L,), if n#m

(c) G@" L,V Ea™ L), ifn<m

(d) Geme,vee™i,)

Proof. The proof is divided in two parts. In the first, we discard such 2-G-clauses on p that
previous results ensure are reducible. Thus, we obtain that formulas labeled a),b),c),d) in
the theorem are those that cannot be reduced through previous results. In the second part,
we prove that they are really irreducible.
From Definition 16 and Proposition 15, a 2-G-clause on p is a formula GA such that A is

of one of the following forms:

(i) @™, v @™L,, with m,n € N and m # n.

(ii) @™, vV ¢, where £ € {F&™ £, | m > n} U{GF{,,FGl,} U{Ga®™ {, | m > n}

(iii) ¢4 V €2, where ¢y € Lit(€y), ls € Lit(€,) and £ B~ lo.

If GA is a 2-G-clause such that A is a clause of the type described in item i) then GA
cannot be reduced through previous results (item a) of the theorem).

19:9

TIME 2019

19:10

Simplifying Inductive Schemes in Temporal Logic

Now, let GA be 2-G-clause such that A is a clause of the type described in item ii). Then,
we discard such 2-G-clauses on p which previous results ensured are reducible.

if ¢ € {GF¢,,,FG(,,} then from Proposition 11 (reduction Reds), GA is reducible, and

it ¢ € {F@™ £, | m > n} then from Proposition 17 (reduction Reds), GA is reducible.

if £ € {G&™ £, | m > n} then GA cannot be reduced through previous results (item c¢) of

the theorem).

For item iii) we have to analyze the 11 elements stated in the following table:

1) G@“Vvae™l)nEm || (2) G@"VGea™L) || (3) 6@ VFO™ L)
(4) G(®™p V GFLp) (5) G(®™L, V FGLy) (6) GGO™ L, VED™ L)
(1) GGa" €, VFO™ ly) (8) G(G@®™ L,V GFLy) (9) G(G@™ L, V FGly)
(10) G(F@®" &, VF@™Lp) (11) G(FGl, V FGE,)

In the previous table, from Proposition 11 (reduction Red;) items (6), (8), (9), (10) and (11)
are eliminated (in each of them the two literals of 2-clauses are past projectable or the two
literals of 2-clauses are future projectable).

From Proposition 11 (reduction Redz) items (4) and (5) are eliminated because in each of
them the 2-clauses have atemporal literals.

From Proposition 17 item (7) is eliminated (reduction Redy) and item (3) is eliminated
(reduction Reds).

Finally, items (1) and (2) cannot be removed because these formulas cannot be reduced
by previous results of the theorem: (items b) and d) respectively).

At this moment, we have proved that 2-G-clauses on p different to those that are described
in the theorem can be reduced by using previous results. Now, we focus on proving that
formulas GA described in items a), b), ¢) and d) are really irreducible. Thus, we prove that
neither GA # ¢ for a literal ¢, nor GA # {1 V {5 for {1 V ¢y € 2-Cla;,(p). Note that, collecting
literals and clauses, there are 40 formulas that could be equivalent to GA. Obviously, T and
1 are discarded.

First, we prove GA is not equivalent to any of the following formulas: @kﬂp, F @F by,
GF{,. Consider k € N and r = max{k + 1,n + 1,m + 1}. For any interpretation i such that
h(€p) = U;enl2ir, 2ir + 1), we have that 0 € h(®"(,), 0 € h(F &* £,) and 0 € h(GF(,) but
0 ¢ h(GA). Therefore, &%¢, £ GA, F &F £, [£ GA and GF/, £ GA.

With a similar reasoning, it can be proved that ©F¢, [~ GA, F®* £, £ GA and GF, ~ GA.
Moreover, any 2-clause £1V{s with £1 or £5 being one of the previous cases satisfies £1 Vs = GA.

The rest of the formulas are:

car e, cpre, FGL, FGl,

cof e, vear2 1, || cof e, vFGl, || FoL, v FGE,

Now we prove that none of the formulas described in the theorem is equivalent to any of them.

(a) Let us consider h with h(¢,) = Z ~ {(|lm —n| +1)" | r € N~ {0}}, where |m — n|
denotes the absolute value of m — n. It is just a matter of computation to check that
0 € h(G(®™¢, vV @™L,)) but it is not a model for formulas in the previous table.

(b) Let us suppose, without loss of generality, that n < m and consider h with h(f,) =
Usenln + 2(m — n)i,m + 2(m — n)i). In this case, 0 € h(G(®"¢, V &™(,)) but is not
model for formulas in the previous table.

(c) For G(&™¢, V G&™ £,) when n < m, the following cases are going to be considered:

P. Cordero, I. Fortes, |. P. de Guzman, and S. Sanchez

Any interpretation h such that h(¢,) = [k + 1,00) satisfies 0 € h(FG¢,) and 0 €
h(G @* £,). However, 0 ¢ h(G(d"™, V G @™ £,)) when m < k. Therefore, FG/, [~
G(®™p V G @™) and, when m < k, we have that G &F £, [£ G(&™, V G&™ £,).
For any interpretation such that 0 € h(G &% £,) satisfies 0 € h(FGl,), but 0 ¢
h(G(&™l, V GB™ Ly)).
If {1,065} N ({FGL,,FGL} U{Ga* ¢, | m < k}U{Ga*{, | k € N}) # @ then
UV Ly [G(@™, VG a™ Ly,).
Finally, G ®F ¢, with k& < m is the last formula to be considered. In this case, any
interpretation h such that h(¢,) = Z ~ {k + 2} satisfies that 0 € h(G(®"¢, VGE™ {,))
but 0 ¢ h(G @ £,).

(d) With a similar reasoning to the above, it can be proved that the formula G(&"¢,VGE&™ ()

is not equivalent to any formula of the last table. <

5 Inductive Schemes

Observe that, from the kind of irreducible 2-G-clauses G(—¢1 V £5) characterized in Theorem 18,
only the items b) and d) could satisfy condition ¢5 = F¢;. The following definition sums up
all the conditions step by step previously introduced relative to inductive schemes.

» Definition 19. An inductive scheme on ¢, is a formula ¢, /\G(Zg V{3), where £y, s, L3 €
Lit(L,) which satisfies the following three conditions:

Ind-1: G(Zg V 63) € Q—G-Cl&ir,«(p),

Ind-2: 61 ': F€2 and 63 ': FEQ,

» Example 20. F ©° p A G(— @2 p V ®&*p) is an inductive scheme on p.

We introduce the main result that characterises those inductive formulas that cannot be
simplified. Specifically, among of the 125 kind of formulas ¢; AG(f2\£3) (i.e., 5%, corresponding
to non-trivial possible selections £1, /5 and 3 from the types of literals ®*¢,, F ®F ,, G ®* £,
FG{, and GF{,), only 15 satisfy Ind-1. Condition Ind-2 only imposes restrictions relative to
the super-index of the @& connectives but the number of kind of formulas remains at being
15, which are enumerated in Table 2.

6 Conclusions and future works

In the framework of the propositional linear discrete temporal logic F'Next, we have studied
those formulas with a single propositional variable that involve the well-known idea of
induction. Indeed, we have classified these formulas into those that can be expressed by
equivalent ones without loops and the rest (inductive formulas). The main issue of this
paper has been to study the set of inductive formulas in order to determine schemes that
characterize them.

The starting point is the set of expressions ¢; A G(f2 V £3) which includes 125 kinds of
formulas (i.e., 53, corresponding to non-trivial possible selections £1, ¢5 and £3 from the types
of literals &%/, F&* £, G " ¢,, FG{, and GF(,).

In Section 4, we have characterized those formulas as G(fy \V £3) for which no simplest
equivalent formulas exist. These formulas have been named irreducible 2-G-clauses. Specific-
ally, Theorem 18 provides four schemes that cover all the irreducible 2-G-clauses and allows
us to reduce the initial number to 15 kinds of formulas.

19:11

TIME 2019

19:12

Simplifying Inductive Schemes in Temporal Logic

Table 2 Formulas ¢1 A G(Eg V ¢3) satisfying Ind-1 and Ind-2.

L@™ £, AG(®"20, V B™3L,), 9.FGl, A G(D"20, V G B £,)
where ni,ns > no

2.F @™ £, AG(D"2L, V D™3L,), 10. G @™ £, AG(D"2L, V G D™ £,),
where n1 > no and nz > no where ni,ns > no

3.FGly A G(D™2L, V ©™31), 11. @™ £, AG(G @™ £, V D"34y),
where n3 > no where ni,ns > ns + 1

4 FO™ L, AG®™L, VGD™ L), | 12.F O™ £, AG(GO™2 £, V @"3L,),

where n1 > no where n1 > no and n3 > no
5. GFlp A G(D™2 L, V ©"34,), 13.GFL, AG(G D™ €, V &3,
where nz > no where ng > no +1
6.GB™ £, AG(®"2L, V D™3L,), 14. FGl, AG(G B™2 L, V ®"34)),
where n1 > ns and ng > no where n3 > ns + 1

T.0™ L, AG(D"2L, V G D™ £,), 15.G @™ £, AG(G B2 £, V D™34,),
where ni1 > no where ng > no + 1

8. GFlp A G(D™20, V G O™ £,)

Not all of these formulas correspond with the idea of induction because it is necessary

that ¢; = Fly and ¢3 = Fly (Condition Ind-2). This condition only imposes restrictions
relative to the super-index. Thus, the number of kinds of formulas remains at 15, which are

enumerated in Table 2.

To emphasize the interest of the theoretical results of this paper, as further work, we will

study how to improve the definition of Temporal Negative Normal Form for the Temporal
Logic introduced in [18]. It will have a significant relevance in the future design of efficient
automated theorem provers.

In the midterm, the study of inductive schemes developed in this paper could be extended

to a fully expressive temporal logic such as Hans Kamp’s US logic or LN logic [4].

—— References

1

Kyungmin Bae and José Meseguer. Model checking linear temporal logic of rewriting formulas
under localized fairness. Science of Computer Programming, 99:193-234, 2015. doi:10.1016/
j.scico.2014.02.006.

Philippe Balbiani, Andreas Herzig, Francois Schwarzentruber, and Nicolas Troquard. DL-PA
and DCL-PC: model checking and satisfiability problem are indeed in PSPACE. CoRR,
abs/1411.7825, 2014. arXiv:1411.7825.

Nikolaj Bjorner, Anca Browne, Eddie Chang, Michael Colén, Arjun Kapur, Zohar Manna,
Henny B. Sipma, and Tomas E. Uribe. STeP: Deductive-algorithmic verification of reactive
and real-time systems: Deductive-algorithmic verification of reactive and real-time systems.
In Rajeev Alur and Thomas A. Henzinger, editors, Computer Aided Verification, volume
1102 of Lecture Notes in Computer Science, pages 415—418. Springer Berlin Heidelberg, 1996.
doi:10.1007/3-540-61474-5_92.

Alfredo Burrieza and Inma Pérez de Guzmén. A new algebraic semantic approach and some
adequate connectives for computation with temporal logic over discrete time. Journal of
Applied Non-Classical Logics, 2(2):181-200, 1992. doi:10.1080/11663081.1992.10510781.
E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-state
Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst.,
8(2):244-263, April 1986. doi:10.1145/5397.5399.

https://doi.org/10.1016/j.scico.2014.02.006
https://doi.org/10.1016/j.scico.2014.02.006
http://arxiv.org/abs/1411.7825
https://doi.org/10.1007/3-540-61474-5_92
https://doi.org/10.1080/11663081.1992.10510781
https://doi.org/10.1145/5397.5399

P. Cordero, I. Fortes, |. P. de Guzman, and S. Sanchez

10

11

12

13

14

15
16

17

18

19

20

21

Pablo Cordero, Manuel Enciso, and Inma Pérez de Guzmén. Bases for closed sets of im-
plicants and implicates in temporal logic. Acta Inf., 38(9):599-619, 2002. doi:10.1007/
s00236-002-0087-2.

Anatoli Degtyarev, Michael Fisher, and Boris Konev. A Simplified Clausal Resolution Procedure
for Propositional Linear-Time Temporal Logic. In Uwe Egly and Chritian G. Fermiiller,
editors, Automated Reasoning with Analytic Tableauxr and Related Methods, volume 2381 of
Lecture Notes in Computer Science, pages 85—99. Springer Berlin Heidelberg, 2002. doi:
10.1007/3-540-45616-3_7.

Stéphane Demri and Philippe Schnoebelen. The Complexity of Propositional Linear Temporal
Logics in Simple Cases. Information and Computation, 174(1):84-103, 2002. doi:10.1006/
inco.2001.3094.

Razvan Diaconescu. Structural induction in institutions. Information and Computation,
209(9):1197712227 2011. doi:10.1016/j.ic.2011.06.002.

Stephan Falke and Deepak Kapur. Rewriting Induction + Linear Arithmetic = Decision
Procedure. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reasoning,
volume 7364 of Lecture Notes in Computer Science, pages 241-255. Springer Berlin Heidelberg,
2012. doi:10.1007/978-3-642-31365-3_20.

Michael Fisher. An Introduction to Practical Formal Methods Using Temporal Logic. Wiley,
2011.

Michael Fisher, Clare Dixon, and Martin Peim. Clausal Temporal Resolution. ACM Trans.
Comput. Logic, 2(1):12-56, 2001. doi:10.1145/371282.371311.

Nicoletta De Francesco, Antonella Santone, and Gigliola Vaglini. A user-friendly interface
to specify temporal properties of concurrent systems. Information Sciences, 177(1):299-311,
2007. doi:10.1016/j.ins.2006.03.008.

Richard Jensen, Andrew Tuson, and Qiang Shen. Finding rough and fuzzy-rough set reducts
with {SAT}. Information Sciences, 255(0):100-120, 2014. doi:10.1016/j.ins.2013.07.033.
Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Ucla, 1968.

Savas Konur. A survey on temporal logics for specifying and verifying real-time systems.
Frontiers of Computer Science, 7(3):370-403, 2013. doi:10.1007/s11704-013-2195-2.
Artur Meski, Wojciech Penczek, and Grzegorz Rozenberg. Model checking temporal properties
of reaction systems. Information Sciences, 313:22-42, 2015. doi:10.1016/j.ins.2015.03.048.
Manuel Enciso Pablo Cordero and Inmaculada P. de Guzmén. From the poset of literals to a
temporal negative normal form. Reports on Mathematical Logic, 36:3—53, 2002.

Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science, 1977.,
18th Annual Symposium on, pages 4657, 1977. doi:10.1109/SFCS.1977.32.

José Manuel Rodriguez-Jiménez, Pablo Cordero, Manuel Enciso, and Angel Mora. Negative
Attributes and Implications in Formal Concept Analysis. In Fuad Aleskerov, Yong Shi, and
Alexander Lepskiy, editors, Proceedings of the Second International Conference on Information
Technology and Quantitative Management, ITQM 201/, National Research University Higher
School of Economics (HSE), Moscow, Russia, June 3-5, 201/, volume 31 of Procedia Computer
Science, pages 758-765. Elsevier, 2014. doi:10.1016/j.procs.2014.05.325.

A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear Temporal Logics. J.
ACM, 32(3):733-749, 1985. doi:10.1145/3828.3837.

19:13

TIME 2019

https://doi.org/10.1007/s00236-002-0087-2
https://doi.org/10.1007/s00236-002-0087-2
https://doi.org/10.1007/3-540-45616-3_7
https://doi.org/10.1007/3-540-45616-3_7
https://doi.org/10.1006/inco.2001.3094
https://doi.org/10.1006/inco.2001.3094
https://doi.org/10.1016/j.ic.2011.06.002
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1145/371282.371311
https://doi.org/10.1016/j.ins.2006.03.008
https://doi.org/10.1016/j.ins.2013.07.033
https://doi.org/10.1007/s11704-013-2195-2
https://doi.org/10.1016/j.ins.2015.03.048
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/j.procs.2014.05.325
https://doi.org/10.1145/3828.3837

	Introduction
	FNext Logic
	Semantics for FNext
	Modalities and literals in FNext
	Specific distribution laws

	Stating the problem
	Irreducible 2-G-Clauses on p
	Inductive Schemes
	Conclusions and future works

