
A Bounded Domain Property for an Expressive
Fragment of First-Order Linear Temporal Logic
Quentin Peyras
ONERA DTIS, Toulouse, France
Université fédérale de Toulouse, France
quentin.peyras@onera.fr

Julien Brunel
ONERA DTIS, Toulouse, France
Université fédérale de Toulouse, France
https://www.onera.fr/fr/staff/julien-brunel
julien.brunel@onera.fr

David Chemouil
ONERA DTIS, Toulouse, France
Université fédérale de Toulouse, France
https://www.onera.fr/fr/staff/david-chemouil
david.chemouil@onera.fr

Abstract
First-Order Linear Temporal Logic (FOLTL) is well-suited to specify infinite-state systems. However,
FOLTL satisfiability is not even semi-decidable, thus preventing automated verification. To address
this, a possible track is to constrain specifications to a decidable fragment of FOLTL, but known
fragments are too restricted to be usable in practice. In this paper, we exhibit various fragments of
increasing scope that provide a pertinent basis for abstract specification of infinite-state systems.
We show that these fragments enjoy the Bounded Domain Property (any satisfiable FOLTL formula
has a model with a finite, bounded FO domain), which provides a basis for complete, automated
verification by reduction to LTL satisfiability. Finally, we present a simple case study illustrating
the applicability and limitations of our results.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases First-Order Linear Temporal Logic, Bounded Domain Property, Finite
Domain Property, Decidability

Digital Object Identifier 10.4230/LIPIcs.TIME.2019.15

Funding Work partly financed by the European Regional Development Fund (ERDF) through the
Operational Programme for Competitiveness and Internationalisation (COMPETE2020) and by
National Funds through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia
(FCT) within project POCI-01-0145-FEDER-016826.

1 Introduction

First-Order Logic (FO) has proven to be useful to reason about the structure of a system,
i.e., the objects of the domain (which may be infinite), their relations and the properties they
satisfy. Temporal logics, on the other hand, provide a natural way to specify the evolution of
a system. First-Order Temporal Logics combine both dimensions and offer a flexible way of
specifying systems with a rich structure, dynamic aspects and a possibly infinite number of
states. First-Order Linear Temporal Logic (FOLTL) [7,4] is the most studied among those.

However, formally verifying these properties is hard since FOLTL is not even semi-
decidable. As we aim at verifying abstract specifications of infinite-state systems, a source
of inspiration for the syntactic shape of fragments can be found in formal specification

© Office national d’études et de recherches aérospatiales;
licensed under Creative Commons License CC-BY

26th International Symposium on Temporal Representation and Reasoning (TIME 2019).
Editors: Johann Gamper, Sophie Pinchinat, and Guido Sciavicco; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/231819277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:quentin.peyras@onera.fr
https://www.onera.fr/fr/staff/julien-brunel
mailto:julien.brunel@onera.fr
https://orcid.org/0000-0003-4136-783X
https://www.onera.fr/fr/staff/david-chemouil
mailto:david.chemouil@onera.fr
https://doi.org/10.4230/LIPIcs.TIME.2019.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 A Bounded Domain Property for an Expressive Fragment of FOLTL

approaches such as Lamport’s TLA+ [9] or the present authors’ Electrum [2, 10]. In the
latter for instance, a specification typically has the following form (ignoring relational and
data structuring features):

spec = init ∧G trans ∧ fair → prop

where:
init is an FO formula that expresses initial conditions of the system;
trans is an FOLTL formula that describes the system transitions and that only includes
the LTL connective X (next) and first-order quantifiers;
fair is an FOLTL formula, which expresses fairness conditions and thus includes nested
LTL connectives G (always) and F (eventually);
prop is an FOLTL formula that expresses a property expected of the system under
specification. It is in principle arbitrarily complex but, in practice, for a large class of
systems, it often remains in a relatively simple fragment of FOLTL.

Checking the validity of spec (|= spec) can be reduced to verifying that ¬spec is unsatisfiable
(UNSATFOLTL(¬spec)), with ¬spec = init∧G trans∧ fair ∧¬prop. Typically, however, ¬spec
does not belong to any formerly known decidable fragment of FOLTL.

Our main contribution is precisely to devise some novel decidable fragments of FOLTL
encompassing formulas of the shape ¬spec.

We introduce in particular the Geneva1 fragment, which consists of the set of NNF
formulas of shape ψ ∧G(φ), where ψ is an FOLTL formula featuring existential quantifiers
only at the root and where universal sub-formulas do not contain temporal connectives; and
where φ is an FOLTL formula featuring only X and F as temporal connectives and where
universal sub-formulas do not contain temporal connectives.

In practice, we prove that this fragment and some variants enjoy the Bounded Domain
Property (BDP): any satisfiable formula (in any of these fragments) admits a model with
finite, bounded FO domain (where the bound depends on the shape of the formula)2. Remark
that the bound does not apply to the temporal dimension of models, only to the FO domain.

Written in a contrapositive way, provided ¬spec belongs to one of these fragments, there
is a bound k such that UNSATFOLTL(¬spec) can be reduced to UNSAT6k

FOLTL(¬spec), where
UNSAT6k

FOLTL means unsatisfiability in interpretation structures with FO domain of size 6 k.
Using this bound k, the FOLTL formula spec can be expanded into a plain LTL formula

spec′ (by unfolding quantifiers over the bounded domain). This way, the UNSAT6k
FOLTL(¬spec)

problem is itself reduced to an UNSATLTL(¬spec′). As LTL satisfiability is decidable, this
ultimately yields a complete, automated decision procedure for the original problem.

Additionally, we make the following two remarks:
for several of our fragments, the bound is linear in the size of formulas and exponential
in certain formula-related criteria that are usually small in practice;
for several fragments, the characterized bound is effectively reached, in the sense that
UNSATFOLTL(¬spec) can even be reduced to UNSAT=k

FOLTL(¬spec), which can in practice
be leveraged to produce a smaller LTL formula to check for unsatisfiability.

The remainder of the article is organized as follows. In Sect. 2, we provide preliminary
definitions about FOLTL. In Sect. 3, we exhibit axioms of infinity, i.e. formulas that do not
enjoy the FDP, in order to guide the search for logical fragments enjoying the BDP. Then

1 Geneva is a mnemonic for “G, Exists, Next/Eventually, (for)All”.
2 This work extends [8] where various simple fragments of FOLTL were studied. In particular, only one

fragment including all LTL connectives, an extension of the classic Ramsey FO fragment (cf. Ex. 9),
had been shown to enjoy the FDP.

Q. Peyras, J. Brunel, and D. Chemouil 15:3

we state some lemmas useful for subsequent proofs. In Sect. 4, we provide a step-by-step
definition of a fragment of FOLTL that is relevant in the context of system specification. We
establish that it enjoys the FDP and exhibit a bound on the FO domain. Then we illustrate
our method on a toy example in Sect 5. Finally, we draw a comparison with other work
in Sect. 6.

2 Syntax and Semantics of FOLTL

2.1 FOLTL
The basic vocabulary of FOLTL is defined out of a signature Σ = (F ,R) where F = (Fi)i∈N
(resp. R = (Ri)i∈N) is a family of sets of function (resp. predicate) symbols), with Fi (resp.
Ri) the set of function (resp. predicate) symbols of arity i. We write Const for the set F0 of
constant symbols. Given a set V of variables, the set TΣ,V of terms over Σ and V is defined
in the usual way. Terms in TΣ,∅ are called closed terms.

I Definition 1 (Formulas). Given a signature Σ = (F ,R) and a set of variables V, FOLTL
formulas over Σ and V are defined inductively by the following grammar (with x ∈ V, r ∈ Rn
and every ti in TΣ,V):

ψ ::= r(t1, . . . , tn) | ¬ψ | ψ ∨ ψ | Xψ | ψ U ψ | ∀x · ψ | ∃x · ψ

X and U stand for the “next” and “until” connectives. We also extend the set of temporal
connectives by defining “eventually” as Fψ = > U ψ, “always” as Gψ = ¬F(¬ψ) and
“releases” as ψ1 Rψ2 = ¬((¬ψ1) U (¬ψ2)). Similarly, classical propositional connectives ∧,
⇒ and ⇔ are defined in the natural way.

Additionally,
we write ψ[x] for a formula ψ having x as a free variable.
We write FV(φ) for the set of free variables of a formula, defined in the obvious way.
Also, a formula φ is said to be closed if FV(φ) = ∅.
Given a formula ψ, we write Tψ for the set of terms, including sub-terms, appearing in ψ.
Classically, a formula is in negation normal form (NNF) if negations only appear in front
of predicate symbols.
We denote by LTLΣ,V the set of FOLTL formulas, built over Σ with variables in V, that
do not contain any first-order quantifier. We write LTLΣ,V(X) (resp. LTLΣ,V(X,F)) for
the set of formulas from LTLΣ,V that are in NNF and that contain no other temporal
connective than X (resp. X and F).
A formula l is called literal if l = r(t1, . . . , tn) or l = ¬r(t1, . . . , tn) where x ∈ V, r ∈ Rn
and every ti in TΣ,V).

We now introduce the semantics of FOLTL. In the interpretation structures defined
below, the interpretation of predicates varies over time while that of function symbols does
not. Notice we rely on the Kleene star in the definition.

I Definition 2 ((Interpretation) Structure). Given a signature Σ = (F ,R), an (interpretation)
structureM (over Σ) is a triple (D,σ, ρ) where:

D, called the domain, is a non-empty set.
σ is a map s.t. for any c ∈ F0, σ(c) ∈ D, and for any f ∈ Fn, σ(f) : Dn → D.
ρ : N ×D? → P(R) is a map s.t. for any instant i ∈ N and any ~a = (a1 . . . , an) ∈ D?,
ρi(~a) ⊆ Rn.

M is said to be domain-finite if D is finite. We also define the domain size (simply called
size in the remainder of this paper) ofM as |D|.

TIME 2019

15:4 A Bounded Domain Property for an Expressive Fragment of FOLTL

I Remark 3 (Type of ρ). Usually, FOLTL structures would be defined with ρ a function
N × R → P(D?) mapping at any instant a predicate to the set of tuples (of the domain)
satisfying it. We turn this definition upside down, which is trivially equivalent to the classical
one, to simplify the presentation of forthcoming definitions (in particular, partial structures
introduced in Def. 10) and proofs.

I Definition 4 (Assignment). An assignment C in a domain D for variables in V is a map
V → D. We write C[x 7→ d] the assignment defined as C[x 7→ d](x) = d and C[x 7→ d](y) =
C(y) if y 6= x. The extension of C to terms, also written C, is defined in the obvious way.

I Definition 5 (Satisfaction). Given a structure M = (D,σ, ρ) and an assignment C, the
satisfaction relation � is defined by induction on formulas, for any i ∈ N, as follows:
M, i, C � r(t1, . . . , tn) iff r ∈ ρi(C(t1), . . . , C(tn));
M, i, C � ¬φ iffM, i, C 2 φ;
M, i, C � φ1 ∨ φ2 iffM, i, C � φ1 orM, i, C � φ2;
M, i, C � Xφ iffM, i+ 1, C � φ;
M, i, C � φ1 U φ2 iff there exists k ∈ N s.t.M, i+ k, C � φ2 and for every 0 ≤ j < k, we
haveM, i+ j, C � φ1;
M, i, C � ∃y · φ iff there exists d ∈ D s.t.M, i, C[y 7→ d] � φ;
M, i, C � ∀x · φ iff for every d ∈ D, we haveM, i, C[x 7→ d] � φ.

Given a closed formula φ, we writeM, k � φ ifM, k, [] � φ, where [] is the empty assignment.

Let φ, φ′ be two FOLTL formulas. If for any structureM and an assignment C, we have
M, 0, C � φ iffM, 0, C � φ′ then we say that φ and φ′ are logically equivalent, written φ ≡ φ′.

I Definition 6 (Finite Domain Property, Bounded Domain Property). A closed formula φ

of FOLTL enjoys the finite domain property (FDP) if φ is not satisfiable, or there is a
domain-finite structure M s.t. M, 0 � φ. Additionally, if the bound is computable, the
formula is said to enjoy the Bounded Domain Property (BDP). A fragment of a logic enjoys
the FDP (resp. BDP) if every formula in this fragment does.

I Remark 7 (BDP and decidability). For pure FO, if a fragment enjoys the FDP (usually called
the Finite Model Property), then it is decidable. As FOLTL is not recursively enumerable
(contrary to FO), the FDP does not suffice to show decidability of a given fragment, while
the BDP does.
I Remark 8 (BDP and complexity). If a fragment enjoys the BDP, then from the expression
of the bound on the domain, we can easily deduce an upper bound of the complexity of
satisfiability for this fragment, using the results from [8]. Indeed, in [8], the complexity of
the satisfiability problem on bounded models is studied for full FOLTL.

I Example 9. The following fragments of FO enjoy the FDP (following the book and
notations of Börger et al. [3]):

[∃?∀?, all]=(Ramsey 1930) the class of formulas with quantifier prefix ∃?∀?, without
function symbols, with arbitrary predicate symbols, with equality.
[∃?, all, all]=(Gurevich 1976) the class of formulas with quantifier prefix ∃?, with arbitrary
predicate and function symbols, with equality.

2.2 Partial Structures
We defined the notion of structures for FOLTL, however proving the BDP requires to define
a model in several steps. Indeed, we will need to define predicate interpretations for a finite
numbers of instants, and to define the truth values of predicates for the remaining time later

Q. Peyras, J. Brunel, and D. Chemouil 15:5

on. This is clumsy to do with structures since we will need to redefine the entire structure
at each step. For this reason, we introduce a notion of partial structures, which is easier
to handle.

I Definition 10 (Partial (interpretation) structures). A partial (interpretation) structureM
(over Σ) is a triple (D,σ, ρ) satisfying the same conditions as in Def. 2 except that ρ is a
partial function. We denote by ρi(~x) = ⊥ the fact that ρ is not defined on the pair (i, ~x).

Structures are then the maximal elements of the set of partial structures for the following
partial order.

I Definition 11 (Extension ordering of partial structures). Given two partial structuresM =
(D,σ, ρ) andM′ = (D′, σ′, ρ′), we define the partial order 4 over partial structures as follows:
M′ extendsM, writtenM 4M′, iff D = D′, σ = σ′, and ρi(~a) 6= ⊥ implies ρ′i(~a) = ρi(~a).

This allows a natural generalization of satisfaction to partial structures by saying that a
partial structure satisfies a formula if all its extensions that are structures satisfy it.

I Definition 12 (Semantics over partial structures I). Given a partial structure M, we say
thatM, i, C � φ iff for all structureM′ s.t.M 4M′, we haveM′, i, C � φ.

There is another, natural way to define the semantics over partial structures. We introduce
it as it will be required in forthcoming proofs. This semantics can be defined by induction
on formulas in NNF. Such a restriction is necessary because we cannot evaluate the truth
value of ¬φ out of that of φ, therefore we cannot define a general semantics for the “not”
connective. This is because if a partial structure can be extended to either satisfy φ or satisfy
¬φ, then this partial structure satisfies neither of these formulas.

I Definition 13 (Semantics over partial structures II). Given a partial structureM = (D,σ, ρ)
and an assignment C, the satisfaction relation is defined by induction on formulas in
negation normal form (NNF), for all non-negative integers i as follows:
M, i, C r(t1, . . . , tn) iff r ∈ ρi(C(t1), . . . , C(tn)).
M, i, C ¬r(t1, . . . , tn) iff ρi(C(t1), . . . , C(tn)) 6= ⊥ and r 6∈ ρi(C(t1), . . . , C(tn)).
M, i, C φ1 ∧ φ2 if and only ifM, i, C φ1 andM, i, C φ2.
M, i, C φ1 ∨ φ2 if and only ifM, i, C φ1 orM, i, C φ2.
M, i, C Xφ iffM, i+ 1, C φ.
M, i, C φ1 U φ2 iff there exists k ∈ N s.t. M, i + k, C � φ2 and for every integer
0 ≤ j < k, we haveM, i+ j, C φ1.
M, i, C φ1 R φ2 iff for each k ∈ N M, i + k, C φ2 or there exists an integer j s.t.
M, i+ j, C φ1 and for every integer 0 ≤ k ≤ j,M, i+ k, C φ2.
M, i, C ∃y · φ(y) if and only if there exists d ∈ D s.t.M, i, C[y 7→ d] φ(y).
M, i, C ∀x · φ(x) if and only if for every d ∈ D, we haveM, i, C[x 7→ d] φ(x).

I Lemma 14 (Equivalence of semantics). Given a partial structureM, a formula φ in NNF,
k ∈ N and an assignment C, we haveM, k, C � φ iffM, k, C φ.

I Definition 15 (Enrichment of a structure). Given a partial structure M = (D,σ, ρ) s.t.
ρi(~d) = ⊥, we define the enrichment of M at instant i on tuple ~d for A ∈ P(R), written
M[(i, ~d) 7→ A], as the triple (D,σ, ρ′) where: ρ′i(~d) = A and for any j ∈ N and any tuple ~d′,
ρ′j(~d′) = ρj(~d′) if (j, ~d′) 6= (i, ~d). Notice thatM[(i, ~d) 7→ A] is an extension ofM.

TIME 2019

15:6 A Bounded Domain Property for an Expressive Fragment of FOLTL

Some sort of induction is required to extend a partial structure for tuples over all instants
of time. It is possible to proceed by extending a partial structure step-by-step using the
previous definition. The result is then an increasing sequence of partial structures. Intuitively,
it can be seen that such a sequence somehow converges to a partial structure where all steps
of extension have been performed on it. The following definition formalizes this notion.

I Definition 16 (Limit structure). Let (Mk)k∈N be a 4-increasing sequence of partial struc-
tures, withMk = (D,σ, ρk). Then we define the (partial) limit structureM∞ = (D,σ, ρ∞)
s.t., for any i ∈ N and vector ~d ∈ D?: (1) if there exists k s.t. ρki (~d) 6= ⊥, then ρ∞i (~d) = ρki (~d);
(2) if for every k ∈ N we have ρki (~d) = ⊥, then ρ∞i (~d) = ⊥.

As we focus on the BDP, we aim at building a domain-finite model of a formula out of
any structure satisfying it. However, to ensure that we have a general method working for
a fragment as expressive as possible, we need to make this domain-finite model as similar
as possible to the original one. For this reason, we define the following notion of partial
embedding. Informally, this embedding between two partial structures expresses that any
element of the domain of the former has, for each instant, an equivalent element in the domain
of the latter, meaning they satisfy the same predicates. In the case of n-ary predicates, two
tuples with one-to-one equivalent elements are considered equivalent, so they satisfy the
same predicates. A partial embedding is used to deduce information about the satisfaction
of non-temporal universally quantified properties at some particular instant.

I Definition 17 (Partial embedding). Let M0 = (D0, σ0, ρ
0), M1 = (D1, σ1, ρ

1) be two
partial structures and f : N×D0 9 D1 be a partial function. We say that f is a (partial)
embedding fromM0 toM1, denotedM0

f
↪→M1, if there exists m ∈ N s.t.:

for each c ∈ Const, each i ∈ N, we have fi(σ0(c)) = σ1(c);
for each g ∈ Fn (n > 0), ~d ∈ Dn

0 , and each i ∈ N s.t. fi(~d) 6= ⊥3, fi(σ0(g)(~d)) =
σ1(g)(fi(~d)); and
for each ~d ∈ D?

0 and each i ∈ N, if fi+m(~d) 6= ⊥ then ρ0
i (~d) = ρ1

i (fi+m(~d)), otherwise
ρ0
i (~d) = ⊥.

3 Preliminary Results

Here we exhibit various formulas of FOLTL that do not enjoy the FDP, which hints on
possible directions to find a fragment that does enjoy it. Then, we introduce some technical
lemmas about elementary fragments of FOLTL, which will be useful to establish the BDP of
the fragments studied in Sect. 4.

3.1 Axioms of Infinity
In this section, we report on various ways not to enjoy the FDP. Our study of FOLTL
fragments was partly guided by the need to avoid syntactic fragments. We call axiom of
infinity an FOLTL formula that does not satisfy the FDP. Finding such axioms is easy, even
with strong constraints on first-order quantifiers.

Due to some results from [8], we start our study with formulas featuring existential
quantifiers. For instance, the following axiom of infinity involves only one existential
quantifier: G(∃y · P (y) ∧X G¬P (y)). Indeed, to satisfy this formula, we need to find some
element in the domain satisfying P at each instant of time; however this element will never
satisfy P again so an infinite domain is needed to pick a different element at every instant.

3 fi(~d) 6= ⊥ denotes the fact that fi(~d) is defined

Q. Peyras, J. Brunel, and D. Chemouil 15:7

It then appears that existential quantification under a G connective can be problematic.
However, this problem occurs only when several nested G connectives appear in the formula.
Notice that nesting G connectives is often unnecessary in practical system specifications.

Therefore let us now focus on cases where we have a formula of the form G(∃y · ψ[y])
where ψ does not contain any G or first-order quantifier.

Now, what about universal quantification? Unfortunately, even with a prefix within the
Ramsey fragment, axioms of infinity can be found, such as the following: G(∃y∀x · ¬P (y) ∧
XP (y) ∧ (P (x)⇒ XP (x))). Here, the universal quantifier allows us to specify by induction
that any element in the domain used for the existential quantifier satisfies GP (y). This
is actually similar to the first axiom. In order to avoid this behaviour, a new restriction
is needed. A possibility is to forbid the use of temporal connectives under the scope of a
universal quantifier.

Another issue lies in the use of constant predicates (predicates whose value does not
change along time). Assume we are given a constant order < (axiomatized by universally
quantified formula without temporal connectives). Then the following formula defines an
axiom of infinity: G(∃y · P (y) ∧X(∀x · P (x)⇒ y < x)). Indeed it forces at each instant the
existence of an element in the domain which is greater than all elements that have already
been used. Satisfying the formula then requires to have an infinite domain.

Thus, to obtain a fragment enjoying the BDP, one should at least:
forbid nested G connectives;
forbid temporal connectives under the scope of a universal quantifier;
and forbid constant predicates if universal quantifiers are allowed.

3.2 Preliminary Lemmas
We now introduce lemmas that are basic elements of the BDP proof for the FOLTL fragments
studied in this article.

The following lemma allows us to consider a formula with a well-suited syntactic form
for the upcoming proofs (without impact on computed bounds). Indeed, we will need to
define interpretations of predicates such that a formula is true at every instant. However, in
case of a disjunction, there may be various ways to satisfy a formula. For example, consider
φ = (a⇒ X b) ∧ (a⇒ F c); in this case, at every instant, φ may be satisfied by having ¬a or
X b ∧ F c. So we transform φ into a disjunctive normal form allowing us to differentiate and
pick in which way it can be satisfied. In the case of φ, we obtain (¬a) ∨ (X b ∧ F c). Within
each disjunct, we distinguish between the sub-formulas under an F connective (which need
to be satisfied at an unspecified instant) and the other ones (which need to be satisfied at a
specified number of instants, depending on the number of nested X connectives).

I Lemma 18 (Disjunctive normal form (DNF)). If φ is a formula in LTLΣ,V(X,F) then
there exists ψ ≡ φ s.t.: (1) ψ is a disjunction of the form ψ1 ∨ . . . ∨ ψn (notice that each
ψi is in NNF); (2) Each ψi is a conjunction of the form αi ∧ Fβi,1 ∧ . . . ∧ Fβi,j, with
αi = Xni,1 `i,1 ∧ . . . ∧Xni,ki `i,ki (writing Xn for a sequence of n X connectives) and where
each `i,k is a literal and each βi,k is in LTLΣ,V(X,F).

I Remark 19 (Inocuity of the DNF transformation). The transformation of a formula into
DNF induces an exponential blow-up. In this paper, it is only used to prove the BDP of the
considered fragments: since the considered bounds are not affected by the transformation in
DNF, the blow-up does not influence the complexity of the decision procedure.

TIME 2019

15:8 A Bounded Domain Property for an Expressive Fragment of FOLTL

The size of the finite model resulting from the construction presented in this paper depends
on the depth of nested X connectives. For example, there is a structure of size 1 satisfying
G(∃y · P (y)). However any structure satisfying G(∃y · P (y) ∧X(¬P (y)) ∧X X(¬P (y)) is at
least of size 3. This depends on the number of instants it refers to using X connectives:

I Definition 20 (Stride of a formula). Given a formula φ in DNF, we define its stride Kφ

as the maximal depth of nested X connectives not under an F, that is Kφ = max
i=1..n

max
j=1..ki

ni,j

(with ni,j following the notations of Lemma 18).

The following lemma applies to formulas containing only X and F connectives, as well
as featuring only existential quantification over a single variable. Given such a formula, a
model of this formula and a partial structure where constant symbols are interpreted as in
the model of the formula, the lemma states that we can extend this partial structure into a
partial model of the formula by providing an interpretation for the predicates (1) for a finite
set of instants only and (2) over a single element in the domain.

I Lemma 21. Consider a formula ψ in LTLΣ,{y}(X,F) and a structureM = (D, σ, ρ) s.t.
M, k � ∃y · ψ[y] for some k ∈ N. Consider also a partial structure M0 = (D, σ0, ρ

0) s.t.

M0
f0

↪→M and s.t. there exists some a in D s.t. for each integer j ≥ k we have f0
j (a) = ⊥.

Then, there exists an integer k′ > k (where k′ = k + Kψ + 1 if ψ ∈ LTLΣ,{y}(X)) and a
structureM1 = (D, σ1, ρ

1) satisfying:

M1
f1

↪→M for some f1,
for any x ∈ D and any i ≥ k′, f1

i (x) 6= ⊥ iff x ∈ σ1(TΣ,∅),
for any i ∈ N s.t. k ≤ i < k′, and any x ∈ D, x 6= a implies f0

i (x) = f1
i (x),

M0 4M1,
M1, k, [y 7→ a] � ψ[y].

Proof. First notice that the truth value of a formula in LTLΣ,{y}(X,F) can be determined
by only “looking at” a finite set of instants I, in the sense that changing the interpretation
of predicates outside I does not change the truth value of the formula. This can be shown
for instance by induction on the number of nested F.

Let ψ be a formula in LTLΣ,{y}(X,F) s.t. M, k |= ∃y · ψ[y]. Let k′ be the greatest
instant in the set I as introduced above. Let d be an element in the domain such that
M, k, [y 7→ d] |= ψ[y]. Then, we can extend M0 into M1 in a way s.t. f1

i (a) = d and
ρ1
i (a) = ρi(d) for i ∈ [k, k′]. J

The next lemma focuses on formulas containing X connectives only. It establishes that
formulas of the form G(∃y · ψ), where the only temporal connective in ψ is X, enjoy the
BDP. However, this lemma is formulated in a more suitable way for the proof of Theorem 26.
In particular, we limit the result to a finite temporal window [k1, k2].

I Lemma 22. Assume that there exists k1, k2 ∈ N s.t. for any integer i ∈ [k1, k2] we have

M, i � ∃y · α[y], where α ∈ LTLΣ,{y}(X). LetM0 be a partial structure s.t.M0 f0

↪→M for
some f0, and there exists A = {a0, . . . , aKα} s.t. for each integer j ∈ [k1, k2 +Kα] and all
a ∈ A, we have f0

j (a) = ⊥. Then there existsM1 s.t.:

M1 f1
↪→M for some f1;

M0 4M1;
f1
j (x) 6= f0

j (x) implies that j ∈ [k1, k2 +Kα] and x ∈ A;
For any i ∈ [k1, k2], there exists m ≤ Kα s.t.M1, i, [y 7→ am] � α[y].

Q. Peyras, J. Brunel, and D. Chemouil 15:9

Figure 1 First step of the partial structure construction.

0 1 2 3 . . .

a0 P ¬P ? ? . . .

a1 ? P ¬P ? . . .

a2 ? ? P ¬P . . .

.

−−→

0 1 2 3 . . .

a0 = a2 P ¬P P ¬P . . .

a1 ? P ¬P ? . . .

.

Figure 2 Trace of M∞.

0 1 2 3 . . .

d0 P ¬P P ¬P . . .

d1 ? P ¬P P . . .

P (d0) ∧ X(¬P (d0)) P (d1) ∧ X(¬P (d1)) P (d0) ∧ X(¬P (d0)) . . .

Proof. Let α be a formula in LTLΣ,{y}(X). We prove the theorem by induction over k2.
If k1 = k2 then the result is reduced to lemma 21.
Induction step: we assume that the statement of the lemma holds for [k1, k2]. Now

suppose that the premises of the lemma hold for [k1, k2 + 1]. From induction hypothesis, we
know that there existsM1 satisfying the conclusion of the lemma for i ∈ [k1, k2]. We can
then extendM1 by applying lemma 21 using instant k2 + 1 and one element in A. Then the
resulting structure satisfies the conclusion of the lemma for the set [k1, k2 + 1]. J

I Example 23. The main ideas of the proof of Lemma 22 are illustrated through an example.
Let us consider the formula ψ[y] = P (y) ∧X¬P (y). For the sake of simplicity, instead of
considering a finite temporal window [k1, k2] among which ∃y ·ψ[y] is satisfied, we consider a
structureM s.t. for any k ∈ N,M, k |= ∃y ·ψ[y], which is equivalent toM, 0 |= G(∃y ·ψ[y]).

Let us build a finite partial model of this formula. Following the semantics of FOLTL,
for any k ∈ N, there is some ak in the domain ofM s.t.M, k, [y 7→ ak] |= P (y) ∧X¬P (y).
So, for any k ∈ N, P ∈ ρk(ak) and P /∈ ρk+1(ak). Consider the constraints a0, a1 and a2
must satisfy: a0 has constraints only at instants 0 (to satisfy P) and 1 (not to satisfy P); a1
only has some constraints at instants 1 and 2; and a2 only has some constraints at instants 2
and 3. Thus, we can reuse a0 to play the role of a2 at instants 2 and 3, as shown in Fig. 1.

Then ψ can be satisfied for the first three instants with only two elements in the domain.
By the same argument, we can reuse a1 instead of using a3. This can be generalized to reuse
a0 (resp. a1) instead of every ak, where k is an even (resp. odd) number. We then see that
we can satisfy our formula with a structure of size 2. Let us call d0 and d1 the corresponding
elements of the domain. Let us define a first structureM0 = (D,σ, ρ0), where D = {d0, d1},
σ is an empty map (since there is no function symbols in ψ) and ρ0 is defined as the partial
function that is undefined over all entries. Now let us defineMi+1 fromMi. If i is even then
m = 0, else m = 1 then Lemma 21 gives usMk+1 =Mk[(k, dm) 7→ {P}][(k + 1, dm) 7→ ∅].
Then we haveMk+1, k, [y 7→ dm] � ψ[y].

We get a 4-increasing sequence (Mi)i∈N, the limit structure of which (M∞) is illustrated
in Fig. 2. Since for any integer k,Mk+1, k, [y 7→ d0] � ψ[y] orMk+1, k, [y 7→ d1] � ψ[y], we
have thatM∞, k � G(∃y · ψ[y]). y

The reasoning that we had for this particular example can be easily generalized for any
formula of the form G(∃y · ψ[y]) where ψ ∈ LTLΣ,{y}(X). We then get a partial model of
the formula with a domain of size Kψ + 1.

TIME 2019

15:10 A Bounded Domain Property for an Expressive Fragment of FOLTL

Now, we want to extend the fragment to allow for the temporal connective F in ψ.
Suppose that there is a modelM of φ = G(∃y · ψ[y]) and that ψ = ψ1 ∨ . . . ∨ ψn is in DNF,
as in Lemma 18. Also suppose that several ψi have the form Fψ′i. Then, some of these Fψ′i
can be true at a finite number of instants inM, which makes it complicated to build a finite
partial model of φ. The following lemma states that we can get rid of such Fψ′i.

I Lemma 24. LetM be a partial structure satisfyingM, 0 � G(ψ1∨ψ2)∧¬G F(ψ2). Then
there exists M′ s.t. M′, 0 � G(ψ1) and M′ Id

↪→ M, with Id defined as Id(i, d) = d for all
instant i and domain element d.

Sketch. To getM′ fromM, we simply make a translation in time, starting from the first
instant k s.t. for any k′ > k,M, k′ � ¬ψ2. J

4 Finite Domain Property

We now present our main results. We start in Sect. 4.1 with the BDP of our core fragment,
limited to a single existential quantifier and without functions. In Sect. 4.2, we establish
the BDP for extended fragments including functions and first-order quantifiers used in a
restricted way. In Sect. 4.3, we study how these fragments can be extended with equality.

4.1 Core Theorem
Theorem 26 says that given a formula φ (1) in NNF, (2) with only one existential quantifier,
(3) containing no other temporal connectives than X and F, (4) without function symbols
other than constants, (5) with only unary predicates, then Gφ enjoys the BDP. Most of
these restrictions are unnecessary for the BDP but, while keeping the main ideas of the proof,
they make it simpler to understand. Releasing them will lead to Theorem 28.

I Definition 25. We say that φ ∈ Gur−(X,F) (for “Gurevich”) if there exists a signature
Σ = (F ,R) s.t. (1) for any n > 0, Fn = ∅, (2) for any n > 1, Rn = ∅ and (3) there exists
ψ ∈ LTLΣ,{y}(X,F) s.t. φ = ∃y · ψ.

I Theorem 26. If φ is a formula in Gur−(X,F), then Gφ enjoys the FDP. Moreover, if
Gφ is satisfiable, it has a model of size |Const|+ 2× (Kψ + 1).

Proof. Let us consider that ψ′ ∈ LTLΣ,{y}(X,F). By using Lemma 18, w.l.o.g., we consider
ψ′ in DNF: ψ′ = ψ1∨ . . .∨ψm. Considering a modelM of G(∃y ·ψ′[y]), some ψi are satisfied
at an infinite number of instants. Let us consider that ψ1, . . . , ψn are satisfied at an infinite
number of instants and ψn+1, . . . , ψm are satisfied at a finite number of instants. Then by
application of Lemma 24, there is a structureM satisfying: M, 0 � G(∃y ·ψ1[y]∨ . . .∨ψn[y]).

Let us write ψ = ψ1 ∨ . . . ∨ ψn and remind that each ψi is in NNF and each ψi is of the
form αi ∧ Fβi,1 ∧ . . . ∧ Fβi,ji where αi = Xni,1 `i,1 ∧ . . . ∧Xni,ki `i,ki .

We introduce α =
n∨
`=1

α` and β =
n∧
`=1

j∧̀
p=1

Fβ`,p.

The main step of the proof consists in defining a sequence (Mi, f i, ki)i∈N where, for each
i ∈ N:
Mi is a partial structure,Mi f

i

↪→M andMi 4Mi+1,
up to instant ki − 1,Mi+1 coincides withMi,
Mi is built as an extension ofMi−1 s.t. for each k < ki−1 Mi, k |= ∃y · ψ[y],
the limitM∞ satisfies G(∃y · ψ[y]) at instant 0.

Q. Peyras, J. Brunel, and D. Chemouil 15:11

The domain D of the different structures consists of the union of the two disjoints sets
DX = {d0, . . . , dKψ} and DF = {e0, . . . eKψ}, and of the set Const of constants. That is,
D = DX ∪ DF ∪ Const.

For i = 0, M0 and the partial function f0 are defined by: (1) for any k ∈ N and

a ∈ DX ∪ DF, f0
k (a) = ⊥; and (2)M0 f0

↪→M.
For any i > 0, let us now defineMi, ki and f i. Mi = (D, σi, ρi) is defined as an extension

ofMi−1 in the following way. By application of Lemma 21, it is possible to extendMi−1

up to an instant ki and satisfy β for one value of the domain. Within the time interval
[ki−1, ki[, if i is an odd (resp. even) number, thenMi is s.t. β is satisfied at instant ki−1
for any a ∈ DF (resp. any a ∈ DX): Mi, ki−1, [y 7→ a] |= β[y]. If i is an odd (resp. even)
number, this defines howMi extendsMi−1 for elements in DF (resp. DX).

Now, by Lemma 22, if i is an odd (resp. even) number, we can extendMi−1 s.t. for any
k in [ki−1, ki[, there is some a ∈ DX (resp. a ∈ DF) s.t. Mi, k, [y 7→ a] |= α[y]. If i is an
odd (resp. even) number, this defines howMi extendsMi−1 for elements in DX (resp. DF).
Following this definition, for any i ∈ N and any k < ki,Mi, k |= ∃y · ψ[y].

The limit structure M∞ of (Mi)i∈N is then a partial model of G(∃y · ψ[y]), and its
domain D is finite, of size |Const|+ 2× (Kψ + 1). J

4.2 Relaxing the Use of Quantifiers

The next theorem generalizes the previous result to formulas:
over n-ary predicates,
with function symbols,
and containing any number of existential quantifiers.

I Definition 27. We say that φ ∈ Gur(X,F) if there exists a signature Σ and a formula
ψ ∈ LTLΣ,{y1,...yn}(X,F) such that φ = ∃y1 . . . yn · ψ.

I Theorem 28. Given a formula φ in Gur(X,F), Gφ enjoys the BDP. Denoting Tφ the set
of terms appearing in φ, then, if G(φ) is satisfiable, it has a model of size |Tφ ∩ TΣ,∅|+ 2×
(Kφ + 1)× |Tφ ∩ TΣ,V |.

The fragment used in Theorem 28 forbids formulas outside the scope of G. This prevents
the specification of initial conditions. Proving the BDP for a fragment allowing such conditions
requires to handle clauses in the DNF that are satisfied only a finite number of times, contrary
to what we dealt with until then, using in particular Lemma 24. Theorem 31 states that
we can actually extend the fragment used in Theorem 28 by adding a conjunct ψ to G(φ)
which refers to the initial state (and more generally to a finite set of states). However, the
bound of the domain is significantly larger.

I Definition 29. Let us assume that φ is in the form given in Lemma 18. Then we write
βφ = |{β | ∃i · ψi = αi ∧ . . . ∧ Fβ ∧ . . .}|.

I Definition 30 (Genev fragment). We call Genev fragment the set of FOLTL formulas of
shape ψ ∧G(φ) s.t. φ is a formula of class Gur(X,F) and ψ = ∃y1 . . . y2 · θ[y1, . . . , yn] with
θ ∈ LTLΣ,{y1,...,yn}.

I Theorem 31. The Genev fragment enjoys the FDP. If ψ∧G(φ) is a satisfiable formula in
this fragment, it has a model of size |(Tψ ∪ Tφ) ∩ TΣ,∅|+ (1 + 2βφ)× (Kφ + 1)× |Tφ ∩ TΣ,V |.

TIME 2019

15:12 A Bounded Domain Property for an Expressive Fragment of FOLTL

Let FO(∀) denote the fragment of purely universal FO formulas containing no other
function symbols than constants. The next theorem extends Theorem 31 by allowing formulas
of FO(∀) as leaves of the formula instead of basic predicates. However non-constant function
symbols can not be used under the scope of a universal quantifier, since even the FO
fragment of universally quantified formulas with non-restricted function symbols does not
enjoy the FDP.

I Definition 32. An FOLTL formula ψ is in FOLTL(∃↑,∀↓) if ψ = ∃y1 . . . y2 · θ[y1, . . . , yn],
where θ has the following syntax: θ ::= ` | α | θ ∨ θ | θ ∧ θ | X θ | θ U θ | θR θ, where
α ∈ FO(∀) and ` is a literal.

I Remark 33. Notice in particular that a formula in FOLTL(∃↑,∀↓) satisfies the following
two conditions: (1) no existential quantifier is in the scope of a temporal operator, (2) no
temporal operator is in the scope of a universal quantifier. This is the case, for example, of
the following formula: ∃x, y · (∀z · ¬P1(z)) U (P1(y)) ∧ (∀z · ¬P2(x, z)⇒ P1(z)).

I Definition 34. FOLTL(X,F,∀↓) is defined by the following grammar: φ ::= ` | α | φ ∨ φ |
φ ∧ φ | Xφ | Fφ | ∃y · φ, with α ∈ FO(∀), ` a literal and y ∈ V.

I Definition 35 (Geneva fragment). We call Geneva fragment the set of FOLTL formulas
of shape ψ ∧G(φ) s.t. φ is a closed formula of FOLTL(X,F,∀↓) and ψ is a closed formula
of FOLTL(∃↑,∀↓).

I Theorem 36. The Geneva fragment enjoys the FDP. If ψ ∧G(φ) is a satisfiable formula
in this fragment, it has a model of size |(Tψ ∪Tφ)∩TΣ,∅|+ (1 + 2βφ)× (Kφ + 1)× |Tφ ∩TΣ,V |.

4.3 Extension with Equality
We now address the problem of adding the equality predicate to the previous fragments. The
interpretation of equality is constant over time. As mentioned in Sect. 3.1, this could be a
source of infinity axioms if universal quantification is allowed. We show that we can add
equality to the ∀-free fragments of our previous theorems 26, 28, and 31 and still enjoy the
BDP. However, the bound on the domain becomes much larger and not exact anymore.

I Definition 37. Given an FOLTL formula φ, we write Eq(φ) the set of equality tests of φ,
i.e. the set of predicates of the form t1 = t2 in φ.

In the following, Gur=(X,F) (resp. LTL=
Σ,V) denotes Gur(X,F) (resp. LTLΣ,V) augmen-

ted with equality. Theorem 38 (resp. 39) generalizes Theorem 28 (resp. 31).

I Theorem 38. If φ is a formula of class Gur=(X,F) then G(φ) enjoys the FDP. Writing
Tφ for the set of terms appearing in φ, then if G(φ) is satisfiable, it has a model of size at
most |Tφ ∩ TΣ,∅|+ 2× (Kφ + 1)× |Tφ ∩ TΣ,V | × 2|Eq(φ)|.

Proof. ConsiderM a model of G(φ) where φ = ∃~y · ψ. Theorem 28 can be applied to this
formula after replacing equality tests by >. This operation yields a partial structure that we
callM0. Now we want to useM0 to build a model of G(φ). Building such a model requires
that, at each instant i, it is possible to find a tuple of elements in the domain that:

satisfies the same relations as the tuple used to satisfy existential quantifiers at instant i
inM0;
satisfies the same equality relations as the tuple used to satisfy existential quantifiers at
instant i inM.

Q. Peyras, J. Brunel, and D. Chemouil 15:13

This can be done by making 2|Eq(φ)| copies of the domain of M0. Let us remember that
this domain is an union of the tuples used to satisfy the existential quantifiers at different
instants. Then, for each copy of each tuple, it is possible to define an equivalence relation
between terms formed from this tuple. It requires to define these equivalence relations in
order to cover all possibilities of interpretation for the equality relations appearing in φ, the
number of possibilities being 2|Eq(φ)|.

Once this is done, quotienting each part of the domain by this relation gives a structure
where there are tuples:

satisfying the same relations as any of the tuple of the first built finite model;
satisfying any possible subset of Eq(φ).

So at any instant it is only needed to look in the original model what equality tests of
the formula were satisfied and to take the tuple in the appropriate copy of the domain. J

I Theorem 39. If φ is a formula of class Gur=(X,F) and ψ = ∃y1, . . . , yn · θ[y1, . . . , yn],
where θ ∈ LTL=

Σ,{y1,...,yn}, then ψ ∧G(φ) enjoys the FDP. If ψ ∧G(φ) is satisfiable, it has a
model of size at most |(Tψ ∪ Tφ) ∩ TΣ,∅|+ (1 + 2βφ)× 2|Eq(φ)| × (Kφ + 1)× |Tφ ∩ TΣ,V |.

Proof. The proof of Theorem 38 can easily be adapted to Theorem 39. J

Now, if we extend the fragment of Theorem 36 with equality, it becomes possible to use
equality predicates in the scope of a universal quantifier. In that case, our approach does
not stand anymore. Therefore, the question of generalizing Theorem 36 by adding equality
remains open.

5 Toy Example: a Notification System

Here, a simple example of a notification system in a ring is presented to illustrate the
expressiveness of the fragment4. The structure of the network is defined by a predicate succ
relating a node to its successor, and a formula Ring specifying that succ forms a ring topology.
The formula Ring is specified as proposed in [15], with the use of a ternary predicate, in
pure FO (without transitive closure). Each node x of the ring may be aware (notified(x))
of a certain piece of information, or not. Any node that has been notified may notify its
successor (by sending a message), and other nodes do not change during this operation.

Same(z) := notified(z)⇔ X notified(z)
Send(x) := ∃y

[
succ(x, y) ∧ (∀z · z 6= y ⇒ Same(z))

∧ (notified(x)⇒ X notified(y)) ∧ (¬notified(x)⇒ Same(y))
]

Trans := G(∃p · Send(p))

5.1 Safety Property
Now consider the safety property “if a node is notified, it remains notified”, described by
the following formula: Safety := G(∀x · notified(x) ⇒ X notified(x)). Proving that
our protocol ensures this property (Ring ∧ Trans |= Safety) amounts to proving that
Ring ∧Trans ∧ ¬Safety is unsatisfiable.

4 The complete Electrum specification is available at [16]. Electrum is available at http://huit.re/
electrum/.

TIME 2019

http://huit.re/electrum/
http://huit.re/electrum/

15:14 A Bounded Domain Property for an Expressive Fragment of FOLTL

Notice that ¬Safety ≡ ∃x · F(notified(x) ∧ X¬notified(x)), therefore an equi-
satisfiable formula can be obtained by Skolemization: SkNegSafety := F(notified(c) ∧
X¬notified(c)). However ϕ := Ring ∧Trans ∧ SkNegSafety is not in any of our frag-
ments because of the universal quantification over Same(z), which is a temporal formula,
and because of the use of equality.

We now devise a more abstract specification of the protocol which is a semantic con-
sequence of ϕ that fits into the fragment of Theorem 36. First, we get rid of equality: we use
an equivalence predicate ≈ instead, which can be axiomatized (using a formula Eq) in our
fragment (notice that the semantics of ≈ may vary over time). Second, we get rid of the
universal quantifier over z. To do that, a solution is to instantiate the variable z for the values
x and c, which yields: Send(x) := (∃y · succ(x, y) ∧ (notified(x) ⇒ X notified(y)) ∧
(¬notified(x)⇒ Same(y))∧ (x ≈ y ∨ Same(x))∧ c ≈ y ∨ Same(c))∧ (c ≈ y ⇔ X c ≈ y)).
Notice it is necessary to add c ≈ y ⇔ X c ≈ y in the previous formula. Indeed, ≈ is
not necessarily constant so it would be possible to have that c ≈ y and ¬X c ≈ y and,
in this case, no constraint would apply to the truth value of X notified(c). Then, it is
possible to define an abstraction by the following formulas: Trans := G(∃p · Send(p)) and
AbsSatS := Eq ∧Trans ∧ SkNegSafety.

It is easy to show that Ring∧Trans∧¬Safety |= AbsSatS and that AbsSatS belongs
to the Geneva fragment. Applying Theorem 36, we compute a size 5 for the domain. Using
the Electrum tool, AbsSatS can be shown to be unsatisfiable for a domain of size 5, which
ultimately proves the original property.

5.2 Liveness Property
An interesting liveness property to prove on the considered system is “all nodes eventually
become notified”, formalized as: Liveness := ∀x · F(notified(x)). This property can be
shown under the assumption that all notified nodes eventually perform the send transition:
Progress := G(∀x · notified(x)⇒ F Send(x)).

The complete abstraction that allows us to prove this liveness property is available with
the full example specification. We basically need to Skolemize the negation of the liveness
property and to instantiate the universally quantifiers that are out of our fragment with the
Skolem constant. An axiom abstracting the ring topology needs to be added for proving the
liveness property. In the end, the obtained formula fits into the fragment of Theorem 36,
which provides the domain size 6. The formula can be shown in Electrum to be unsatisfiable
for a domain of size 6, which proves the property.

6 Related Work

In [8], Kuperberg and the last two authors of the present article show that the FDP for
some FO fragments can be lifted to some FOLTL fragments. However, they only allow
to add X and F connectives, which is not enough for real specifications. An extension of
the Ramsey fragment is also proposed, allowing the use of all temporal connectives, but
preventing existential quantifiers under a G.

The decidable monodic fragment studied by Hodkinson et al. [5,6] does not enjoy the FDP.
Indeed, G(∃y ·P (y)∧G(¬P (y))) belongs to the monodic extension of the Gurevich fragment
(first-order formulas containing existential quantifiers only) but it is an axiom of infinity: the
monodic fragment helps preserve decidability but says nothing about the FDP. Additionally,
on the practical side, the monodic fragment limits the use of free variables in temporal
formulas to only one, which does not really fit with real specifications of systems. Indeed,

Q. Peyras, J. Brunel, and D. Chemouil 15:15

any transition system implying relations between different components (list of messages,
topology of a network, etc) requires to be specified by using at least binary relations in the
temporal transitions, thus breaking the monodicity condition.

Padon et al. [15] propose yet another approach: they reduce specific temporal problems
to FO and even, in many cases, to a decidable fragment of it. This method was improved
in [13,14] to address the verification of liveness properties. It was implemented in the Ivy
tool and gives good results in practice. However, it is not complete and it requires the user
to understand rather deeply both the specified system and the verification technique itself.
Additionally, the user must devise an inductive invariant manually.

7 Discussion

In the introduction, we drew as an inspiration for our work the following classical shape for
specifications of systems and of their properties: spec = init ∧G trans ∧ fair → prop (with
trans using only the X connective). Checking the validity of spec amounts to assessing the
satisfiability of ¬spec = init∧G trans∧fair∧¬prop. Our results then say this satisfiability can
be decided provided ¬spec can written as ψ∧G(φ) and respect the conditions of Theorems 31,
36 or 39.

Beyond the obvious init and trans, one can see that, depending on their shape, fair and
prop will have to be, possibly, split into sub-formulas, and then “dispatched” into either ψ or
φ, or both. As an example, for prop, any combination of an F or G connective and of some
quantification on a variable is acceptable, except for the shape ∃x ·G(P (x)) (as we would
have ¬prop = ∀x · F(¬P (x)), in which case ∀ would not appear as a leaf). Similarly, for a
strong fairness property of the shape G F enabled → G F effect = F G¬enabled ∨G F effect,
the disjunction distributes over the rest of the formula, and then enabled may only contain
existential quantifiers at the leaves and universal ones at the root, and effect may only have
universal quantifiers at the leaves (without any constraint on existential ones). This may
sometimes be restrictive, in which case alternative expressions should be sought. Another
limitation lies in the possible uses of (constant) equality: in our first experiments, we were
often able to abstract it into a dynamic equivalence relation, as we did in Sect. 5.

Now, if the specification falls into one of our fragments, then the bound on the domain is
known (and even exact, without equality). To be sure, this bound grows exponentially but
only in the number of F connectives under a G. This ultimately yields a decision procedure
for the validity of spec. Notice that existing tools, such as our own Electrum [10], can readily
be used to support it, as was shown in Sect. 5.

In the future, we will study ways to augment the expressiveness of our fragments to
address some of the current limitations (e.g. fairness, equality). Apart from trying to extend
the fragments themselves, we will also devise a many-sorted version thereof, in the spirit
of [11,12,1,15], to extend their expressiveness and applicability and to fit the data structuring
features of Electrum [10] more closely. We will also assess our approach on more realistic
case studies. Finally, we will build on our results in the setting of complete, automated
verification for system specification.

References
1 Aharon Abadi, Alexander Rabinovich, and Mooly Sagiv. Decidable fragments of many-sorted

logic. Journal of Symbolic Computation, 45(2):153–172, 2010. doi:10.1016/j.jsc.2009.03.
003.

2 Julien Brunel, David Chemouil, Alcino Cunha, and Nuno Macedo. The Electrum Analyzer:
Model Checking Relational First-Order Temporal Specifications. In 33rd ACM/IEEE In-
ternational Conference on Automated Software Engineering (ASE ’18), Montpellier, France,
September 2018. ACM Press. doi:10.1145/3238147.3240475.

TIME 2019

https://doi.org/10.1016/j.jsc.2009.03.003
https://doi.org/10.1016/j.jsc.2009.03.003
https://doi.org/10.1145/3238147.3240475

15:16 A Bounded Domain Property for an Expressive Fragment of FOLTL

3 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, 1997. doi:10.1007/978-3-642-59207-2.

4 Dov M. Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications, chapter Fragments of first-order temporal logics.
Elsevier, 2003.

5 Ian Hodkinson, Frank Wolter, and Michael Zakharyaschev. Decidable fragments of first-order
temporal logics. Annals of Pure and Applied logic, 106(1-3):85–134, 2000. doi:10.1016/
S0168-0072(00)00018-X.

6 Ian Hodkinson, Frank Wolter, and Michael Zakharyaschev. Monodic Fragments of First-Order
Temporal Logics: 2000–2001 A.D. In Logic for Programming, Artificial Intelligence, and
Reasoning, pages 1–23. Springer, 2001. doi:10.1007/3-540-45653-8_1.

7 Fred Kröger and Stephan Merz. Temporal Logic and State Systems (Texts in Theoretical
Computer Science. An EATCS Series). Springer, 2008.

8 Denis Kuperberg, Julien Brunel, and David Chemouil. On Finite Domains in First-Order
Linear Temporal Logic. In Automated Technology for Verification and Analysis, pages 211–226.
Springer, 2016. doi:10.1007/978-3-319-46520-3_14.

9 Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Professional, 2002.

10 Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg. Light-
weight Specification and Analysis of Dynamic Systems with Rich Configurations. In Founda-
tions of Software Engineering, Seattle, United States, November 2016. doi:10.1145/2950290.
2950318.

11 Timothy Nelson, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. On the finite
model property in order-sorted logic. Technical report, Worcester Polytechnic Institute, 2010.

12 Timothy Nelson, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Toward a
More Complete Alloy. In Abstract State Machines, Alloy, B, VDM, and Z, pages 136–149.
Springer, 2012. doi:10.1007/978-3-642-30885-7_10.

13 Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon
Shoham. Reducing liveness to safety in first-order logic. Proceedings of the ACM Conference
on Principles of Programming Languages (POPL), 2:26, 2017. doi:10.1145/3158114.

14 Oded Padon, Jochen Hoenicke, Kenneth L McMillan, Andreas Podelski, Mooly Sagiv, and
Sharon Shoham. Temporal Prophecy for Proving Temporal Properties of Infinite-State Systems.
In Formal Methods in Computer Aided Design (FMCAD), 2018. doi:10.23919/FMCAD.2018.
8603008.

15 Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. Ivy:
safety verification by interactive generalization. ACM SIGPLAN Notices, 51(6):614–630, 2016.
doi:10.1145/2980983.2908118.

16 Quentin Peyras, Julien Brunel, and David Chemouil. Electrum specification of a toy notifici-
ation system, August 2019. doi:10.5281/zenodo.3369542.

https://doi.org/10.1007/978-3-642-59207-2
https://doi.org/10.1016/S0168-0072(00)00018-X
https://doi.org/10.1016/S0168-0072(00)00018-X
https://doi.org/10.1007/3-540-45653-8_1
https://doi.org/10.1007/978-3-319-46520-3_14
https://doi.org/10.1145/2950290.2950318
https://doi.org/10.1145/2950290.2950318
https://doi.org/10.1007/978-3-642-30885-7_10
https://doi.org/10.1145/3158114
https://doi.org/10.23919/FMCAD.2018.8603008
https://doi.org/10.23919/FMCAD.2018.8603008
https://doi.org/10.1145/2980983.2908118
https://doi.org/10.5281/zenodo.3369542

	Introduction
	Syntax and Semantics of FOLTL
	FOLTL
	Partial Structures

	Preliminary Results
	Axioms of Infinity
	Preliminary Lemmas

	Finite Domain Property
	Core Theorem
	Relaxing the Use of Quantifiers
	Extension with Equality

	Toy Example: a Notification System
	Safety Property
	Liveness Property

	Related Work
	Discussion

