
Brief Announcement: Massively Parallel
Approximate Distance Sketches
Michael Dinitz
Johns Hopkins University, Baltimore, MD, United States
mdinitz@cs.jhu.edu

Yasamin Nazari
Johns Hopkins University, Baltimore, MD, United States
ynazari@jhu.edu

Abstract
Data structures that allow efficient distance estimation have been extensively studied both in
centralized models and classical distributed models. We initiate their study in newer (and arguably
more realistic) models of distributed computation: the Congested Clique model and the Massively
Parallel Computation (MPC) model. In MPC we give two main results: an algorithm that constructs
stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an
algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic
rounds. Along the way, we show that other useful combinatorial structures can also be computed
in MPC. In particular, one key component we use is an MPC construction of the hopsets of [2].
This result has additional applications such as the first polylogarithmic time algorithm for constant
approximate single-source shortest paths for weighted graphs in the low memory MPC setting.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms

Keywords and phrases Distance Sketches, Massively Parallel Computation, Congested Clique

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.42

Related Version The full version of this paper is available at https://arxiv.org/abs/1810.09027.

Funding Supported in part by NSF awards CCF-1464239 and CCF-1535887.

1 Introduction

A common task when performing graph analytics is to compute distances between vertices.
This has motivated the study of shortest path algorithms in essentially every interesting
model of computation. We focus on two models which correspond to modern big-data
graph analytics: Congested Clique [6] and Massively Parallel Computation (MPC) [4]. The
MPC model in particular has recently received significant attention, as it captures many
modern data analytics frameworks such as MapReduce, Hadoop, and Spark. Since these
are important models of distributed storage and computation, and computing distances in
graphs is an important primitive, we have an obvious question: in MPC or Congested Clique,
can we compute distances between nodes sufficiently quickly to support important graph
analytics? While one side effect of our techniques is indeed a state of the art algorithm for
shortest paths in MPC, the focus of this paper is on getting around the limitations of these
models by allowing preprocessing of the (distributed) graph. We will build a data structure
known as approximate distance sketches, which will then let us (approximately) answer any
distance query using at most two rounds of network communication. So our focus is on how
to compute these data structures efficiently, since once they are computed distance estimates
become fast and easy. We show that in both the Congested Clique and the MPC models,
we can compute oracles/sketches which essentially match the best centralized bounds in
time that is only a small polynomial. In MPC, we can go even further and compute slightly
suboptimal sketches in time that is only polylogarithmic.

© Michael Dinitz and Yasamin Nazari;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 42; pp. 42:1–42:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mdinitz@cs.jhu.edu
mailto:ynazari@jhu.edu
https://doi.org/10.4230/LIPIcs.DISC.2019.42
https://arxiv.org/abs/1810.09027
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Massively Parallel Approximate Distance Sketches

Distance Oracles and Sketches. Even in many centralized applications, the time it takes
to compute exact distances in graphs is undesriable, and similarly the memory that it would
take to store all

(
n
2
)
distances is also undesirable. This motivated Thorup and Zwick [5] to

propose a space-efficient data structure which can quickly report an approximation of the true
distance for any pair of vertices. In other words, by spending some time up front to compute
this data structure, any algorithm used in the future can quickly obtain provably accurate
distance estimates. More formally, an approximate distance oracle is said to have stretch t if,
when queried on u, v ∈ V , it returns a value d′(u, v) such that d(u, v) ≤ d′(u, v) ≤ t · d(u, v)
for all u, v ∈ V , where d(u, v) denotes the shortest-path distance between u and v. For any
constant k, Thorup and Zwick’s (centralized) construction has expected size O(kn1+1/k),
stretch (2k − 1), query time O(k), and preprocessing time O(kmn1/k). Also, this data
structure can be “broken up” into n pieces, each of size O(kn1/k logn), so that the estimate
d′(u, v) can be computed just from the piece for u and the piece for v. These are called
distance sketches.

Model. Our main focus is the Massively Parallel Computation, or MPC model. In this
model there is an input of size N which is arbitrarily distributed over N/S machines, each
of which has S = N ε memory for some 0 < ε < 1. Every machine can communicate with
every other machine in the network, but each machine in each round can have total I/O of
at most S. Specifically, for graph problems the total memory N is O(|E|) words. The low
memory setting is the more challenging (but arguably more realistic) setting in which each
machine has O(nγ), γ < 1 memory, which we denote by MPC(nγ).

2 Our Results

We initiate the study of distance sketches in the MPC model. Our techniques also extends to
the Congested Clique and streaming models. Exact results can be found in the full paper. We
first show that distance sketches with the same guarantees as the centralized Thorup-Zwick
distance oracles can be implemented in MPC, but with a polynomial (sublinear) round
complexity. Since such a high round complexity is generally considered impractical, so we
also give a different (but related) algorithm which achieves polylogarithmic round complexity
at the price of larger stretch. More formally,

I Theorem 1. Consider a graph G = (V,E) where m = Ω(kn1+1/k logn), for some integer
k ≥ 2. Then there is an algorithm in MPC(nγ) (with 0 < γ < 1) that constructs Thorup-
Zwick distance sketches with stretch O(k2) and size O(kn1/k logn) and with high probability
completes in O(kγ · (log3 n · log3 k)2 log k) rounds.

As a side effect of our techniques, we immediately get an algorithm for computing
approximate single-source shortest paths (SSSP). We show that we can compute an O(1)-
approximation in only polylogarithmic time under a certain assumption on the density of
the input graph.

3 Techniques

Our main approach is to combine constructions of hopsets with efficient distributed construc-
tions of Thorup-Zwick distance oracles/sketches. In particular, Das Sarma et al. [1] showed
that Thorup-Zwick sketches could be computed in the CONGEST model, but the time
depended on the graph diameter. Roughly speaking, we use hopsets to reduce the diameter of

M. Dinitz and Y. Nazari 42:3

the graph while preserving distances by adding in a carefully chosen set of weighted “shortcut”
edges. We use a hopset construction proposed by Elkin and Neiman [2]. To implement
their algorithm in the MPC model, we need to handle some technical difficulties particularly
when the space per machine is o(n). Not surprisingly, both [1] and [2] use as a fundamental
primitive a “restricted” version of the classical Bellman-Ford shortest-path algorithm that
ends early. Hence the first step for us is implementing this restricted Bellman-Ford in the
MPC model. When implementing restricted Bellman-Ford in low-memory MPC, the main
difficulty is that since the memory at each server is o(n), a single server cannot “simulate” a
node in Bellman-Ford. It takes many machines to store the edges incident on any particular
node. We first show that it is possible to implement Bellman-Ford in low-memory MPC
with very little additional overhead. Once we develop this tool, we argue that the hopsets
of [2]) can be constructed in MPC. Our implementation of Bellman-Ford and this hopset
construction, as well as a few other primitives we develop for low-memory MPC (e.g., finding
minimum or broadcasting on a range of machines), may be of independent interest.

Directly implementing the hopset algorithm of [2] requires a polynomial number of rounds
to obtain polylogarithmic hopbound. Even after using hopsets, we would still need polynomial
time to construct constant stretch distance sketches. We overcome this issue and improve
the running time using two ideas. First, we show that by relaxing the model to allow small
additional total memory (either through extra space per machine or additional machines),
we can run our algorithms in polylogarithmic number of rounds. In other words, the MPC
model is very delicate: a small polynomial amount of extra space allows us to decrease
running times not just by that polynomial, but from polynomial to polylogarithmic. So we
just need to argue that there is a way of obtaining extra memory without actually changing
the model assumptions. This is our second idea: by constructing a spanner we can sparsify
the graph while keeping the memory per machine and number of machines the same. Thus
from the perspective of the spanner, it will appear that we do indeed have “extra” memory.
The idea of sparsifying the input to obtain extra resources has already proved to be powerful
in related contexts (for example, [3] recently used spanners to give a work-efficient PRAM
metric embedding algorithm). To the best of our knowledge, though, this idea has not yet
appeared in the MPC graph algorithms literature.

References
1 M. Dinitz A. Sarma and G. Pandurangan. Efficient distributed computation of distance

sketches in networks. Distributed Computing, 2015.
2 M. Elkin and O. Neiman. Hopsets with constant hopbound, and applications to approximate

shortest paths. In FOCS, 2016.
3 S. Friedrichs and C. Lenzen. Parallel metric tree embedding based on an algebraic view on

moore-bellman-ford. Journal of the ACM (JACM), 2018.
4 P. Koutris P. Beame and D. Suciu. Communication steps for parallel query processing. In

PODS, 2013.
5 M. Thorup and U. Zwick. Approximate distance oracles. Journal of the ACM (JACM), 2005.
6 E. Pavlov Z. Lotker, B. Patt-Shamir and D. Peleg. Minimum-weight spanning tree construction

in O (log log n) communication rounds. SIAM Journal on Computing, 2005.

DISC 2019

	Introduction
	Our Results
	Techniques

