
Brief Announcement: Implementing Byzantine
Tolerant Distributed Ledger Objects
Vicent Cholvi
Universitat Jaume I, Castellón de la Plana, Spain
vcholvi@uji.es

Antonio Fernández Anta
IMDEA Networks Institute, Madrid, Spain
antonio.fernandez@imdea.org

Chryssis Georgiou
University of Cyprus, Nicosia, Cyprus
chryssis@cs.ucy.ac.cy

Nicolas Nicolaou
Algolysis Ltd, Lemesos, Cyprus
nicolas@algolysis.com

Abstract
This work provides a proper formalization for Distributed Ledger Objects (as first defined in [1]), when
processes may be Byzantine. The formal definitions are accompanied by algorithms to implement
Byzantine Distributed Ledgers by utilizing a Byzantine Atomic Broadcast service.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Ledger Object, Byzantine Faults

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.40

Funding This work was co-funded by the European Regional Development Fund and the Republic
of Cyprus through the Research Promotion Foundation (Project: POST-DOC/0916/0090), by
research funds from the University of Cyprus (CG-RA2019), by the Spanish grant TIN2017-88749-R
(DiscoEdge), the Region of Madrid EdgeData-CM program (P2018/TCS-4499), the NSF of China
grant 61520106005, and by the Spanish Ministerio de Educación Cultura y Deporte under grant
PRX18/00163.

1 Introduction

The work in [1] introduced the notion of a Distributed Ledger Object (DLO) in an attempt to
provide a formalization of Distributed Ledgers (blockchains) from a Distributed Computing
point of view. A DLO is a concurrent shared object that stores a totally ordered sequence of
records, and supports two operations: append and get. A record can be seen as an abstraction
of a transaction or a block of transactions. As operations may access the DLO concurrently,
the work in [1] defines eventual, sequential, and linearizable consistency gurantees for DLOs.
These formalisms were independent of the communication medium (message-passing or shared-
memory) and the timing model (synchrony or asynchrony). Three DLO implementations,
one for each consistency guarantee, were specified in [1] for a message-passing asynchronous
model, assuming that clients and servers may crash. However, in existing blockchain systems,
both the servers (e.g., miners) and the clients (e.g., users) could be acting maliciously. To
this respect, in this work we propose implementations where both the clients and the servers
can be Byzantine, i.e., we propose implementations of Byzantine Tolerant linearizable DLOs.

© Vicent Cholvi, Antonio Fernández Anta, Chryssis Georgiou, and Nicolas Nicolaou;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 40; pp. 40:1–40:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/231819246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:vcholvi@uji.es
mailto:antonio.fernandez@imdea.org
mailto:chryssis@cs.ucy.ac.cy
mailto:nicolas@algolysis.com
https://doi.org/10.4230/LIPIcs.DISC.2019.40
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Implementing Byzantine Tolerant DLOs

2 Model

Distributed Ledger Objects. A Distributed Ledger Object (DLO) is a concurrent object
that stores a totally ordered sequence of records (initially empty). A DLO L supports two
operations, L.append() and L.get(), which append a new record to the sequence and return
the whole sequence, respectively [1]. The DLO is implemented by a set of servers that
collaborate running a distributed algorithm. The DLO is used by a set of clients that access
it by invoking append and get operations, which are translated into request and response
messages exchanged with the servers. An operation π is complete in an execution ξ, if both
the request and matching response of π appear in ξ. We say that an operation π1 precedes
an operation π2, or π2 succeeds π1, in an execution ξ if the response event of π1 appears
before the invocation event of π2 in ξ; otherwise the two operations are concurrent.

Failure Model. In this work we assume that processes (servers and clients) can fail arbitrarily,
i.e., we assume that failures are Byzantine. Hence, we assume a Byzantine system in which
any number of clients, and up to f servers can fail arbitrarily. The total number of servers is
at least 3f + 1. We also assume that the messages sent by any process (server or client) are
authenticated, so that messages corrupted or fabricated by Byzantine processes are detected
and discarded by correct processes [3]. Communication channels between correct processes
are reliable but asynchronous.

Byzantine-tolerant DLO. This paper aims to propose algorithms that implement a lin-
earizable DLO L in Byzantine systems. Since Byzantine clients and server can behave
arbitrarily, we define the properties that a DLO must satisfy adapted to Byzantine systems.
In particular, since Byzantine processes may return any arbitrary sequence or append any
record, the properties only consider the actions of correct processes.

Byzantine Strong Prefix (BSP): If two correct clients issue two L.get() operations that
return record sequences S and S′ respectively, then either S is a prefix of S′ or vice-versa.
Byzantine Linearizability (BL): Let G be the set of all complete get operations issued by
correct clients. Let A be the set of complete append operations L.append(r) such that
r ∈ S and S is the sequence returned by some operation L.get() ∈ G. Then linerizability
holds with respect to the set of operations G ∪ A. This property is similar to the one
described in [5] for registers.

In the remainder we say that a DLO is Byzantine Tolerant if it satisfies the properties
BSP and BL in a Byzantine system. Observe that DLOs are oblivious to the syntax and
semantics of the records they hold [1]. Hence, in this paper we do not need to care about
whether the records appended by a Byzantine client are syntactically and semantically valid.

Byzantine Atomic Broadcast: In the algorithms we propose in this paper we use a Byz-
antine Atomic Broadcast (BAB) service for the server communication [2, 3, 4], that satisfies
the following properties: validity, agreement, integrity and total order. Note that the work
in [1] utilized a crash-tolerant Atomic Broadcast (AB) service to implement a crash-tolerant
DLO. The properties assumed here for the BAB service are similar to their counterpart in
the AB service, but applied only to correct processes. Despite the use of a BAB in this work,
additional machinery is required in order to implement a Byzantine DLO and ensure the
satisfaction of properties BSP and BL.

V. Cholvi, A. Fernández Anta, C. Georgiou, and N. Nicolaou 40:3

3 Algorithms for Byzantine-tolerant DLOs

Algorithm 1 API to the operations of a
DLO L, executed by Client p.

1: Init: c← 0
2: function L.get()
3: c← c + 1
4: send request (c, p, get) to ≥ 2f + 1 servers
5: wait resp. (c, i, getResp, S) from f + 1

different servers with the same sequence S
6: return S
7: function L.append(r)
8: c← c + 1
9: send request (c, p, append, r) to at least

2f + 1 different servers
10: wait resp. (c, i, appendResp, ack) from f +1

different servers
11: return ack

Algorithm 2 Byzantine-tolerant DLO;
Code for Server i.
1: Init: Si ← ∅
2: receive (c, p, get) from process p
3: BAB-broadcast(c, p, get, i)
4: upon (BAB-deliver(c, p, get, j)) do
5: if ((c, p, get, -) has been BAB-delivered f +1

times from different servers) then
6: send resp. (c, i, getResp, Si) to p

7: receive (c, p, append, r) from process p
8: BAB-broadcast(c, p, append, r, i)
9: upon (BAB-deliver(c, p, append, r, j)) do

10: if (r /∈ Si) and ((c, p, append, r, -) has been
BAB-delivered at f + 1 different servers) then

11: Si ← Si‖r
12: send resp. (c, i, appendResp, ack) to p

Client Algorithm. The algorithm executed by a client that invokes a get or append operation
on a DLO L is presented in Code 1. An operation starts when the corresponding function
of Code 1 is invoked, and it ends when the matching return instruction is executed. A
Byzantine client p may not follow Code 1 (as it may behave arbitrarily) but still be able to
append a record r in the ledger. So, some correct client may obtain, in the response to a get
operation, a sequence that contains r.

When an operation is invoked, a correct client increments a local counter and then sends
operation requests to a set of at least 2f + 1 servers, to guarantee that at least f + 1 correct
servers receive it. A get operation is completed when the client receives f + 1 consistent
replies and an append is completed when the client receives f+1 replies from different servers.
Both cases guarantee the response from at least one correct server.

Server Algorithm. The algorithm executed by the servers is presented in Code 2. The
algorithm uses the Byzantine Atomic Broadcast service to impose a total order in the
messages shared among the servers. Operations received from clients are BAB-broadcast
using this service, which are eventually BAB-delivered. An operation is processed by a server
only when it has been BAB-delivered f + 1 times (sent by different servers). This implies
that at least one correct server sent it. The properties of the BAB service guarantee that all
correct servers receive the same sequence of messages BAB-delivered, and hence process the
operations at the same point, maintaining their states consistent.

I Theorem 1. The combination of the algorithms presented in Codes 1 and 2 implements a
linearizable Byzantine Tolerant distributed ledger object.

References
1 Antonio Fernández Anta, Kishori M. Konwar, Chryssis Georgiou, and Nicolas C. Nicolaou.

Formalizing and Implementing Distributed Ledger Objects. SIGACT News, 49(2):58–76, 2018.
2 Paulo Coelho, Tarcisio Ceolin Junior, Alysson Bessani, Fernando Dotti, and Fernando Pedone.

Byzantine Fault-Tolerant Atomic Multicast. In DSN 2018, pages 39–50. IEEE, 2018.
3 F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic Broadcast: From Simple Message

Diffusion to Byzantine Agreement. Information and Computation, 118(1):158–179, 1995.
4 Zarko Milosevic, Martin Hutle, and André Schiper. On the Reduction of Atomic Broadcast to

Consensus with Byzantine Faults. In SRDS 2011, pages 235–244, 2011.
5 Achour Mostéfaoui, Matoula Petrolia, Michel Raynal, and Claude Jard. Atomic Read/Write

Memory in Signature-Free Byzantine Asynchronous Message-Passing Systems. Th. Comp.
Syst., 60(4):677–694, 2017.

DISC 2019

	Introduction
	Model
	Algorithms for Byzantine-tolerant DLOs

