
Brief Announcement: Asymmetric Distributed
Trust
Christian Cachin
University of Bern, Switzerland
https://crypto.unibe.ch/cc/
cachin@inf.unibe.ch

Björn Tackmann
DFINITY, Zurich, Switzerland
bjoern.tackmann@alumni.ethz.ch

Abstract
Quorum systems are a key abstraction in distributed fault-tolerant computing for capturing trust
assumptions. They can be found at the core of many algorithms for implementing reliable broadcasts,
shared memory, consensus and other problems. This paper introduces asymmetric Byzantine quorum
systems that model subjective trust. Every process is free to choose which combinations of other
processes it trusts and which ones it considers faulty. Asymmetric quorum systems strictly generalize
standard Byzantine quorum systems, which have only one global trust assumption for all processes.
This work also presents protocols that implement abstractions of shared memory and broadcast
primitives with processes prone to Byzantine faults and asymmetric trust. The model and protocols
pave the way for realizing more elaborate algorithms with asymmetric trust.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Software and
its engineering → Distributed systems organizing principles

Keywords and phrases Quorums, consensus, distributed trust, blockchains, cryptocurrencies

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.39

Related Version A full version of the paper is available athttp://arxiv.org/abs/1906.09314.

Acknowledgements This work has been supported in part by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 780477 PRIViLEDGE.

1 Extended Abstract

Byzantine quorum systems [4] are a fundamental primitive for building resilient distributed
systems from untrusted components. Given a set of nodes, a quorum system captures a
trust assumption on the nodes in terms of potentially malicious protocol participants and
colluding groups of nodes. Quorum systems are at the core of many distributed programming
abstractions.

Traditionally, trust in a Byzantine quorum system for a set of processes P has been
symmetric. In other words, a global assumption specifies which processes may fail, such
as the simple and prominent threshold quorum assumption, in which any subset of P of a
given maximum size may collude and act against the protocol. The most basic threshold
Byzantine quorum system, for example, allows all subsets of up to f < n/3 processes to fail.
Some classic works also model arbitrary, non-threshold symmetric quorum systems [4, 3].

However, trust is inherently subjective. De gustibus non est disputandum. Estimating
which processes will function correctly and which ones will misbehave may depend on personal
taste. A myriad of local choices influences one process’ trust in others, especially because
there are so many forms of “malicious” behavior. Some processes might not even be aware
of all others, yet a process should not depend on unknown third parties in a distributed

© Christian Cachin and Björn Tackmann;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 39; pp. 39:1–39:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://crypto.unibe.ch/cc/
mailto:cachin@inf.unibe.ch
mailto:bjoern.tackmann@alumni.ethz.ch
https://doi.org/10.4230/LIPIcs.DISC.2019.39
http://arxiv.org/abs/1906.09314
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


39:2 Asymmetric Distributed Trust

collaboration. How can one model asymmetric trust in distributed protocols? Can traditional
Byzantine quorum systems be extended to subjective failure assumptions? How do the
standard protocols generalize to this model?

In this paper, we answer these questions and introduce models and protocols for asymmet-
ric distributed trust. We formalize asymmetric quorum systems for asynchronous protocols,
in which every process can make its own assumptions about Byzantine faults of others.
We introduce several protocols with asymmetric trust that strictly generalize the existing
algorithms, which require common trust.

Interest in consensus protocols based on Byzantine quorum systems has surged recently
because of their application to permissioned blockchain networks [2]. A middle ground
between permissionless blockchains based on Proof-of-Work protocols and permissioned
ones has been introduced by the blockchain networks of Ripple (https://ripple.com) and
Stellar (https://stellar.org). Their stated model for achieving network-level consensus
uses subjective trust in the sense that each process declares a local list of processes that it
“trusts” in the protocol.

Consensus in the Ripple blockchain is executed by its validator nodes. Each validator
declares a Unique Node List (UNL), which is a “list of transaction validators a given
participant believes will not conspire to defraud them;” but on the other hand, “Ripple
provides a default and recommended list which we expand based on watching the history
of validators operated by Ripple and third parties.” Many questions have therefore been
raised about the kind of decentralization offered by the Ripple protocol. This debate has
not yet been resolved. Stellar was created as an evolution of Ripple that shares much of the
same design philosophy. The Stellar consensus protocol [5] introduces federated Byzantine
quorum systems (FBQS); these bear superficial resemblance with our asymmetric quorum
systems but differ technically. Stellar’s consensus protocol uses quorum slices, which are
“the subset of a quorum that can convince one particular node of agreement.” In an FBQS,
“each node chooses its own quorum slices” and “the system-wide quorums result from these
decisions by individual nodes”. However, standard Byzantine quorum systems and FBQS are
not comparable because (1) an FBQS when instantiated with the same trust assumption for
all processes does not reduce to a symmetric quorum system and (2) existing protocols do
not generalize to FBQS.

Understanding how such ideas of subjective trust, as manifested in the Ripple and Stellar
blockchains, relate to traditional quorum systems is the main motivation for this work. Our
protocols for asymmetric trust generalize the well-known, classic algorithms in the literature
and therefore look superficially similar. They are much more powerful, however.

The contributions as detailed in the full paper [1] are as follows:
We introduce asymmetric Byzantine quorum systems formally as an extension of standard
Byzantine quorum systems and discuss some of their properties.
We show two implementations of a shared register, with single-writer, multi-reader regular
semantics, using asymmetric Byzantine quorum systems.
We examine broadcast primitives in the Byzantine model with asymmetric trust. In
particular, we define and implement Byzantine consistent and reliable broadcast protocols.
The latter primitive is related to a “federated voting” protocol used by Stellar consensus [5].

Asymmetric quorum systems

Consider a system of n processes P = {p1, . . . , pn} that communicate with each other.
Byzantine quorum systems have been introduced by Malkhi and Reiter [4] with respect to a
fail-prone system F ⊆ 2P , a collection of subsets of P , none of which is contained in another,

https://ripple.com
https://stellar.org


C. Cachin and B. Tackmann 39:3

such that some F ∈ F with F ⊆ P is called a fail-prone set and contains all processes that
may at most fail together in some execution [4]. A fail-prone system captures an assumption
on the possible failure patterns that may occur. We let A∗ = {A′|A′ ⊆ A, A ∈ A}.

I Definition 1. A Byzantine quorum system for F is a collection of sets of processes Q ⊆ 2P ,
where each Q ∈ Q is called a quorum, such that the following properties hold:
Consistency: The intersection of any two quorums contains at least one process that is not

faulty.
Availability: For any set of processes that may fail together, there exists a disjoint quorum

in Q.
This is also known as a Byzantine dissemination quorum system [4]. The Q3-condition [4, 3]
generalizes the assumption that n > 3f are needed to tolerate f faulty ones in Byzantine
protocols. A fail-prone system F satisfies the Q3-condition, abbreviated as Q3(F), whenever
it holds ∀F1, F2, F3 ∈ F : P 6⊆ F1 ∪ F2 ∪ F3. It is well-known [4] that a Byzantine quorum
system for F exists if and only if Q3(F).

With asymmetric trust, every process is free to make its own trust assumption and to ex-
press this with a fail-prone system. Hence, an asymmetric fail-prone system F = [F1, . . . ,Fn]
consists of an array of fail-prone systems, where Fi denotes the trust assumption of pi.

I Definition 2. An asymmetric Byzantine quorum system for F is an array of collections of
sets Q = [Q1, . . . ,Qn], where Qi ⊆ 2P for i ∈ [1, n]. The set Qi ⊆ 2P is called the quorum
system of pi and any set Qi ∈ Qi is called a quorum (set) for pi. It satisfies:
Consistency: The intersection of two quorums for any two processes contains at least one

process for which both processes assume that it is not faulty, i.e., ∀i, j ∈ [1, n],∀Qi ∈
Qi,∀Qj ∈ Qj ,∀Fij ∈ Fi

∗ ∩ Fj
∗ : Qi ∩Qj 6⊆ Fij .

Availability: For any process pi and any set of processes that may fail together according
to pi, there exists a disjoint quorum for pi in Qi, i.e., ∀i ∈ [1, n],∀Fi ∈ Fi : ∃Qi ∈ Qi :
Fi ∩Qi = ∅.

The existence of asymmetric quorum systems can be characterized with a property that
generalizes the Q3-condition for the underlying asymmetric fail-prone systems as follows.
Namely, an asymmetric fail-prone system F satisfies the B3-condition, abbreviated as B3(F),
whenever it holds that ∀i, j ∈ [1, n],∀Fi ∈ Fi,∀Fj ∈ Fj ,∀Fij ∈ Fi

∗∩Fj
∗ : P 6⊆ Fi∪Fj ∪Fij .

I Theorem 3. An asymmetric fail-prone system F satisfies B3(F) if and only if there exists
an asymmetric quorum system for F.

References
1 Christian Cachin and Björn Tackmann. Asymmetric Distributed Trust. e-print,

arXiv:1906.09314 [cs.DC], 2019. arXiv:1906.09314.
2 Christian Cachin and Marko Vukolic. Blockchain Consensus Protocols in the Wild. In

Andréa W. Richa, editor, Proc. 31st Intl. Symposium on Distributed Computing (DISC 2017),
volume 91 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–1:16, 2017.
doi:10.4230/LIPIcs.DISC.2017.1.

3 Martin Hirt and Ueli Maurer. Player Simulation and General Adversary Structures in Perfect
Multi-Party Computation. Journal of Cryptology, 13(1):31–60, 2000.

4 Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Distributed Computing,
11(4):203–213, 1998.

5 David Mazières. The Stellar Consensus Protocol: A Federated Model for
Internet-level Consensus. Stellar, available online, https://www.stellar.org/papers/
stellar-consensus-protocol.pdf, 2016.

DISC 2019

http://arxiv.org/abs/1906.09314
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf

	Extended Abstract

