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Abstract
We study distributed algorithms for some fundamental problems in data summarization. Given a
communication graph G of n nodes each of which may hold a value initially, we focus on computing∑N

i=1 g(fi), where fi is the number of occurrences of value i and g is some fixed function. This
includes important statistics such as the number of distinct elements, frequency moments, and the
empirical entropy of the data.

In the CONGEST model, a simple adaptation from streaming lower bounds shows that it requires
Ω̃(D + n) rounds, where D is the diameter of the graph, to compute some of these statistics exactly.
However, these lower bounds do not hold for graphs that are well-connected. We give an algorithm
that computes

∑N

i=1 g(fi) exactly in τG · 2O(
√

log n) rounds where τG is the mixing time of G. This
also has applications in computing the top k most frequent elements.

We demonstrate that there is a high similarity between the GOSSIP model and the CONGEST
model in well-connected graphs. In particular, we show that each round of the GOSSIP model
can be simulated almost perfectly in Õ(τG) rounds of the CONGEST model. To this end, we
develop a new algorithm for the GOSSIP model that 1± ε approximates the p-th frequency moment
Fp =

∑N

i=1 f
p
i in Õ(ε−2n1−k/p) rounds 1, for p ≥ 2, when the number of distinct elements F0 is at

most O
(
n1/(k−1)). This result can be translated back to the CONGEST model with a factor Õ(τG)

blow-up in the number of rounds.
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1 Introduction

Motivation. Analyzing massive datasets has become an increasingly important and chal-
lenging problem. Collecting the entire data to one single machine is usually infeasible due
to memory, I/O, or network bandwidth constraints. Furthermore, in many cases, data are
distributed over the network and we hope to aggregate some of their properties efficiently.
In this work, we consider several fundamental data summarization problems in distributed
networks, specifically in the CONGEST and GOSSIP models.

In this problem, we have a graph G = (V,E) of n nodes. Each node v in the graph may
hold a value val (v) in the range {1, . . . , N} ∪ {NULL} where NULL simply means that the
node does not hold a value. If val (v) = NULL, we call v an empty node.

1 Õ omits polylog(n) factors.

© Hsin-Hao Su and Hoa T. Vu;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/231819239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:suhx@bc.edu
mailto:vuhd@bc.edu
https://doi.org/10.4230/LIPIcs.DISC.2019.33
https://arxiv.org/abs/1908.00236
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


33:2 Distributed Data Summarization in Well-Connected Networks

We often use the notation [N ] := {1, . . . , N}. Let fi be the number of nodes that hold
value i, i.e., fi = |{v ∈ V : val (v) = i}|. We want to compute

∑N
i=1 g(fi) for some fixed

function g. To demonstrate some important cases, consider the following examples.
Consider g(fi) = 1 if fi > 0 and 0 otherwise. This corresponds to the problem of counting

the number of distinct elements (or computing the 0-th frequency moment F0). The problem
may arise in the following situation: Each node stores a version of a file (e.g. the hash of a
blockchain), and we want to know how many different versions there are in the network.

If g(fi) = fpi for some fixed p = 2, 3, . . ., then this corresponds to the problem of computing
the p-th frequency moment Fp. We note that Fp is a basic, yet very important statistic of
a dataset. F2 measures the variance and could be used to estimate the size of a self-join
in database applications. For higher p, Fp measures the skewness of the dataset (see [2]).
Note that F1 can be computed in O(D) rounds in the CONGEST model by aggregating
along a breath-first-search (BFS) tree (in the GOSSIP model F1 can be computed exactly in
O(logn) rounds).

Another example is g(fi) = −(fi/F1) · log(fi/F1). In this case, the sum is the empirical
entropy of the data. Computing the empirical entropy is motivated by network applications
such as detecting anomalies [20,40,42].

Models. We now give a formal description of the CONGEST and GOSSIP models, where
the running time of an algorithm is measured by the number of rounds.

I Definition 1. In the CONGEST model, we are given a graph G = (V,E) of n nodes,
in each synchronous round, each node can talk (send and receive message) to each of its
neighbors and then perform local computations. Each message is restricted to be at most
O(logn) bits.

I Definition 2. In the GOSSIP(λ) model with n nodes, in each synchronous round, each
node u samples a node t(u) from a distribution that satisfies the following: For any node v
and any subset of nodes Z where u /∈ Z,

Pr
(
t(u) = v

∣∣∣∣∣∧
z∈Z

t(z)
)
∈
[

1− λ
n

,
1 + λ

n

]
.

In the above, “
∧
z∈Z t(z)” means conditioning on any assignment of each t(z) for z ∈ Z.

Then, u can PUSH a message of size O(logn) to t(u) or PULL a message of size O(logn)
from t(u). Then, after performing some local computations, it proceeds to the next round.
We refer GOSSIP model as the GOSSIP(0) model.

1.1 Our results
We organize our main results into three categories: a) results in the CONGEST model,
b) an emulation of the GOSSIP model in the CONGEST model, and c) results in the
GOSSIP model.

Results in the CONGEST model. We briefly show how to adapt streaming algorithms
to approximate Fp (for p = 0, 2, 3, . . .) in the CONGEST model. We also demonstrate some
lower bounds and conditional lower bounds that give evidence that such algorithms are
optimal or near-optimal.

The lower bounds show that computing Fp exactly for p = 0, 2, 3, . . . requires Ω̃(D + n)
rounds and approximating Fp within a constant factor requires polynomial rounds in n for
p ≥ 3. Roughly speaking, the hard instances in the CONGEST model are graphs with a small
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balanced cut of O(1) size that causes an information bottleneck. However, such bottleneck
does not occur in graphs that are well-connected. Our first main result aims to answer the
following question: Could one design more efficient algorithms for well-connected graphs?
We give a positive answer to this question.

By using the permutation routing algorithms of Ghaffari et al. [15] (later improved by
Ghaffari and Li [16]), we show that there exists an algorithm running in τG ·2O(

√
logn) rounds

that computes
∑N
i=1 g(fi) for all fixed and computable functions g with high probability

(w.h.p.) 2. This includes all the aforementioned quantities such as the number of distinct
elements, higher frequency moments, and the empirical entropy. Thus, if the graph has
small mixing time such as expanders [19,23], where τG = polylog(n), then we obtain a much
more efficient sub-polynomial in n algorithm compared to the adaptation of the streaming
counterpart.

I Theorem 3 (Main result 1). There exists an algorithm that computes
∑N
i=1 g(fi) exactly

for all (fixed and computable) functions g in the CONGEST model in τG · 2O(
√

logn) rounds
w.h.p.

Our algorithm can also easily be extended to find the top k frequent elements in O(k) +
τG · 2O(

√
logn) rounds.

From CONGEST to GOSSIP. The lower bounds do not apply directly to the GOSSIP
model either. This is because for any balanced cut of the nodes, one expects O(n) messages
to be sent across in one round. Moreover, the expected communication degree per node in
the GOSSIP model is O(1). Intuitively, the graph formed by the communication pattern in
the GOSSIP model is similar to an expander graph.

In fact, we show that well-connected graphs can emulate the GOSSIP model efficiently.
In particular, one round of the GOSSIP (1/ poly(n)) model can be emulated in τG ·polylog(n)
rounds in the CONGEST model where the underlying graph is G. Therefore, any al-
gorithm that works in the GOSSIP (1/ poly(n)) model can be turned into an algorithm in
the CONGEST model with an Õ(τG) factor blow-up.

Consider our results in the CONGEST model. The permutation routing algorithms of [15]
and [16] introduce a super-logarithmic factor, 2O(

√
logn), on top of the mixing time. It

becomes the bottleneck in graphs with small mixing times (e.g., expanders). Improving the
permutation routing algorithm directly yields improvements to our results in the CONGEST
model (and many other problems). However, it is unclear if it can be improved. This
emulation result serves as an alternative route to circumvent the 2O(

√
logn) factor, if one

develops efficient GOSSIP algorithms.

I Theorem 4 (Main result 2). For λ = 1/ poly(n), one round of the GOSSIP(λ) model can be
emulated in Õ(τG) rounds in the CONGEST model where G is the connected graph denoting
the underlying network.

We believe that this emulation result may be of independent interest. Jelasity et al. [27]
studied how to implement the gossip-based peer sampling service empirically. Our result is
an additional way to implement the service with theoretical guarantees.

2 We consider 1− 1/poly(n) as high probability.
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33:4 Distributed Data Summarization in Well-Connected Networks

Table 1 Results summary for computing frequency moments Fp. (*) can also be used to compute∑
i
g(fi) for all fixed and computable functions g.

Number of rounds Assumption Approximation

CONGEST τG · 2O(
√

log n) (*) Exact

O(ε−2τG · polylogn) F0 ≤ O(n1/(p−1)) 1± ε

GOSSIP O(ε−2 · n1−k/p · polylogn) F0 ≤ O(n1/(k−1)) 1± ε

Results in the GOSSIP model. Motivated by our emulation result, we develop algorithms
for the GOSSIP model. In particular, we are interested in the following question: Suppose the
number of non-empty nodes are sublinear in n. Could we take advantage of the computational
power of the empty nodes?

Suppose that the number of non-empty nodes is at most O(n1/(k−1)) (or more generally,
F0 ≤ O(n1/(k−1))). We show that for any p ≥ 2, Fp can be approximated within a 1 ± ε
factor in O(ε−2n1−k/p log2 n) rounds with high probability.

I Theorem 5 (Main result 3). If F0 = O(n1/(k−1)) for some integer 2 ≤ k ≤ p, then there
exists an algorithm that approximates Fp up to a 1± ε factor in O(ε−2n1−k/p log2 n) rounds
in the GOSSIP (1/nc) model, for some sufficiently large constant c, w.h.p.

The GOSSIP (1/nc) model will incur a ±1/ poly(n) additive error which we consider
insignificant. Since F0 ≤ n, we have an algorithm that approximates F2 in Õ(ε−2) rounds by
setting k = 2. When k > 2, the empty nodes serve as the extra computation power to solve
the problem. In such scenarios, we are able to obtain running time that is not known to be
achievable by adapting the streaming counterpart. For example, when k = 3, F0 = O(n1/2),
we may approximate F3 within a constant factor in polylog(n) rounds. Direct adaption of
known streaming algorithms [2, 3, 36] requires super-logarithmic rounds, even in the case
where F0 = O(n1/2).

Combining Theorem 5 and Theorem 4 with k = p, we have the following corollary.

I Corollary 6. If F0 = O(n1/(p−1)), then there exists an algorithm in the CONGEST model
that approximates Fp up to a 1± ε factor in Õ(ε−2 · τG) rounds w.h.p.

1.2 Related work and preliminaries
Related work. In the distributed setting, Kuhn et al. [33] studied the problem of finding
the mode, i.e., the most frequent element, in the CONGEST model. Let D is the diameter
of the graph, and f∗ is the largest number of occurrences among the values. They gave
an algorithm that uses O(D + F2/f

∗ · logF0) rounds. They also briefly explained how to
implement streaming algorithms for approximating F0 and F2 in the CONGEST models.
Also related to data summarization, Kuhn et al. [34] designed selection algorithms in the
CONGEST model.

In the data stream model, each stream token (i, x) corresponds to the update fi ← fi +x.
The problem of approximating the number of distinct elements F0 and frequency moments Fp
have been extensively studied. An incomplete list includes [2–4,14,18,24,25,29,41]. Roughly
speaking, the space complexity for approximating Fp in the data stream model is Õ(ε−2)
for 0 ≤ p ≤ 2 and Õ(ε−2n1−2/p) for p ≥ 2. Furthermore, it is known that approximating
F∞ (or identifying the mode) is not possible in sublinear space. In the data stream model,
researchers have also studied the problem of approximating the entropy [9, 10,22].
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We will briefly discuss the similarities between the data stream model and the CONGEST
model. Roughly speaking, since streaming algorithms use little memory, they can be adapted
to the CONGEST model by passing the memory state of the corresponding algorithm along
the breadth-first-search tree. Similarly, lower bounds from streaming algorithms literature
can also be translated into lower bounds in the CONGEST model. Data aggregation problems
have also been studied in directed networks [35].

There is also a rich literature in the GOSSIP model started by the work of [12]. Some
examples include spreading message [13,30,38], computing the sum and average [11,31,32],
renaming [17], and quantile computation [21].

Preliminaries. We introduce basic notations and algorithmic building blocks in the
CONGEST model.

To ease our presentation, we assume N = O(poly(n)). In our algorithms, we often want
to learn about the sum of all the values (or hash values, indicator variables) held by the
nodes; this can be done in O(D) rounds. Another algorithmic primitive, based on downcasts
and upcasts, is to broadcast the k smallest values in O(D + k) rounds.

We define the mixing time similarly to [15]. A lazy random walk is a random walk in
which at each step, we stay at the same node with probability 0.5 and move to a random
neighbor with probability 0.5. Lazy random walk ensures the existence of a unique stationary
distribution (i.e., the walk is aperiodic). From now on, we simply refer to a lazy random
walk as a random walk.

Let P tu = (P tu(v1), . . . , P tu(vn)) ∈ [0, 1]n denotes the probability distribution on the nodes
after t steps of a lazy random walk that starts at u. A crucial property of a random walk is
that it will converge to the stationary distribution (deg(v1)/2m, . . . ,deg(vn)/2m). Define
the mixing time τG to be the minimum t such that for any starting node u and any node vi,∣∣∣∣P tu(vi)−

deg(vi)
2m

∣∣∣∣ ≤ deg(vi)
2mn .

Using an O(D)-round pre-proscessing, we can assume that each node has a unique ID in
[n]. Suppose we want the nodes in a graph to have unique IDs in [n]. We can elect a leader
and build a breadth-first-search (BFS) tree that is rooted at the leader in O(D) rounds [37].
Each node u can learn about the number of nodes in Tv where v is a child of u and Tv is the
subtree that is rooted at v. This is done by aggregating the size from the leaves upward. It
is then straightforward to assign the IDs to the nodes based on the depth-first-search (DFS)
ordering. Specifically, the root notifies each of its children v the range of the IDs in Tv, based
on the DFS ordering, and then recurse on Tv. From now on, we can refer to the nodes by
their IDs, i.e., ID(v) = v.

We will also make use of hash functions. An O(1)-wise independent hash function
h : [a]→ [b] where a and b are at most poly(n) can be stored in O(logn) bits. Hence, if we
need to use a hash function, a leader can broadcast such hash function (using a BFS tree) in
O(D + logn) rounds in the CONGEST model and O(logn) rounds in the GOSSIP model.

2 Algorithms in the CONGEST Model

2.1 Approximation algorithms
Upper bounds. We show that we can adapt the streaming algorithms given by Bar-Yossef
et al. [4] (for approximating F0) and by Alon et al. [2] (for approximating Fp, where p ≥ 2)
to the CONGEST model (see the appendix in our full version [39]). This is not of particular

DISC 2019
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novelty though we need some careful pipelining arguments to optimize the number of rounds.
Kuhn et al. [33] also briefly outlined similar results. However, the exact round-complexity
for a good approximation w.h.p. is not very clear from their paper.

I Theorem 7. There exists an O(D + ε−2 logn)-round algorithm in the CONGEST model
that computes a 1± ε approximation of F0 and F2 w.h.p. Furthermore, for p > 2, there exists
an O(D+ ε−2 min(n,N)1−1/p logn)-round algorithm that computes a 1± ε approximation of
Fp w.h.p.

Lower bounds. We show that the dependence on ε is tight via a conditional lower bound.
Moreover, computing Fp exactly requires Ω̃(n) rounds. The lower bounds are obtained
by adapting the existing streaming lower bounds to the CONGEST model. Due to space
constraint, we refer to the appendix in our full version for the discussion.

I Theorem 8. We have the following lower bounds in the CONGEST model.
If the conjecture in [8] holds, then approximating Fp (for fixed p 6= 1) up to a 1± ε factor
requires Ω(D + ε−2/ logn) rounds.
A (1± 0.1)-approximation of Fp, for p > 2, requires Ω

(
D +

(
N1− 2

p + n
1−2/p
1+1/p

)
/ logn

)
rounds.
Computing Fp exactly requires Ω(D + n/ logn) rounds.

Hence, we cannot expect a sublinear algorithms (in terms of N,n) when ε � 1/
√
n or

when we want to obtain the exact answer. The lower bounds arise in graphs with a small
balanced cut which causes an information bottleneck. This observation motivates us to
design an exact algorithm when the graph is well-connected.

2.2 An exact algorithm in near mixing-time
In this subsection, we show that it is possible to beat the lower bounds and achieve an exact
algorithm in sublinear time if the graph has fast mixing time. For example, expander graphs
are sparse and have O(polylogn) mixing time.

Suppose each node has a set of messages (of size polylog(n)) each of which has a destination
that is another node. In parts of our algorithms, we want to route messages in a small
number of rounds. We rely on the following routing algorithm in the CONGEST model that
uses τG · 2O(

√
logn) rounds. We note that 2O(

√
logn) is more than polylogn but smaller than

any nε for ε > 0. Also note that D = O(τG). Let deg(v) be the degree of v in G.

I Theorem 9 ( [16], [15]). If each node of G is the source and the destination of at most
deg(v) · 2O(

√
logn) messages, then there is a randomized algorithm in the CONGEST model

that delivers all the messages in τG · 2O(
√

logn) rounds w.h.p.

We also rely on the idea of sorting networks. Recall that we refer to the nodes by their
unique IDs in [n]. In a sorting network, in each step r, the sorting network will pick a set
of disjoint pairs of nodes. We use val (x, r) to denote the value that node x holds in the
beginning of step r. For each pair x and y (where x < y) that is picked, x will keep the smaller
value min(val (x, r) , val (y, r)) and y will keep the larger value max(val (x, r) , val (y, r)). We
treat NULL as −∞. The sorting network can be constructed, solely based on n, so that after
t = O(logn) steps, the values are sorted [1]. That is if x < y, then val (x, t) ≤ val (y, t).

In the CONGEST model, each node can generate the sorting network (note that the
construction of the sorting network is independent of the topology of G and the values held
by the nodes). Furthermore, each step can be simulated by invoking Theorem 9. Thus, we
have the following.
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I Lemma 10. In the CONGEST model, we can sort the nodes’ values in τG · 2O(
√

logn)

rounds w.h.p.

We now complete the proof of our first main result.

Proof of Theorem 3. We now use val (v) to refer to the value that v holds after sorting.
We say a node v is a head or a tail if val (v) 6= −∞ and its ID is the smallest or the largest
respectively among the IDs of the nodes that hold the value val (v). A node v can tell that
if it is a head or a tail by checking with the nodes v + 1 and v − 1 respectively using the
routing algorithm in Theorem 9. We use head (i) and tail (i) to denote the IDs of the head
and the tail of value i respectively.

Now, every node that is not a head or a tail marks its value as −∞. Each remaining
node forms a token consisting of its value, ID, and whether if it is a head or a tail (or both).
We then use sorting networks again to sort the values in the graph. We will also swap the
tokens if two nodes swap their values. Afterward, the head and the tail tokens of a value i
will be at some two nodes v and v + 1 (or just at a node v if fi = 1). To this end, each node
v that holds a head token (that is not also a tail token) with value i will check with nodes
v + 1 and v − 1, using the routing algorithm, to collect tail (i) since either v + 1 or v − 1
must have the tail token of i. Now, v can compute g(fi) = g(tail (i)− head (i) + 1) and set
this as its value. All the nodes that do not hold a head token set their values to 0. We then
compute

∑N
i=1 g(fi) using the BFS tree in O(D) rounds. J

The algorithm above is more robust compared to the AMS sketch since it can handle all
fixed and computable functions g. The AMS sketch cannot guarantee sublinear space in the
streaming model (or sublinear time in the CONGEST model) for many functions [5–7]. The
above algorithm also immediately leads to an algorithm that finds the top k frequent elements.

Finding the top k frequent elements. At the end of the above algorithm, the occurrence
of each value i is held by some node v. Recall we can find the top k elements in the graph
using O(D + k) rounds via upcasts. This immediately leads to the following result.

I Theorem 11. There exists an algorithm that finds the top k elements (along with their
occurrences) in the CONGEST model in O(k + τG · 2O(

√
logn)) rounds w.h.p.

3 Emulation of GOSSIP Model in the CONGEST Model

In Section 2, we have shown that the moments can be computed exactly in τG · 2O(
√

logn)

rounds. If the permutation routing algorithm can be improved to polylog(n) rounds, then the
running time of our algorithms would be improved to Õ(τG) rounds. Whether the 2O(

√
logn)

factor can be improved to polylog(n) is an intriguing open question.
Instead of tackling the complexity of permutation routing, in this section, we show that

one round of the GOSSIP model can be emulated almost-perfectly in Õ(τG) rounds in the
CONGEST model. Therefore, if there is a polylog(n)-round algorithm in the GOSSIP model,
it implies a Õ(τG) rounds algorithm in the CONGEST model. In Section 4, we present efficient
algorithms in the GOSSIP model when F0 is small (or when the number of empty nodes is
large) which can be translated back to the CONGEST model using the emulation result in
this section.

DISC 2019
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Recall that P tu = (P tu(v1), . . . , P tu(vn)) ∈ [0, 1]n denotes the probability distribution on
the nodes after t steps of a lazy random walk that starts at u (see Section 1.2). Given λ, we
let τG(λ) be the smallest t such that for any starting node u and any node vi,∣∣∣∣P tu(vi)−

deg(vi)
2m

∣∣∣∣ ≤ λ.
Note that if λ = 1/ poly(n) then τG(λ) = O(τG) [15, Definition 2.1].

We will run several random walks in parallel. The following lemma from [15] shows that
the parallel random walks can be performed efficiently in the CONGEST model.

I Lemma 12 ( [15], Lemma 2.5). Let G = (V,E) be an n-node graph and let t ≥ 1 be a
positive integer. Assume that we perform T = O(poly(n)) steps of a collection of independent
random walks in parallel. If each node u ∈ V is the starting node of at most t ·deg(u) random
walks, w.h.p., the T steps of all the random walks can be performed in O((t + logn) · T )
rounds in the CONGEST model.

The main technical difficulty of the emulation lies in the fact that the stationary distribu-
tion is not necessarily uniform in general graphs. If G is regular, we could let each node u
start a random walk that runs for O(τG) steps. The probability that u ends at each node
is (nearly) uniform. If it ends at v then we set t(u) = v. Moreover, by Lemma 12, all the
random walks can be performed simultaneously in Õ(τG) rounds.

In irregular graphs, such approach does not work because the stationary distribution
is not uniform. One remedy is to regularize the random walk (i.e. adding self-loops to
non-maximum degree nodes). However, this may significantly increase the mixing time of the
graph (e.g., a star graph). In the following, we give an emulation algorithm whose running
time is within a polylog(n) factor of the mixing time.

For each node u in G, we split it into deg(u) compartments. When a random walk enters
a node, it is assigned randomly to one of its compartments. There are 2m compartments in
G in total. We outline the emulation algorithm below.

1. Let k = b1.5m/nc. Each node creates k destination tokens and distributes them over the
compartments in G so that each compartment contains at most one destination token.
Now n · k ≈ 1.5m compartments are filled with tokens.

2. Each node sends out a source token. Each source token starts a random walk to distribute
itself randomly over the compartments at the end. If the source token of node u ends in
a compartment with the destination token of some node v, we set t(u) = v.

3. Route the message between u and t(u) for each u simultaneously.

We explain how to implement each step in details.

Step 1. Each node u creates a destination token (u, k) initially. The first component of the
token is its identity while the second component of the token is its multiplicity. The goal
is to split the tokens and distribute them across the compartments so that all tokens have
multiplicity of 1 and each compartment holds at most one token. We divide Step 1 into the
splitting phase and the distributing phase.

The splitting phase is further divided into dlog ke stages. At the beginning of each stage,
if W > 1, each token (u,W ) is split into two tokens (u, dW/2e) and (u, bW/2c). Then all
tokens perform τG steps of random walks.
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Figure 1 Illustration of Step 2. The random walk of u’s source token ends in the compartment
containing the destination token of v4. Thus, t(u) = v4.

Figure 2 Illustration of Step 3. u1, u2, u3 will follow the paths taken by the destination tokens of
v back to v. The paths may overlap. W.h.p. every edge is contained in at most O(logn) paths.

We show that w.h.p., there are at most O(logn) tokens per compartment at the end of
each stage. Given a stage, the probability that a token ends up in a given compartment in
node v is at most(

deg(v)
2m + 1

2mn

)
· 1

deg(v) ≤
1
m
.

Since there are at most k · n ≤ 1.5m tokens, there are at most O(1) tokens ending in a
compartment in expectation. By standard Chernoff and union bound argument, w.h.p. there
are at most O(logn) tokens in each compartment.

Moreover, since each node u holds at most deg(u) · O(logn) tokens at the beginning
of each stage, the random walks can be performed in parallel in O(τG · logn) rounds by
Lemma 12. Therefore, the splitting phase uses O((log k) · (τG · (logn))) = Õ(τG) rounds. At
the end of the splitting phase, the multiplicity of each token is one. Moreover, w.h.p. each
compartment contains at most O(logn) tokens.

In the distributing phase, a compartment containing more than one token will start the
random walks on all except one of its token for τG(0.1/2m) steps. Again, by Lemma 12, this
can be done simultaneously for all nodes in O(τG · logn) rounds. At the end of the random
walks, we say a token succeeds if it ends at a compartment without any other tokens. If a
token does not succeed, it will go back to the origin. The process is repeated until there is no
compartment containing more than one token. Since there are at most n · k ≤ 1.5m tokens,
at most 1.5m compartment can be occupied. Since we run the random walks for τG(0.1/2m)
steps, the probability that a random walk ends at a specific compartment is at most 1.1/2m.
Thus, the probability that a token does not succeed is at most (1.5m) · (1.1/(2m)) = 1.65/2.
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Therefore, a token will succeed w.h.p. after at most O(logn) trials. By a union bound
over the tokens, w.h.p. all tokens succeed after O(logn) trials. The total running time is
O(logn · (τG logn)) = Õ(τG).

Step 2. Each node u creates a source token. The tokens start to perform random walk for
τG(λ′) steps, where λ′ = min(λ/(8m), 0.1/m) (see Figure 1). If the source token of u ends
up in one out of the k compartments with a destination token of v, t(u) will be set to v.
Otherwise, if it ends up in a compartment without any destination tokens, it will restart the
random walk. The process will be repeated until the source token ends up in a compartment
with some destination token.

By our choice of λ′, the probability that a token ends at a specific node is at least
0.9/(2m). Therefore, the probability that a token successfully ends up in a compartment
with a destination token after the random walk is at least

nk · 0.9
2m ≥ (1.5m− n) · 0.9

2m ≥ (1.5m−m− 1) · 0.9
2m ≥

(
1
4 −

1
2m

)
· 0.9 ≥ 0.9/8 .

The second inequality follows from m ≥ n− 1 and the third inequality holds for m ≥ 4.
Thus, the number of random walks a token needs to perform until it ends up at a node with
some destination token is at most O(logn) w.h.p. By taking a union bound over all the n
tokens, we conclude that w.h.p. every token performs at most O(logn) random walks. The
random walks can be performed simultaneously in O(τG · logn) rounds, so w.h.p. the total
number of rounds is O(τG · log2 n).

Next, we show that given two nodes u, v, Pr(t(u) = v) ∈ [(1− λ)/n, (1 + λ)/n]. Let Ev
denote the event that the source token of u ends up in a compartment with a destination
token of v. Let E denote the event that the source token of u ends up in a compartment
with some destination token.

By our choice of τ(λ′), we have that for all v, Pr(Ev) ∈
[
k

2m − kλ
′, k

2m + kλ′
]
and

Pr(E) ∈
[
n
(
k

2m − kλ
′) , n ( k

2m + kλ′
)]
. Therefore,

k
2m − kλ

′

n
(
k

2m + kλ′
) ≤ Pr(t(u) = v) ≤

k
2m + kλ′

n
(
k

2m − kλ′
)

1
n
· 1− 2mλ′

1 + 2mλ′ ≤ Pr(t(u) = v) ≤ 1
n
· 1 + 2mλ′

1− 2mλ′
1
n
· (1− 8mλ′) ≤ Pr(t(u) = v) ≤ 1

n
· (1 + 8mλ′) when λ′ is sufficiently small

1
n
· (1− λ) ≤ Pr(t(u) = v) ≤ 1

n
· (1 + λ) λ′ ≤ λ/8m .

Note that since all the source tokens perform random walks independently, when we
condition on the choice of nodes in Z for any u /∈ Z ⊆ V , it is still true that

Pr
(
Ev
∣∣ ∧
z∈Z

t(z)
)
∈
[
k

2m − kλ
′,
k

2m + kλ′
]

and

Pr
(
E
∣∣ ∧
z∈Z

t(z)
)
∈
[
n( k

2m − kλ
′), n( k

2m + kλ′)
]
.

Thus, Pr
(
t(u) = v|

∧
z∈Z t(z)

)
∈ [(1− λ)/n, (1 + λ)/n].
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Step 3. It remains to show that the messages from u to t(u) can be routed simultaneously
for every u in Õ(τG) rounds.

Let mid(u) denote the node where the source token of u is located at the end of Step 2.
The message from u to mid(u) for every u can be simultaneously routed in Õ(τG) rounds by
following the same path taken by the random walk of the source token of u.

Suppose that t(u) = v. After the message reaches mid(u), it will follow the path taken by
the random walk of the destination token of v to go to v (see Figure 2). Note that multiple
source tokens may be matched to a node v (some possibly from the other destination tokens
of v). When they follow the paths that lead back to t(v), it is possible that these paths
merge and create congestion. However, using a standard Chernoff Bound argument, we can
show that for any node v w.h.p. at most O(logn) different nodes u have t(u) = v. Therefore,
each step of the parallel random walk can be done with a O(logn) factor blowup. Thus, the
messages between u and t(u) can be routed in Õ(τG) rounds. This completes the proof of
Theorem 4.

4 Algorithms in the GOSSIP Model

In this section, we show that if we have a small number of non-empty nodes, then the empty
nodes help approximate Fp faster. As stated in Corollary 6, this result can be translated
back to the CONGEST model using Theorem 4 with a blow-up factor Õ(τG). We exhibit a
pre-processing step that duplicates the values so that Ω(n) nodes become non-empty which
is crucial for the algorithms to work while preserving the occurrence ratios.

Throughout this section, for the sake of clarity, we consider the GOSSIP (0) model.
However, running our algorithms in GOSSIP (1/nc), for some sufficiently large constant c,
only incurs a small additive error 1/ poly(n).

I Lemma 13. If the number of non-empty nodes z < n/3, we can duplicate the values so
that zd(n/3)/ze nodes become non-empty while preserving the occurrences ratios in O(log2 n)
rounds in the GOSSIP model.

Proof. We divide the process into three phases.
Pre-processing. We assume that the number of non-empty nodes is less than n/3, otherwise,

we are done. First, the nodes compute the number of non-empty nodes z in O(logn)
rounds [32]. Each node v will form a token that contains val (v) and t where t is originally
set to d(n/3)/ze.

Splitting Phase. This phase consists of O(logn) stages each of which consists of O(logn)
sub-stages. At the beginning of each stage, a node v has a collection of tokens (x1, t1),
(x2, t2), . . . in its buffer. Each token (xi, ti) is split into two tokens (xi, dti/2e) and
(x, bti/2c). It will send these two tokens to two random nodes using two rounds and delete
(xi, ti) from its buffer. Note that the new tokens (xi, dti/2e) and (x, bti/2c) will not be
split until the next stage. Every stage produces at most zd(n/3)/ze ≤ 2n/3 new tokens.
Each new token is sent to a random node and therefore each node contains O(logn) new
tokens w.h.p by Chernoff bound at the end of that stage. Hence, each sub-stage requires
at most O(logn) rounds to split all the tokens in its buffer w.h.p. After O(logn) stages,
w.h.p all nodes contain O(logn) tokens and all tokens (x, t) satisfy t = 1.

Distributing Phase. At this point, we only have tokens in the form (x, 1), or simply x. In
each stage, if v holds more than one token, it will send all but one token (say the first
that arrives at v) to the nodes that it talks to. By a standard Chernoff bound argument,
each stage requires O(logn) rounds since each node always holds at most O(logn) tokens
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w.h.p. We say a token x succeeds if it lands in a previously empty node u while no other
token lands in u in the same round. Then, u never sends x away from this point onward.
Since we have at most z · d(n/3)/ze ≤ 2n/3 tokens, at least n/3 nodes are empty at all
times. Consider a token x. In each stage, conditioning on all other tokens’ choices, with
probability at least 1/3, x succeeds. Hence, after O(logn) stages, x succeeds w.h.p and
therefore all tokens succeed w.h.p by taking a union bound over all tokens. Since we have
at least dn/3e tokens, the number of non-empty nodes is Ω(n). Note that the occurrence
of each value is rescaled by a factor d(n/3)/ze. J

After we estimate Fp of the new instance, we can divide the estimator by (d(n/3)/ze)p to
get an estimate for Fp in the original instance. From now on, we can safely assume that the
number of non-empty nodes F1 = Ω(n), otherwise, we can apply the above pre-processing.
A key observation is that F0 ≤ z, and thus we can analyze our algorithms for when F0 is
small instead.

An `p-sampling primitive. An `p-sampling algorithm samples a value i ∈ [N ] with probab-
ility fpi /Fp. More formally, Pr (sample i) = fpi /Fp.

The `p-sampling primitive (for 0 ≤ p ≤ 2) has been extensively studied in the data stream
model. An incomplete list includes [3, 26,28,36]. However, most streaming `p-samplers are
rather complicated, and it is unclear how to implement them in the GOSSIP model.

It is trivial to obtain an `1-sample by virtue of the GOSSIP model. To obtain an `0-sample
(a random value that occurs at least once), we broadcast a randomly chosen pairwise hash
function h : [N ] → [N3] and identify the value corresponds to the smallest hash value in
O(logn) rounds.

Assuming that p is fixed, we now show that if F0 = O
(
n1/(p−1)), then we can perform

`p-sampling in O(logn) rounds (hence `2-sampling can always be done in O(logn) rounds
since F0 ≤ n). The sampling algorithm proceeds as follows.

Each node v uses p rounds to talk to p random nodes u1, . . . , up. It declares success
if val (u1) = . . . = val (up). In that case, let val (u1) be v’s sample. Among the successful
nodes, to break symmetry, broadcast the sample of the node with the smallest ID. If no node
succeeds, repeat the process. The following lemma provides a lower bound on Fp based on F0.

I Lemma 14. If F1 = Ω(n) and F0 = O
(
n1/(p−1)), then Fp = Ω

(
np−1).

Proof. Let the frequency vector be f = (f1, . . . , fN ). Without loss of generality, suppose the
potentially non-zero entries of f be f1, . . . , fKn1/(p−1) for some constant K. Note that based
on our assumption, fj = 0 for all j > Kn1/(p−1). Let f ′ = (f1, . . . , fKn1/(p−1)) be the vector
formed by the first Kn1/(p−1) entries. Note that ‖f ′‖1 ≥ Cn for some constant 0 < C ≤ 1
as assumed.

We will use the following inequality: if the vector x has n entries then

‖x‖q ≤
(
n1/q−1/p

)
‖x‖p , for 0 < q < p .

Note that f ′ has Kn1/(p−1) entries. Let K ′ = K1−1/p. We have(
Kn1/(p−1)

)1−1/p
‖f ′‖p ≥ ‖f

′‖1

‖f ′‖p ≥
‖f ′‖1

K ′n1/p

Fp ≥
Cpnp

Kp−1n
= Ω

(
np−1) .

The last step follows since K and C are constants and p is fixed. J
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I Theorem 15. If F0 = O
(
n1/(p−1)), then the described algorithm obtains an `p-sample in

O(logn) rounds in the GOSSIP model w.h.p.

Proof. We can apply the pre-processing step so that F1 = Ω(n) while the occurrences ratios
are preserved. The probability that a node succeeds is Ω

(∑N
i=1 f

p
i /n

p
)

= Ω (Fp/np).
Appealing to Lemma 14, Fp ≥ np−1/K ′ for some constant K ′. Hence, Pr (v succeeds) ≥

1/(K ′n). The probability that all n nodes fail is at most (1− 1/(K ′n))n ≤ e−1/K′ . We
therefore succeed w.h.p by repeating O(logn) times. Given that v succeeds, the probability
that it samples value i is (fpi /np) /

(∑N
j=1 f

p
j /n

p
)

= fpi /Fp as required. J

Approximating Fp. The algorithm by Bar-Yossef et al. [4] that we discuss in the full
version [39] for approximating F0 up to a 1± ε factor w.h.p can be emulated in the GOSSIP
model in O(ε−2 log2 n) rounds. We now focus on approximating higher frequency moments.
Let k ≤ p be an integer. We present an algorithm that w.h.p approximates Fp (for p ≥ 2) in
Õ
(
ε−2n1−k/p) rounds if F0 = O

(
n1/(k−1)). Recall that F0 is at most the number of non-

empty nodes. To approximate Fp, our algorithm makes use of an approximation of Fk and
`k-sampling. This generalizes the approach in [3, 36]. We will prove the following theorem.

We first consider the following algorithm that approximates Fk. For j = 1, . . . , Cε−2 logn,
where C is some sufficiently large constant, in the j-th phase, each non-empty node v
uses k − 1 rounds to talk to k − 1 random nodes u1, . . . , uk−1. It declares success if
val (v) = val (u1) = . . . = val (uk−1). Let Ij,v be the indicator variable for the event v
succeeds in the j-th phase. Let T = Cε−2 logn. Return the estimate

F̂k = nk−1

T
·
T∑
j=1

n∑
v=1

Ij,v .

We now prove Theorem 5. This theorem first shows that F̂k is a good approxima-
tion w.h.p. Then, it combines F̂k with `k-sampling to compute a good estimate of Fp in
O
(
ε−2n1−k/p log2 n

)
rounds.

Proof of Theorem 5. We again can assume that F1 = z = Ω(n) as outlined earlier in this
section. We first show that F̂k = (1± ε)Fk w.h.p. In expectation,

E
[
F̂k

]
= nk−1

T

T∑
j=1

n∑
v=1

E [Ij,v] = nk−1

T

T∑
j=1

n∑
v=1

fk−1
val(v)

nk−1 =
N∑
i=1

fi · fk−1
i = Fk .

Since the indicator variables Ij,v are independent, we can apply Chernoff bound directly.

Pr
(∣∣∣F̂k − Fk∣∣∣ ≥ εFk) = exp

(
−Ω

(
Tε2Fk
nk−1

))
≤ exp

(
−Ω

(
Tε2
))
≤ 1/poly(n) .

The first inequality follows from Lemma 14 and the second inequality is because T =
Cε−2 logn for some sufficiently large constant C. Hence, we can approximate Fk up to a
1± ε factor in O(ε−2 logn) rounds.

To approximate Fp for p > k, we use the following estimator. Let i be an `k sample. We
can compute fi exactly in O(logn) rounds. Specifically, each node with value i will put 1 on
it and 0 otherwise. Then, we can compute the sum using the algorithm in [32]. Consider the
following estimator:

F̂p = F̂k · fp−ki .

We rely on the following lemma. We defer the proof to the end of this section.

DISC 2019



33:14 Distributed Data Summarization in Well-Connected Networks

I Lemma 16. We have E
[
F̂p

]
= (1±O(ε))Fp and V

[
F̂p

]
≤ 2n1−k/pF 2

p .

Hence, by an application of Chebyshev bound, if we take the average of O
(
n1−k/pε−2)

estimators, with constant probability, F̂p = (1 ± ε)Fp. We can amplify the success prob-
ability to 1− 1/ poly(n) by the standard median trick, i.e., taking the median of O(logn)
such estimators. J

Proof of Lemma 16. In expectation,

E
[
F̂p

]
= F̂k ·

N∑
i=1

fki
Fk
fp−ki

= (1±O(ε))Fp .

We can bound the variance as follows.

V
[
F̂p

]
≤ (1±O(ε))F 2

k

N∑
i=1

fki
Fk
f

2(p−k)
i

≤ 2FkF2p−k .

We have ‖f‖k ≤ n1/k−1/p‖f‖p, and therefore Fk ≤ n1−k/pF
k/p
p . Additionally, ‖f‖2p−k ≤

‖f‖p which implies F2p−k ≤ F 2−k/p
p . Therefore, V

[
F̂p

]
≤ 2n1−k/pF 2

p . J
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