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Abstract
There has been a significant amount of work in the literature proposing semantic relaxation of
concurrent data structures for improving scalability and performance. By relaxing the semantics of a
data structure, a bigger design space, that allows weaker synchronization and more useful parallelism,
is unveiled. Investigating new data structure designs, capable of trading semantics for achieving
better performance in a monotonic way, is a major challenge in the area. We algorithmically address
this challenge in this paper.

We present an efficient, lock-free, concurrent data structure design framework for out-of-order
semantic relaxation. We introduce a new two dimensional algorithmic design, that uses multiple
instances of a given data structure. The first dimension of our design is the number of data
structure instances operations are spread to, in order to benefit from parallelism through disjoint
memory access; the second dimension is the number of consecutive operations that try to use
the same data structure instance in order to benefit from data locality. Our design can flexibly
explore this two-dimensional space to achieve the property of monotonically relaxing concurrent
data structure semantics for better performance within a tight deterministic relaxation bound, as we
prove in the paper.

We show how our framework can instantiate lock-free out-of-order queues, stacks, counters
and dequeues. We provide implementations of these relaxed data structures and evaluate their
performance and behaviour on two parallel architectures. Experimental evaluation shows that
our two-dimensional design significantly outperforms the respected previous proposed designs with
respect to scalability and performance. Moreover, our design increases performance monotonically
as relaxation increases.
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31:2 Semantic Relaxation in 2D

1 Introduction

Concurrent data structures allow operations to access the data structure concurrently, which
require synchronised access to guarantee consistency with respect to their sequential semantics
[9, 10]. The synchronisation of concurrent accesses is generally achieved by guaranteeing
some notion of atomicity, where, an operation appears to occur at a single instant between
its invocation and its response. A concurrent data structure is typically designed around one
or more synchronisation access points, from where threads compute, consistently, the current
state of the data structure. Synchronisation is vital to achieving consistency and cannot be
eliminated [5]. Whereas this is true, synchronization might generate contention in memory
resources hurting scalability and performance.

The necessity of reducing contention at the synchronisation access points, and consequently
improving scalability, is and has been a major focus for concurrent data structure researchers.
Techniques like; elimination [18, 31], combining [32], dynamic elimination-combining [6] and
back-off strategies have been proposed as ways to improve scalability. To address, in a more
significant way, the challenge of scalability bottlenecks of concurrent data structures, it has
been proposed that the semantic legal behaviour of data structures should be extended
[29]. This line of research has led to the introduction of an extended set of weak semantics
including; weak internal ordering, weakening consistency and semantic relaxation.

One of the main definition of semantic relaxation proposed and used in the literature
is k-out-of-order [1, 2, 15, 19, 24, 26, 33, 35]. k-out-of-order semantics allow operations to
occur out of order within a given k bound, e.g. a pop operation of a k-out-of-order stack can
remove any item among the k topmost stack items. By allowing a Pop operation to remove
any item among the k topmost stack items, the semantics do not anymore impose a single
access point. Thus, by relaxing the stack semantics, we allow for potentially more efficient
stack designs with reduced synchronisation overhead, which is the motivation for concurrent
data structure semantics relaxation.

Relaxation can be exploited to achieve improved parallelism by increasing the number
of disjoint access points, or by increasing thread local data processing. Disjoint access is
popularly achieved by distributing operations over multiple instances of a given data structure
[2, 14, 15, 24]. On the other hand, the locality is generally achieved through binding single
thread access to the same memory location for specific operations [13, 14, 35].

In this paper, we introduce an efficient two-dimensional algorithmic design framework,
that uses multiple instances (sub-structures) of a given data structure as shown in Figure 1.
The first dimension of the framework is the number of sub-structures operations are spread
to, in order to benefit from parallelism through disjoint access points; the second dimension

Figure 1 An illustration of our 2D design using a Stack as an example. There are three sub-stacks
a, b and c. k is proportional to the area of the green dashed rectangle in which operations are
bounded to occur. a can be used for both Push and Pop. b can be used for Push but not for Pop. c

can be used for Pop but not for Push.
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is the number of consecutive operations that can occur on the same sub-structure in order to
benefit from data locality. We use two parameters to control the dimensions; width for the
first dimension (horizontal) and depth for the second dimension (vertical).

A thread can operate on a given sub-structure for as long as a set of conditions hold
(validity). Validity can be that valid sub-structures do not exceed (max) or go below (min),
a given operation count threshold, as depicted by the dashed green rectangle in Figure 1.
Validity conditions make sub-structures valid or invalid for a given operation. This implies
that threads have to search for a valid sub-structure, increasing operation cost (latency). Our
framework overcomes this challenge by limiting the number of sub-structures and allowing
a thread to operate on the same sub-structure consecutively for as long as the validity
conditions hold. Max and min can be updated if there are no valid sub-structures. We
show algorithmically that the validity conditions provide for an efficient, tenable and tunable
relaxation behaviour, described by tight deterministic relaxation bounds.

Our design framework can be used to extend existing lock-free data structure algorithms
to derive k-out-of-order semantics for the given data structure. This can be achieved with
minimal modifications to the data structure algorithm as we later show in this paper. Using
our framework, we extend existing lock-free algorithms to derive lock-free k-out-of-order
stacks, queues, dequeue and counters. Detailed implementation, correctness and performance
analysis is also provided. Experimental evaluation shows that the derived data structures
significantly outperform all previous data structure implementations of same category.

The rest of the paper is structured as follows. In Section 2 we discuss literature related to
this work. We present the 2D framework and derived 2D algorithms in Section 3. We prove
correctness and linearization bounds in Section 4. An experimental evaluation is discussed in
Section 5 and the paper concludes in Section 6.

2 Related Work

Recently, data structure semantic relaxation has attracted the attention of researchers, as a
promising direction towards improving concurrent data structures’ scalability [19, 29, 33].
It has also been shown that small changes on the semantics of a data structure can have
a significant effect on the computation power of the data structure [30]. The interest in
semantic relaxation is largely founded on the ease of use and understanding. One of the
main definition of semantic relaxation proposed and used is k-out-of-order .

Using the k-out-of-order definition, a segmentation technique has been proposed in [1],
later revisited in [19] realizing a relaxed Stack (k-Stack) and FIFO Queue (Q-segment) with
k-out-of-order semantics. The technique involves a linked-list of memory segments with
k number of indexes on which an item can be added or removed. The stack items are
accessed through the topmost segment, whereas the queue has a tail and head segment
from which Enqueue and Dequeue can occur respectively. Segments can be added and
removed. Relaxation is only controlled through varying the number of indexes per segment.
As discussed in Section 1, increasing the number of indexes increases operation latency
and later becomes a performance bottleneck. This limits the performance benefits of the
technique to a small range of relaxation values.

Also, load balancing together with multiple queue instances (sub-queues) has been used
to design a relaxed FIFO queue (lru) with k-out-of-order semantics [15]. Each sub-queue
maintains two counters, one for Enqueue another for Dequeue, while two global counters,
one for Enqueue another for Dequeue maintain the total #operations for all sub-queues. The
global counters are used to calculate the expected #operations on the last-recently-used
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sub-queue. Threads can only operate on the least-recently-used sub-queue. This implies that
for every operation threads must synchronise on the global counter, making it a sequential
bottleneck. Moreover, threads have to search for the last-recently-used sub-queue leading
to latency increase. Randomisation has also been used to balance load between multiple
sub-structures, leading to relaxed designs such as MultiQueues and MultiCounters [2, 24].

The proposed relaxation techniques, mentioned above, apply relaxation in one dimension,
i.e, increase disjoint access points to improve parallelism and reduce contention. However,
this also increases operation latency due to increased access points to select from. Without a
remedy to this downside, the proposed techniques cannot provide monotonic relaxation for
better performance. Other relaxed data structures studied in the literature include priority
queues [4, 24, 35]. Apart from semantic relaxation, other design strategies for improving
scalability have been proposed including; elimination [6, 18, 23, 31], combining [32], internal
weak ordering [11], and local linearizability [14]. However, these strategies have not been
designed to provide bounded out of order semantic relaxation.

Elimination implements a collision path on which different concurrent operations try to
collide and cancel out, otherwise, they proceed to access the central structure [18]. Combining,
on the other hand, allows operations from multiple threads to be combined and executed by a
single thread without the other threads contending on the central structure [12, 17]. However,
their performance depends on the specific workload characteristics. Elimination mostly
benefits symmetric workloads, whereas combining mostly benefits asymmetric workloads.
Furthermore, the central structure sequential bottleneck problem still persists.

Weak internal ordering has been proposed and used to implement a timestamped stack
(TS-Stack) [11], where Push timestamps each pushed item to mark the item’s precedence
order. Each thread has its local buffer on which it performs Push operations. However, Pop
operations pay the cost of searching for the latest item. In the worst case, Pop operations
might contend on the same latest item if there are no concurrent Push operations. This leads
to search retries, especially for workloads with higher Pop rates than Push ones.

Local linearizability has also been proposed for concurrent data structures such as; FIFO
queues and Stacks [14]. The technique relies on multiple instances of a given data structure.
Each thread is assigned an instance on which it locally linearizes all its operations. Operations:
Enqueue (FIFO queue) or Push (Stack) occur on the assigned instance for a given thread,
whereas, Dequeue or Pop can occur on any of the available instances. With Dequeue or Pop
occurring more frequently, contention quickly builds as threads try to access remote buffers.
The threads also lose the locality advantage while accessing remote buffers, cancelling out the
caching advantage especially for single access data structures such as the Stack [7, 16, 28].

3 2D Framework

In this section, we describe our 2D design framework and show how it can be used to
extend existing data structure designs to derive k-out-of-order relaxed semantics. Such data
structures include; stacks, FIFO queues, counters and dequeues.

The 2D framework uses multiple copies (sub-structures) of the given data structure as
depicted in Figure 1. Threads can operate on any of the sub-structures following the fixed
maximum max and minimum min operation count threshold. Herein, operation refers to
the process that updates the data structure state by adding (Put) or removing (Get) an
item (Push and Pop respectively for the stack example). Each sub-structure holds a counter
(sub-count) that counts the number of local successful operations.
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Algorithm 1 Window Coupled (2Dc).

1 Struct Descriptor Des
2 *item;
3 count; . sub-count
4 version;
5 Struct Window Win
6 max;
7 version;
8 Function Window(Op,index,cont)
9 IndexSearch = Random = notempty=0; LWin = Win;

10 if cont==True then
11 index=RandomIndex(); cont=False;
12 end
13 while True do
14 if IndexSearch == width then
15 SHIFTWINDOW();
16 end
17 Des = Array[index]; . Read descriptor
18 if Op == put ∧ Des.count < Win.max then
19 return {Des,index};
20 else if Op == get ∧ Des.count > (Win.max - depth) then
21 return {Des,index};
22 else if LWin == Win then
23 HOP();
24 else
25 LWin = Win; IndexSearch = 0;
26 end
27 end

28 Macro SHIFTWINDOW()
29 if Op == get ∧notempty==0 then
30 return {Des,index};
31 end
32 if LWin == Win then
33 if Op == put then
34 NWin.max = LWin.max + ShiftUp;
35 else if Op == get ∧ Win.max > depth then
36 NWin.max = LWin.max - ShiftDown;
37 end
38 NWin.version = LWin.version + 1;
39 CAS(Win,LWin,NWin);
40 end
41 LWin = Win; IndexSearch = 0;
42 Macro HOP()
43 if Random<2 then
44 index=RandomIndex(); Random+=1;
45 else
46 if Op == get ∧ Des.item!=NULL then
47 notempty=1;
48 end
49 if index == width - 1 then
50 index=0;
51 else
52 index += 1;
53 end
54 IndexSearch += 1;
55 end

A combination of max, min and #sub-structures, form a logical count period, we refer
to it as Window, depicted by the dashed green rectangle in Figure 1. Window defines the
maximum (Winmax) and minimum (Winmin) operation count threshold for all sub-structures,
for a given period. This implies that, for a given period, a sub-structure can be valid or
invalid as exemplified in Figure 1, and a Window can be full or empty. The Window is
full if all sub-structures have maximum operations (sub-count = Winmax), empty, if all
sub-structures have minimum operations (sub-count = Winmin). The Window is defined by
two parameters; width and depth. width = #sub-structures, and depth = Winmax−Winmin.

To validate a sub-structure, its sub-count is compared with Winmin or Winmax; either
sub-count ≥Winmin or sub-count < Winmax. If the given sub-structure is invalid, the thread
has to hop to another sub-structure until a valid sub-structure is found (validity is operation
specific as we discuss later). If a thread cannot find a valid sub-structure, then, the Window
is either full or empty. The thread will then, either increment or decrement both Winmin and
Winmax, the process we refer to as, Window shifting. A Window can shift up or down, and
is controlled by shiftup or shiftdown values respectively, where, 0 < shiftup, shiftdown ≤
depth. Winmin and Winmax can only be incremented or decremented by a given shift value.
shiftup and shiftdown can be configured differently to optimize for different workloads.

We define two types of windows: WinCoupled (2Dc) and WinDecoupled (2Dd).

WinCoupled : couples both Put and Get to share the same Window and sub-count for each
sub-structure. A successful Put increments whereas, a successful Get decrements the
given sub-count. On a full Window, Put increments Winmax shifting the Window up
(shiftup), whereas, on an empty Window, Get decrements Winmax, shifting the Window
down (shiftdown). WinCoupled resembles elimination [18], only that here, we cancel out
operation counts for matching Put and Get on the same sub-structure within the same
Window. Just like elimination reduces joint access updates, WinCoupled reduces Window
shift updates.

WinDecoupled : decouples Put and Get and assigns them independent windows. Also, an
independent sub-count is maintained for Put or Get, on each sub-structure. Unlike
WinCoupled, both operations always increment their respective sub-count on a successful
operation and Winmax on a full Window. This implies that both sub-count and Window
counters are always increasing.
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Data structures such as FIFO queues with disjoint access for Put and Get, can benefit
more from the WinDecoupled disjoint Window design. Whereas, data structures such as
stacks with joint access, can benefit more from the WinCoupled operation count cancelling
design. Here, we present WinCoupled due to its interesting operation count cancelling and
refer the reader to our extended version [27] for the WinDecoupled presentation.

In Algorithm 1, we present the algorithmic steps for WinCoupled. Recall, width =
#sub-structures and depth = Winmax −Winmin. Each sub-structure is uniquely identified
by an index, which holds information including a pointer to the sub-structure, sub-count
counter, and a version number (line 1-4). The version number is to avoid ABA related issues.
Using a wide CAS, we update the index information in a single atomic step.

To perform an operation, the thread has to search and select a valid sub-structure within
a Window period. Starting from the search start index, the thread stores a copy of the
Window locally (line 9) which is used to detect Window shifts while searching (line 22,32).
During the search, the thread validates each sub-structure count against Winmax (line 18,20).
If no valid sub-structure is found, Winmax is updated atomically, shifting the Window up
or down (line 39). Put increments Winmax to shift the Window up (line 34), whereas,
Get decrements Winmax to shift the Window down (line 36). Before Window shifting or
index hopping, the thread must confirm that the Window has not yet shifted (line 32 and 22
respectively). For every Window shift during the search, the thread restarts the search with
the new Window values (line 25,41).

If a valid index is selected, the respective descriptor state and index are returned (line
19,21). The thread can then proceed to try and operate on the given sub-structure pointed to
by the index descriptor. As an emptiness check, the Window search can only return an empty
sub-structure (line 29), if during the search, all sub-structures where empty (NULL pointer).
Using the Window parameters, width, and depth, we can tightly bound the relaxation
behaviour of derived 2D data-structures as discussed later in Section 4.

3.1 Deriving 2D Data structures

Our framework can be used to extend existing algorithms to derive k-out-of-order data
structures. Using WinCoupled we derive a 2Dc-Stack and a 2Dc-Counter , whereas by using
WinDecoupled, we derive a 2Dd-Stack, a 2Dd-Queue, a 2Dd-Deque and a 2Dd-Counter . The
base algorithms include but not limited to; Treiber’s stack [34], MS-queue [21] and Deque
[20] for Stack, FIFO Queue and Deque respectively. As an example, we shall discuss the
2Dc-Stack due to its simplicity and refer the reader to our extended version [27] for the other
algorithmic implementations.

Algorithm 2 2Dc-Stack.

1 Function Push(NewItem)
2 while True do
3 {Des,Index} = Window(push,index,cont);
4 NewItem.next = Des.item;
5 NDes.item = NewItem;
6 NDes.count = Des.count + 1;
7 NDes.version = Des.version;
8 if CAS(Array[Index],Des,NDes) then
9 return 1;

10 else
11 cont=True;
12 end
13 end

14 Function Pop()
15 while True do
16 {Des,Index}=Window(pop,index,cont);
17 if Des.item != NULL then
18 NDes.item = Des.item.next;
19 NDes.count = Des.count - 1;
20 NDes.version = Des.version;
21 if CAS(Array[Index],Des,NDes) then
22 return Des.item;
23 else
24 cont=True;
25 end
26 else
27 return Null;
28 end
29 end
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As depicted in Algorithm 2, a stack has two operations: Push that adds an item and Pop
that removes an item from the stack. 2Dc-Stack is composed of multiple lock-free sub-stacks.
Each sub-stack is implemented according to the Treiber’s stack design, modified only to fit
the Window design. The stack head is modified to a descriptor containing the top item
pointer, operation count, and descriptor version. Note that, the descriptor is updated in a
single atomic step using a wide CAS (line 8,21), the same way as in the Treiber’s stack.

To perform an operation, a given thread obtains a sub-stack by performing a Window
search (line 3,16). The thread then prepares a new descriptor based on the existing descriptor
at the given index (line 4-7,18-20). Using a CAS, the thread tries to atomically swap the
existing descriptor with the new one (line 8,21). If the CAS fails, the thread sets the contention
indicator to true (line 11,24) and restart the Window search.

A successful Push increments whereas a Push decrements the operation count by one
(line 6,19). Also, the topmost item pointer is updated. At this point, a Push adds an item
whereas a Pop returns an item for a non-empty or NULL for empty stack (line 27). Recall
that the framework performs a special emptiness check before returning an empty sub-stack.

3.2 Optimizations
Our design framework can be tuned to optimize for; locality, contention and hops overhead,
using the width and depth parameters.

3.2.1 Locality and Contention
To exploit locality, the thread starts its Window search from the previously known index on
which it succeeded. This allows the thread a chance to operate on the same sub-structure
multiple times locally, given that the sub-structure is valid. Working locally improves the
caching behaviour, which in return improves performance especially under a NUMA execution
environment with high communication cost across NUMA nodes [7, 16, 28].

A failed operation on a valid sub-structure signals the possibility of contention. The
thread that fails on a CAS (Algorithm 2: line 11,24), starts the Window search on a randomly
selected index (Algorithm 1: line 11). This reduces possible contention that might arise if
the failed threads were to retry on the same sub-structure. Furthermore, random selection
avoids contention on individual sub-structures by uniformly distributing the failed threads to
all available sub-structures.

For every Window search, if the search start index is invalid, the thread tries a given
number of random jumps (Algorithm 1: line 44), then switches to round robin (Algorithm
1: line 52) until a valid sub-structure is found. In our case, we use two random jumps as
the optimal number for a random search basing on the power of random two choices [22].
However, this is a configurable parameter that can take any value.

We further note that contention is inversely proportional to the width. As a simple model,
we split the latency of an operation into contention (opcont) and contention-free (opfree)
operation costs, given by op = opcont/width + opfree. This means that we can increase the
width to further reduce contention.

3.2.2 hops Overhead
The number of hops increases with an increase in width. This counteracts the perform-
ance benefits from contention reduction through increasing width, necessitating a balance
between contention and hops reduction. Based on our simple contention model above, the
performance would increase as the contention factor vanishes with the increase of width, but
with an asymptote at 1/opfree. This implies that beyond some point, one cannot really
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gain throughput by increasing the width, however, throughput would get hurt due to the
increased number of hops. At some point as width increases, gains from the contention factor
(limwidth→∞ opcont → 0) are surpassed by the increasing cost of hops. To avoid this, we
switch to increasing depth instead of width, at the point of width saturation. Increasing depth
reduces the number of hops. This is supported by our step complexity analysis [27] given by
Theorem 1. Where p = P (Put) and E (Extra) = E (hop) + E (shift).

I Theorem 1. For a 2Dc-structure that is initialized with parameters depth, width, shift =
depth and p = 1/2, E (Extra) = O( ln width

depth ).

4 Correctness

In this section, we prove the correctness of our 2D derived data structures, including their
relaxation bounds and lock freedom. Due to space constraints, we present the 2Dc-Stack
correctness proofs and only give Theorem 2 for our other derived 2D data structures. We
refer the reader to our extended version [27] for the rest of the proofs.

Each sub-structure is lock-free: An operation can fail on CAS only if there is another
successful operation. For WinCoupled, Window shifting is lock-free iff shift < depth,
whereas it is always lock-free for WinDecoupled. A Window shift can only fail if there is
another successful shift operation preceded by a successful Put or Get, ensuring system
progress. Thus, all our derived algorithms are lock-free. Our design framework can also be
used for lock based data structures.

I Theorem 2. All our derived 2D data structures are linearizable with respect to k-out-
of-order semantics for the respective data structure Semitics. Where, for 2Dd-Stack k =
(3depth)(width−1), for 2Dd-Queue k = (depth)(width−1), for 2Dd-Deque k =(8depth)(width−
1), for 2Dd-Counter and 2Dc-Counter k = (2depth)(width− 1).

2Dc-Stack is linearizable with respect to the sequential semantics of k-out-of-order
stack [19]. 2Dc-Stack Push and Pop linearization points are similar to those of the original
Treiber’s Stack. As shown in Algorithm 2, Pop linearizes either by returning NULL (line 27)
or with a successful CAS (line 22). Push linearizes with a successful CAS (line 9).

Relaxation can be applied method-wise and it is applied only to Pop operations, that
is, a Pop pops one of the topmost k items. Firstly, we require some notation. The Window
defines the number of operations allowed to proceed on any given sub-stack. The Window is
shifted by the parameter shift, 1 ≤ shift < depth and width = #sub-stacks. For simplicity,
let shift = shiftup = shiftdown. A Window i ( Wi) has an upper bound ( W max

i ) and a
lower bound (W min

i ), where W max
i = i× shift and W min

i = (i× shift)− depth, respectively.
For simplicity, let Global represent the current global upper bound (Winmax). A Window
is active iff W max

i = Global. The number of items of the sub-stack j is denoted by Nj ,
1 ≤ j ≤ width. To recall, the top pointer, the version number and Nj are embedded into the
descriptor of sub-stack j and all can be modified atomically with a wide CAS instruction.

I Lemma 3. Given that Global = shift× i, it is impossible to observe a state(S) such that
Nj > W max

i+1 (or Nj < W min
i−1 ).

Proof. We show that this is impossible by considering the interleaving of operations. Without
loss of generality, assume thread 1 (P1) has set Global = shift × i at time t1′. To do
this, P1 should have observed either Global = shift × (i − 1) and then Nj = W max

i−1 or
Global = shift× (i + 1) and then Nj = W min

i+1 . Let this observation of Global happen at time
t1. Consider the last successful push operation at sub-stack j before the state S is observed
for the first time (we do not consider Pop operations as they can only decrease Nj to a value
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that is less than W max
i+1 , this case will be covered by the first item below). Assume thread

0 (P0) sets Nj to Nj > W max
i+1 in this push operation. P0 should observe Nj ≥ W max

i+1 and
Global > W max

i+1 . Let j be selected at time t0. And the linearization of the operation happens
at t0′ > t0.

If t0′ < t1, the concerned state(S) can not be observed since Global cannot be changed
(to shift× i) after Nj > W max

i+1 is observed.
Else if t1′ < t0, the concerned state(S) cannot be observed since the push operation
cannot proceed after observing Global with such Nj .
Else if t1 > t0, then P0 cannot linearize because, this implies Nj has been modified (the
difference between the value of Global that is observed by P0 and then by P1 implies this)
since P0 had read the descriptor, the version numbers would have changed since then.
Else if t1 < t0, then this implies Global has been modified, since it was read by P1, thus
updating Global would fail, at least based on the version number. J

I Lemma 4. At all times, there exist an i such that ∀j, 1 ≤ j ≤ width: W min
i ≤ Nj ≤W max

i+1 .

Proof. Informally, the lemma states that the size (number of operations) of a sub-stack
spans to at most two consecutive accessible windows. Assume that the statement is not
true, then there should exist a pair of sub-stacks (y and z) at some point in time such that
∃i, Ny < W min

i and Nz > W max
i+1 . Consider the last Push at sub-stack z and last Pop at

sub-stack y that linearize before or at the time t.
Assume thread P0 (Push) sets Nz and thread P1 (Pop) sets Ny. To do this, P0 should

observe Nz ≥ W max
i+1 and Global > W max

i+1 , let sub-stack z be selected at t0. And, the
linearization of the Push operation occurs at t0′ > t0. Similarly, for P1 Pop operation, let
sub-stack y be selected at t1, P1 should have observed Global ≤ W min

i . And, let the Pop
operation linearize at time t1′ > t1. Now, we consider the possible interleavings.

If t0′ < t1 (or the symmetric t1′ < t0 for which we do not repeat the arguments), then
for P1 to proceed and pop an item from sub-stack y, it is required that Global ≤W min

i .
Based on Lemma 3, this is impossible when Nz > W max

i .
Else if t1 > t0, then P0 cannot linearize, because this implies that Nz has been modified
(the difference between the value of Global that is observed by P0 and then by P1 implies
this) since P0 has read the descriptor . The version number would have changed since
then.
Else if t0 > t1, the argument above holds for P1 too, so P1 should fail to linearize.

Such Nz and Ny pair can not co-exist at any time. J

I Theorem 5. 2Dc-Stack is linearizable with respect to k-out-of-order stack semantics, where
k = (2shift + depth)(width− 1).

Proof. Consider the Push (tpush
e ) and Pop (tpop

e ) linearization points, that insert and remove
an item e for a given sub-stack j respectively, where, tpop

e > tpush
e . Now, we bound the

maximum number of items, that are pushed after tpush
e and are not popped before tpop

e , to
obtain k. Let item e be the Nj

th item from the bottom of the sub-stack. Consider a Window
i such that: W min

i ≤ Nj ≤W max
i .

Lemma 4 states that the sizes of the sub-stacks should reside in a bounded region. Relying
on Lemma 4, we can deduce that at time tpush

e , the following holds: ∀i : Nj ≥W min
i − shift.

Similarly, we can deduce that at time tpop
e , the following holds: ∀i : Nj ≤ W max

i + shift.
Therefore, the maximum number of items, that are pushed to sub-stack j after tpush

e and are
not popped before tpop

e is at most W max
i + shift− (W min

i − shift) = depth + 2shift. We
know that this number is zero for sub-stack j (the sub-stack that e is inserted) and we have
width− 1 other sub-stacks. So, there can be at most (2shift + depth)(width− 1) items that
are pushed after tpush

e and are not popped before tpop
e . J
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5 Experimental Evaluation

We experimentally evaluate the performance of our derived 2D algorithms, in comparison to
k-out-of-order relaxed algorithms available in the literature, and other state of the art data
structure algorithms. k-out-of-order relaxed algorithms include; Last recently used queue (lru)
[15], Segmented queue (Q-segment) and k-Stack [1, 19], other algorithms include; MS-queue
(MS-queue) [21], Wait free queue (wfqueue) [36], Time stamped stack (TS-Stack) [11] and
Elimination back-off stack (Elimination) [18]. To facilitate a detailed study,we implement
three extra relaxation techniques following the same multiple sub-structures design; Random,
Random-C2 and Round-Robin. These techniques present a combination of characteristics
that add value to our evaluation. In order to compare to data structures that have used such
techniques in the literature, we implement general data structures for each technique as we
describe in the next paragraph. We shall use width generally to refer to #sub-structures for
all algorithms using the multiple sub-structures design.

For Random, a Put or Get operation selects a sub-structure randomly and proceeds to
operate on it, whereas for Random-C2 , a Get operation randomly selects two sub-structures,
compares their items returning the most correct depending on the data structure semantics
[2, 3, 24, 25]. Put operations time stamp items marking their time of entry. It is these
timestamps that are compared to determine the precedence order among the two items. Due
to the randomized distribution of operations, we expect low or no contention, no locality,
no hops and no deterministic k-out-of-order relaxation bound. We derive S-random and
S-random-c2 stacks, Q-random and Q-random-c2 queues, C-random and C-random-c2
counters for both Random and Random-C2 respectively.

Under Round-Robin, a thread selects and operates once on a sub-structure in a strict
round-robin order following its local counter. The thread must succeed on the selected
sub-structure before proceeding to the next. Due to retries on the same sub-structure, we
expect contention and no hops. The thread operates once on each sub-structure, hence no
locality. We derive S-robin stack, Q-robin queue, and C-robin counter. Round-Robin provides
relaxation bounds [27], we demonstrate this using S-robin bound given by Theorem 6.

I Theorem 6. S-robin is linearizable with respect to k-out-of-order stack semantics, where
k = (2×#threads− 1)(#sub-stacks− 1).

To facilitate a uniform comparison, we implemented all the evaluated algorithms using
the same development tools. The source code will be made publicly available.

5.1 System Description
Experiments are run on two x86-64 machines: (i) Intel Xeon E5-2687W v2 machine with 2
sockets, 8-core Intel Xeon processors each running at 3.4GHz, L2 cache = 256KB, L3 cache
= 25.6MB (Multi-S) and (ii) Intel Xeon Phi 7290 with one 72-core processor running at
1.5GHz, L2 cache = 1024KB (Single-S). Multi-S and Single-S run on Ubuntu 16.04.2 LTS
and CentOS Linux 7 Core Operating systems receptively. The Multi-S machine is used to
evaluate inter-socket execution behaviour, whereas Single-S is used to evaluate intra-socket.
Threads are pined one per core, for both machines excluding hyper-threading. Inter socket
execution is evaluated through pinning the threads one per socket in round robin fashion.
Threads randomly select between Put or Get with a given probability (operation rate).
Memory is managed using the ASCYLIB framework SSMEM [8].

Our main goal is to achieve scalability under high contention. To evaluate this, we
simulate high contention by excluding work between operations. To reduce the effect of
Get NULL returns in our results, any given algorithm is initialized with 217 items. Each
experiment is then run for five seconds obtaining an average of five repeats. Throughput is
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measured in terms of operations per second, whereas the relaxation behaviour (accuracy) is
measured in terms of the error distance from the exact data structure sequential semantics
[19]. The higher the distance, the lower the accuracy.

Our design framework is tunable, giving designers the ability to manage performance
optimizations for different execution environments and workloads, within a given tight
relaxation bound (k). This, however, calls for a multi-objective optimization model, which
is beyond the scope of this paper. We instead run tuning experiments to obtain a tuned
configuration for our evaluation. From our tuning experiments [27], we observe that width =
3×#threads provides a fair balance between accuracy and throughput for all 2D algorithms.
We use this width configuration in the rest of the experiments.

5.2 Measuring accuracy
We adopt a similar methodology used in the literature [4, 24]. A sequential linked-list is run
alongside the data structure being measured. For each operation Put or Get, a simultaneous
insert or delete is performed on the linked-list respectively, following the exact semantics of
the given data structure. A global lock is carefully placed at the data structure linearization
points, locking both the linked-list and the data structure simultaneously. The lock allows
only one thread to update both the data structure and the linked-list in isolation.

A given thread has to acquire the lock before it tries to linearize on any given sub-
structure. Note that, Window search is independent of the lock. Items on the data structure
are duplicated on the linked-list and can be identified by their unique labels. Insert operations
happen at the head or tail of the list for LIFO or FIFO measurements respectively. A delete
operation searches for the given item deletes it and returns its distance from the head
(error-distance). For counter measurements, we replace the linked-list with a fetch and add
(FAA) counter. Both counters are updated in isolation using a lock like explained above. The
error distance is calculated from the difference between the two counter values.

Experiment results are then plotted using logarithmic scales, throughput (solid lines) and
error distance (dotted lines) sharing the x-axis.

5.3 Monotonicity With High Degree of Relaxation
In order to evaluate monotonicity with increasing relaxation (k), we fix the number of threads
to 16 as presented in Figure 2. This is to match the number of cores available on Multi-S .

First, we observe the difference between WinCoupled and WinDecoupled by comparing the
2Dc-Stack and the 2Dd-Stack respectively. 2Dc-Stack consistently outperforms 2Dd-Stack
due to the reduced Window shifting updates. With 2Dc-Stack, a given thread can locally
operate on the same sub-stack longer since operation counts cancel out each other, leaving
the sub-stack in a valid state. This increases the probability of exploiting locality.

All algorithms increase their width as k increases to reduce contention and allow for
increased disjoint access. However, for k-Stack, Q-segment, and lru, hops increase as width
increases, this explains their observed low throughput. S-robin, Q-robin and C-robin are not
affected by hops. However, for smaller k values, they suffer from high contention arising from
contending threads retrying on the same sub-structure until they succeed. As contention
vanishes with high k values, throughput gain saturates due to lack of locality.

2D algorithms maintain throughput gain through limiting width to a size beneficial to
reducing contention and switch to adjusting the depth to reduce hops. The depth parameter
allows 2D algorithms to maintain throughput gain through exploiting locality while reducing
latency. This is observed for both Single-S and Multi-S machines.

In terms of accuracy, we observe an almost linear decrease in accuracy as k increases for
all algorithms.
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(a) Single-S

(b) Multi-S

Figure 2 Throughput and observed accuracy as k bound relaxation increases, with 16 threads.

5.4 Scaling With Threads
To evaluate scalability, we fix the relaxation bound to (k = 104) and vary the number of
threads as shown in Figure 3. The reason for k = 104 is to reduce the effect of contention
due to small width at lower k values. This helps us focus on scalability effects. Random
and Random-C2 algorithms’ width is set to 3×#threads, as the optimal balance between
throughput and accuracy since both of them do not provide k relaxation bounds as we
mentioned before. Random and Random-C2 width matches the 2D algorithms’ width
configuration, providing for a fair comparison.

For Round-Robin algorithms, the width is inversely proportional to #threads (see The-
orem 6). As #threads increases, width reduces leading to increased contention. This explains
the observed drop in throughput for a high number of threads, especially for the S-robin and
the C-robin algorithms due to their sub-structure single access. The effect of lack of locality
can be reduced by hardware pre-fetching, a feature available on both machines. This can
also explain the Round-Robin better performance compared to the performance of the other
algorithms that lack locality.

k-Stack and Q-segment maintain a constant segment size as the #threads increases. This
increases the rate at which segments get filled up, leading to a high frequency of hops and
segment maintenance cost. As observed, throughput gain saturates at high #threads leading
to limited scalability.

The scalability of lru is limited by the global counter used to calculate the last recently
used sub-queue. For every operation, the thread has to increment the global counter using
a FAA instruction, turning the counter into a scalability bottleneck. This can be observed
when lru performance is compared against that of a single FAA counter (C-FAA). wfqueue
suffers from the same FAA counter sequential bottleneck.

Random and Random-C2 algorithms are affected by the lack of locality, which is evident
by the difference between Single-S and Multi-S results. We observe that the performance
difference between Random and 2D algorithms increases on the Multi-S (Figure 3b) machine
as compared to that on the Single-S (Figure 3b) machine. This demonstrates how much
2D algorithms gain from exploiting locality when executing on a Multi-S machine. Locality
helps to avoid paying the high inter-socket communication cost [7, 16, 28].
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(a) Single-S

(b) Multi-S

Figure 3 Throughput and observed accuracy as the number of threads increases, with k = 104.

TS-Stack’s throughput is limited by the Pop search retries, searching for the newest item.
Moreover, Pop operations might contend on the same newest items if there are not enough
concurrent Push operations. Also, Pop lacks locality, which explains the drop in throughput
on the Multi-S machine, due to the high inter-socket communication costs.

We observe an increase in the accuracy loss as the number of threads increase for 2D

algorithms, Random and Random-C2 . This is due to the increase in width as threads increase
in number. Round-Robin algorithms show an increase in accuracy due to their decrease in
width, whereas lru, Q-segment and k-Stack show little change in accuracy since the width
and segment size does not change for the different number of threads respectively.

6 Conclusion

In this work, we have shown that semantics relaxation has the potential to monotonically
trade relaxed semantics of concurrent data structures for achieving throughput performance
within tight relaxation bounds. This has been achieved through an efficient two-dimensional
framework that is simple and easy to implement for different data structures. We demon-
strated that, by deriving two-dimensional lock-free designs for stacks, FIFO queues, dequeues
and shared counters.

Our experimental results have shown that relaxing in one dimension, restricts the capability
to control relaxation behaviour in-terms of throughput and accuracy. Compared to previous
solutions, our framework can be used to extend existing data structures with minimal
modifications while achieving better performance in terms of throughput and accuracy.
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