
Parallel Finger Search Structures
Seth Gilbert
Computer Science, National University of Singapore

Wei Quan Lim
Computer Science, National University of Singapore

Abstract
In this paper we present two versions of a parallel finger structure FS on p processors that
supports searches, insertions and deletions, and has a finger at each end. This is to our knowledge
the first implementation of a parallel search structure that is work-optimal with respect to the
finger bound and yet has very good parallelism (within a factor of O

(
(log p)2) of optimal). We

utilize an extended implicit batching framework that transparently facilitates the use of FS by
any parallel program P that is modelled by a dynamically generated DAG D where each node is
either a unit-time instruction or a call to FS.

The work done by FS is bounded by the finger bound FL (for some linearization L of D),
i.e. each operation on an item with distance r from a finger takes O(log r + 1) amortized work.
Running P using the simpler version takes O

(
T1+FL

p
+ T∞ + d ·

(
(log p)2 + log n

))
time on a greedy

scheduler, where T1, T∞ are the size and span of D respectively, and n is the maximum number of
items in FS, and d is the maximum number of calls to FS along any path in D. Using the faster
version, this is reduced to O

(
T1+FL

p
+ T∞ + d · (log p)2 + sL

)
time, where sL is the weighted span

of D where each call to FS is weighted by its cost according to FL. FS can be extended to a fixed
number of movable fingers.

The data structures in our paper fit into the dynamic multithreading paradigm, and their
performance bounds are directly composable with other data structures given in the same paradigm.
Also, the results can be translated to practical implementations using work-stealing schedulers.

2012 ACM Subject Classification Theory of computation → Parallel algorithms; Theory of compu-
tation → Shared memory algorithms; Theory of computation → Parallel computing models

Keywords and phrases Parallel data structures, Multithreading, Dictionaries, Comparison-based
Search, Distribution-sensitive algorithms

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.20

Related Version The full version of this paper is available at https://arxiv.org/abs/1908.02741.

Funding This research was supported in part by Singapore MOE AcRF Tier 1 grant T1 251RES1719.

Acknowledgements We would like to express our gratitude to our families and friends for their
wholehearted support, to the kind reviewers who provided helpful feedback, and to all others who
have given us valuable comments and advice.

1 Introduction

There has been much research on designing parallel programs and parallel data structures.
The dynamic multithreading paradigm (see [12] chap. 27) is one common parallel pro-
gramming model, in which algorithmic parallelism is expressed through parallel programming
primitives such as fork/join (also spawn/sync), parallel loops and synchronized methods, but
the program cannot stipulate any mapping from subcomputations to processors. This is the
case with many parallel languages and libraries, such as Cilk dialects [18, 23], Intel TBB [28],
Microsoft Task Parallel Library [30] and subsets of OpenMP [25].

Recently, Agrawal et al. [3] introduced the excitingmodular design approach of implicit
batching, in which the programmer writes a multithreaded parallel program that uses a
black box data structure, treating calls to the data structure as basic operations, and also

© Seth Gilbert and Wei Quan Lim;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/231819226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.DISC.2019.20
https://arxiv.org/abs/1908.02741
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Parallel Finger Search Structures

provides a data structure that supports batched operations. Given these, the runtime system
automatically combines these two components together, buffering data structure operations
generated by the program, and executing them in batches on the data structure.

This idea was extended in [4] to data structures that do not process only one batch at
a time. In this extended implicit batching framework, the runtime system not only
holds the data structure operations in a parallel buffer, to form the next batch, but also
notifies the data structure on receiving the first operation in each batch. Independently,
the data structure can at any point flush the parallel buffer to get the next batch.

This framework nicely supports pipelined batched data structures, since the data struc-
ture can decide when it is ready to get the next input batch from the parallel buffer.
Furthermore, this framework makes it easy for us to build composable parallel algorithms
and data structures with composable performance bounds. This is demonstrated by both
the parallel working-set map in [4] and the parallel finger structure in this paper.

Finger Structures
The map (or dictionary) data structure, which supports inserts, deletes and searches/up-
dates, collectively referred to as accesses, comes in many different kinds. A common
implementation of a map is a balanced binary search tree such as an AVL tree or a red-black
tree, which (in the comparison model) takes O(logn) worst-case cost per access for a tree
with n items. There are also maps such as splay trees [29] that have amortized rather than
worst-case performance bounds.

A finger structure is a special kind of map that comes with a fixed finger at each
end and a (fixed) number of movable fingers, each of which has a key (possibly −∞ or ∞
or between adjacent items in the map) that determines its position in the map, such that
accessing items nearer the fingers is cheaper. For instance, the finger tree [20] was designed
to have the finger property in the worst case; it takes O(log r + 1) steps per operation with
finger distance r (Definition 1), so its total cost satisfies the finger bound (Definition 2).

I Definition 1 (Finger Distance). Define the finger distance of accessing an item x on
a finger structure M to be the number of items from x to the nearest finger in M (including
x), and the finger distance of moving a finger to be the distance moved.

I Definition 2 (Finger Bound). Given any sequence L of N operations on a finger structure
M , let FL denote the finger bound for L, defined by FL =

∑N
i=1(log ri + 1) where ri is the

finger distance of the i-th operation in L when L is performed on M .

Main Results
We present, to the best of our knowledge, the first parallel finger structure. In particular,
we design two parallel maps that are work-optimal with respect to the Finger Bound FL

(i.e. it takes O(FL) work) for some linearization L of the operations (that is consistent with
the results), while having very good parallelism. (We assume that each key comparison takes
O(1) steps.) In this paper we focus on basic finger structures with just one fixed finger at
each end (no movable fingers).

These parallel finger structures can be used by any parallel program P , whose actual
execution is captured by a program DAG D, where each node is an instruction that finishes
in O(1) time or an access (insert/delete/search/update) to the finger structure M , called an
M-call, that blocks until the result is returned, and each edge represents a dependency due
to the parallel programming primitives.

S. Gilbert and W.Q. Lim 20:3

The first design, called FS1, is a simpler one that processes accesses one batch at a time.

I Theorem 3 (FS1 Performance). If P uses FS1 (as M), then its running time on p processes
using any greedy scheduler (i.e. at each step, as many tasks are executed as are available, up
to p) is O

(
T1+FL

p + T∞ + d ·
(
(log p)2 + logn

))
for some linearization L of M-calls in D,

where T1 is the number of nodes in D, and T∞ is the number of nodes on the longest path in
D, and d is the maximum number of M -calls on any path in D, and n is the maximum size
of M . 1

Notice that if M is an ideal concurrent finger structure (i.e. one that takes O(FL) work), then
running P using M on p processors according to the linearization L takes Ω(Topt) worst-case
time where Topt = T1+FL

p + T∞. Thus FS1 gives an essentially optimal time bound except
for the “span term” d ·

(
(log p)2 + logn

)
, which adds O

(
(log p)2 + logn

)
time per FS1-call

along some path in D.
The second design, called FS2, uses a complex internal pipeline to reduce the “span term”.

I Theorem 4 (FS2 Performance). If P uses FS2, then its running time on p processes
using any greedy scheduler is O

(
T1+FL

p + T∞ + d · (log p)2 + sL

)
for some linearization L

of M -calls in D, where T1, T∞, d are defined as in Theorem 3, and sL is the weighted span
of D where each FS2-call is weighted by its cost according to FL. Specifically, each access
operation on FS2 with finger distance r according to L is given the weight log r + 1, and sL

is the maximum weight of any path in D. Thus FS2 gives an essentially optimal time bound
up to an extra O

(
(log p)2) time per FS2-call along some path in D.

See the full paper for how to extend FS1 to a general finger structure with f movable fingers,
and how to adapt the results for work-stealing schedulers.

Other Related Work
There are many approaches for designing efficient parallel data structures, to make maximal
use of parallelism in a multi-processor system, whether with empirical or theoretical efficiency.

For example, Ellen et al. [15] show how to design a non-blocking concurrent binary
search tree, with later work analyzing the amortized complexity [14] and generalizing this
technique [11]. Another notable concurrent search tree is the CBTree [2, 1], which is based
on the splay tree. But despite experimental success, the theoretical access cost for these tree
structures may increase with the number of concurrent operations due to contention near
the root, and some of them do not even maintain balance (i.e., the height may get large).

Another method is software combining [17, 21, 26], where each process inserts a request
into a shared queue and at any time one process is sequentially executing the outstanding
requests. This generalizes to parallel combining [6], where outstanding requests are executed
in batches on a suitable batch-parallel data structure (similar to implicit batching). These
methods were shown to yield empirically efficient concurrent implementations of various
common abstract data structures including stacks, queues and priority queues.

In the PRAM model, Paul et al. [27] devised a parallel 2-3 tree where p synchronous
processors can perform a sorted batch of p operations on a parallel 2-3 tree of size n in
O(logn+ log p) time. Blelloch et al. [9] show how to increase parallelism of tree operations

1 To cater to instructions that may not finish in O(1) time (e.g. due to memory contention), it suffices to
define T1 and T∞ to be the (weighted) work and span (Definition 5) respectively of the program DAG
where each M -call is assumed to take O(1) time.

DISC 2019

20:4 Parallel Finger Search Structures

via pipelining. Other similar data structures include parallel treaps [10] and a variety of
work-optimal parallel ordered sets [7] supporting unions and intersections with optimal work,
but these do not have optimal span. As it turns out, we can in fact have parallel ordered
sets with optimal work and span [5, 24].

Nevertheless, the programmer cannot use this kind of parallel data structure as a black
box in a high-level parallel program, but must instead carefully coordinate access to it. This
difficulty can be eliminated by designing a suitable batch-parallel data structure and using
implicit batching [3] or extended implicit batching as presented in [4]. Batch-parallel
implementations have been designed for various data structures including weight-balanced
B-trees [16], priority queues [6], working-set maps [4] and euler-tour trees [31].

2 Parallel Computation Model

In this section, we describe parallel programming primitives in our model, how a parallel
program generates an execution DAG, and how we measure the cost of an execution DAG.

2.1 Parallel Primitives
The parallel finger structures FS1 and FS2 in this paper are described and explained as
multithreaded data structures that can be used as composable building blocks in a larger
parallel program. In this paper we shall focus on the abstract algorithms behind FS1 and FS2,
relying merely on the following parallel programming primitives (rather than model-specific
implementation details, but see the full paper for those):
1. Threads: A thread can at any point terminate itself (i.e. finish running). Or it can

fork another thread, obtaining a pointer to that thread, or join to a previously forked
thread (i.e. wait until that thread terminates). Or it can suspend itself (i.e. temporarily
stop running), after which a thread with a pointer to it can resume it (i.e. make it
continue running from where it left off). Each of these takes O(1) time.

2. Non-blocking locks: Attempts to acquire a non-blocking lock are serialized but do
not block. Acquiring the lock succeeds if the lock is not currently held but fails otherwise,
and releasing always succeeds. If k threads concurrently access the lock, then each
access finishes within O(k) time.

3. Dedicated lock: A dedicated lock is a blocking lock initialized with a constant number
of keys, where concurrent threads must use different keys to acquire it, but releasing
does not require a key. Each attempt to acquire the lock takes O(1) time, and the thread
will acquire the lock after at most O(1) subsequent acquisitions of that lock.

4. Reactivation calls: A procedure P with no input/output can be encapsulated by a
reactivation wrapper, in which it can be run only via reactivations. If there are always
at most O(1) concurrent reactivations of P , then whenever a thread reactivates P , if
P is not currently running then it will start running (in another thread forked in O(1)
time), otherwise it will run within O(1) time after its current run finishes.

We also make use of basic batch operations, namely filtering, sorted partitioning, joining and
merging (see Appendix Appendix A.2), which have easy implementations using arrays in the
CREW PRAM model. So FS1 and FS2 (using a work-stealing scheduler) can be implemented
in the (synchronous) Arbitrary CRCW PRAM model with fetch-and-add, achieving the
claimed performance bounds. Actually, FS1 and FS2 were also designed to function correctly
with the same performance bounds in a much stricter computation model called the QRMW
parallel pointer machine model (see Appendix Appendix A.1 for details).

S. Gilbert and W.Q. Lim 20:5

2.2 Execution DAG
The program DAG D captures the high-level execution of P , but the actual complete
execution of P (including interaction between data structure calls) is captured by the execu-
tion DAG E (which may be schedule-dependent), in which each node is a basic instruction
and the directed edges represent the computation dependencies (such as constrained by
forking/joining of threads and acquiring/releasing of blocking locks). At any point during
the execution of P , a node in the program/execution DAG is said to be ready if its parent
nodes have been executed. At any point in the execution, an active thread is simply a
ready node in E, while a terminated/suspended thread is an executed node in E that
has no child nodes.

The execution DAG E consists of program nodes (specifically P -nodes) and ds
(data-structure) nodes, which are dynamically generated as follows. At the start E has
a single program node, corresponding to the start of the program P . Each node could be
a normal instruction (i.e. basic arithmetic/memory operation) or a parallel primitive
(see Section 2.1). Each program node could also be a data structure call.

When a (ready) node is executed, it may generate child nodes or terminate. A normal
instruction generates one child node and no extra edges. A join generates a child node with
an extra edge to it from the terminate node of the joined thread. A resume generates
an extra child node (the resumed thread) with an edge to it from the suspend node of the
originally suspended thread. Accesses to locks and reactivation calls would each expand to a
subDAG comprised of normal instructions and possibly fork/suspend/resume.

The program nodes correspond to nodes in the program DAG D, and except for data
structure calls they generate only program nodes. A call to a data structure M is called
an M-call. If M is an ordinary (non-batched) data structure, then an M -call generates an
M-node (and every M -node is a ds node), which thereafter generates only M -nodes except
for calls to other data structures (external to M) or returning the result of some operation
(generating a program node with an edge to it from the original M -call).

However, if M is an (implicitly) batched data structure, then all M -calls are automat-
ically passed to the parallel buffer for M (see Appendix Appendix A.3). So an M -call
generates a buffer node corresponding to passing the call to the parallel buffer, as if the
parallel buffer forM is itself another data structure and not part ofM . Buffer nodes generate
only buffer nodes until it notifies M of the buffered M -calls or passes the input batch to M ,
which generates an M -node. In short, M -nodes exclude all nodes generated as part of the
buffer subcomputations (i.e. buffering the M -calls, and notifying M , and flushing the buffer).

2.3 Data Structure Costs
We shall now define work and span of any (terminating) subcomputation of a multithreaded
program, i.e. any subset of the nodes in its execution DAG. This allows us to capture the
intrinsic costs incurred by a data structure, separate from those of parallel programs using it.

I Definition 5 (Subcomputation Work/Span/Cost). Take any execution of a parallel program
P (on p processors), and take any subset C of nodes in its execution DAG E. The work
taken by C is the total weight w of C where each node is weighted by the time taken to execute
it. The span taken by C is the maximum weight s of nodes in C on any (directed) path in
E. The cost of C is w

p + s.

I Definition 6 (Data Structure Work/Span/Cost). Take any parallel program P using a
data structure M . The work/span/cost of M (as used by P) is the work/span/cost of the
M -nodes in the execution DAG for P .

DISC 2019

20:6 Parallel Finger Search Structures

Note that the cost of the entire execution DAG is in fact an upper bound on the actual time
taken to run it on a greedy scheduler, which on each step assigns as many unassigned
ready nodes (i.e. nodes that have been generated but have not been assigned) as possible to
available processors (i.e. processors that are not executing any nodes) to be executed.

Moreover, the subcomputation cost is subadditive across subcomputations. Thus our
results are composable with other algorithms and data structures in this model, since we
actually show the following for some linearization L (where FL, d, n, sL are as defined in
Section 1 Main Results, and N is the total number of calls to the parallel finger structure).

I Theorem 7 (FS Work/Span Bounds).
FS1 takes O(FL) work and O

(
N
p + d ·

(
(log p)2 + logn

))
span.

FS2 takes O(FL) work and O
(

N
p + d · (log p)2 + sL

)
span.

Note that the bounds for the work/span of FS1 and FS2 are independent of the scheduler.
In addition, using any greedy scheduler, the parallel buffer for either finger structure has
cost O

(
T1+FL

p + d · log p
)
(Appendix Theorem 13). Therefore our main results (Theorem 3

and Theorem 4) follow from these composable bounds (Theorem 7).

3 Amortized Sequential Finger Structure

In this section we explain an amortized sequential finger structure FS0 with a fixed finger at
each end, which is amenable to parallelization and pipelining due to its doubly-exponential
segmented structure (which was partially inspired by Iacono’s working-set structure [22]).

Front < S0[0] < S0[1] < · · · < S0[l] < S1[l] < · · · < S1[1] < S1[0] < Back

Figure 1 FS0 Outline; each box Si[k] represents a 2-3 tree of size Θ
(

22k
)
for k < l.

FS0 keeps the items in order in two halves, the front half stored in a chain of segments
S0[0..l], and the back half stored in reverse order in a chain of segments S1[0..l]. Let
c(k) = 22k+1 for each k ∈ Z. Each segment Si[k] has a target size t(k) = 2 · c(k), and
a target capacity defined to be [t(k), t(k)] if k < l but [0, t(k)] if k = l. Each segment
stores its items in order in a 2-3 tree. We say that a segment Si[k] is balanced iff its size
is within c(k) of its target capacity, and overfull iff it has more than c(k) items above
target capacity, and underfull iff it has more than c(k) items below target capacity. At any
time we associate every item x to a unique segment that it fits in; x fits in S0[k] if k is the
minimum such that x ≤ max(S0[k]), and that x fits in S1[k] if k is the minimum such that
x ≥ min(S1[k]), and that x fits in S0[l] if max(S0[l]) < x < min(S1[l]). We shall maintain
the invariant that every segment is balanced after each operation is finished.

For each operation on an item x, we find the segment Si[k] that x fits in, by checking
the range of items in S0[a] and S1[a] for each a from 0 to l and stopping once k is found,
and then perform the desired operation on the 2-3 tree in Si[k]. This takes O(k + log(t(k) +
c(k))) ⊆ O

(
2k
)
⊆ O(log r + 1) steps where r is the finger distance of the operation, since

log2 r + 1 ≥ log2 c(k − 1) = 2k.
After that, if Si[k] becomes imbalanced, we rebalance it by shifting (appropriate) items

to or from Si[k+ 1] (after creating empty segment Si[k+ 1] if it does not exist) to make Si[k]
have target size or as close as possible (via a suitable split then join of the 2-3 trees), and

S. Gilbert and W.Q. Lim 20:7

then Si[k + 1] is removed if it is the last segment and is now empty. After the rebalancing,
Si[k] will not only be balanced but also have size within its target capacity. But now Si[k+1]
may become imbalanced, so the rebalancing may cascade.

Finally, if one chain Si[0..l′] is longer than the other chain Sj [0..l], it must be that
l′ = l + 1, so we rebalance the chains as follows: If Sj [l] is below target size, shift items
from Si[l′] to Sj [l] to fill it up to target size. If Sj [l] is (still) below target size, remove the
now empty Si[l′], otherwise add a new empty segment Sj [l + 1].

Each rebalancing cascade may take Θ(logn) steps, but the total rebalancing cost is only
O(1) amortized steps per operation, which we can prove via an accounting argument: We
are given 1 credit for each operation, and use it to maintain a credit invariant that each
segment Si[k] with q items beyond (i.e. above or below) its target capacity has at least
q · 2−k stored credits, and use the stored credits to pay for all rebalancing. Whenever a
segment Si[k] is rebalanced, it must have had q items beyond its target capacity for some
q > c(k), and so had at least q · 2−k stored credits. Also, the rebalancing itself takes
O(log(t(k) + q) + log(t(k + 1) + c(k + 1) + q)) ⊆ O(log q) ⊆ O

(
q · 2−k

)
steps, after which

Si[k + 1] needs at most q · 2−(k+1) extra stored credits. Thus the stored credits at Si[k] can
be used to pay for both the rebalancing and any extra stored credits needed by Si[k + 1].
Whenever the chains are rebalanced, it can be paid for by the last segment rebalancing
(which created or removed a segment), and no extra stored credits are needed.

4 Simpler Parallel Finger Structure

We now present our simpler parallel finger structure FS1. The idea is to use the amortized
sequential finger structure FS0 (Section 3) and execute operations in batches. We group each
pair of segments S0[k] and S1[k] into one section S[k], and we say that an item x fits in
the sections S[j..k] iff x fits in some segment in S[j..k].

Each segment is stored in an optimal batch-parallel map [24, 8], which supports:
Unsorted batch search: Search for an unsorted batch of b items, tagging each search
with the result, within O(b · logn) work and O(log b · logn) span, where n is the map size.
Sorted batch access: Perform an item-sorted batch of b operations on distinct items,
tagging each operation with the result, within O(b · logn) work and O(log b+ logn) span,
where n is the map size before the batch access.
Split: Split a map M of size k around a pivot rank r into maps M1,M2 where M1
contains the first r items inM , andM2 contains the last k−r items inM , within O(log k)
work/span.
Join: Join maps M1,M2 of total size k where the greatest item in M1 is less than the
least item in M2, within O(log k) work/span.

For each section S[k], we can perform a batch of b operations on it within O(b · log c(k)) work
and O(log b+ log c(k)) span if we have the batch sorted. Excluding sorting, the total work
would satisfy the finger bound just like in FS0. But we cannot afford to sort the input batch
right at the start, because if the batch had b searches of distinct items all with finger distance
O(1), then it would take Ω(b · log b) work and exceed our finger bound budget of O(b).

We can solve this by splitting the sections into two slabs, where the first slab comprises
the first log log(2b) sections, and passing the batch through a preliminary phase in which
we merely perform an unsorted search of the relevant items in the first slab, and eliminate
operations on items that fit in the first slab but are neither found nor to be inserted.

This preliminary phase takes O(log c(k)) work per operation and O(log b · log c(k)) span
at each section S[k]. We then sort the uneliminated operations and execute them on the
appropriate slab. For this, ordinary sorting still takes too much work as there can be many

DISC 2019

20:8 Parallel Finger Search Structures

operations on the same item, but it turns out that the finger bound budget is enough to
pay for entropy-sorting (Appendix Definition 15), which takes O

(
log b

q + 1
)
work for each

item that occurs q times in the batch. Rebalancing the segments and chains is a little tricky,
but if done correctly it takes O(1) amortized work per operation. Therefore we achieve
work-optimality while being able to process each batch within O

(
(log b)2 + logn

)
span. The

details are below.

4.1 Description of FS1

Parallel
buffer

size-b−−−→
batch

S[0] → · · · → S[m− 1]︸ ︷︷ ︸
First slab

Sort
−−−−→� S[m] → · · · → S[l]︸ ︷︷ ︸

Final slab

where m =
dlog log(2b)e

Figure 2 FS1 Outline; each batch is sorted only after being filtered through the smaller sections.

FS1-calls are put into the parallel buffer (Section 2) for FS1. Whenever the previous batch
is done, FS1 flushes the parallel buffer to obtain the next batch B. Let b be the size of B,
and we can assume b > 1. Based on b, the sections in FS1 are conceptually divided into two
slabs, the first slab comprising sections S[0..m− 1] and the final slab comprising sections
S[m..l], where m = dlog log(2b)e+ 1 (where log is the binary logarithm). The items in each
segment are stored in a batch-parallel map.

FS1 processes the input batch B in four phases:

1. Preliminary phase: For each first slab section S[k] in order (i.e. k from 0 to m− 1) do
as follows:

a. Perform an unsorted search in each segment in S[k] for all the items relevant to the
remaining batch B′ (of direct pointers into B), and tag the operations in the original
batch B with the results.

b. Remove all operations on items that fit in S[k] from the remaining batch B′.

c. Skip the rest of the first slab if B′ becomes empty.

2. Separation phase: Partition B based on the tags into three parts and handle each part
separately as follows:

a. Ineffectual operations (on items that fit in the first slab but are neither found nor
to be inserted): Return the results.

b. Effectual operations (on items found in or to be inserted into the first slab): Entropy-
sort (Appendix Definition 15) them in order of access type (search, update, insertion,
deletion) with deletions last, followed by item, combining operations of the same access
type on the same item into one group-operation that is treated as a single operation
whose effect is the last operation in that group. Each group-operation is stored in
a leaf-based binary tree with height O(log b) (but not necessarily balanced), and the
combining is done during the entropy-sorting itself.

c. Residual operations (on items that do not fit in the first slab): Sort them while
combining operations in the same manner as for effectual operations.

S. Gilbert and W.Q. Lim 20:9

3. Execution phase: Execute the effectual operations as a batch on the first slab, and
then execute the residual operations as a batch on the final slab, for each slab doing the
following at each section S[k] in order (small to big):
a. Let G1..4 be the partition of the batch of operations into the 4 access types (deletions

last), each Ga sorted by item.
b. For each segment Si[k] in S[k], and for each a from 1 to 4, cut out the operations that

fit in Si[k] from Ga, and perform those operations (as a sorted batch) on Si[k], and
then return their results.

c. Skip the rest of the slab if the batch becomes empty.
4. Rebalancing phase: Rebalance all the segments and chains, by doing the following:

a. Segment rebalancing: For each chain Si, for each segment Si[k] in Si in order (small
to big):
i. If k > 0 and Si[k − 1] is overfull, make Si[k − 1] have target size by shifting items

from it to Si[k].
ii. If k > 0 and Si[k − 1] is underfull and Si[k] has at least c(k)

2 items, let Si[k′] be the
first underfull segment in Si, and fill Si[k′..k − 1] using Si[k] as follows: for each j
from k− 1 down to k′, shift items from Si[j + 1] to Si[j] to make Si[k′..j] have total
size

∑j
a=k′ t(a) or as close as possible, and then remove Si[j + 1] if it is emptied.

iii. If Si[k] is (still) overfull and is the last segment in Si, create a new (empty) segment
Si[k + 1].

iv. Skip the rest of the current slab if Si[k] is balanced and the execution phase had
skipped S[k].

b. Chain rebalancing: After that, if one chain Si is longer than the other chain Sj ,
repeat the following until the chains are the same length:
i. Let the current chains be Si[0..k] and Sj [0..k′]. Create new (empty) segments
Sj [k′ + 1..k], and shift all items from Si[k] to Sj [k], and then fill the underfull
segments in Sj [k′..k − 1] using Sj [k] (as in step 4aii). If Sj [k] is (now) empty
again, remove S[k].

4.2 Analysis of FS1

It is not hard to prove that every segment is balanced (just) after the rebalancing phase.
(See the full paper for the details.) Based on that, we shall now bound the work done by FS1.

I Definition 8 (Inward Order). Take any sequence A of map operations and let I be the
set of items accessed by operations in A. Define the inward distance of an operation in
A on an item x to be min(size(I≤x), size(I≥x)). We say that A is in inward order iff its
operations are in order of (non-strict) increasing inward distance. Naturally, we say that A
is in outward order iff its reverse is in inward order.

I Theorem 9 (FS1 Work). FS1 takes O(FL) work for some linearization L of FS1-calls in D.

Proof. Let L∗ be a linearization of FS1-calls in D such that:
Operations on FS1 in earlier input batches are before those in later input batches.
The operations within each batch are ordered as follows:
1. Ineffectual operations are before effectual/residual operations.
2. Effectual/residual operations are in order of access type (deletions last).
3. Effectual insertions are in inward order, and effectual deletions are in outward order.
4. Operations in each group-operation are consecutive and in the same order as in that

group.

DISC 2019

20:10 Parallel Finger Search Structures

Let L′ be the same as L∗ except that in point 3 effectual deletions are ordered so that those
on items in earlier sections are later (instead of outward order). Now consider each input
batch B of b operations on FS1.

In the preliminary and execution phases, each section S[a] takes O(2a) work per operation.
Thus each operation in B with finger distance r according to L′ on an item x that was
found to fit in section S[k] takes O

(∑k
a=0 2a

)
= O

(
2k
)
⊆ O(log r + 1) work, because

r ≥
∑k−1

a=0 c(a) + 1 ≥ 1
2c(k − 1) if S[k] is in the first slab (since earlier effectual operations in

B did not delete items in S[0..k − 1]), and r ≥
∑k−1

a=0 c(a)− b ≥ 1
2c(k − 1) if S[k] is in the

final slab (since b ≤ 1
2c(m− 1)). Therefore these phases take O(FL′) work in total.

Let G be the effectual operations in B as a subsequence of L∗. Entropy-sorting G takes
O(H + b) work (Appendix Theorem 16), where H is the entropy of G (i.e. H =

∑b
i=1 log b

qi

where qi is the number of occurrences of the i-th operation in G). Partition G into 3 parts:
searches/updates G1 and insertions G2 and deletions G3. And let Hj be the entropy of Gj .
Then H =

∑3
j=1 Hj +

∑b
i=1 log b

bi
where bi is the number of operations in the same part of

G as the i-th operation in G, and
∑b

i=1 log b
bi
≤ b · log

(
1
b

∑b
i=1

b
bi

)
= b · log 3 by Jensen’s

inequality. Thus entropy-sorting G takes O
(∑3

j=1 Hj + b
)
work. Let Cj be the cost of Gj

according to FL∗ . Since each operation in Gj has inward distance (with respect to Gj) at
most its finger distance according to L∗, we have Hj ∈ O(Cj) (Appendix Theorem 14), and
hence entropy-sorting takes O(FL∗) work in total.

Sorting the residual operations in B (that do not fit in the first slab) takes O(log b) ⊆
O(log r) work per operation with finger distance r according to L∗, since r ≥ c(m− 1) ≥ 2b.

Therefore the separation phase takes O(FL∗) work in total. Finally, the rebalancing phase
takes O(1) amortized work per operation, as we shall prove in the next lemma. Thus FS1
takes O(max(FL∗ , FL′)) total work. J

I Lemma 10 (FS1 Rebalancing Work). The rebalancing phase of FS1 takes O(1) amortized
work per operation.

Proof. We shall maintain the credit invariant that each segment Si[k] with q items beyond
its target capacity has at least q ·2−k stored credits. The execution phase clearly increases the
total stored credits needed by at most 1 per operation, which we can pay for. We now show
that the invariant can be preserved after the segment rebalancing and the chain rebalancing.

During the segment rebalancing (step 4a), each shift is performed between some neighbour-
ing segments Si[k] and Si[k+1], where Si[k] has t(k)+q items and Si[k+1] has t(k+1)+q′ items
just before the shift, and |q| > c(k). The shift clearly takes O(log(t(k)+q)+log(t(k+1)+q′))
work. If q′ < 2 · t(k + 1) then this is obviously just O(log t(k) + log |q|) work. But if
q′ > 2 · t(k + 1), then Si[k + 1] will also be rebalanced in step 4ai of the next segment
balancing iteration, since at most

∑k
a=0 t(a) ≤ t(k + 1) items will be shifted from Si[k + 1]

to Si[k] in step 4aii, and hence Si[k + 1] will still have at least q′ items. In that case, the
second term O(log(t(k + 1) + q′))) in the work bound for this shift can be bounded by
the first term of the work bound for the subsequent shift from Si[k + 1] to Si[k + 2], since
log(t(k + 1) + q′) ∈ O(log q′). Therefore in any case we can treat this shift as taking only
O(log t(k) + log |q|) ⊆ O(log |q|) ⊆ O

(
|q| · 2−k

)
work.

Now consider the two kinds of segment rebalancing:
Overflow: step 4ai shifts items from overfull Si[k] to Si[k + 1], where Si[k] has t(k) + u

items just before the shift. After the shift, Si[k] has target size and needs no stored
credits, and Si[k+ 1] would need at most u · 2−(k+1) extra stored credits. Thus the u · 2−k

credits stored at Si[k] can pay for both the shift and the needed extra stored credits.

S. Gilbert and W.Q. Lim 20:11

Fill: step 4aii fills some underfull segments Si[k′..k] using Si[k + 1], where Si[j] has
t(j) − ui(j) items just before the fill, for each j ∈ [k′..k]. After the fill, every segment
in Si[k′..k] would have target size and need no stored credits, and Si[k + 1] will need at
most

(∑k
j=k′ ui(j)

)
· 2−(k+1) ≤ 1

2
∑k

j=k′

(
ui(j) · 2−j

)
extra stored credits, which can be

paid for by using half the credits stored at each segment in Si[k′..k]. The other half of
the ui(j) · 2−j credits stored at Si[j] suffices to pay for the shift from Si[j + 1] to Si[j]
for each j ∈ [k′..k].

If chain rebalancing (step 4b) is performed, segment rebalancing must have created or
removed some segment, in which case there were enough deletions or shifted items that the
work done by chain rebalancing can be ignored. The details are in the full paper. J

The span bound for FS1 is also relegated to the full paper.

5 Faster Parallel Finger Structure

Although FS1 has optimal work and a small span, it is possible to reduce the span even
further, intuitively by pipelining the batches in some fashion so that an expensive access in a
batch does not hold up the next batch.

As with FS1, we need to split the sections into two slabs, but this time we fix the first
slab at m sections where m ∈ log Θ(log p) so that we can pipeline just the final slab. We
need to allow big enough batches so that operations that are delayed because earlier batches
are full can count their delay against the total work divided by p. But to keep the span of
the sorting phase down to O

(
(log p)2), we need to restrict the batch size. It turns out that

restricting to batches of size at most p2 works.
We cannot pipeline the first slab (particularly the rebalancing), but the preliminary

phase and separation phase would only take O
(
(log p)2) span. The execution phase and

rebalancing phases are still carried out as before on the first slab, taking O
(
(log p)2) span,

but execution and rebalancing on the final slab are pipelined, by having each final slab
section S[k] process the batch passed to it and rebalance the preceding segments S0[k − 1]
and S1[k − 1] if necessary.

One key challenge is how to guarantee that such local rebalancing in the final slab is
always possible and always sufficient. To ensure that, we do not allow S[k] to proceed if it is
imbalanced or if there are more than c(k) pending operations in the buffer to S[k + 1]. In
such a situation, S[k] must stop and reactivate S[k + 1], which would clear its buffer and
rebalance S[k] before restarting S[k]. It may be that S[k + 1] also cannot proceed for the
same reason and is stopped in the same manner, and so S[k] may be delayed by such a stop
for a long time. But by a suitable accounting argument we can bound the total delay due to
all such stops by the total work divided by p. Similarly, we do not allow the first slab to
run (on a new batch) if S[m − 1] is imbalanced or there are more than c(m − 1) pending
operations in the buffer to S[m].

Finally, we use an odd-even locking scheme to ensure that the segments in the final slab
do not interfere with each other yet can proceed at a consistent pace. The details are below.

DISC 2019

20:12 Parallel Finger Search Structures

5.1 Description of FS2

FS2:
Parallel
buffer

input batch−−−−−−−→ Feed buffer size-p2 cut batch−−−−−−−−−−−→ First slab
Sort
−−−−→� Final slab

First slab: → S[0] → S[1] → · · · → S[m− 1] → where m =
⌈
log log

(
5p2)⌉

Final slab:
S[m− 1]

Lock
1↗ ↖1

−−−−−→
Buffer

S[m]

Lock
2↗ ↖2

−−−−−→
Buffer

S[m + 1]

Lock
1↗ ↖1

−−−−−→
Buffer

S[m + 2]

Lock
2↗ ↖2

−−−−−→
Buffer

· · · S[l]

Figure 3 FS2 Sketch; the final slab is pipelined, facilitated by locks between adjacent sections.

We will need the bunch structure (Appendix Definition 12) for aggregating batches, which is
an unsorted set supporting both addition of a batch of new elements within O(1) work/span
and conversion to a batch within O(b) work and O(log b) span if it has size b.

FS2 has the same sections as in FS1, with the first slab comprising the first m =⌈
log log

(
5p2)⌉ sections, and the final slab comprising the other sections. FS2 uses a feed

buffer, which is a queue of bunches each of size p2 except the last (which can be empty).
Whenever FS2 is notified of input (by the parallel buffer), it reactivates the first slab.

Each section S[k] in the final slab has a buffer before it (for pending operations from
S[k − 1]), which for each access type uses an optimal batch-parallel map to store bunches of
group-operations of that type, where operations on the same item are in the same bunch.
When a batch of group-operations on an item is inserted into the buffer, it is simply added
to the correct bunch. Whenever we count operations in the buffer, we shall count them
individually even if they are on the same item. The first slab and each final slab section also
has a deferred flag, which indicates whether its run is deferred until the next section has run.
Between every pair of consecutive sections starting from after S[m− 1] is a neighbour-lock,
which is a dedicated lock (see Section 2.1) with 1 key for each arrow to it in Figure 3.

Whenever the first slab is reactivated, it runs as follows:

1. If the parallel buffer and feed buffer are both empty, terminate.

2. Acquire the neighbour-lock between S[m− 1] and S[m]. (Skip steps 2 to 4 and steps 8
to 10 if S[m] does not exist.)

3. If S[m − 1] has any imbalanced segment or S[m] has more than c(m − 1) operations
in its buffer, set the first slab’s deferred flag and release the neighbour-lock, and then
reactivate S[m] and terminate.

4. Release the neighbour-lock.

5. Let q be the size of the last bunch F in the feed buffer. Flush the parallel buffer (if
it is non-empty) and cut the input batch of size b into small batches of size p2 except
possibly the first and last, where the first has size min

(
b, p2 − q

)
. Add that first small

batch to F , and append the rest as bunches to the feed buffer.

6. Remove the first bunch from the feed buffer and convert it into a batch B, which we
call a cut batch.

S. Gilbert and W.Q. Lim 20:13

7. Process B using the same four phases as in FS1 (Section 4.1), but restricted to the
first slab (i.e. execute only the effectual operations on the first slab, and do segment
rebalancing only on the first slab, and do chain rebalancing only if S[m] had not existed
before this processing). Furthermore, do not update S[m−1]’s segments’ sizes until after
this processing (so that section S[m] in step 4 will not find any of S[m− 1]’s segments
imbalanced until the first slab rebalancing phase has finished).

8. Acquire the neighbour-lock between S[m− 1] and S[m].
9. Insert the residual group-operations (on items that do not fit in the first slab) into the

buffer of S[m], and then reactivate S[m].
10. Release the neighbour-lock.
11. Reactivate itself.
Whenever a final slab section S[k] is reactivated, it runs as follows:
1. Acquire the neighbour-locks (between S[k] and its neighbours) in the order given by the

arrow number in Figure 3.
2. If S[k] has any imbalanced segment or S[k+1] (exists and) has more than c(k) operations

in its buffer, set S[k]’s deferred flag and release the neighbour-locks, and then reactivate
S[k + 1] and terminate.

3. For each access type, flush and process the (sorted) batch G of bunches of group-
operations of that type in its buffer as follows:
a. Convert each bunch in G to a batch of group-operations.
b. For each segment Si[k] in S[k], cut out the group-operations on items that fit in Si[k]

from G, and perform them (as a sorted batch) on Si[k], and then fork to return the
results of the operations (according to the order within each group-operation).

c. If G is non-empty (i.e. has leftover group-operations), insert G into the buffer of
S[k + 1] and then reactivate S[k + 1].

4. Rebalance locally as follows (essentially like in FS1):
a. For each segment Si[k] in S[k]:

i. If Si[k − 1] is overfull, shift items from Si[k − 1] to Si[k] to make Si[k − 1] have
target size.

ii. If Si[k− 1] is underfull, shift items from Si[k] to Si[k− 1] to make Si[k− 1] have
target size, and then remove Si[k] if it is emptied.

iii. If Si[k] is (still) overfull and is the last segment in Si, create a new segment
Si[k + 1] and reactivate it.

b. If S[k] is (still) the last section, but chain Si is longer than chain Sj :
i. Create a new segment Sj [k] and shift all items from Si[k] to Sj [k].
ii. If Sj [k−1] is (now) underfull, shift items from Sj [k] to Sj [k−1] to make Sj [k−1]

have target size.
iii. If Sj [k] is (now) empty again, remove S[k].

5. If k = m, and the first slab is deferred, clear its deferred flag then reactivate it.
6. If k > m, and S[k − 1] is deferred, clear its defered flag then reactivate it.
7. Release the neighbour-locks.

DISC 2019

20:14 Parallel Finger Search Structures

5.2 Analysis of FS2

See the full paper for the proofs. The first step is to establish the FS2 Balance Invariants:

I Lemma 11 (FS2 Balance Invariants). FS2 satisfies the following invariants:
1. When the first slab is not running, every segment in Si[0..m−2] is balanced and Si[m−1]

has at most 2 · t(m− 1) items.
2. When a final slab section S[k] rebalances a segment in S[k − 1] (in step 4a), it will make

that segment have size t(k − 1).
3. Just after the last section finishes running without creating new sections, the segments in

S[k] are balanced and both chains have the same length.
4. Each final slab section S[k] always has at most 2 · c(k − 1) operations in its buffer.
5. Each final slab segment Si[k] always has at most 2 · t(k) items, and at least c(k− 1) items

unless S[k] is the last section.
Using these invariants, we can prove the work bound for FS2 (as stated in Theorem 7), by
linearizing operations that finish during the first slab run or final slab section according to
when that run finishes, and linearizing operations that finish in the same first slab run in the
same way as in the proof for FS1 (see Theorem 9). This relies on a supporting lemma that
all rebalancing done by FS2 takes O(1) amortized work per operation, which can be proven
by a credit invariant like the one used for FS1 (see Lemma 10): Each segment Si[k] with
q items beyond its target capacity has at least q · 2−k stored credits, and each unfinished
operation carries 1 credit with it.

The span bound for FS2 (as stated in Theorem 7) requires another credit invariant: For
k ≥ m− 1, each segment Si[k] with q items beyond its target capacity has at least q · 2−k

stored credits, and each operation in S[k + 1]’s buffer carries 2−k credits with it. This
invariant is used to bound the deferment delay (the delay that an operation may face due
to deferred section runs), where we use the credits to pay for p times the deferment delay,
to show that the deferment delay is at most O

(
1
p

)
per operation on FS2. The rest of the

delay incurred by each operation can be bounded by tracing its path through the sections
and using the fact that the neighbour-locking scheme ensures that the first slab contributes
O
(
(log p)2) delay and each final slab section S[k] contributes O

(
2k
)
delay.

References
1 Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and Robert E Tarjan. The CB

tree: a practical concurrent self-adjusting search tree. Distributed computing, 27(6):393–417,
2014.

2 Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and Robert Endre Tarjan.
CBTree: A Practical Concurrent Self-Adjusting Search Tree. In DISC, volume 7611 of Lecture
Notes in Computer Science, pages 1–15. Springer, 2012.

3 Kunal Agrawal, Jeremy T Fineman, Kefu Lu, Brendan Sheridan, Jim Sukha, and Robert
Utterback. Provably good scheduling for parallel programs that use data structures through
implicit batching. In Proceedings of the 26th ACM symposium on Parallelism in algorithms
and architectures, pages 84–95. ACM, 2014.

4 Kunal Agrawal, Seth Gilbert, and Wei Quan Lim. Parallel Working-Set Search Structures. In
Proceedings of the 30th ACM symposium on Parallelism in algorithms and architectures, pages
321–332. ACM, 2018. arXiv:1805.05787.

5 Yaroslav Akhremtsev and Peter Sanders. Fast parallel operations on search trees. In 2016
IEEE 23rd International Conference on High Performance Computing (HiPC), pages 291–300.
IEEE, 2016.

http://arxiv.org/abs/1805.05787

S. Gilbert and W.Q. Lim 20:15

6 Vitaly Aksenov, Petr Kuznetsov, and Anatoly Shalyto. Parallel Combining: Benefits of
Explicit Synchronization. In Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo
Ferreira, editors, 22nd International Conference on Principles of Distributed Systems (OPODIS
2018), volume 125 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1–
11:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.OPODIS.2018.11.

7 Guy E Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered sets. In
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures,
pages 253–264. ACM, 2016.

8 Guy E Blelloch, Jeremy T Fineman, Yan Gu, and Yihan Sun. Optimal Parallel Algorithms in
the Binary-Forking Model. arXiv preprint, 2019. arXiv:1903.04650.

9 Guy E. Blelloch and Margaret Reid-Miller. Pipelining with Futures. In Proceedings of the
ninth annual ACM symposium on Parallel algorithms and architectures, SPAA ’97, pages
249–259, New York, NY, USA, 1997. ACM. doi:10.1145/258492.258517.

10 Guy E. Blelloch and Margaret Reid-Miller. Fast Set Operations Using Treaps. In Proceedings
of the tenth annual ACM symposium on Parallel algorithms and architectures, pages 16–26,
1998. doi:10.1145/277651.277660.

11 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees. In
ACM SIGPLAN Notices, volume 49, pages 329–342. ACM, 2014.

12 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, third edition, 2009.

13 Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention in shared memory algorithms.
Journal of the ACM (JACM), 44(6):779–805, 1997.

14 Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. The amortized complexity
of non-blocking binary search trees. In Proceedings of the 2014 ACM symposium on Principles
of distributed computing, pages 332–340. ACM, 2014.

15 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking Binary
Search Trees. In Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC ’10, pages 131–140, New York, NY, USA, 2010. ACM.
doi:10.1145/1835698.1835736.

16 Stephan Erb, Moritz Kobitzsch, and Peter Sanders. Parallel bi-objective shortest paths using
weight-balanced b-trees with bulk updates. In International Symposium on Experimental
Algorithms, pages 111–122. Springer, 2014.

17 Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combining synchronization
technique. In PPoPP, pages 257–266, 2012. doi:10.1145/2145816.2145849.

18 Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The Implementation of the Cilk-5
Multithreaded Language. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 212–223, 1998.

19 Michael T Goodrich and S Rao Kosaraju. Sorting on a parallel pointer machine with
applications to set expression evaluation. Journal of the ACM (JACM), 43(2):331–361,
1996.

20 Leo J Guibas, Edward M McCreight, Michael F Plass, and Janet R Roberts. A new repre-
sentation for linear lists. In Proceedings of the ninth annual ACM symposium on Theory of
computing, pages 49–60. ACM, 1977.

21 Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 355–364, 2010. doi:10.1145/1810479.1810540.

22 John Iacono. Alternatives to splay trees with O(log n) worst-case access times. In Proceedings
of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 516–522. Society
for Industrial and Applied Mathematics, 2001.

DISC 2019

https://doi.org/10.4230/LIPIcs.OPODIS.2018.11
https://doi.org/10.4230/LIPIcs.OPODIS.2018.11
http://arxiv.org/abs/1903.04650
https://doi.org/10.1145/258492.258517
https://doi.org/10.1145/277651.277660
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/2145816.2145849
https://doi.org/10.1145/1810479.1810540

20:16 Parallel Finger Search Structures

23 Intel Corporation. Intel Cilk Plus Language Extension Specification, Version 1.1, 2013.
Document 324396-002US. Available from http://cilkplus.org/sites/default/files/open_
specifications/Intel_Cilk_plus_lang_spec_2.htm.

24 Wei Quan Lim. Optimal Multithreaded Batch-Parallel 2-3 Trees. arXiv, 2019. arXiv:
1905.05254.

25 OpenMP Architecture Review Board. OpenMP application program interface, version 4.0.
Available from http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf, July 2013.

26 Y. Oyama, K. Taura, and A. Yonezawa. Executing Parallel Programs With Synchroniza-
tion Bottlenecks Efficiently. In Proceedings of the International Workshop on Parallel and
Distributed Computing for Symbolic and Irregular Applications (PDSIA), pages 182–204, 1999.

27 Wolfgang Paul, Uzi Vishkin, and Hubert Wagener. Parallel dictionaries on 2–3 trees. Automata,
Languages and Programming, pages 597–609, 1983.

28 James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor
Parallelism. O’Reilly, 2007.

29 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal
of the ACM (JACM), 32(3):652–686, 1985.

30 The Task Parallel Library. http://msdn.microsoft.com/en-us/magazine/cc163340.aspx,
October 2007. URL: http://msdn.microsoft.com/en-us/magazine/cc163340.aspx.

31 Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. Batch-Parallel Euler Tour Trees. In
2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 92–106. SIAM, 2019.

A Appendix

Here we spell out the model details, building blocks and supporting theorems used in our
paper. More details and proofs can be found in the full paper.

A.1 QRMW Pointer Machine Model
QRMW stands for queued read-modify-write, as described in [13]. In this contention
model, asynchronous processors perform memory accesses via read-modify-write (RMW)
operations (including read, write, test-and-set, fetch-and-add, compare-and-swap), which are
supported by almost all modern architectures. Also, to capture contention costs, multiple
memory requests to the same memory cell are FIFO-queued and serviced one at a time, and
the processor making each memory request is blocked until the request has been serviced.

The QRMW pointer machine model, introduced in [4], extends the parallel pointer
machine model in [19] to RMW operations. An RMW operation can be performed on any
memory cell via a pointer to the memory node that it belongs to. All operations except
for memory accesses take one step each. Accesses to each memory cell are FIFO-queued
to be serviced, and the first access in the queue (if any) is serviced at each time step. The
processor making each memory request is blocked until the request has been serviced.

A.2 Parallel Batch Operations
We rely on the following basic operations on batches:

Split a given batch of n items into left and right parts around a given position, within
O(logn) work/span.
Partition a given batch of n items into lower and upper parts around a given pivot, within
O(n) work and O(logn) span.
Partition a sorted batch of n items around a sorted batch of k pivots, within O(k · logn)
work and O(logn+ log k) span.

http://cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_2.htm
http://cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_2.htm
http://arxiv.org/abs/1905.05254
http://arxiv.org/abs/1905.05254
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx

S. Gilbert and W.Q. Lim 20:17

Join a batch of batches with n total items, within O(n) work and O(logn) span.
Merge two sorted batches with n total items, optionally combining duplicates, within
O(n) work and O(logn) span if the combining procedure takes O(1) work/span.

These can be implemented in the QRMW pointer machine model [24] with each batch stored
as a BBT (leaf-based balanced binary tree). They can also be implemented (more easily) in
the binary forking model in [8] with each batch stored in an array.

We also rely on the bunch data structure, defined as follows.

I Definition 12 (Bunch Structure). A bunch is an unsorted set supporting addition of any
batch of new elements within O(1) work/span and conversion to a batch within O(b) work
and O(log b) span if it has size b. A bunch can be implemented using a complete binary tree
with batches at the leaves, with a linked list threaded through each level to support adding a
new batch as a leaf in O(1) work/span. To convert a bunch to a batch, we treat the bunch as
a batch of batches and parallel join all the batches.

A.3 Parallel Buffer
To facilitate extended implicit batching, we can use any parallel buffer implementation that
takes O(p+ b) work and O(log p+ log b) span per batch of size b (on p processors), as long
as any operation that arrives is (regardless of the scheduler) within O(1) span included in
the batch that is being flushed or in the next batch, and there are always at most 1

2p+ q

ready buffer nodes (active threads of the buffer) where q is the number of operations that
are currently buffered or being flushed. This would entail the following parallel buffer
overhead [4].

I Theorem 13 (Parallel Buffer Cost). Take any program P using an implicitly batched data
structure M , run using any greedy scheduler. Then the cost (Definition 6) of the parallel
buffer for M is O

(
T1+w

p + d · log p
)
, where T1 is the work of the P -nodes, and w is the work

taken by M , and d is the maximum number of M -calls on any path in the program DAG D.

I Remark. In general, if a program uses a fixed number of implicitly batched data structures,
then running it using a greedy scheduler takes O

(
T1+w∗

p + T∞ + s∗ + d∗ · log p
)
time, where

w∗ is the total work of all the data structures, and s∗ is the total span of all the data
structures, and d∗ is the maximum number of data structure calls on any path in the program
DAG.

The parallel buffer for each data structure M can be implemented using a static BBT, with
a sub-buffer at each leaf node, one per processor, and a flag at each internal node. Each
sub-buffer stores its operations as the leaves of a complete binary tree with a linked list
through each level. Whenever a thread τ makes a call toM , the processor running τ suspends
it and inserts the call together with a callback (i.e. a structure with a pointer to τ and a field
for the result) into the sub-buffer for that processor. Then the processor walks up the BBT
from leaf to root, test-and-setting each flag along the way, terminating if it was already set.
On reaching the root, the processor notifies M (by reactivating it). M can eventually return
the result of the call via the callback (i.e. by updating the result field and then resuming τ).

Whenever the buffer is flushed (by M), all sub-buffers are swapped out by a parallel
recursion on the BBT, replaced by new sub-buffers in a newly constructed static BBT. We
then wait for all pending insertions into the old sub-buffers to be completed, before joining
their contents into a single batch to be returned (to M). To do so, each processor i has a
flag yi initialized to true, and a thread field φi initialized to null. Whenever it inserts an

DISC 2019

20:18 Parallel Finger Search Structures

M -call X, it sets yi := false, then inserts X into the (current) sub-buffer, then resumes φi if
TestAndSet(yi) = true. To wait for pending insertions into the old sub-buffer for processor i,
we store a pointer to the current thread in φi and then suspend it if TestAndSet(yi) = false.

A.4 Sorting Theorems
Let S be the set of possible items, linearly ordered by a given comparison function.

I Theorem 14 (Maximum Finger Bound). Take any sequence I in Sn with in-order item
frequencies q1..u, namely the i-th smallest item in I (not counting duplicates) occurs qi times
in I. Then the maximum finger bound for I, defined as MFI =

∑u
i=1 qi · (log min(i, u+

1− i) + 1), satisfies MFI ∈ Ω(H) where H =
∑u

i=1

(
qi · log n

qi

)
.

I Definition 15 (Parallel Entropy-Sort). Define a bundle of an item x to be a BT (binary
tree) in which every leaf has a tagged copy of x. Let PESort be the parallel merge-sort
variant that does the following on an input batch I of items (I has subtrees I.left and I.right):

If I.size ≤ 1, return I. Otherwise, compute A = PEMerge(I.left) and
B = PEMerge(I.right) in parallel, and then parallel merge (Appendix A.2) A and
B into an item-sorted batch C of bundles, combining bundles of the same item into one
by simply making them the child subtrees of a new bundle, and then return C.

Then PESort(I) returns an item-sorted batch of bundles, with one bundle (of all the tagged
copies) for each distinct item in I, and clearly each bundle has height at most I.height.

I Theorem 16 (PESort Costs). PESort sorts every sequence in Sn with item frequencies
q1..u within O(H + n) work and O

(
(logn)2) span, where H =

∑u
i=1

(
qi · ln n

qi

)
.

	1 Introduction
	2 Parallel Computation Model
	2.1 Parallel Primitives
	2.2 Execution DAG
	2.3 Data Structure Costs

	3 Amortized Sequential Finger Structure
	4 Simpler Parallel Finger Structure
	4.1 Description of FS_{1}
	4.2 Analysis of FS_{1}

	5 Faster Parallel Finger Structure
	5.1 Description of FS_{2}
	5.2 Analysis of FS_{2}

	A Appendix
	A.1 QRMW Pointer Machine Model
	A.2 Parallel Batch Operations
	A.3 Parallel Buffer
	A.4 Sorting Theorems

