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Abstract
In a recent paper, Chan et al. [SODA ’19] proposed a relaxation of the notion of (full) memory
obliviousness, which was introduced by Goldreich and Ostrovsky [J. ACM ’96] and extensively
researched by cryptographers. The new notion, differential obliviousness, requires that any two
neighboring inputs exhibit similar memory access patterns, where the similarity requirement is that
of differential privacy. Chan et al. demonstrated that differential obliviousness allows achieving
improved efficiency for several algorithmic tasks, including sorting, merging of sorted lists, and range
query data structures.

In this work, we continue the exploration of differential obliviousness, focusing on algorithms that
do not necessarily examine all their input. This choice is motivated by the fact that the existence of
logarithmic overhead ORAM protocols implies that differential obliviousness can yield at most a
logarithmic improvement in efficiency for computations that need to examine all their input. In
particular, we explore property testing, where we show that differential obliviousness yields an almost
linear improvement in overhead in the dense graph model, and at most quadratic improvement in
the bounded degree model. We also explore tasks where a non-oblivious algorithm would need to
explore different portions of the input, where the latter would depend on the input itself, and where
we show that such a behavior can be maintained under differential obliviousness, but not under full
obliviousness. Our examples suggest that there would be benefits in further exploring which class of
computational tasks are amenable to differential obliviousness.
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1 Introduction

A program’s memory access pattern can leak significant information about the private
information used by the program even if the memory content is encrypted. Such leakage
can turn into a data protection problem in various settings. In particular, where data
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is outsourced to be stored on an external server, it has been shown that access pattern
leakage can be exploited in practical attacks and lead to the compromise of the underlying
data [20, 4, 29, 21, 23]. Such leakages can also be exploited when a program is executed in a
secure enclave environment but needs to access memory that is external to the enclave.

Memory access pattern leakage can be avoided by employing a strategy that makes the
sequence of memory accesses (computationally or statistically) independent of the content
being processed. Beginning with the seminal work of Goldreich and Ostrovsky, it is well
known how to transform any program running on a random access memory (RAM) machine to
one with an oblivious memory access pattern while retaining efficiency by using an Oblivious
RAM protocol (ORAM) [10, 30, 13]. Current state-of-the-art ORAM protocols achieve
logarithmic overhead [2], matching a recent lowerbound by Larsen and Nielsen [24], and
protocols with O(1) overhead exist when the server is allowed to perform computation and
large blocks are retrieved [6, 28]. To further reduce the overhead, oblivious memory access
pattern protocols have been devised for specific tasks, including graph algorithms [3, 17],
geometric algorithms [8] and sorting [16, 25]. The latter is motivated by sorting being a
fundamental and well researched computational task as well as its ubiquity in data processing.

1.1 Differential Obliviousness
Full obliviousness is rather a strong requirement: any two possible inputs (of the same size)
should exhibit identical or indistinguishable sequences of memory accesses. Achieving full
obliviousness via a generic use of ORAM protocols requires a setup phase with running time
(at least) linear in the memory size and then a logarithmic overhead per each memory access.

A recent work by Chan, Chung, Maggs, and Shi [5] put forward a relaxation of the
obliviousness requirement where indistinguishability is replaced with differential privacy.
Intuitively, this means that any two possible neighboring inputs should exhibit memory
access patters that are similar enough to satisfy differential privacy, but may still be too
dissimilar to be “cryptographically” indistinguishable. It is not a priori clear whether
differential obliviousness can be achieved without resorting to full obliviousness. However,
the recent work Chan et al. showed that differential obliviousness does allow achieving
improved efficiency for several algorithmic tasks, including sorting (over very small domains),
merging of sorted lists, and range query data structures.

Also of relevance are the works by He et al. [19] and Mazloom and Gordon [27], which
study protocols for secure multiparty computation in which the parties are allowed to learn
information from the computation as long as this information preserves the differential
privacy of the input. He et al. and Mazloom and Gordon demonstrate that this leakage is
useful: He et al. construct protocols for the private record linkage problem for two databases;
Mazloom and Gordon present protocols for histograms, PageRank, and matrix factorization.

Furthermore, even the use of ORAM protocols may be insufficient for preventing leakage
in cases where the number of memory probes is input dependent. In fact, Kellaris et al. [21]
show that such leakage can result in a complete reconstruction in the case of retrieving
elements specified by range queries, as the number of records returned depends on the
contents of the data structure. Full obliviousness would require that the sequence of memory
accesses would be padded to a maximal one to avoid such leakage, a solution that would
have a dire effect on the efficiency of many algorithms. Differential obliviousness may in
some cases allow achieving meaningful privacy while maintaining efficiency. Examples of
such protocols include the combination of ORAM with differentially private sanitization by
Kellaris et al. [22] and the recent work of Chan et al. [5] on range query data structures,
which avoids using ORAM.
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1.2 This Work: Exploring Differential Obliviousness
Noting that the existence of logarithmic overhead ORAM protocols implies that differential
obliviousness can yield at most a logarithmic improvement in efficiency for computations that
need to examine all their input, we explore tasks where this is not the case. In particular, we
focus on property testing and on tasks where the number of memory accesses can depend
on the input.

Property testing. As evidence that differential obliviousness can provide a significant
improvement over full obliviousness, we show in Section 3 that property testers in the dense
graph model, where the input is in the adjacency matrix representation [12], can be made
differentially oblivious. This result captures a large set of testable graph properties [12, 1]
including, e.g., graph bipartitness and having a large clique. Testers in this class probe
a uniformly random subgraph and hence are fully oblivious without any modification, as
their access pattern does not depend on the input graph. However, this is not the case
if the tester reveals its output to the adversary, as this allows learning information about
the specific probed subgraph. A fully oblivious tester would need to access a linear-sized
subgraph, whereas we show that a differentially oblivious tester only needs to apply the
original tester O(1) times.2

We also consider property testing in the bounded degree model, where the input is in
the incidence lists model [14]. In this model we provide negative results, demonstrating that
adaptive testers cannot, generally, be made differentially oblivious without a significant loss
in efficiency. In particular, in Section 4 we consider differentially oblivious property testers
for connectivity in graphs of degree at most two. For non-oblivious testers, it is known
that constant number of probes suffice when the tester is adaptive [14].3 It is also known
that any non-adaptive tester for this task requires probing Ω(

√
n) nodes [32]. We show that

this lowerbound extends to differentially oblivious testers, i.e., any differentially oblivious
tester for connectivity in graphs of maximal degree 2 requires Ω(

√
n) probes. While this still

improves over full obliviousness, the gap between full and differential obliviousness is in this
case diminished.

Locating an Object Satisfying a Property. Here, our goal is to check whether a given data
set of objects includes an object that satisfies a specified property. Without obliviousness
requirements, a natural approach is to probe elements in a random order until an element
satisfying the property is found or all elements were probed. If a p fraction of the elements
satisfy the property, then the expected number of probes is 1/p. This algorithm is in fact
instance optimal when the data set is randomly permuted.4

A fully oblivious algorithm would require Ω(n) probes on any dataset even when p = 1. In
contrast, we demonstrate in Section 5 that with differential obliviousness instance optimality
can, to a large extent, be preserved. Our differentially oblivious algorithm always returns a
correct answer and makes at most m probes with probability at least 1− e−O(mp).

Prefix Sum. Our last example considers a sorted dataset (possibly, the result of an earlier
phase in the computation). Our goal is to compute the sum of all records in the (sorted)
dataset that are less than or equal to a given value a (see Section 6 for the definition
of privacy).

2 We omit dependencies on privacy and accuracy parameters from this introductory description.
3 In an adaptive tester at least one choice of a node to probe should depend on information gathered

from incidence lists of previously probed nodes.
4 Our treatment of instance optimality is rather informal. The concept was originally presented in [9].

APPROX/RANDOM 2019



65:4 Exploring Differential Obliviousness

Without obliviousness requirements, one can find the greatest record less than or equal to
value a, say, using binary search, and then compute the prefix sum by a quick scan through all
records appearing before this record. This algorithm is in fact nearly instance optimal, as it
can be shown that any algorithm which returns the correct exact answer with non-negligible
probability must probe all entries greater than a. However, fully oblivious algorithms would
have to probe the entire dataset.

In Section 6, we give our nearly instance optimal differentially oblivious prefix sum
algorithm. As the probes of a binary search would leak information about the memory
content, we introduce a differentially oblivious “simulation” of the binary search. Our
differentially oblivious binary search runs in time O(log2 n).

We also address the scenario where there are multiple prefix sum queries to the same
database. If the number of queries is bounded by some integer t, then each differentially
oblivious binary search will run in time O(t log2 n) (as we need to run the search algorithm
with a smaller privacy parameter ε). Using ORAM, one can answer such queries with
O(n logn) prepossessing time and O(log2 n) time per query. Combining our algorithm and
ORAM, we can amortize the pre-processing time over O(

√
n) queries, that is, without any

pre-processing, the running of time of answering the i-th query is O(i log4 n) for the first
O(
√
n) queries and O(log2 n) for any further query.

1.3 Background Work

The papers by Chan, Chung, Maggs, and Shi [5], He, Machanavajjhala, Flynn, and Srivast-
ava [19], and by Mazloom and Gordon [27] mentioned above are most relevant for this
article. As mentioned above, Kellaris et al. [22] examined a similar concept with the goal of
preventing reconstruction attacks in secure remote databases. Goldreich, Goldwasser, and
Ron [12] initiated the research on graph property testing. Persiano and Yeo [31] showed
that the O(logn) lowerbound for ORAM of [24] also holds when the security requirement
is relaxed to differetial privacy. Goldreich’s book on property testing [11] gives sufficient
background for our discussion. Dwork, McSherry, Nissim, and Smith [7] defined differential
privacy. For more details on ORAM and a list of relevant papers, the reader can consult [2].

2 Definitions

2.1 Model of Computation

We consider the standard Random Access Memory (RAM) model of computation that
consists of a CPU and a memory. The CPU executes a program and is allowed to perform
two types of memory operations: read a value from a specified physical address, and write a
value to a specified physical address. We assume that the CPU has a private cache of where
it can store O(1) values (and/or a polylogarithmic number of bits). As an example, in the
setting of a client storing its data on the cloud, the client plays the role of the CPU and the
cloud server plays the role of the memory.

We assume that a program’s sequence of read and write operations may be visible to an
adversary. We will call this sequence the program’s access pattern. We will further assume
that the memory content is encrypted so that no other information is leaked about the
content read from and stored in memory location. The program’s access pattern may depend
on the program’s input, and may hence leak information about it.
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Algorithm 1 Experiment ExpA,Mb for defining differential obliviousness.

(x0,x1, st)←$ A1(λ, n)
b′←$ A

M(xb,·)
2 (st)

Return b′

Oracle M(x, q)
out←$ M(x, q, state)
Return AccessM (x, q, state)

2.2 Oblivious Algorithms
There are various works focused on oblivious algorithms [8, 15, 26] and Oblivious RAM
(ORAM) constructions [13]. These works adopt “full obliviousness” as a privacy notion.
Suppose that M(λ,x) is an algorithm that takes in two inputs, a security parameter λ and
an input dataset denoted x. We denote by AccessM (λ,x), the ordered sequence of memory
accesses the algorithm M makes on the input λ and x.

I Definition 1 (Fully Oblivious Algorithms). Let δ be a function in a security parameter λ.
We say that algorithm M is δ-statistically oblivious, iff for all inputs x and y of equal length,
and for all λ, it holds that AccessM (λ,x) ≈δ(λ) AccessM (λ,y) where ≈δ(λ) denotes that the
two distributions have at most δ(λ) statistical distance. We say that M is perfectly oblivious
when δ = 0.

2.3 Differentially Oblivious Algorithms
Suppose that M(λ,x, q) is a (stateful) algorithm that takes in three inputs, a security
parameter λ > 0, an input dataset denoted by x and a value q. We slightly change the
definition of differentially oblivious algorithms given in [5]:

I Definition 2 (Neighbor-respecting). We say that two input datasets x and y are neighboring
iff they are of the same length and differ in exactly one entry. We say that A = (A1, A2) is
neighbor-respecting adversary iff for every λ and every n, A1 outputs neighboring datasets
x0,x1, with probability 1.

I Definition 3. Let ε, δ be privacy parameters. Let M be a (possibly stateful) algorithm
described as above. To an adversary A we associate the experiment in Algorithm 1, for every
λ ∈ N. We say that M is (ε, δ)-adaptively differentially oblivious if for all (computationally
unbounded) stateful neighbor-respecting adversary A we have

Pr[ExpA,M0 (λ, n) = 1] ≤ eε · Pr[ExpA,M1 (λ, n) = 1] + δ.

In Algorithm 1, AccessM (x, q, state) denotes the ordered sequence of memory accesses the
algorithm M makes on the inputs x, q and state.

I Remark 4. The notion of adaptivity here is different from the one defined in [5]. We require
that the dataset x remain the same through the experiment whereas in [5] the adaptive
adversary can add or remove entries from the dataset.

As with differential privacy, we usually think about ε as a small constant and require
that δ = o(1/n) where n = |x| [7]. Observe that if M is δ-statistically oblivious then it is
also (0, δ)-differentially oblivious.

The following simple lemma will be useful to analyze our algorithms. The proof of the
lemma appears in Appendix A.

APPROX/RANDOM 2019
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I Lemma 5. Let A be an (ε, 0)-differentially oblivious algorithm and B be an algorithm such
that for every dataset x the statistical distance between A(x) and B(x) is at most γ (that is,
|Pr[A(x) ∈ S]− Pr[B(x) ∈ S]| ≤ γ for every S). Then, B is an (ε, (1 + eε)γ)-differentially
oblivious algorithm.

3 Differentially Oblivious Property Testing of Dense Graphs
Properties

In this section, we present a differentially oblivious property tester for dense graphs properties
in the adjacency matrix representation model. A property tester is an algorithm that decides
whether a given object has a predetermined property or is far from any object having this
property by examining a small random sample of its input. The correctness requirement of
property testers ignores objects that neither have the property nor are far from having the
property. However, the privacy requirement is “worst case” and should hold for any two
neighboring graphs. For the definition of privacy we say that two graphs G,G′ of size n are
neighbors if one can get G′ by changing the neighbors of exactly one node of G.

Property testing of graph properties in the adjacency matrix representation was introduced
in [12]. A graph G = (V,E) is represented by the predicate fG : V × V → {0, 1} such that
fG(u, v) = 1 if and only if u and v are adjacent in G. The distance between graphs is defined
to be the number of different matrix entries over |V |2. This model is most suitable for
dense graphs where the number of edges is O(|V |2). We define a property P of graphs to
be a subset of the graphs. We write G ∈ P to show that graph G has the property P. For
example, we can define the bipartiteness property, where P is the set of all bipartite graphs.5
We say that an n-vertex G is γ-far from P if for every n-vertex graph G′ = (V ′, E′) ∈ P it
holds that the symmetric difference between E and E′ is greater than γn2. We define the
property testing in this model as follows:

I Definition 6 ([12]). A (β, γ)-tester for a graph property P is a probabilistic algorithm that,
on inputs n, β, γ, and an adjacency matrix of an n-vertex graph G = (V,E):
1. Outputs 1 with probability at least β, if G ∈ P.
2. Outputs 0 with probability at least β, if G is γ-far from P.

We say a tester has one-sided error, if it accepts every graph in P with probability 1. We
say a tester is non-adaptive if it determines all its queries to adjacency matrix only based on
n, β, γ, and its randomness; otherwise, we say it is adaptive.

I Example 7 ([12]). Consider the following (2/3, γ)-tester for bipartiteness: Choose a random
subset A ⊂ V of size Õ(1/γ2) with uniform distribution and output 1 iff the graph induced
by A is bipartite. Clearly, if G is bipartite, then the tester will always return 1. Goldreich
et al. [12] proved that if G is γ-far from a bipartite graph, then the probability that the
algorithm returns 1 is at most 1/3.

Recall that in the graph property testing, the tester T chooses a random subset of the
graph with uniform distribution to test the property P. Given the access pattern of the
tester T , an adversary will learn nothing since it is uniformly random. Thus, the access
pattern by itself does not reveal any information about the input graph. However, we assume
that the adversary also learns the tester’s output and can hence learn some information

5 Recall that an undirected graph is bipartite (or 2-colorable) if its vertices can be partitioned into two
parts, V1 and V2, such that each part is an independent set (i.e., E ⊆ {(u, v) : (u, v) ∈ V1 × V2}).
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Algorithm 2 Differentially Oblivious Property Tester TesterT for Dense Graphs.

Input: graph G = (V,E)
1: Let c← 0 and T ← ln(1/2δ)

ε

2: for i = 1 to 4T do
3: if T (G) = 1 then
4: c← c+ 1
5: end if
6: Let A be the subset of vertices chosen by tester T
7: Update graph G to be the induced sub-graph on V \A
8: end for
9: T̂ ← 3T + Lap( 1

ε )
10: if c ≥ min(T̂ , 4T ) then
11: output 1
12: else
13: output 0
14: end if

about the input graph based on the output of the tester. To protect this information, we
run tester T for constant number of times and output 1 iff the number of times T outputs 1
exceed a (randomly chosen) threshold.

Let T be a (β, γ)-tester for a graph property P where β ≤ 1/4. We write cβ,γ for
the number of nodes that T samples. Note that cβ,γ is constant in the graph size and a
function of β and γ. For simplicity, we only consider property testers with one-sided error.
In Algorithm 2, we describe a (β′, γ′)-tester TesterT that outputs 1 with probability 1 if
G ∈ P and outputs 0 with probability at least β′, if G is γ′-far from P, where β′ and γ′ are
defined below.

I Theorem 8. Let ε, δ > 0 and γ′ = γ− 4 ln(1/2δ)cβ,γ
nε . Algorithm TesterT is an (ε, δ(1 + eε))-

differentially oblivious algorithm that outputs 1 with probability 1 if G ∈ P, and output 0
with probability at least 1− δ − (2δ) 1

3ε if G is γ′-far from P.

The proof of Theorem 8 appears in Appendix A.2.

4 Lower Bounds on Testing Connectivity in the Incidence Lists Model

We now consider differentially oblivious testing of connectivity in the incidence lists model [14].
In this model a graph has a bounded degree d and is represented as a function f : V × [d]→
V ∪ {0}, where f(v, i) is the i-th neighbor of v (if no such neighbor exists, then f(v, i) = 0).
In this model, the relative distance between graphs is normalized by dn – the maximal
number of edges in the graph. Formally, for two graphs with n vertices,

distd(G1, G2) , |{(v, i) : v ∈ V, i ∈ [d], fG1(v, i) 6= fG2(v, i)}|
dn

.

A (β, γ)-tester in the incidence lists model is defined as in Definition 6, where a property P
is a set of graphs whose maximal degree is d and the distance to a property is defined with
respect to distd.

Goldreich and Ron [14] showed how to test if a graph is connected in the incidence list
model in time Õ(1/γ). Raskhodnikova and Smith [32] showed that a tester for connectivity
(or any non-trivial property) with run-time o(

√
n) has to be adaptive, that is, the nodes that

APPROX/RANDOM 2019
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the algorithm probes should depend on the neighbors of nodes the algorithm has already
probed (e.g., the algorithm probes some node u, discovers that v is a neighbor and u, and
probes v). We strengthen their results by showing that any tester for connectivity in graphs
of maximal degree 2 and run-time o(

√
n) cannot be a differentially oblivious algorithm. We

stress that adaptivity alone is not a reason for inefficiency with differential obliviousness.
In fact, there exist differentially oblivious algorithms that are adaptive (e.g., our algorithm
in Section 6).

I Theorem 9. Let ε, δ > 0 such that e4εδ < 1/16n. Every (ε, δ)-differentially private
(3/4, 1/3)-tester for connectivity in graphs with maximal degree 2 runs in time Ω(

√
n/e2ε).

Proof. Let Tester be a (3/4, 1/3)-tester for connectivity in graphs of degree at most 2. We
somewhat relax the definition of probes and assume that once the tester probes a node, it
sees all edges adjacent to this node. We prove that if Tester probes less than c

√
n/e2ε

nodes (for some constant c), then it is not (ε, δ)-oblivious. Assume that n ≡ 0 (mod 3).
Let G1 = (V,E1) be a cycle of length n and G2 = (V,E1) consist of n/3 disjoint triangles.
Clearly, G1 is connected and G2 is 1/3-far from a connected graph. For a permutation
π : V → V , define π(Gi) = (V, π(Ei)), where π(Ei) = {(π(u), π(v)) : (u, v) ∈ Ei}, and let
perm(Gi) be a random graph isomorphic to Gi, that is, perm(Gi) = π(Gi) for a permutation
π chosen with uniform distribution.6 On the random graph perm(G) Tester has to say
“yes” with probability at least 3/4 and on the random graph perm(G2) Tester has to say
“no” with probability at least 3/4.

I Observation 10. If Tester does not probe two distinct nodes whose distance is at most
two, then Tester sees a collection of paths of length two and cannot know if the graph is
perm(G1) or perm(G2).

B Claim 11. Given the random graph perm(G1), the tester has to probe two distinct nodes
whose distance is at most 2 with probability at least 1/2.

Proof. Consider Tester’s answer when it sees a collection of paths of length 2. Assume
first that the tester returns “No” with probability at least half in this case and let p be the
probability that Tester probes two distinct nodes whose distance is at most two on the
random graph perm(G1). The probability that Tester returns “Yes” on perm(G1) is at
most p+ 0.5(1− p) = 0.5 + 0.5p. Thus, 0.5 + 0.5p ≥ 3/4, i.e., p ≥ 0.5.

If the tester returns “Yes” with probability at least half, then, by symmetric arguments,
with probability at least 1/2 Tester has to probe two nodes whose distance is at most two
on the random graph perm(G2). For a permutation π, if the distance between two nodes in
π(G2) is at most 2, then the distance between these two nodes in π(G1) is at most 2. Thus,
by Observation 10,

Pr[Tester probes 2 nodes whose distance is 1 or 2 on perm(G1)]
≥ Pr[Tester probes 2 nodes whose distance is 1 or 2 perm(G2)] ≥ 1/2. C

6 When we permute a graph, we also permute its incident list representation, i.e., if (u, v) ∈ π(E), then
with probability half v will be the first neighbor of u and with probability half it will be the second.
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Figure 1 The graphs H1 and H2.

Denote the nodes of G1 by V = {v0, . . . , vn−1} and define a distribution on pairs of
graphs H1, H2, obtained by the following process:

Choose a permutation π : V → V with uniform distribution and let H1 = π(G1).
Denote H1 = (V,E1) and uj = π(vj) for j ∈ [n].
Choose with uniform distribution two indices i, j such that j ∈ {i+ 4, i+ 3, . . . , i− 3}
(where the addition is done modulo n).
Let H2 = (V,E2), where E2 = E1 \ {(ui, ui+1), (uj , uj+1)} ∪ {(ui, uj), (ui+1, uj+1)}.

The graphs are described in Figure 1. Note that H2 is also a a random graph isomorphic to
G1, thus, given H2 one cannot know which pair of non-adjacent nodes ui, uj was used to
create H2.

Observe that H1 and H2 differ on 4 nodes. Since Tester is (ε, δ)-differentially oblivious,
for every algorithm A,

Pr[A(H1,H2,AccessTester(H1)) = 1]

≤ e4ε · Pr[A(H1, H2,AccessTester(H2)) = 1] + 4e4εδ. (1)

Consider the following algorithm A:

If ui and at least one of ui+1, ui+2 is probed by Tester(H) prior to seeing any other pair of
nodes of distance at most 2 in H1 or H2, then return 1 otherwise return 0.

B Claim 12. Let i ∈ {1, 2}. Suppose that Tester probes at most q nodes. Pick at random
with uniform distribution two nodes in V with distance at least 3 in Hi. The probability
that Tester(Hi) probes both u and v prior to seeing any two nodes of distance at most 2 in
Hi is O(q2/n2) (where the probability is over the random choice of u, v and the randomness
of Tester).

Proof. The node u is a uniformly distributed node in Hi and v is any node of distance at
least 3 from v, thus there are n(n− 5)/2 options for {u, v}. Given a collection of paths of
length at most 2 in Hi all options are equally likely.

Let w1, . . . , wk be the nodes probed in some execution of Tester. Fix some pair of
indices k1 < k2. The probability that {ui, ui+1} = {wk1 , wk+2} is at most 1/n(n− 5). Thus,
the probability that u and v are probed is at most (q2)

n(n−5)/2 = O(q2/n2). C

APPROX/RANDOM 2019
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B Claim 13. Assume that Tester probes at most q nodes. The probability that A(H1) = 1
is at least 1/2n−O(q2/n2).

Proof. By Claim 11, the probability that Tester probes at least one pair of nodes with
distance at most 2 is at least 1/2. Given that this event occurs, the probability that the
random ui (chosen with uniform distribution) has the smallest index in the first such pair in
H1 (i.e., the first pair is either (ui, ui+1) or (ui, ui+2)) is at least 1/n.

Clearly, given these events no two nodes with distance at most 2 in H1 were probed
prior to probing the pair containing ui. Furthermore, there are O(1) pairs of nodes that
are of distance at most 2 in H2 and are of distance greater than 2 in H1. By Claim 12, the
probability that such pair is probed prior to Tester probing a pair of distance at most 2 in
H1 is O(q2/n2). C

B Claim 14. Suppose that Tester probes at most q nodes. The probability that A(H2) = 1
is O(q2/n2).

Proof. The node ui is a uniformly distributed node in H2. Furthermore, the nodes ui+1 is
a uniformly distributed node of distance at least 3 from ui in H2, thus by Claim 12, the
probability that Tester probes both ui and ui+1 prior to seeing any pair of distance at least
2 in H2 is O(q2/n2). This probability can only decrease if we require that Tester probes
both ui and ui+1 prior to seeing any pair of distance at least 2 in H1 and in H2.

By the same arguments, the probability that Tester probes both ui and ui+2 prior to
seeing any pair of distance at least 2 in H1 and in H2 is O(q2/n2). C

To conclude the proof of Theorem 9, we note that by (1) and Claim 13 and 14

1
2n −O(q2/n) ≤ Pr[A(H1) = 1] ≤ e4ε Pr[A(H2) = 1] + e4εδ ≤ e4εO(q2/n2) + e4εδ.

Since e4εδ ≤ 1/4n, it follows that q = Ω(
√
n/e2ε). J

5 Differentially Oblivious Algorithm for Locating an Object

Given a dataset of objects x our goal is to locate an object that satisfies a property P , if one
exists. E.g., given a dataset consisting of employee records, find an employee with income in
the range $35, 000–$70, 000 if such an employee exists in the dataset.

Absent privacy requirements, a simple approach is to probe elements of the dataset in a
random order until an element satisfying the property is found or all elements were probed.
If a p fraction of the dataset entries satisfy P then the expected number of elements sampled
by the non-private algorithm is 1/p. However, a perfectly oblivious algorithm would require
Ω(n) probes on any dataset, in particular on a dataset where all elements satisfy P, where
non-privately one probe would suffice. To see why, let P(x) = 1 if x = 1 and P(x) = 0
otherwise and let x include exactly one 1-entry in a uniformly random location. Observe
that in expectation it requires Ω(n) memory probes to locate the 1-entry in x. Perfect
obliviousness would hence imply an Ω(n) probes on any input.

We give a nearly instance optimal differentially oblivious algorithm that always returns a
correct answer. Except for probability e−Ω(mp) the algorithm halts after m steps.

Our Algorithm. Given the access pattern of the non-private algorithm, an adversary can
learn that the last probed element satisfies P. To hide this information, we change the
stopping condition to having probed at least a (randomly chosen) threshold of elements
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Algorithm 3 Differentially Oblivious Locate Algorithm LocateP .

Input: dataset x = (x1, . . . , xn)
1: Let c← 0, ε′ = ε

2 log(2/δ) , and T ←
1
ε′ ln logn

δ

2: for i = 1 to n/2 do
3: Choose j ∈ [n] with uniform distribution
4: if P(xj) = 1 then
5: c← c+ 1
6: end if
7: if i is an integral power of 2 then
8: T̂ ← T + Lap( 1

ε′ )
9: if c > max(T̂ , 0) then
10: output 1
11: end if
12: end if
13: end for
14: Scan the entire dataset, if there is an element satisfying P then output 1, else output 0

satisfying P. If after n/2 probes the number of elements satisfying P is below the threshold
the entire dataset is scanned. Our algorithm LocateP is described in Algorithm 3. On a
given array x, algorithm LocateP outputs 1 iff there exists an element in x satisfying the
property P.

We remark that Algorithm LocateP uses a mechanism similar to the the sparse vector
mechanism of [18]. However, in our case instead of using a single noisy threshold across all
steps, Algorithm LocateP generates in each step a noisy threshold T̂ = T + Lap( 1

ε′ ). The
value of T ensures that with high probability T̂ > 0. The proof of Theorem 15 is given in
Appendix A.3.

I Theorem 15. Algorithm LocateP is an (ε, δ(1 + eε))-differentially oblivious algorithm
that outputs 1 iff there exists an element in the array that satisfies property P. For
m = Ω(T/p log(T/p)), with probability 1 − e−Ω(mp) it halts in time at most m, where
T = 2 log(2/δ)

ε ln logn
δ .

6 Differentially Oblivious Prefix Sum

Suppose that there is a dataset consisting of sorted sensitive user records, and one would
like to compute the sum of all records in the (sorted) dataset that are less than or equal to
a value a in a way that respects individual user’s privacy. We call this task differentially
oblivious prefix sum. For the definition of privacy we say that two datasets of size n are
neighbors if they agree on n− 1 elements (although, as sorted arrays they can disagree on
many indices). For example, (1, 2, 3, 4) and (1, 3, 4, 5) are neighbors and should have similar
access pattern.

Without privacy one can find the greatest record less than or equal to value a, and then
compute the prefix sum by a quick scan through all records appearing before such record.
Any perfectly secure algorithm must read the entire dataset (since it is possible that all
elements are smaller than a). Here, we give a differentially oblivious prefix sum algorithm
that for many instances is much faster than any perfectly oblivious algorithm.
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Algorithm 4 Differentially Oblivious Search Algorithm Search.

Input: a dataset x = (x1, . . . , xn) and a value a
1: Let ε′ ← ε

2.5 logn , δ
′ ← δ

2.5 logn , k ← d
4 log(1/δ′)

ε′ e, min← 0, and max← n

2: while max−min > k do
3: c← b(max−min)/kc
4: Let y = (y1, . . . , yk), where yi = xmin +i·c for every i ∈ [k]
5: Scan the entire dataset y and find the maximal index I such that yI ≤ a; if there is

no such element then I ← 0
6: noise← Lap( 1

ε′ )
7: min = max{0,min +b(I + noise− log 1/δ′

ε′ ) · cc} and max = min{n,min +b(I + noise +
log 1/δ′

ε′ + 1) · cc}
8: end while
9: Scan the entire dataset x between min and max and return the the maximal index I

such that xI ≤ a; if there is no such element then I ← 0

Intuition. Absent privacy requirements, using binary search, one can find the greatest
element less than or equal to a, and then compute the prefix sum by a quick scan through
all records that appear before such record. However, the binary search access pattern
allows the adversary to gain sensitive information about the input. Our main idea is to
approximately simulate the binary search and obfuscate the memory accesses to obtain
differential obliviousness. In order to do that, we first divide the input array into k chunks
(where k is polynomial in 1/ε, log 1/δ, and logn). Then, we find the chunk that contains the
greatest element less than or equal to a by comparing the first element (hence, the smallest
element) of each chunk to a. Let I be the index of such chunk. Next, we compute a noisy
interval that contains I using the Laplacian distribution. We iteratively repeat this process
on the noisy interval, where in each step we eliminate more than a quarter of the elements of
the interval. We continue until the size of the array is less than or equal to k. Next, we scan
all elements in the remaining array and find the index of the greatest element smaller than
or equal to a. Let i be the index of such element; we compute the prefix sum by scanning
the array x until index i.

The Search Algorithm. We present a search algorithm in Algorithm 4; on input x =
(x1, . . . , xn) and a this algorithm finds the largest index I such that xI ≤ a. To compute
the prefix sum, we compute Î = I + Lap(1/ε) + log 1/δ

ε and scan the first Î elements of the
dataset, summing only the first I. We show in Theorem 17 that our search algorithm is
(ε, δ)-differentially oblivious.

I Remark 16. We prove that algorithm Search is an (ε, 0)-differentially private algorithm
that returns a correct index with probability at least 1− β. We could change it to an (ε, δ)-
differentially private algorithm that never errs. This is done by truncating the noise to log 1/δ′

ε′ .

I Theorem 17. Let β < 1/n and ε < log2 n. Algorithm Search is an (ε, 0)-differentially
oblivious algorithm that, for any input array with size n and a ∈ R, returns a correct index
with probability at least 1− β. The running time of Algorithm Search is O( 1

ε log2 n log 1
β ).

Theorem 17 is proved in Appendix A.4.
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Algorithm 5 Differentially Oblivious Search Algorithm MultiSearch for Multiple Queries.

Input: a dataset x = (x1, . . . , xn)
1: t← 1 and M ← 0
2: for every query a do
3: if the greatest element in the ORAM is greater than a or all records are in the ORAM

(that is M = n) then
4: answer the query using the ORAM
5: else
6: execute algorithm Search with privacy parameter ε

t logn and accuracy parameter
β/
√
n for the database starting at record M + 1 and let I the largest index in this

database such that xI ≤ a
7: insert the first max{I, 2t} elements of this database to the ORAM; for each element

also insert the sum of all elements in the array up to this element
8: t← t+ 1, M ←M + max{I, 2t}
9: end if
10: end for

6.1 Dealing with Multiple Queries
We extend our prefix sum algorithm to answer multiple queries. We can answer a bounded
number of queries by running the differentially oblivious prefix sum algorithm multiple
times. That is, when we want an (ε, 0)-oblivious algorithm correctly answering t queries
with probability at least 1 − β, we execute algorithm Search t times with privacy para-
meter ε/t and error probability β/t (each time also computing the appropriate prefix sum).
Thus, the running time of the algorithm is O( t

2

ε log2 n log t
β ) (excluding the scan time for

computing the sum).
On the other hand, we can use an ORAM to answer unbounded number of queries. That

is, in a pre-processing stage we store the n records and for each record we store the sum of
all records up to this record. Thereafter, answering each query will require one binary search.
Using the ORAM of [2], the pre-processing will take time O(n logn) and answering each
query will take time O(log2 n). Thus, the ORAM algorithm is more efficient when t ≥

√
n.

We use ORAM along with our differentially oblivious prefix sum algorithm to answer
unbounded number of queries while preserving privacy, combining the advantages of both of
the previous algorithms.

I Theorem 18. Algorithm MultiSearch, described in Algorithm 5, is an (ε, 0)-oblivious
algorithm, which executes Algorithm Search at most O(

√
n) times, where the run time of the

t-th execution is O( tε log3 n log n
β ), scans the original database at most once, and in addition

each query run time is at most O(log2 n).

Proof. First note that we only pay for privacy in the executions of algorithm Search
(reading and writing to the ORAM is perfectly private). In the t-th execution of algorithm
Search, we insert at least 2t elements to the ORAM, thus after

√
n executions we inserted

at least
∑√n
t=1 2t = n elements to the ORAM.

By simple composition, algorithm MultiSearch is (ε′, 0)-differentially private, where

ε′ =

√
n∑

t=1

ε

t logn ≤
ε

logn (ln
√
n+ 1) ≤ ε,

where the last inequality is implied by the sum of the harmonic series. J
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A Missing Proofs

A.1 Proof of Lemma 5
Proof. Let x and y be two neighboring datasets and S be a sets of outputs. Then,

Pr[B(x) ∈ S] ≤ Pr[A(x) ∈ S] + γ

≤ eε Pr[A(y) ∈ S] + γ

≤ eε(Pr[B(y) ∈ S] + γ) + γ

= eε Pr[B(y) ∈ S] + (1 + eε)γ. J

A.2 Proof of the Correctness and Privacy of Algorithm TesterT

Theorem 8 is implied by the following lemmas.

I Lemma 19. Algorithm TesterT is (ε, δ(1 + eε))-differentially oblivious.

Proof. We first analyze a variant of TesterT , denoted by Tester′T , in which Step 10 is
replaced by “If c > T̂ then output 1” (that is, the algorithm does not check if c > min{4T, T̂}
before deciding in the positive).

Let G = (V,E) and G′ = (V ′, E′) be two neighboring graphs such that they differ on
node v ∈ V . Fix the random choices of subsets A in Step 6 and observe that after the
execution of for loop, the count c can differ by at most 1 between the executions on G and G′.
Let T̃ be the smallest integer greater than T̂ . Since algorithm Tester′T uses the Laplace
mechanism e−ε Pr[T̃ < a] ≤ Pr[T̃ < a− 1] ≤ eε Pr[T̃ < a] for every a. Thus,

Pr[Tester′T (G) = 1] =
∑
a

Pr[T̃ = a] Pr[c(G) > a]

≤
∑
a

Pr[T̃ = a] Pr[c(G′) > a− 1]

≤ eε
∑
a

Pr[T̃ = a− 1] Pr[c(G′) > a− 1]

≤ eε Pr[Tester′T (G′) = 1].

Similarly, Pr[Tester′T (G) = 1] ≥ e−ε Pr[Tester′T (G′) = 1]. Hence, Tester′T is (ε, 0)-
differentially oblivious.

We next prove that TesterT is (ε, δ(1 + eε))-differentially oblivious using Lemma 5,
that is we prove that for every graph G, the statistical distance between TesterT (G) and
Tester′T (G) is at most δ. Let E be the event that T̂ > 4T and observe that the probability

https://doi.org/10.1145/100216.100289
https://doi.org/10.1007/978-3-030-17653-2_14
http://eccc.hpi-web.de/eccc-reports/2006/TR06-089/index.html
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E occurs is at most δ.7 We have that
∣∣∣Pr[TesterT (G) = 1] − Pr[Tester′T (G) = 1]

∣∣∣ ≤∣∣∣Pr[TesterT (G) = 1|E]− Pr[Tester′T (G) = 1|E]
∣∣∣Pr[E] ≤ Pr[E] ≤ δ. Thus, by Lemma 5,

algorithm TesterT is (ε, δ(1 + eε))-differentially oblivious. J

Observe that Algorithm TesterT never errs when G ∈ P as in that case after the for loop
is executed c = 4T and hence in Step 10 TesterT outputs 1. The next lemma analyses the
error probability when G is γ′-far from P.

I Lemma 20. Algorithm TesterT is (1− δ − (2δ) 1
3ε , γ′)-tester for the graph property P.

Proof. Observe that on Step 7 of the algorithm, we are eliminating at most n · cβ,γ edges.
Thus, we are eliminating at most 4Tncβ,γ edges in total. Then, when G is γ′-far from P,
it is also γ-far from P after the removal of the observed nodes in each step of the for loop.
We next prove that Algorithm TesterT fails with probability at most 2δ 1

3ε . Observe that if
Algorithm TesterT fails on G then c ≥ 2T or Lap( 1

ε ) ≤ −T . We define Zi to be output of
T (G) in the i-th step of the for loop. Let Z =

∑
i Zi. Observe that all Zi are independent

and E[Z] ≤ T . Using the Chernoff Bounds8, we obtain that Pr[Z ≥ 2T ] ≤ e−T/3 = (2δ) 1
3ε .

We also know Pr[Lap( 1
ε ) ≤ − ln(1/2δ)

ε ] = 0.5e− ln(1/2δ) = δ. Therefore, Algorithm TesterT
fails with probability δ + (2δ) 1

3ε . J

A.3 Proof of the Correctness and Privacy of Algorithm LocateP

The proof of Theorem 15 follows from the following claim and lemmas.

B Claim 21. Let ` ≥ logn/ log logn. The probability that there exists an element j ∈ [n]
such that algorithm LocateP samples the element j in Step 3 more than 2` times is less that
2−`.

Proof. Fix an index j. The probability that the element j is sampled more than 2` times
is less than

(
n/2
2`
) 1
n2` ≤

(
en
4`
)2` 1

n2` < `−2` < 2−2 logn+2 < 22−`/n. The claim follows by the
union bound. C

I Lemma 22. Let δ < 1/n. Algorithm LocateP is (ε, δ(1 + eε))-differentially oblivious.

Proof. We first analyze a variant of LocateP , denoted by Locate′P , in which Step 9 is
replaced by “If c > T̂ then output 1” (that is, the algorithm does not check if T̂ > 0) and
no element is sampled more than 2 log(2/δ) times. We analyze the privacy of Locate′P(x′)
similarly to the analysis of the sparse vector mechanism in [18].

Let x and x′ be two neighboring datasets that such that P(xj) = 1 and P(x′j) = 0
for some j. Denote by τ = (T̃1, . . . , T̃logn) the values of the thresholds in an execution
of Locate′P , where each threshold is rounded up to the smallest integer greater than T̂ .
Furthermore, let `τ ∈ [logn] be the index such that Locate′P on input x outputs 1 when
i = 2`τ (if no such i exists, then `τ ∈ dlogne+ 1). Observe that in each execution of Step 9
the count c on input x is at least the count on input x′ and can exceed it by at most
2 log(2/δ) (since j is sampled at most 2 log(2/δ) times). Thus, Locate′P on input x′ with
thresholds τ ′ = (T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn) outputs 1 when i = 2`τ .
Since algorithm Locate′P uses the Laplace mechanism with ε′ = ε/(2 log(1/δ)),

e−ε Pr[T̃`τ = a] ≤ Pr[T̃`τ = a− 2 log(2/δ)] ≤ eε Pr[T̃`τ = a]

7 Pr[Lap( 1
ε ) ≥ t/ε] = 1

2e
−t for every t > 0. Thus, Pr[E] = Pr[Lap( 1

ε ) ≥ ln(1/2δ)
ε ] = δ.

8 Pr[Z ≥ (1 + η)µ] ≤ e−η
2µ/(2+η) for any η > 0 where µ is the expectation of Z.
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for every a. Thus,

Pr[AccessLocate′
P (x) ∈ S]

=
∑

τ=(T̃1,...,T̃logn)

Pr[AccessLocate′
P (x) ∈ S | T̃1, . . . , T̃logn] Pr[T̃1, . . . , T̃logn]

=
∑

Pr[AccessLocate′
P (x′) ∈ S | T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

· Pr[T̃1, . . . , T̃logn]

≤ eε
∑

Pr[AccessLocate′
P (x′) ∈ S | T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

· Pr[T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

= eε Pr[AccessLocate′
P (x′) ∈ S].

Similarly,

Pr[AccessLocate′
P (x) ∈ S]

≥ e−ε
∑

Pr[AccessLocate′
P (x′) ∈ S | T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

· Pr[T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

= e−ε Pr[AccessLocate′
P (x′) ∈ S].

We next prove that LocateP is (ε, δ(1 + eε))-differentially oblivious using Lemma 5. I.e,
we prove that for every dataset x, the statistical distance between AccessLocateP (x) and
AccessLocate′

P (x) is at most δ. Notice that if all the thresholds are positive and all elements
are sampled at most 2 log(2/δ) times then LocateP(x) and Locate′P(x) have the same
access pattern. By Claim 21, the probability that there exists a j that is sampled more
than 2 log(2/δ) is at 2− log(2/δ) = δ/2. We next observe that the probability that a threshold
T̂ = T + Lap( 1

ε′ ) is negative is at most δ/2. Recall that Pr[Lap( 1
ε′ ) ≤ −t/ε′] = 1

2e
−t for

every t > 0. Thus, Pr[T̂ ≤ 0] = Pr[Lap( 1
ε′ ) ≤ − 1

ε ln( logn
δ )] = δ

2 logn . Let A be the event that
at least one of the logn thresholds T̂ is at most 0 or some j is sampled more that 2 log(2/δ)
times. By the union bound the probability of A is at most δ. Therefore, for every set of
access patterns S

|Pr[AccessLocateP (x) ∈ S]− Pr[AccessLocate′
P (x) ∈ S]|

=
∣∣∣Pr[AccessLocateP (x) ∈ S|A] Pr[A] + Pr[AccessLocateP (x) ∈ S|Ā] Pr[Ā]

− Pr[AccessLocate′
P (x) ∈ S|A] Pr[A]− Pr[AccessLocate′

P (x) ∈ S|Ā] Pr[Ā]
∣∣∣

=
∣∣∣Pr[AccessLocateP (x) ∈ S|A]− Pr[AccessLocate′

P (x) ∈ S|A]
∣∣∣Pr[A]

≤ Pr[A] ≤ δ.

Thus, by Lemma 5, algorithm LocateP is (ε, δ(1 + eε))-differentially oblivious. J

We next analyze the running and probe complexity of our algorithm. Let p be the
probability that a uniformly chosen element in x satisfies P . The non-private algorithm that
samples elements until it finds an element satisfying P has expected running time 1/p and
the probability that it does not stop after m steps is (1− p)m = ((1− p)1/p)mp ≤ e−mp. We
show that locateP has a similar behavior.
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I Lemma 23. Let p be the probability that a uniformly chosen element in x satisfies
P. Then, for every integral power of two m the probability that algorithm locateP probes
more than m memory locations is less than δ/ logn+ e−(m−2T )p+2T lnm. In particular, for
m = Ω(Tp log(Tp )), the probability is less than δ/ logn+ e−O(mp).

Proof. Let t = 2i. The probability that T̂ ≥ 2T is Pr[Lap( 1
ε′ ) ≥ 1

ε′ ln logn
δ ] = 0.5e− ln(logn/δ)

= δ
logn . Assuming that T̂ ≥ 2T , the probability that the algorithm does not halt after m = 2i

steps is less than(
m

2T

)
(1− p)m−2t ≤ m2T e−(m−2T )p ≤ e−(m−2T )p+2T lnm. J

A.4 Proof of the Correctness and Privacy of Algorithm Search
Theorem 17 is proved in the next 3 claims. We start by analyzing the running time of the
algorithm.

B Claim 24. Let β < 1/n and ε < log2 n. The while loop in Algorithm Search is executed at
most 2.5 logn time. Furthermore, the total running time of the algorithm is O( 1

ε log2 n log 1
β ).

Proof. Let min0,max0 and min1,max1 be the values of min,max before and after an execution
of a step of the while loop in Algorithm Search. Note that

max1−min1 ≤ 1 + (2 · log 1/β′

ε′ + 1) · max0−min0
4 log(1/β′)

ε′
≤ 3 · log 1/β′

ε′ · max0−min0
4 log(1/β′)

ε′
= 3(max0−min0)

4 .

Therefore, algorithm Search eliminates more than a quarter of the elements in each step of
the while loop and the algorithm will halt after less than 2.5 logn steps.

Moreover, observe that Algorithm Search makes k memory accesses in each step of
the while loop and additional k memory accesses after the loop. Thus, its running time is
O( 1

ε log2 n(log logn+ log 1
β )) = O( 1

ε log2 n log 1
β ) (since β < 1/n). C

B Claim 25. Algorithm Search returns the correct index with probability at least 1− β.

Proof. Let Ī be the maximal index such that xĪ ≤ a (i.e., Ī is the index that algorithm
Search should return). We prove by induction that if all Laplace noises in the algorithm
satisfy |Lap( 1

ε′ )| < log 1/β′

ε′ then in each step of the algorithm min ≤ Ī ≤ max, hence the
algorithm will return Ī in its last scan of x between min and max.

The basis of the induction is trivial since 0 ≤ Ī ≤ n. For the induction step, let min0,max0
and min1,max1 be the values of min,max before and after an execution of a step of the
while loop in Algorithm Search. By the induction hypothesis, min0 ≤ Ī ≤ max0. The
algorithm finds an index I such that min0 +Ic ≤ Ī ≤ min0 +(I + 1)c. By our assumption
on the Laplace noise, min1 ≤ min0 +Ic, thus, min1 ≤ Ī. Similarly, max1 ≥ min0 +(I + 1)c,
thus, max1 ≥ Ī.

Recall that Pr[|Lap( 1
ε′ )| ≥ t/ε′] = e−t for every t > 0. Thus, by Claim 24 and the union

bound, the probability that one of the Laplace noises is greater than log 1/β′

ε′ is at most
(2.5 logn) · β′ = β. Hence, the probability that algorithm Search returns the correct index
Ī is at least 1− β. C

Next, we show that algorithm Search is (ε, 0)-differentially oblivious.

B Claim 26. Algorithm Search is an (ε, 0)-differentially oblivious algorithm.

APPROX/RANDOM 2019
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Proof. We show below that each step of the while loop in algorithm Search is (ε′, 0)-
differentially oblivious. Applying the basic composition theorem and Claim 24, we obtain
that the Search algorithm is (ε = (2.5 logn)ε′, 0)-differentially oblivious.

Fix a step of the loop and view it as an algorithm that returns min and max (given
these values the access pattern of the next step is fixed). Let x and x′ be two neighboring
datasets such that for some j we have xj > x′j and xi = x′i for all i < j. It holds that
xi−1 ≤ x′i ≤ xi for every i. Let I(x) and I(x′) be the values computed in step 5 of the
algorithm on inputs x and x′ respectively. Thus, the value I(x) is at least the value I(x′)
and can exceed it by one. Intuitively, since algorithm Search uses the Laplace mechanism,
the probabilities of returning a value min on x and x′ are at most e±ε′ apart. Formally,
if Lap(1/ε′) + I(x) = Lap(1/ε′) + I(x) (where we consider two independent noises), then
the algorithm returns the same value of min on both inputs. The lemma follows since for
every set A:

e−ε
′
≤ e−|I(x)−I(x′)|ε′

≤ Pr[Lap(1/ε′) + I(x) ∈ A]
Pr[Lap(1/ε′) + I(x′) ∈ A] ≤ e

|I(x)−I(x′)|ε′
≤ eε

′
. C
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