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Abstract
Błasiok (SODA’18) recently introduced the notion of a subgaussian sampler, defined as an averaging
sampler for approximating the mean of functions f : {0, 1}m → R such that f(Um) has subgaussian
tails, and asked for explicit constructions. In this work, we give the first explicit constructions
of subgaussian samplers (and in fact averaging samplers for the broader class of subexponential
functions) that match the best known constructions of averaging samplers for [0, 1]-bounded functions
in the regime of parameters where the approximation error ε and failure probability δ are subconstant.
Our constructions are established via an extension of the standard notion of randomness extractor
(Nisan and Zuckerman, JCSS’96) where the error is measured by an arbitrary divergence rather than
total variation distance, and a generalization of Zuckerman’s equivalence (Random Struct. Alg.’97)
between extractors and samplers. We believe that the framework we develop, and specifically the
notion of an extractor for the Kullback–Leibler (KL) divergence, are of independent interest. In
particular, KL-extractors are stronger than both standard extractors and subgaussian samplers, but
we show that they exist with essentially the same parameters (constructively and non-constructively)
as standard extractors.
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1 Introduction

1.1 Averaging samplers
Averaging (or oblivious) samplers, introduced by Bellare and Rompel [6], are one of the main
objects of study in pseudorandomness. Used to approximate the mean of a [0, 1]-valued
function with minimal randomness and queries, an averaging sampler takes a short random
seed and produces a small set of correlated points such that any given [0, 1]-valued function
will (with high probability) take approximately the same mean on these points as on the
entire space. Formally,
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59:2 Samplers and Extractors for Unbounded Functions

I Definition 1.1 ([6]). A function Samp : {0, 1}n → ({0, 1}m)D is a (δ, ε) averaging sampler
if for all f : {0, 1}m → [0, 1], it holds that

Pr
x∼Un

[∣∣∣∣∣ 1
D

D∑
i=1

f(Samp(x)i)− E[f(Um)]

∣∣∣∣∣ > ε

]
≤ δ,

where Un is the uniform distribution on {0, 1}n. The number n is the randomness complexity
of the sampler, and D is the sample complexity. A sampler is explicit if Samp(x)i can be
computed in time poly(n,m, logD).

Traditionally, averaging samplers have been used in the context of randomness-efficient
error reduction for algorithms and protocols, where the function f is the indicator of a set
({0, 1}-valued), or more generally the acceptance probability of an algorithm or protocol
([0, 1]-valued). There has been significant effort in the literature to establish optimal explicit
and non-explicit constructions of samplers, which we summarize in Table 1. We recommend
the survey of Goldreich [17] for more details, especially regarding non-averaging samplers1.

Table 1 Best known constructions of averaging samplers for [0, 1]-valued functions.

Key Idea Randomness complexity n Sample complexity D Best regime
Pairwise-

independent
Expander Neighbors

[19]

m+O(log(1/δ) + log(1/ε)) O
(

1
δε2

)
δ = Ω(1)

Ramanujan
Expander

Neighborsa) [22, 19]

m O
(

1
δε2

)
δ = Ω(1)

Extractors
[40, 19, 30, 20]

m+ (1 + α) · log(1/δ)
any constant α > 0

poly(log(1/δ), 1/ε) ε, δ = o(1)

Expander Walk
Chernoff [16]

m+O(log(1/δ)/ε2) O
( log(1/δ)

ε2

)
ε = Ω(1)

Pairwise
Independence [12]

O(m) O
(

1
δε2

)
None, but simple

Non-Explicit [40] m+ log(1/δ)− log log(1/δ)
+O(1)

O
( log(1/δ)

ε2

)
All

Lower Bound
[11, 40, 27]

m+ log(1/δ) + log(1/ε)
− log(D)−O(1)

Ω
( log (1/δ)

ε2

)
N/A

a) Requires explicit constructions of Ramanujan graphs.

However, averaging samplers can also have uses beyond bounded functions: Błasiok [9],
motivated by an application in streaming algorithms, introduced the notion of a subgaussian
sampler, which he defined as an averaging sampler for functions f : {0, 1}m → R such that
f(Um) is a subgaussian random variable. Since subgaussian random variables have strong tail
bounds, subgaussian functions from {0, 1}m have a range contained in an interval of length
O(
√
m), and thus one can construct a subgaussian sampler from a [0, 1]-sampler by simply

scaling the error ε by a factor of O(
√
m). Unfortunately, looking at Table 1 one sees that this

1 A non-averaging sampler is an algorithm Samp which makes oracle queries to f and outputs an estimate
of its average which is good with high probability, but need not simply output the average of f ’s values
on the queried points.
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induces a multiplicative dependence on m in the sample complexity, and for the expander
walk sampler induces a dependence of m log(1/δ) in the randomness complexity. This loss
can be avoided for some samplers, such as the sampler of Chor and Goldreich [12] based on
pairwise independence (as its analysis requires only bounded variance) and (as we will show)
the Ramanujan Expander Neighbor sampler of [22, 19], but Błasiok showed [8] that the
expander-walk sampler does not in general act as a subgaussian sampler without reducing the
error to o(1). We remark briefly that the median-of-averages sampler of Bellare, Goldreich,
and Goldwasser [5] still works and is optimal up to constant factors in the subgaussian
setting (since the underlying pairwise independent sampler works), but it is not an averaging
sampler1, and matching its parameters with an averaging sampler remains open in general
even for [0, 1]-valued functions.

One of the contributions of this work is to give explicit averaging samplers for subgaussian
functions (in fact even for subexponential functions that satisfy weaker tail bounds) matching
the extractor-based samplers for [0, 1]-valued functions in Table 1 (up to the hidden polynomial
in the sample complexity). This achieves the best parameters currently known in the regime
of parameters where ε and δ are both subconstant, and in particular has no dependence on m
in the sample complexity. We also show non-constructively that subexponentially samplers
exist with essentially the same parameters as [0, 1]-valued samplers.

I Theorem 1.2 (Informal version of Theorem 6.1). For every integer m ∈ N and 1 > δ, ε > 0,
there is an explicit subgaussian (in fact subexponential) sampler with randomness complexity
n = m+O(log(1/δ)) and sample complexity D = poly(log(1/δ), 1/ε).

In the full version of this work [1], we show also that for every m ∈ N, 1 > δ, ε > 0, and
α > 0, there is a function Samp : {0, 1}n → ({0, 1}m)D that is:

an explicit subexponential sampler with randomness complexity n = m+ (1 + α) · log(1/δ)
and sample complexity D = poly(log(1/δ), 1/ε).
a non-constructive subexponential sampler with randomness complexity n = m+log(1/δ)−
log log(1/δ) +O(1) and sample complexity D = O(log(1/δ)/ε2).

1.2 Randomness extractors
To prove Theorem 1.2, we develop a corresponding theory of generalized randomness extractors
which we believe is of independent interest. For bounded functions, Zuckerman [40] showed
that averaging samplers are essentially equivalent to randomness extractors, and in fact
several of the best-known constructions of such samplers arose as extractor constructions.
Formally, a randomness extractor is defined as follows:

I Definition 1.3 (Nisan and Zuckerman [26]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m

is said to be a (k, ε) extractor if for every distribution X over {0, 1}m satisfying 2−k ≥
maxx∈{0,1}n Pr[X = x], the distributions Ext(X,Ud) and Um are ε-close in total variation
distance. Equivalently, for all f : {0, 1}m → [0, 1] it holds that E[f(Ext(X,Ud))]−E[f(Um)] ≤
ε. The number d is called the seed length, and m the output length.

The formulation of Definition 1.3 in terms of [0, 1]-valued functions implies that extractors
produce an output distribution that is indistinguishable from uniform by all bounded functions
f . It is therefore natural to consider a variant of this definition for a different set F of test
functions f : {0, 1}m → R which need not be bounded.

I Definition 1.4 (Special case of Definition 3.1 using Definition 2.5). A function Ext :
{0, 1}n×{0, 1}d → {0, 1}m is said to be a (k, ε) extractor for a set of real-valued functions F
from {0, 1}m if for every distribution X over {0, 1}m satisfying maxx∈{0,1}n Pr[X = x] ≤ 2−k
and every f ∈ F , it holds that E[f(Ext(X,Ud))]− E[f(Um)] ≤ ε.

APPROX/RANDOM 2019



59:4 Samplers and Extractors for Unbounded Functions

We show that much of the theory of extractors and samplers carries over to this more
general setting. In particular, we generalize the connection of Zuckerman [40] to show
that extractors for a class of functions of F are also samplers for that class, along with
the converse (though as for total variation distance, there is some loss of parameters in
this direction). Thus, to construct a subgaussian sampler it suffices (and is preferable) to
construct a corresponding extractor for subgaussian test functions, which is how we prove
Theorem 1.2.

Unfortunately, the distance induced by subgaussian test functions is not particularly
pleasant to work with: for example the point masses on 0 and 1 in {0, 1} are O(1) apart,
but embedding them in the larger universe {0, 1}m leads to distributions which are Θ(

√
m)

apart. We solve this problem by constructing extractors for a stronger notion, the Kullback–
Leibler (KL) divergence, equivalently, extractors whose output is required to have very high
Shannon entropy.

I Definition 1.5 (Special case of Definition 3.1 using KL divergence). A function Ext :
{0, 1}n×{0, 1}d → {0, 1}m is said to be a (k, ε) KL-extractor if for every distribution X over
{0, 1}m satisfying maxx∈{0,1}n Pr[X = x] ≤ 2−k it holds that KL(Ext(X,Ud) ‖ Um) ≤ ε, or
equivalently H(Ext(X,Ud)) ≥ m− ε.

A strong form of Pinsker’s inequality (e.g. [10, Lemma 4.18]) implies that a (k, ε2) KL-
extractor is also a (k, ε) extractor for subgaussian test functions. The KL divergence has the
advantage that is nonincreasing under the application of functions (the famous data-processing
inequality), and although it does not satisfy a traditional triangle inequality, it does satisfy a
similar inequality when one of the segments satisfies stronger `2 bounds. These properties
allow us to show in the full version of this paper that the zig-zag product for extractors
of Reingold, Wigderson, and Vadhan [30] also works for KL-extractors, and therefore to
construct KL-extractors with seed length depending on n and k only through the entropy
deficiency n− k of X rather than n itself, which in the sampler perspective corresponds to
a sampler with sample complexity depending on the failure probability δ rather than the
universe size 2m. Hence, we prove Theorem 1.2 by constructing corresponding KL-extractors.

I Theorem 1.6 (Informal version of Theorem 6.5). For all integers m and 1 > δ, ε > 0 there
is an explicit (k, ε) KL-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with n = m+O(log(1/δ)),
k = n− log(1/δ), and d = O(log log(1/δ) + log(1/ε)).

In the full version, we show that n can be as small as m + (1 + α) · log(1/δ) for any
constant α > 0.

Though the above theorem is most interesting in the high min-entropy regime where
n − k = o(n), we also show the existence of KL-extractors matching most of the existing
constructions of total variation extractors. In particular, we note that extractors for `2
are immediately KL-extractors without loss of parameters, and also that any extractor
can be made a KL-extractor by taking slightly smaller error, so that the extractors of
Guruswami, Umans, and Vadhan [20] can be taken to be KL-extractors with essentially the
same parameters.

Furthermore, in addition to our explicit constructions, we also show non-constructively
that KL-extractors (and hence subgaussian extractors) exist with very good parameters:

I Theorem 1.7 (Formal statement and proof in full version [1]). For any integers k < n ∈ N
and 1 > ε > 0 there is a (k, ε) KL-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
log(n− k) + log(1/ε) +O(1) and m = k + d− log(1/ε)−O(1).
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One key thing to note about the nonconstructive KL extractors of the above theorem
is that they incur an entropy loss of only 1 · log(1/ε), whereas total variation extractors
necessarily incur entropy loss 2 · log(1/ε) by the lower bound of Radhakrishnan and Ta-Shma
[27]. In particular, by Pinsker’s inequality, (k, ε2) KL-extractors with the above parameters
are also optimal (k, ε) standard (total variation) extractors [27], so that one does not lose
anything by constructing a KL-extractor rather than a total variation extractor. We also
remark that the above theorem gives subgaussian samplers with better parameters than a
naive argument that a random function should directly be a subgaussian sampler, as it avoids
the need to take a union bound over O(MM ) = O(2M logM ) test functions (for M = 2m)
which results in additional additive log log factors in the randomness complexity.

In the total variation setting, there are only a couple of methods known to explicitly
achieve optimal entropy loss 2 · log(1/ε), the easiest of which is to use an extractor which
natively has this sort of loss, of which only three are known: An extractor from random
walks over Ramanujan Graphs due to Goldreich and Wigderson [19], the Leftover Hash
Lemma due to Impagliazzo, Levin, and Luby [21] (see also [23, 7]), and the extractor based
on almost-universal hashing of Srinivasan and Zuckerman [33]. Unfortunately, all of these
are `2 extractors and so must have seed length linear in min(n− k,m) (cf. [35, Problem 6.4]),
rather than logarithmic in n− k as known non-constructively. The other alternative is to
use the generic reduction of Raz, Reingold, and Vadhan [28] which turns any extractor Ext
with entropy loss ∆ into one with entropy loss 2 · log(1/ε) + O(1) by paying an additive
O(∆ + log(n/ε)) in seed length. We show in the full version of this paper that all of these
`2 extractors and the [28] transformation also work to give KL-extractors with entropy loss
1 · log(1/ε) + O(1), so that applications which require minimal entropy loss can also use
explicit constructions of KL-extractors.

1.3 Future directions
Broadly speaking, we hope that the perspective of KL-extractors will bring new tools (perhaps
from information theory) to the construction of extractors and samplers. For example, since
KL-extractors can have seed length with dependence on ε of only 1 · log(1/ε), trying to
explicitly construct a KL-extractor with seed length 1 · log(1/ε) + o(min(n− k, k)) may also
shed light on how to achieve optimal dependence on ε in the total variation setting.

In the regime of constant ε = Ω(1), we do not have explicit constructions of subgaussian
samplers matching the expander-walk sampler of Gillman [16] for [0, 1]-valued functions,
which achieves randomness complexity m+O(log(1/δ)) and sample complexity O(log(1/δ)),
as asked for by Błasiok [9]. From the extractor point-of-view, it would suffice (by the
reduction of [19, 30] that we analyze for KL-extractors) to construct explicit linear degree
KL-extractors with parameters matching the linear degree extractor of Zuckerman [41],
i.e. with seed length d = log(n) + O(1) and m = Ω(k) for ε = Ω(1). A potentially easier
problem, since the Zuckerman linear degree extractor is itself based on the expander-walk
sampler, could be to instead match the parameters of the near-linear degree extractors of
Ta-Shma, Zuckerman, and Safra [34] based on Reed–Muller codes, thereby achieving sample
complexity O(log(1/δ) · poly log log(1/δ)).

Finally, we hope that KL-extractors can also find uses beyond being subgaussian samplers
and total variation extractors: for example it seems likely that there are applications (perhaps
in coding or cryptography, cf. [4]) where it is more important to have high Shannon entropy
in the output than small total variation distance to uniform, in which case one may be able
to use (k, ε) KL-extractors with entropy loss only 1 · log(1/ε) directly, rather than a total
variation extractor or (k, ε2) KL-extractor with entropy loss 2 · log(1/ε).

APPROX/RANDOM 2019



59:6 Samplers and Extractors for Unbounded Functions

2 Preliminaries

2.1 (Weak) statistical divergences and metrics
Our results in general will require very few assumptions on notions of “distance” between
probability distributions, so we will give a general definition and indicate in our theorems
when we need which assumptions.

I Definition 2.1. A weak statistical divergence (or simply weak divergence) on a finite set
X is a function D from pairs of probability distributions over X to R ∪ {±∞}. We write
D(P ‖ Q) for the value of D on distributions P and Q. Furthermore
1. If D(P ‖ Q) ≥ 0 with equality iff P = Q, then D is positive-definite, and we simply call

D a divergence.
2. If D(P ‖ Q) = D(Q ‖ P ), then D is symmetric.
3. If D(P ‖ R) ≤ D(P ‖ Q) + D(Q ‖ R), then D satisfies the triangle inequality.
4. If D(λP1 + (1− λ)P2 ‖ λQ1 + (1− λ)Q2) ≤ λD(P1 ‖ Q1) + (1 − λ) D(P2 ‖ Q2) for all

λ ∈ [0, 1], then D is jointly convex. If this holds only when Q1 = Q2 then D is convex in
its first argument.

5. If D is defined on all finite sets Y and for all functions f : X → Y the divergence
is nonincreasing under f , that is D(f(P ) ‖ f(Q)) ≤ D(P ‖ Q), then D satisfies the
data-processing inequality.

If D is positive-definite, symmetric, and satisfies the triangle inequality, then it is called a
metric.

I Example 2.2. The `p distance for p > 0 between probability distributions over X is

d`p(P,Q) def=
(∑
x∈X

∣∣Px −Qx∣∣p)1/p

and is positive-definite and symmetric. Furthermore, for p ≥ 1 it satisfies the triangle
inequality (and so is a metric), and is jointly convex. The `p distance is nonincreasing in p.

I Example 2.3. The total variation distance is

dTV (P,Q) def= 1
2d`1(P,Q) = sup

S⊆X

∣∣∣Pr[P ∈ S]− Pr[Q ∈ S]
∣∣∣ = sup

f∈[0,1]X

(
E[f(P )]− E[f(Q)]

)
and is a jointly convex metric that satisfies the data-processing inequality.

I Example 2.4 (Rényi Divergences [31]). For two probability distributions P and Q over
a finite set X , the Rényi α-divergence or Rényi divergence of order α is defined for real
0 < α 6= 1 by

Dα(P ‖ Q) def= 1
α− 1 log

(∑
x∈X

Pαx
Qα−1
x

)

where the logarithm is in base 2 (as are all logarithms in this paper unless noted otherwise).
The Rényi divergence is continuous in α and so is defined by taking limits for α ∈ {0, 1,∞},
giving for α = 0 the divergence D0(P ‖ Q) def= log(1/Prx∼Q[Px 6= 0]), for α = 1 the Kullback–
Leibler (or KL) divergence

KL(P ‖ Q) def= D1(P ‖ Q) =
∑
x∈X

Px log Px
Qx

,
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and for α =∞ the max-divergence D∞(P ‖ Q) def= maxx∈X log Px
Qx

. The Rényi divergence is
nondecreasing in α. Furthermore, when α ≤ 1 the Rényi divergence is jointly convex, and
for all α the Rényi divergence satisfies the data-processing inequality [37].

When Q = UX is the uniform distribution over the set X , then for all α, Dα(P ‖ UX ) =
log|X | − Hα(P ) where 0 ≤ Hα(P ) ≤ log|X | is called the Rényi α-entropy of P . For α = 0,
H0(P ) = log|Supp(P )| is the max-entropy of P , for α = 1, H1(P ) =

∑
x∈X Px log(1/Px) is

the Shannon entropy of P , and for α =∞, H∞(P ) = minx∈X log(1/Px) is the min-entropy
of P .

For α = 2, the Rényi 2-entropy can be expressed in terms of the `2-distance to uniform:

log|X | −H2(P ) = D2(P ‖ UX ) = log
(
1 + |X | · d`2(P,UX )2)

2.2 Statistical weak divergences from test functions
Zuckerman’s connection [40] between samplers for bounded functions and extractors for
total variation distance is based on the following standard characterization of total variation
distance as the maximum distinguishing advantage achieved by bounded functions,

dTV (P,Q) = sup
f∈[0,1]X

E[f(P )]− E[f(Q)].

By considering an arbitrary class of functions in the supremum, we get the following weak
divergence:

I Definition 2.5. Given a finite X and a set of real-valued functions F ⊆ RX , the F -distance
on X between probability measures on X is denoted by DF and is defined as

DF (P ‖ Q) def= sup
f∈F

(
E[f(P )]− E[f(Q)]

)
= sup
f∈F

D{f}(P ‖ Q),

where we use a superscript to avoid confusion with the Csiszár-Morimoto-Ali-Silvey f-
divergences [13, 24, 2].

We call the set of functions F symmetric if for all f ∈ F there is c ∈ R and g ∈ F such
that g = c− f , and distinguishing if for all P 6= Q there exists f ∈ F with D{f}(P ‖ Q) > 0.

I Example 2.6. If F = {0, 1}X or F = [0, 1]X , then DF is exactly the total variation
distance.

I Remark 2.7. An equivalent definition of F being symmetric is that for all f ∈ F there
exists g ∈ F with D{g}(P ‖ Q) = −D{f}(P ‖ Q) = D{f}(Q ‖ P ) for all distributions P and
Q. Hence, one might also consider a weaker notion of symmetry that reverses quantifiers,
where F is “weakly-symmetric” if for all f ∈ F and distributions P and Q there exists g ∈ F
such that D{g}(P ‖ Q) = −D{f}(P ‖ Q) = D{f}(Q ‖ P ). However, such a class F gives
exactly the same weak divergence DF as its “symmetrization” F = F ∪ {−f | f ∈ F}, so we
do not need to introduce this more complex notion.
I Remark 2.8. By identifying distributions with their probability mass function, one can
realize E[f(P )]−E[f(Q)] as an inner product 〈P −Q, f〉. Definition 2.5 can thus be written
as DF (P ‖ Q) = supf∈F 〈P −Q, f〉, which is essentially the notion of indistinguishability
considered in several prior works, (see e.g. the survey of Reingold, Trevisan, Tulsiani, and
Vadhan [29]), but without requiring all f to be bounded.
I Remark 2.9. For simplicity, all our probabilistic distributions are given only for random
variables and distributions over finite sets as this is all we need for our application. A more
general version of Definition 2.5 has been studied by e.g. Zolotarev [39] and Müller [25] and
is commonly used in developments of Stein’s method in probability.

APPROX/RANDOM 2019



59:8 Samplers and Extractors for Unbounded Functions

We now note some basic properties of DF .

I Lemma 2.10. Let F ⊆ RX be a set of real-valued functions over a finite set X . Then DF

satisfies the triangle inequality and is jointly convex, and
1. if F is symmetric then DF is symmetric and

DF (P ‖ Q) = sup
f∈F

∣∣∣E[f(P )]− E[f(Q)]
∣∣∣ ≥ 0,

2. if F is distinguishing then DF is positive-definite,
so that if F is both symmetric and distinguishing then DF is a jointly convex metric on prob-
ability distributions over X , in which case we also use the notation dF (P,Q) def= DF (P ‖ Q).

Furthermore, the notion of dual norm has an appealing interpretation in this framework
via Remark 2.8, generalizing the fact that total variation distance corresponds to [0, 1]-valued
test functions (or equivalently that `1 distance corresponds to to [−1, 1]-valued functions).

I Proposition 2.11. Let 1 ≤ p, q ≤ ∞ be Hölder conjugates (meaning 1/p+1/q = 1), and let

Mq
def=
{
f : {0, 1}m → R

∣∣∣ ‖f(Um)‖q
def= E[|f(Um)|q]1/q ≤ 1

}
be the set of real-valued functions from {0, 1}m with bounded q-th moments. Then d`p =
2−m/q · dMq

, in the sense that for all probability distributions A and B over {0, 1}m it holds
that d`p(A,B) = 2−m/q · dMq

(A,B). In particular, taking p = 1 and q = ∞ recovers the
result for `1 (equivalently total variation) distance.

Proof Sketch. As mentioned this is just the standard fact that the `p and `q norms are dual,
but for completeness we include a proof in Appendix A. J

3 Extractors for weak divergences and connections to samplers

3.1 Definitions
We now use this machinery to extend the notion of an extractor due to Nisan and Zuckerman
[26] and the average-case variant of Dodis, Ostrovsky, Reyzin, and Smith [14].

I Definition 3.1 (Extends Definition 1.4). Let D be a weak divergence on the set {0, 1}m,
and Ext : {0, 1}n × {0, 1}d → {0, 1}m. Then if for all distributions X over {0, 1}n with
H∞(X) ≥ k it holds that
1. D(Ext(X,Ud) ‖ Um) ≤ ε, then Ext is said to be a (k, ε) extractor for D, or a (k, ε)

D-extractor.
2. Es∼Ud [D(Ext(X, s) ‖ Um)] ≤ ε, then Ext is said to be a (k, ε) strong extractor for D, or

a (k, ε) strong D-extractor.

Furthermore, if for all joint distributions (Z,X) where X is distributed over {0, 1}n with
H̃∞(X|Z) def= log

(
1/Ez∼Z

[
2−H∞(X|Z=z)]) ≥ k, it holds that

3. Ez∼Z [D(Ext(X|Z=z, Ud) ‖ Um) ≤ ε], then Ext is said to be a (k, ε) average-case extractor
for D, or a (k, ε) average-case D-extractor.

4. Ez∼Z,s∼Ud [D(Ext(X|Z=z, s) ‖ Um)] ≤ ε, then Ext is said to be a (k, ε) average-case strong
extractor for D, or a (k, ε) average-case strong D-extractor.
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I Remark 3.2. By taking D to be the total variation distance we recover the standard
definitions of extractor and strong extractor due to [26] and the definition of average-case
extractor due to [14].

However, our definitions are phrased slightly differently for strong and average-case
extractors as an expectation rather than a joint distance, that is, for strong average-case
extractors we require a bound on the expectation Ez∼Z,s∼Ud [D(Ext(X|Z=z, s) ‖ Um)] rather
than a bound on D(Z,Ud,Ext(X,Ud) ‖ Z,Ud, Um). In our setting, the weak divergence D
need not be defined over the larger joint universe, but it is defined for all random variables
over {0, 1}m. In the case of dTV and KL divergence, both definitions are equivalent (for KL
divergence, this is an instance of the chain rule).

In the full version of this work [1] we include more discussion about this definition, and
also generalize a result of Vadhan [35, Problem 6.8] showing that all DF -extractors are
average-case with only a constant factor loss in the error parameter.

We also give the natural definition of averaging samplers for arbitrary classes of functions
F extending Definition 1.1, along with the strong variant of Zuckerman [40].

I Definition 3.3. Given a class of functions F : {0, 1}m → R, a function Samp : {0, 1}n →
({0, 1}m)D is said to be a (δ, ε) strong averaging sampler for F or a (δ, ε) strong averaging
F-sampler if for all f ∈ F , it holds that

Pr
x∼Un

[
E

i∼U[D]

[
fi(Samp(x)i)− E[fi(Um)]

]
> ε

]
≤ δ

where [D] = {1, . . . , D}. If this holds only when f1 = · · · = fD, then it is called a (non-strong)
(δ, ε) averaging sampler for F or (δ, ε) averaging F-sampler. We say that Samp is a (δ, ε)
strong absolute averaging sampler for F if it also holds that

Pr
x∼Un

[∣∣∣∣ E
i∼U[D]

[
fi(Samp(x)i)− E[fi(Um)]

]∣∣∣∣ > ε

]
≤ δ.

with the analogous definition for non-strong samplers.

I Remark 3.4. We separated a single-sided version of the error bound in Definition 3.3 as in
[35], as it makes the connection between extractors and samplers cleaner and allows us to be
specific about what assumptions are needed. Note that if F is symmetric then every (δ, ε)
(strong) sampler for F is a (2δ, ε) (strong) absolute sampler for F , recovering the standard
notion up to a factor of 2 in δ.

3.2 Equivalence of extractors and samplers
We now show that Zuckerman’s connection [40] does indeed generalize to this broader setting
as promised.

I Theorem 3.5. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be an (n − log(1/δ), ε)-extractor
(respectively strong extractor) for the weak divergence DF defined by a class of test functions
F : {0, 1}m → R as in Definition 2.5. Then the function Samp : {0, 1}n → ({0, 1}m)D for
D = 2d defined by Samp(x)i = Ext(x, i) is a (δ, ε)-sampler (respectively strong sampler)
for F .

Proof sketch. The proof is given in Appendix A and is similar to that of Zuckerman [40].
The key idea is that for any function f ∈ F , the set of seeds Bf which are bad for Samp with
respect to f must be small, as otherwise E

[
f(Ext(UBf , Ud))

]
− E[f(Um)] > ε contradicting

the extractor property, where UBf is uniform over the set Bf . J
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I Remark 3.6. Hölder’s inequality implies that an extractor for `p with error ε · 2−m(p−1)/p

is also an `1 extractor and thus [−1, 1]-averaging sampler with error ε. Proposition 2.11
and Theorem 3.5 show that they are in fact samplers for the much larger class of functions
Mp/(p−1) with bounded p/(p− 1) moments (rather than just ∞ moments), also with error ε.

Furthermore, if all the functions in F have bounded deviation from their mean (for
example, subgaussian functions from f : {0, 1}m → R have such a bound of O(

√
m) by the

tail bounds from Lemma 4.3), then we also have a partial converse that recovers the standard
converse in the case of total variation distance.

I Theorem 3.7. Let F be a class of functions F ⊂ {0, 1}m → R with finite maximum
deviation from the mean, meaning max dev(F) def= supf∈F maxx∈{0,1}n

(
f(x)− E[f(Um)]

)
<

∞. Then given a (δ, ε) F-sampler (respectively (δ, ε) strong F-sampler) Samp : {0, 1}n →
({0, 1}m)D, the function Ext : {0, 1}n×{0, 1}d → {0, 1}m for d = logD defined by Ext(x, i) =
Samp(x)i is a

(
k, ε+ δ · 2n−k ·max dev(F)

)
DF -extractor (respectively strong DF -extractor)

for every 0 ≤ k ≤ n.
In particular, Ext is an

(
n− log(1/δ) + log(1/η), ε+ η ·max dev(F)

)
average-case DF -

extractor (respectively strong average-case DF -extractor) for every δ ≤ η ≤ 1.

Proof sketch. The proof is given in Appendix A and is again similar to that of Zuckerman
[40]. The key idea is that for any function f ∈ F , since most x ∈ {0, 1}n are good for
Samp, for any source X of sufficient min-entropy, the probability over x from X that
E[f(Ext(x, Ud))]−E[f(Um)] > ε must be at most η, and in this failure case we can fall back
on the trivial bound of max dev(F). J

4 Subgaussian distance and connections to other notions

Now that we’ve introduced the general machinery we need, we can go back to our mo-
tivation of subgaussian samplers. We will need some standard facts about subgaussian
and subexponential random variables, we recommend the book of Vershynin [38] for an
introduction.

I Definition 4.1. A real-valued mean-zero random variable Z is said to be subgaussian
with parameter σ if for every t ∈ R the moment generating function of Z is bounded as
lnE

[
etZ
]
≤ t2σ2

2 . If this is only holds for |t| ≤ b then Z is said to be (σ, b)-subgamma, and
if Z is (σ, 1/σ)-subgamma then Z is said to be subexponential with parameter σ.

I Remark 4.2. There are many definitions of subgaussian (and especially subexponential)
random variables in the literature, but they are all equivalent up to constant factors in σ
and only affect constants already hidden in big-O’s.

I Lemma 4.3. Let Z be a real-valued random variable. Then
1. (Hoeffding’s lemma) If Z is bounded in the interval [0, 1], then Z − E[Z] is subgaussian

with parameter 1/2.
2. If Z is mean-zero, then Z is subgaussian (respectively subexponential) with parameter σ if

and only if cZ is subgaussian (respectively subexponential) with parameter |c|σ for every
c 6= 0.

Furthermore, if Z is mean-zero and subgaussian with parameter σ, then
1. For all t > 0, max

(
Pr[Z > t],Pr[Z < −t]

)
≤ e−t2/2σ2 .

2. ‖Z‖p
def= E[|Z|p]1/p ≤ 2σ√p for all p ≥ 1.

3. Z is subexponential with parameter σ.
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We are now in a position to formally define the subgaussian distance.

I Definition 4.4. For every finite set X , we define the set GX of subgaussian test functions
on X (respectively the set EX of subexponential test functions on X ) to be the set of functions
f : X → R such that the random variable f(UX ) is mean-zero and subgaussian (respectively
subexponential) with parameter 1/2. Then GX and EX are symmetric and distinguishing, so
by Lemma 2.10 the respective distances induced by GX and EX are jointly convex metrics
called the subgaussian distance and subexponential distance respectively and are denoted as
dG(P,Q) and dE(P,Q).

I Remark 4.5. We choose subgaussian parameter 1/2 in Definition 4.4 as by Hoeffding’s
lemma, all functions f : {0, 1}m → [0, 1] have that f(Um)− E[f(Um)] is subgaussian with
parameter 1/2, so this choice preserves the same “scale” as total variation distance. However,
the choice of parameter is essentially irrelevant by linearity, as different choices of parameter
simply scale the metric dG .

Note that absolute averaging samplers for G{0,1}m from Definition 3.3 are exactly sub-
gaussian samplers as defined in the introduction. Thus, by Remark 3.4 and Theorem 3.5,
to construct subgaussian samplers it is enough to construct extractors for the subgaussian
distance dG .

4.1 Composition
Unfortunately, the subgaussian distance has a major disadvantage compared to total variation
distance that complicates extractor construction: it does not satisfy the data-processing
inequality, that is, there are probability distributions P and Q over a set A and a function
f : A→ B such that

dG(f(P ), f(Q)) 6≤ dG(P,Q).

This happens because subgaussian distance is defined by functions which are required to be
subgaussian only with respect to the uniform distribution. A simple explicit counterexample
comes from taking f : {0, 1}1 → {0, 1}m defined by x 7→ (x, 0m−1) and taking P to be the
point mass on 0 and Q the point mass on 1. Their subgaussian distance in {0, 1}1 is obviously
O(1), but the subgaussian distance of f(P ) and f(Q) in {0, 1}m is Θ(

√
m).

The reason this matters because a standard operation (cf. Nisan and Zuckerman [26];
Goldreich and Wigderson [19]; Reingold, Vadhan, and Wigderson [30]) in the construction of
samplers and extractors for bounded functions is to do the following: given extractors

Extout : {0, 1}n × {0, 1}d → {0, 1}m Extin : {0, 1}n
′
× {0, 1}d

′
→ {0, 1}d,

define Ext : {0, 1}n+n′
× {0, 1}d

′
→ {0, 1}m by

Ext
(
(x, y), s

)
= Extout

(
x,Extin(y, s)

)
.

The reason this works for total variation distance is exactly the data-processing inequality: if
Y has enough min-entropy given X, then Extin(Y,Ud′) will be close in total variation distance
to Ud, and by the data-processing inequality for total variation distance this closeness is not
lost under the application of Extout. The assumption that Y has min-entropy given X means
that (X,Y ) is a so-called block-source, and is implied by (X,Y ) having enough min-entropy
as a joint distribution. From the sampler perspective, this construction uses the inner sampler
Extin to subsample the outer sampler. On the other hand, for subgaussian distance, the

APPROX/RANDOM 2019



59:12 Samplers and Extractors for Unbounded Functions

distribution Extin(Y,Ud′) can be ε-close to uniform but still have some element with excess
probability mass Ω(ε/

√
d), and this element (seed) when mapped by Extout can retain2 this

excess mass in {0, 1}m, which results in subgaussian distance Θ(ε
√
m/d) � ε. Similarly,

from the sampler perspective, even when the outer sampler Extout is a good subgaussian
sampler for {0, 1}m, there is no reason that a good subgaussian sampler Extin for {0, 1}d

the seeds of Extout will preserve the larger sampler property when m� d.
Thus, since this composition operation is needed to construct high-min entropy extractors

with the desired seed length even for total variation distance, to construct such extractors for
subgaussian distance we need to bypass this barrier. The natural approach is to construct
extractors for a better-behaved weak divergence that bounds the subgaussian distance.

4.2 Connections to other weak divergences
Therefore, to aid in extractor construction, we show how dG relates to other statistical weak
divergences (though for space reasons, we defer all proofs to Appendix A).

Most basically, the subgaussian distance over {0, 1}m differs from total variation distance
up to a factor of O(

√
m).

I Lemma 4.6. Let P and Q be distributions on {0, 1}m. Then

dTV (P,Q) ≤ dG(P,Q) ≤
√

2 ln 2 ·m · dTV (P,Q)

While this allows constructing subgaussian extractors and samplers from total variation
extractors, as discussed in the introduction the fact that the upper bound depends on m
leads to suboptimal bounds. By starting with a stronger measure of error, we pay a much
smaller penalty.

I Lemma 4.7. Let P and Q be distributions on {0, 1}m. Then for every α > 0

2dTV (P,Q) = d`1(P,Q) ≤ 2mα/(1+α) · d`1+α(P,Q)

dG(P,Q) ≤ 2mα/(1+α)
√

1 + 1
α
· d`1+α(P,Q)

In particular, that there is only an additional
√

1 + 1/α factor when moving to subgaussian
distance compared to total variation, which in particular does not depend on m and is
constant for constant α. We give the proof in Appendix A.

One downside of starting with bounds on `1+α is that, extending a well-known linear
seed length linear bound for `2-extractors (e.g. [35, Problem 6.4]), we show in the full version
of this work [1] that for every 1 > α > 0, there is a constant cα > 0 such any `1+α extractor
with error smaller than cα · 2−mα/(1+α) requires seed length linear in α ·min(n− k,m), for
n− k the entropy deficiency and m the output length. One might hope that sending α to 0
would eliminate this linear lower bound but still bound the subgaussian distance, but phrased
this way sending α to 0 just results in a total variation extractor.

However, with a shift in perspective essentially the same approach works: by Example 2.4,
d`2(P,Um) ≤ ε · 2−m/2 implies D2(P ‖ Um) ≤ ε2/ ln 2, and there is an analogous linear seed
length lower bound on constant error D1+α extractors for every α > 0. In this case, however,
sending α to 0 results in the KL divergence, which does upper bound the subgaussian distance,
and in fact with the same parameters as for total variation distance.

2 Given a subgaussian extractor Ext with d ≥ log(m/ε), adding a single extra seed ∗ to Ext such that
Ext(x, ∗) = 0m results in a subgaussian extractor with error at most 2−d ·

√
2m+ ε ≤ 3ε by convexity

of dG and the fact that
∥∥dG{0,1}m

∥∥
∞
<
√

2m.
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I Lemma 4.8 (cf. [10, Lemma 4.15], [18, Fact B.1]). Let P be a distribution on {0, 1}m. Then

dG(P,Um) ≤
√

ln 2
2 ·KL(P ‖ Um)

dE(P,Um) ≤


√

ln 2
2 ·KL(P ‖ Um) if KL(P ‖ Um) ≤ 1

2 ln 2
ln 2

2 ·KL(P ‖ Um) + 1
4 if KL(P ‖ Um) > 1

2 ln 2

where these bounds are concave in KL(P ‖ Um). In the reverse direction, it holds that

KL(P ‖ Um) ≤ m · dTV (P,Um) + h(dTV (P,Um))

where h(x) = x log(1/x) + (1− x) log(1/(1− x)) is the (concave) binary entropy function.

Due to space constraints, we defer the proof to Appendix A.

5 Extractors for KL divergence

Since by Lemma 4.8 the subgaussian distance can be bounded in terms of the KL divergence
to uniform, the following easy lemma shows that to construct subgaussian extractors it
suffices to construct extractors for KL divergence.

I Lemma 5.1. Let V1 and V2 be weak divergences on the set {0, 1}m and f : R → R be a
function such that V1(P ‖ UM ) ≤ f(V2(P ‖ Um)) for all distributions P on {0, 1}m. Then if
f is increasing on (0, ε), every (k, ε) extractor Ext for V1 is also a (k, f(ε))-extractor for V2,
and if f is also concave, then if Ext is strong or average-case as a V1-extractor, it has the
same properties as a (k, f(ε)) extractor for V2.

Importantly, the KL divergence does not have the flaws of subgaussian distance discussed
in Section 4.1. For instance, the classic data-processing inequality says that KL divergence is
non-increasing under postprocessing by (possibly randomized) functions, and the chain rule
for KL divergence says that

KL(A,B ‖ X,Y ) = KL(A ‖ X) + E
a∼A

[KL(B|A=a ‖ Y |X=a)]

for all distributions A, B, X, and Y , which implies for example that

E
s∼Ud

[KL(Ext(X, s) ‖ Um)] = KL(Ud,Ext(X,Ud) ‖ Ud, Um).

Furthermore, KL divergence satisfies a type of triangle inequality when combined with
higher Rényi divergences:

I Lemma 5.2 (cf. [36, Lemma 6.6]). Let P , Q, and R be distributions over a finite set X .
Then for all α > 0, it holds that

KL(P ‖ R) ≤
(

1 + 1
α

)
·KL(P ‖ Q) + D1+α(Q ‖ R)

We give the proof in Appendix A.
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5.1 Composition
These properties imply that composition does work as we want (without any loss depending
on the output length m) assuming we have extractors for KL and higher divergences.

I Theorem 5.3 (Composition for high min-entropy Rényi entropy extractors, cf. [19]). Suppose
1. Extout : {0, 1}n × {0, 1}d → {0, 1}m is an (n − log(1/δ), εout) extractor for D1+α with

α > 0,
2. Extin : {0, 1}n

′
× {0, 1}d

′
→ {0, 1}d is an (n′ − log(1/δ), εin) average-case KL-extractor,

and define Ext : {0, 1}n+n′
× {0, 1}d

′
→ {0, 1}m by Ext

(
(x, y), s

)
= Extout(x,Extin(y, s)).

Then Ext is an (n+ n′ − log(1/δ), εout + (1 + 1/α) · εin) extractor for KL.

We prove this in Appendix A.

5.2 Further theory
The reader is advised to consult the full version of this paper [1] for a more thorough
development of the theory of KL-extractors, including an extension of the zig-zag product
for extractors (Reingold, Vadhan, and Wigderson [30]), which allows us to avoid the log(1/δ)
entropy loss inherent in Theorem 5.3. We also give lower bounds, an optimal non-explicit
construction, and interpretations of several existing extractor constructions as KL-extractors.

6 Constructions of subgaussian samplers

We can now establish a weak version of our explicit construction of subgaussian samplers
with sample complexity having no dependence on m and sample complexity matching the
best-known [0, 1]-valued sampler when ε and δ are subconstant (up to the hidden polynomial
in the sample complexity). Obtaining matching randomness complexity as well requires more
technology from KL-extractors to develop, and as such we defer the proof to the full version
of this paper [1].

I Theorem 6.1. For all m ∈ N, 1 > ε, δ > 0, and α > 0 there is an explicit (δ, ε)
absolute averaging sampler for subgaussian and subexponential functions Samp : {0, 1}n →
({0, 1}m)D with sample complexity D = poly(log(1/δ), 1/ε) and randomness complexity
n = m+O(log(1/δ)).

I Remark 6.2. In the full version of this paper, we show for every constant α > 0 the
existence of an explicit absolute subexponential sampler with the same sample complexity
D = poly(log(1/δ), 1/ε) and randomness complexity n = m+ (1 + α) log(1/δ), and also an
analogous result for strong subexponential samplers.

We will use essentially the same construction used for bounded samplers in this regime,
combining the expander extractor of Goldreich and Wigderson [19] and an extractor with
logarithmic seed length. However, as described in Section 4.1, this construction does not
work for general subgaussian extractors, so we will instead use the analysis of Theorem 5.3.
This requires a D1+α-extractor for α > 0, for this we note (following [35]) that the extractor
of [19] is already an extractor for D2 (see the full version of this work [1] for more details).

I Theorem 6.3 ([19] [35, Discussion after Theorem 6.22]). For all k ≤ n ∈ N and 1/2 ≥ ε > 0
there is an explicit (k, ε) D2-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with seed length
d = O(n− k + log(1/ε)) and output length m = n.
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We also need an average-case KL-extractor, which we can construct by reducing the error in
the extractors of Guruswami–Umans–Vadhan [20]:

I Theorem 6.4 (Akin to [20, Theorem 1.5]). For every α, ε > 0 and integers k ≤ n,
there is an explicit average-case (k, ε)-KL-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d ≤ logn+Oα(log(k/ε)) and m ≥ (1− α)k.

Though Theorem 6.4 has seed length depending on n the input length, this is tolerable for
us since we will apply it to Extin in the composition of Theorem 5.3 with n = O(log(1/δ) +
log(1/ε)):

Proof. Let ε′ = min(ε,1/2)
48(m+log(1/ε)) so that m · 3ε′ + h(3ε′) ≤ ε, where h(x) = x log(1/x) + (1−

x) log(1/(1 − x)) is the binary entropy function. By [20, Theorem 1.5] and [35, Problem
6.8] there is an explicit (k, 3ε′) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d ≤
logn + Oα(log(k/ε′)) = logn + Oα(log(k/ε)) and m ≥ (1 − α)k. By Lemmas 4.8 and 5.1,
we also have that Ext is a (k,m · 3ε′ + h(3ε′)) average-case KL-extractor, and thus a (k, ε)
average-case KL-extractor as desired. J

I Theorem 6.5. For all integers m and δ, ε > 0 there is an explicit (k, ε)-KL-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m with n = m + O(log(1/δ)), k = n − log(1/δ), and
d = O(log log(1/δ) + log(1/ε)).

Proof. Let Extout : {0, 1}m×{0, 1}dout → {0, 1}m the (m−log(1/δ), ε/3) be the D2-extractor
from Theorem 6.3 with dout = O(log(1/δ) + log(1/ε)), and letExtin : {0, 1}nin × {0, 1}din →
{0, 1}dout be the (nin − log(1/δ), ε/3) average-case KL-extractor from Theorem 6.4 with
output length dout, so that nin = O(log(1/δ)+log(1/ε)) and din = O(log log(1/δ)+log(1/ε)).

Then instantiating Theorem 5.3 with Extout and Extin gives an (n′ − log(1/δ), ε) KL-
extractor Ext′ : {0, 1}n

′
× {0, 1}d

′
→ {0, 1}m with n′ = m+ nin d

′ = din. The result follows
follows from defining Ext : {0, 1}n × {0, 1}d → {0, 1}m by Ext(x, (s, t)) = Ext′((x, s), t) for s
of length O(log(1/ε)). J

We can now prove Theorem 6.1.

Proof of Theorem 6.1. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be the explicit (k, ε2/2) KL-
extractor of Theorem 6.5 with n = O(m + log(1/δ′) + log(1/ε)), k = n − log(1/δ′), and
d = O(log log(1/δ′) + log(1/ε)) for δ′ = δ/2. Then by Lemmas 4.8 and 5.1, Ext is also a (k, ε)
extractor for dE , so by Theorem 3.5 the function Samp : {0, 1}n → ({0, 1}m)D for D = 2d
defined by Samp(x)i = Ext(x, i) is a (δ′, ε) subexponential sampler. Finally, by Remark 3.4,
we have that Samp is a (δ, ε) absolute subexponential sampler as desired. J

In the full version [1] of this paper, in addition to proving the stronger version of
Theorem 6.1, we also discuss explicit samplers for other ranges of parameters and non-explicit
constructions.
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A Missing proofs

In this section, we include some proofs that were omitted from the main text due to space
constraints.

Proof of Proposition 2.11. As mentioned this is just the standard fact that the `p and `q
norms are dual, but for completeness we include a proof in our language using the extremal
form of Hölder’s inequality (note that since we are dealing with finite probability spaces the
extremal equality holds even for p =∞ and q = 1). Given probability distributions A and B
over {0, 1}m, we have that

d`p(A,B) =
(∑

x

|Ax −Bx|p
)1/p

= 2m/p E
x∼Um

[|Ax −Bx|p]
1/p

= 2m/p max
f :{0,1}m→R
‖f(Um)‖q≤1

∣∣∣∣ E
x∼Um

[f(x)(Ax −Bx)]
∣∣∣∣ (Hölder’s extremal equality)

= 2−m+m/p max
f :{0,1}m→R
‖f(Um)‖q≤1

∣∣∣E[f(A)]− E[f(B)]
∣∣∣

= 2−m/q · dMq
(A,B) (by symmetry ofMq)

as desired. J

Proof of Theorem 3.5. The proof is essentially the same as that of [40].
Fix a collection of test functions f1, . . . , fD ∈ F , where if Ext is not strong we restrict to

f1 = · · · = fD, and let Bf1,...,fD ⊆ {0, 1}
n be defined as

Bf1,...,fD
def=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼U[D]

[
fi(Ext(x, i))− E[fi(Um)]

]
> ε

}
=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼U[D]

[
D{fi}

(
U{Ext(x,i)}

∥∥ Um)] > ε

}
,

where U{z} is the point mass on z. Then if X is uniform over Bf1,...,fD , we have

ε < E
x∼X

[
E

i∼U[D]

[
fi(Ext(x, i))− E[fi(Um)]

]]
= E
i∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]
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. . . =

D{f1}(Ext(X,Ud) ‖ Um) if f1 = · · · = fD

Ei∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]
always

≤

DF (Ext(X,Ud) ‖ Um) if f1 = · · · = fD

Ei∼U[D]

[
DF (Ext(X, i) ‖ Um)

]
always

Since Ext is an (n− log(1/δ), ε)-extractor (respectively strong extractor) for DF we must have
H∞(X) < n− log(1/δ). But H∞(X) = log|Bf1,...,fD | by definition, so we have |Bf1,...,fD | <
δ2n. Hence, the probability that a random x ∈ {0, 1}n lands in Bf1,...,fD is less than δ, and
since Bf1,...,fD is exactly the set of seeds which are bad for Samp, this concludes the proof. J

Proof of Theorem 3.7. Again the proof is analogous to the one in [40].
Fix a distribution X over {0, 1}m with H∞(X) ≥ k and a collection of test functions

f1, . . . , fD ∈ F , where if Samp is not strong we restrict to f1 = · · · = fD. Then since Samp
is a (δ, ε) F-sampler, we know that the set of seeds for which the sampler is bad must be
small. Formally, the set

Bf1,...,fD
def=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼Ud

[
fi(Samp(x)i)− E[fi(Um)]

]
> ε

}
=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼Ud

[
fi(Ext(x, i))− E[fi(Um)]

]
> ε

}
has size |Bf1,...,fD | ≤ δ2n. Thus, since X has min-entropy at least k we know that
Pr[X ∈ Bf1,...,fD ] ≤ 2−k · δ2n, so we have

E
i∼Ud

[
E
[
fi(Ext(X, i))− E[fi(Um)]

]]
= E
X

[
E

i∼Ud

[
fi(Ext(X, i))− E[fi(Um)]

]]
= Pr[X ∈ Bf1,...,fD ] · E

X

[
E

i∼Ud

[
fi(Ext(X, i))− E[fi(Um)]

] ∣∣∣∣X ∈ Bf1,...,fD

]
+ Pr[X 6∈ Bf1,...,fD ] · E

X

[
E

i∼Ud

[
fi(Ext(X, i))− E[fi(Um)]

] ∣∣∣∣X 6∈ Bf1,...,fD

]
≤ Pr[X ∈ Bf1,...,fD ] ·max dev(F) + Pr[X 6∈ Bf1,...,fD ] · ε

≤ 2−k · δ2n ·max dev(F) + ε

completing the proof of the main claim. The “in particular” statement follows since if (Z,X)
are jointly distributed with H̃∞(X|Z) ≥ n− log(1/δ) + log(1/η) we have

E
z∼Z

[
ε+ δ · 2n−H∞(X|Z=z) ·max dev(F)

]
= ε+ δ · 2n−H̃∞(X|Z) ·max dev(F)

≤ ε+ η ·max dev(F)

by definition of conditional min-entropy. J

Proof of Lemma 4.6. That dTV ≤ dG is immediate from Hoeffding’s lemma and the discus-
sion in Remark 4.5. The reverse bound holds since any subgaussian function takes values at
most

√
ln 2/2 ·m away from the mean by the tail bounds from part 3 of Lemma 4.3, and

so any subgaussian test function f has the property that 1/2 + f/
√

2 ln 2 ·m is [0, 1]-valued
and thus lower bounds the total variation distance. J
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Proof of Lemma 4.7. By Proposition 2.11, for any function f : {0, 1}m → R it holds that

D{f}(P ‖ Q) ≤ ‖f(Um)‖1+ 1
α
· dM1+ 1

α

(P,Q) = ‖f(Um)‖1+ 1
α
· 2mα/(1+α) · d`1+α(P,Q).

The result follows since [−1, 1]-valued functions f satisfy moment bounds ‖f(Um)‖q ≤ 1 for
all q ≥ 1, and functions f which are subgaussian satisfy moment bounds ‖f(Um)‖q ≤

√
q by

Lemma 4.3. J

Proof of Lemma 4.8. The upper bound on subgaussian distance follows from a general form
of Pinsker’s inequality as in [10, Lemma 4.18], but for the extension to subexponential func-
tions we reproduce its proof here, based on the Donsker–Varadhan “variational” formulation
of KL divergence [15] (cf. [10, Corollary 4.15])

KL(P ‖ Um) = 1
ln 2 · sup

g:{0,1}m→R

(
E[g(P )]− lnE

[
eg(Um)

])
.

Now if f : {0, 1}m → R satisfies E[f(Um)] = 0, then by letting g(x) = t · f(x), this implies

E[f(P )]− E[f(Um)] = 1
t
· E[g(P )] ≤

ln 2 ·KL(P ‖ Um) + lnE
[
et·f(Um)]

t

for all t > 0. Thus, when lnE
[
et·f(Um)] ≤ t2/8, we have E[f(P )] − E[f(Um)] ≤ ln 2 ·

KL(P ‖ Um)/t+ t/8.
Then since subgaussian random variables satisfy such a bound for all t, we can make the

optimal choice t =
√

8 ln 2 ·KL(P ‖ Um) to get the claimed bound on dG . For subex-
ponential random variables, which satisfy such a bound only for |t| ≤ 2, we choose
t = min(

√
8 ln 2 ·KL(P ‖ Um), 2), which gives

dE(P,Um) ≤


√

ln 2
2 ·KL(P ‖ Um) if KL(P ‖ Um) ≤ 1

2 ln 2
ln 2

2 ·KL(P ‖ Um) + 1
4 if KL(P ‖ Um) > 1

2 ln 2

as desired. The concavity of this bound follows by noting that it has a continuous and
nonincreasing derivative.

For the reverse inequality, we use a bound on the difference in entropy between distributions
P and Q on a set of size S which states

|H(P )−H(Q)| ≤ lg(S − 1) · dTV (P,Q) + h(dTV (P,Q)).

This inequality is a simple consequence of Fano’s inequality as noted by Goldreich and
Vadhan [18, Fact B.1], and implies the desired result by taking Q = Um as KL(P ‖ Um) =
H(Um)−H(P ) and |{0, 1}m| = 2m. J

I Remark A.1. There are sharper upper bounds on the KL divergence than given in Lemma 4.8,
such as the bound of Audenaert and Eisert [3, Theorem 6], but the bound we use has the
advantage of being defined for the entire range of the total variation distance and being
everywhere concave.

Proof of Lemma 5.2. This follows from a characterization of Rényi divergence due to van
Erven and Harremoës [36, Lemma 6.6] [37, Theorem 30] and Shayevitz [32, Theorem 1], who
prove that for for every positive real β 6= 1 and distributions X and Y that

(1− β) Dβ(X ‖ Y ) = inf
Z

{
βKL(Z ‖ X) + (1− β) KL(Z ‖ Y )

}
.

In particular, choosing β = 1 + α, X = Q, and Y = R and upper bounding the infimum by
the particular choice of Z = P gives the claim. J
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Proof of Theorem 5.3. Let (X,Y ) be jointly distributed random variables with X dis-
tributed over {0, 1}n and Y over {0, 1}n

′
such that H̃∞(X,Y |Z) ≥ n+ n′ − log(1/δ). Then

by Lemma 5.2 and the data-processing inequality for KL divergence we have that

KL(Ext((X,Y ), Ud) ‖ Um)
= KL(Extout(X,Extin(Y,Ud)) ‖ Um)
≤ (1 + 1/α) ·KL(Extout(X,Extin(Y, Ud)) ‖ Extout(X,Ud))

+ D1+α(Extout(X,Ud) ‖ Um)
≤ (1 + 1/α) ·KL(X,Extin(Y,Ud) ‖ X,Ud) + D1+α(Extout(X,Ud) ‖ Um)
= (1 + 1/α) · E

x∼X
[KL(Extin(Y |X=x, Ud) ‖ Ud)] + D1+α(Extout(X,Ud) ‖ Um)

where the last equality follows from the chain rule for KL divergence. Now by standard prop-
erties of conditional min-entropy (see for example [14, Lemma 2.2]), we know that H∞(X) ≥
H∞(X,Y ) − log|Supp(Y )| ≥ n − log(1/δ) and H̃∞(Y |X) ≥ H∞(X,Y ) − log|Supp(X)| ≥
n′ − log(1/δ). Thus, since by assumption Extin is an average-case (n′ − log(1/δ), εin)
KL-extractor the first term is bounded by (1 + 1/α) · εin, and similarly since Extout is
an (n − log(1/δ), εout) D1+α-extractor we have that the second term is bounded by εout
as desired. J
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